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Abstract

The analysis of the structural organization of the interaction network of a
complex system is central to understand its functioning. Here, we focus on
the analysis of the bipartivity of graphs. We first introduce a mathematical
approach to quantify bipartivity and show its implementation in general and
random graphs. Then, we tackle the analysis of the transportation networks
of European airlines from the point of view of their bipartivity and observe
significant differences between traditional and low cost carriers. Bipartivity
shows also that alliances and major mergers of traditional airlines provide a
way to reduce bipartivity which, in its turn, is closely related to an increase of
the transportation efficiency.
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1. Introduction

A fundamental characteristic of complex systems is that, in general, they
are networked. Thus, complex networks, which represent the skeleton of such
complex systems, are ubiquitous in many real-world scenarios, ranging from the
biomolecular—those representing gene transcription, protein interactions, and
metabolic reactions—to the social and infrastructural organization of modern
society [1]. Mathematically speaking, these networks are graphs with the nodes
representing the entities of the system and the edges representing the “relations”
among those entities. From an structuralist point view of nature it could be
claimed that a large proportion of the properties of these complex systems are
determined by the structure of these networks. The question about what do
we mean by “the structure” of these networks is a tricky one. This situation
is reminiscent of Edgar Allan Poe response about what is the structure of a
strange ship: “What she is not, I can easily perceive—uwhat she is I fear it is
impossible to say” [2]. Then, the pragmatic approach used in network theory
and beyond is to consider structural invariants which characterize some portions
of this structure which in global terms scape to our formal definitions. That
is the reason why we have such a large amount of structural invariants, i.e.,
numbers that characterize some properties of the network independently of the
labelling of nodes and edges [3]. Such invariants include the average path length,
clustering coefficients, densities, assortativity coefficients, and many more (see
[1, 3] for non-exhaustive lists).

The concept of network bipartivity is one that have given rise to some struc-
tural invariants to characterize how much bipartitivity a network has. Bipartiv-
ity has long been studied in graph theory as a black-and-white concept. That is,
just by considering that a graph is or is not bipartite. However, in the noughties
there were three papers that attempted to characterize how much bipartivity a
non-bipartite graph has. The pioneering work of Holme et al. proposed the first
of such measures in 2003 by using computational methods [4]. In 2005 Estrada
and Rodriguez-Veldzquez applied spectral graph theory to develop a mathe-
matical characterization of graph bipartivity [5]. The third work, published by
Pisanski and Randié¢, uses a characterization of network cyclicity to account
for bipartivity [6]. In particular the bipartivity index developed by Estrada
and Rodriguez-Veldzquez has found a different number of applications to net-
work problems ranging from the analysis of fullerene stability to the structure
of food webs (see for instance [7, 8, 9, 10]. Although this index is mathemati-
cally appealing—it is based on well defined matrix functions of the adjacency
matrix of a graph—it has some drawbacks. The most important one is that it
is bounded between 0.5 and 1.0, which means that it has a very narrow range
of values for the analysis of networks. Also importantly, it is based on two dif-
ferent kinds of matrix functions—the exponential and the hyperbolic cosine—,
which make its calculation computationally complicated from the point of view
os using numerical methods for their calculations.

Here we propose a new mathematical approach to quantify the bipartivity
of a network by considering a single matrix function—the exponential. This



new index is ranged between 0 and 1. We show a few mathematical proper-
ties of this index for general networks as well as for random graphs. We then
embarked in the study of the airline transportation networks in Europe to see
how the different degrees of bipartivity affect their global efficiency in terms of
the number of passengers transported and the number of hours flown. We show
that the new bipartivity index accounts very well for the main characteristics of
these European airline networks and allow us to understand the main structural
differences between traditional and low-cost carriers operating in Europe.

2. Graph Theoretical Preliminaries

Here we present some definitions, notations, and properties which will be
used in this work (see [1, 3]). A graph G = (V, E) is defined by a set of n nodes
(vertices) V and a set of m edges E = {(u,v)|u,v € V} between the nodes.
An edge is said to be incident to a vertex w if there exists a node v # u such
that either (u,v) € E or (v,u) € E. The graph is said to be undirected if the
edges are formed by unordered pairs of vertices. A walk of length k£ in G is
a set of nodes i1,1s,...,0g, ig+1 such that for all 1 <[ <k, (i,i;41) € E. A
closed walk is a walk for which iy = ipy1. A path is a walk with no repeated
nodes. A graph is connected if there is a path connecting every pair of nodes.
A graph with unweighted edges, no self-loops (edges from a node to itself), and
no multiple edges is said to be simple. Throughout this work, we will always
consider undirected, simple, and connected networks. In this setting the matrix
A = (ayy), called the adjacency matriz of the graph, has entries

1 if (w,v) € FE
uv = { 0 otherwise Vu,vEV,

and, in the particular case of an undirected network as the ones studied here, the
adjacency matrix of the graph is symmetric, a,, = .y, and thus its eigenvalues
are real. In the following we label the eigenvalues of A in non-increasing order:
A1 > A2 > ... > \,. The degree of a node k; is the number of edges incident
to that node. Since A is a real-valued, symmetric matrix, we can decompose A
into A = QAQT where A is a diagonal matrix containing the eigenvalues of A

and Q = [qy,...,q,] is orthogonal, where q; is an eigenvector associated with
i
The network density is given by:
2
="
n(n—1)

where m is the number of edges. Here we will call, as usual in network theory,
average path length the average of the shortest path distance in the graph:

- 2
l= m Zd(u,v),

uFv



where d(u,v) is the shortest path distance between the nodes u and v.

An important quantity for the current work is one defined for studying com-
munication processes in networks, which is called communicability function [11].
In particular, the self-communicability function, also known as the subgraph
centrality [12] of the corresponding node, is defined as follows. Let u be a node
of G, then

o (Ak
k=0

k=1
The sum of all subgraph centralities in a network is nowadays known as the
Estrada index of a graph [13, 14, 15, 16], which is defined as

EE(G) = 3 (exp (4),, = tr (exp (4))
u=1
By the properties of the matrix exponential and of the trace of a matrix we
can easily see that

EE (G) = tr (sinh (A4)) + tr (cosh (A)) .

These functions count the total number of closed walks starting (and ending)
at node u, weighted in decreasing order of their length %k by a factor %; therefore
it is considering shorter closed walks more influential than longer ones (see
[11, 17, 18]). In particular, the hyperbolic sine function counts the number of
closed walks of odd length in the graph and the hyperbolic cosine one counts

the even-length ones.

3. Spectral Bipartivity Index in Graphs

There are a few characterizations of bipartite graphs in graph theory. For
instance, the following characterization is a well-known one [19].

Lemma 1. A graph is bipartite if and only if it does not contain any odd cycle.

We now provide a related characterization of bipartite graphs which will be
of great usefulness in this work.

Theorem 2. A graph is bipartite if and only if tr sinh (A) = 0.

Proof. Let us consider the Taylor series expansion of ¢rsinh (A)

_ trA3 > tr (AR
trsinh (A) = trA + 3l +e= ;OW

We know that ¢r (Azl”l) counts the number of closed walks of length 2k +1
in the graph. Every closed walk of odd length necessarily involves an odd cycle.
Then, because in a bipartite graph there are no odd cycles, tr (A2**1) = 0 for
all k£, which proves the above result. U



Let us call frustrated closed walk to a closed walk which involves any odd
cycle in the network. Similarly, a non-frustrated closed walk is the one which
does not involve any odd cycle. Let us now consider a normalized measure of
the difference between the number of non-frustrated and frustrated walks:

whN —wF

b= W @

The use of the term frustrated to designate closed walks involving any odd
cycle in the network comes from its use in spin systems. In those cases there
are n magnetic ions residing on the corners of a cycle with antiferromagnetic
interactions between them; the energy is minimized when each spin is aligned
opposite to neighbors. In those systems with odd cycles once the first n—1 spins
align anti-parallel, the nth one is frustrated because its two possible orientations,
up and down, give the same energy (see for instance [20]).

Using the properties of the Estrada index that we have stated in the previous
section we can find a natural way of accounting for this normalized measure.
This is carried out by using the traces of the hyperbolic cosine and sine matrix
functions. That is, we propose to consider

_ trcosh (A) —trsinh (A) @)
® " trcosh (A) + trsinh (A)’

that, by considering that A is diagonalizable, can be re-written as:

_trexp(—A) > i1 exp (=) 3)
trexp(A)  YT_jexp ()
Notice, that the numerator is the Estrada index for the negative of the
adjacency matrix and the denominator is the ’classical’ Estrada index of a graph.
Hereafter, we call b the spectral bipartivity index of the graph.

4. Mathematical Properties of the Spectral Bipartivity Index

We now analyze the mathematical properties of the introduced spectral bi-
partivity index b.

Proposition 3. The spectral bipartivity indez is bounded as
0<bs <1, (4)

where the upper bound is reached for any bipartite network and the lower bound
is reached asymptotically for a complete graph with n — co.

Proof. 1t is easy to show that the upper bound is reached for any bipartite graph
for which ¢rsinh (A) = 0. For the upper bound let us consider the complete
graph K,,. Then,

_exp (—(n—=1))+ (n—1)exp(—1)
exp(n—1)4 (n—1)exp (1)

bs (Kp)
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so that we have that:
lim b, (K,) = 0.

n—oo

O

Let G = (V, E) be a graph having n nodes. Let us assume that G # K,,
i.e., G is not a complete graph. The best bipartition of G consists in splitting
the set of nodes V into two non-empty sets V; and V5 (V =V; U V3), such as
the number of edges e = (7, j) in which ¢ € V}, implies that j € Vi, k = {1,2} is

minimized. Let .
> j—1sinh (Aj)
S cosh ()

be the ratio of odd to even closed walks in G. Then, we have the following
result.

a(G@)=a=

Proposition 4. Let G be a graph with best bipartition given by the sets Vi and
Va. Let G + e be the graph resulting from adding the edge e to G, such that a
and b are the contributions of the edge e to even and odd closed walks in G + e
, respectively. Then, if b > aa

bs (G) 2 bs (G +e). (5)

Proof. The spectral bipartivity index of G + e is

(Z?Zl cosh (\;) + a) - (Z;—;l sinh (\;) + b)
i1 exp (X)) Fatb ’
Y=y cosh (X)) +a > iy sinh (A7) +b

Soiexp(N)+ta+b > exp(\)+a+b

bs (G +e)

Since coshx > sinhz, Vz,
Z cosh (A;) > Z sinh (A;),
j=1 j=1
and because b > aa, we have that
b Z cosh (A\;) > a Z sinh (\;) .
j=1 j=1

Adding (b + 2?21 exp (/\j)> (22}21 sinh ()\j))to both sides of the previous in-
equality, we get

Zexp()\j) b—l—Zsinh()\j) > Zsinh()\j) a+b+Zexp()\j) )
j=1 j=1 j=1

J=1



which means that
b+ % sinh ()y) - > iy sinh (A;)
a+b+ Zj:l exp (A;) — Z;‘L:1 exp (A;)
In a similar way we can prove that
> j=1 cosh (X)) S + 35y cosh (Xy)
Z?:leXP()‘j) B a+b+Z _1exp(Aj)

Combining the inequalities 6 and 7 we finally obtain:

> j—q cosh (A;) B > iy sinh (A;)
dmiexp () 2T exp(A))

a+z _, cosh (X)) B b+2 _, sinh (A;)
Ta+b+ 30 exp(N)  at+b+ 3T exp ()

bs (G) =

=b;(G+e) (9

O

Remark 5. The condition b > «a indicates that the edge added to G increases
more the contribution to odd than to even closed walks relative to the ratio of
these walks in the original graph G . This is always the case when the edge
e is added between pairs of nodes which are both in the same partition V; or
Vo of G, that is, when the edge e = (4,7) is such that ¢ € V} implies that
Jj € Vi, k = {1,2}. If the edge e = (4,7) is added to connect two nodes in
distinct sets, i.e., ¢ € Vi, j € V3, then the condition condition b > aa is not
necessarily fulfilled. In this case it is possible that the bipartivity of the network
can increase.

The Proposition 4 proves that the spectral bipartivity index decays mono-
tonically when the number of frustrated edges increases in the network. In
Figure 1 we illustrate this for a toy graph of n = 5 nodes.

We now move to the analysis of bipartivity in Erdgs-Rényi (ER) random
graphs. In this case we prove the following result.

Theorem 6. Let G (n,p) be an Erdds-Rényi random graph with n nodes and
probability p. When n — oo, the bipartivity of G (n,p) is given by

1 if (np)—0
bS(ER>:{ 0 if (npl))ﬁoo.

Proof. Let A\ > Ay > --- > A, be the eigenvalues of the adjacency matrix of
the ER graph. When n — oco: Ay = np and ;>3 = 0. Thus,

n—1+exp(—np) n—1 exp (—np)
n—1+exp(np) n—1+exp(np) n—1+exp(np)

b (ER) =

By applying the limit when n — oo the two dominating regimes are observed,
which proves the result. O



Figure 1: Illustration of the monotonic decay of the spectral bipartivity index in a graph of
n =5 nodes. In (a) we show a perfectly bipartite graph whereas from (b) to (h) the number
of frustrated edges is progressively increased. As show the addition of frustrated edges leads
to the increase of the spectral bipartivity index bs

The previous result indicates that an ER graph is almost bipartite, i.e.,
bs (FR) ~ 1if

1 -1
pe 1)

We should consider that an ER random graph with such small density could
be disconnected. It is well known that if p = (logn + ¢) /n, where ¢ is an arbi-
trary constant, then Pr[G (n.p) is connected] — exp (—exp (—c)) as n — oo.
However, it is possible to obtain connected ER random graphs with relatively
large bipartivity by working in a very low-density regime (we recall that in an
ER graph p = 0, where ¢ is the graph density). In closing, the previous result
indicates that there is a transition between a bipartite graph to a highly non-
bipartite one in the ER model, which is controlled by the graph density. That
is, for fixed n, an ER graph is close to bipartite when the density of the graph
is very small. As soon as this density approaches 1, the graph becomes highly
non-bipartite as a consequence that it is approaching the complete graph.

In the Fig. (2) we illustrate the plot of the spectral bipartivity index versus
the graph density ¢ for ER random graphs with 500, 1000 and 2000 nodes. Every
point is the result of averaging 100 random realizations of the ER graph with
the same number of nodes and edges. As can be seen the spectral bipartivity
index decays very fast with the increase of the graph density. Such decay is
faster as the number of nodes increases as predicted by our previous analytic
result. Thus, highly bipartite random ER graphs are only possible in a very low
density regime, which is realizable when the number of nodes is very large.
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Figure 2: Scatterplot of the spectral bipartivity index versus the graph density for ER random
graphs with n = 500 (green circles), n = 1000 (blue squares), and n = 2000 (red triangles).
The lines joining the points are used to guide the eye. The plot is in semilogarithmic scale.
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Figure 3: Ranking of the airlines ordered (from larger to smaller) by their bipartivity bs. Note
that traditional airlines are those with the largest bipartivity values.

5. Analysis of European Passenger Airlines

Armed with the previous method to quantify bipartivity in a network we
tackle the problem of evaluating this property in real networks. To this aim
we consider the European air transportation system [21, 22| represented by 33
passenger airlines, 25 of which correspond to ‘traditional’ and 8 to ‘low-cost’ car-
riers (LCCs). For each airline carrier we consider a network in which the nodes
represent any of the 450 commercial airports existing in Europe and two nodes
(airports) are connected if the corresponding airline has a flight between them.
A resume of the main characteristics of these airline networks are displayed in
the Table 1.

Our goal is to show, by means of the spectral bipartivity index, the organi-
zational differences of these two types of airlines and how the alliances between
traditional airilnes affect the value of bipartivity. First, in Fig. 3 we show the
bipartivity ranking of the set of 33 airlines. Remarkably, traditional airlines
display high bipartivity indexes, reaching bs ~ 1 in the cases of Brussels, Niki,
KLM, Czech and British. On the orher hand, most of LCCs display small values
being almost zero for the most important ones: Easyjet and Ryanair.

The presence of low-cost carriers (LCC) in Europe represents a significant
change in the evolution of airline industry. Although most traditional carriers
have reported heavy losses and capacity reduction in recent years, LCCs have
been continuously expanding in the European short-haul market. The average
number of airports (n) and flights per airline (m) are given in Table 2 for
both traditional and LCCs. Both types of networks (traditional and LC) have

11



Airline n m 1) l

Easyjets 99 307 0.063  2.345
Flybe 43 99 0.110  2.277
GermanWings 42 66 0.077  2.049
Norwegian 592 87 0.066 2.207
Ryanair 128 601 0.074  2.247
Transavia 40 57 0.073 2.428
Vueling 36 63 0.100  2.186
WizzAir 45 92 0.092 2.663
Aegean 38 53 0.075  2.195
AirBaltic 45 45 0.045  2.082
AirBerlin 75 184 0.066  2.374
AirFrance 59 69 0.043 2.194
Airlingus 45 58 0.059  2.108
AirNostrum 48 69 0.061 2.512
Alitalia 51 93 0.073 1.972
Austrian 67 72 0.033 2.022
British 63 65 0.033  2.759
Brussels 44 43 0.046 1.954
Czech 42 41 0.048 1.952
FinnAir 42 42 0.049 1.996
Iberia 35 35 0.059 1.995
KLM 63 62 0.032 1.968
Lufthansa 106 244 0.044 2.163
Malev 35 34 0.057 1.943
NIKI 36 37 0.059 2441
Olympic 37 43 0.065 1.985
Panagra 45 58 0.059 2.194
Polish 44 55 0.058  2.026
Scandinavian 66 110 0.051 2.312
Swiss 48 60 0.053 1.947
TAP 42 53 0.062 1.971
Turkish 86 118 0.032 2.016
Windroe 45 90 0.091 3.345

Table 1: Some topological invariants for the 33 airline carrier networks studied in this work.
We give the number of airport n used by each company, number of flights m, network density
&, average path length | and global clustering coefficient C.

12



very similar number of nodes, densities and average path length (see Table
1). However, the values obtained for the average bipartite index point out that
LCCs have networks which are 34% less bipartite than those used by traditional
airlines.

5.1. Multilayer Approach

Another characteristic of European airlines is that many of them are grouped
into alliances with the goal of expanding their networks and to reduce costs.
These alliances include One World, Sky Team and Star Alliance. In Fig. 3 we
have indicated (see colors) the alliance of each of the traditional airlines. It is
interesting that those airlines belonging to Sky Team and One World groups
show large values of bipartivity whereas most of the airlines forming the Star
Alliance display smaller values, lying in the range where most LCCs are.

From the network perspective, alliances are multiplex networks [23, 24] so
that each airline constitutes an interaction layer and each airport is a node that
is present in each of the layers. A common way to study how the different
layers of a multiplex interplay is to aggregate them into a single network com-
prising the same set of nodes and the different links that connect them. Thus,
here we compute the bipartivity index of an alliance as the bipartivity of the
graph resulting after aggregating all the layers corresponding to the airlines that
participate of it.

In Table 3 we show the bipartivity of the three alliances (computed by merg-
ing all the layers into a single one, the mergin is carried out in an unweighted
way, i.e., a one is placed in the adjacency matrix if there is a link in any layer,
zero otherwise) and the average bipartivity of the airlines (layers) composing
each of them. As can be seen the bipartivity drops significatly when merging
the airlines within an alliance, specially in the case of Star Alliance, which in
its turn contains the airlines with smaller average bipartivity. Thus, in spite
of the large bipartivity values displayed by traditional airlines, the formation
of alliances can be seen as a form of increasing the frustration level of their
networks, i.e., decreasing their network bipartivity.

The merging of all the layers (airlines) composing a multiplex (alliance) is
a very strong assumption that considers that all the carriers in one alliance
use simultaneously all the networks provided by the rest of the carriers in that
alliance. On the contrary, the fact that two airlines belong to the same alliance
does not imply that all the flights operated by them are under a codeshare
agreement. However, in the recent years there have been a couple of major

{n) {m) {9) (bs)
Low-cost 61 172 0.081 0.305
Traditional 52 74 0.055 0.643

Table 2: Main descriptors of the graphs associated to LCCs and traditional carriers operating
in the the European Air Transportation System.
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Figure 4: Bipartibity of all the possible two-airline combinations within each of the alliances
of traditional carriers. (A) Sky Team, (B) One World and (c) Star Alliance.

mergers in the European airline market which, from the network perspective,
fulfill the assumptions behind the aggregation of layers.

To analyze what are the effects that the merging of couples of traditional
airlines has on their bipartivity we have analyzed all the possible 2-airlines
coalitions within an Alliance. In Fig. 4 we show the corresponding bipartivity
indexes in three color-coded matrices (one per alliance) so that the element (i, j)
of these matrices reveals the value of the bipartivity index when aggregating
airline 7 and airline j into a single network. In Fig. 4.A we plot the bipartivity
matrix corresponding to the Sky Team alliance. It is remarkable that Air France
and KLM show very high bipartivity indexes when isolated (0.8773 and 1.000
respectively) whereas the single merging of them yields a bipartivity index of
0.2799. The other major merger between Iberia and British Airways is reported
in Fig. 4.B (One World alliance) which isolated display large bipartivities (0.9461
for Iberia and 1.000 for British Airways) while merged reach a value of 0.3868.

It is remarkable, that for both Sky Team and One World alliances, the two
mergers reported above are those yielding the smaller bipartivity value among
those created from the coalition of large bipartivity airlines (Air France, KLM
and Czech for Sky Team and British, Iberia, Finnair and Nikki for One World).

In the case of Star Alliance, Fig. 4.C, the diagonal reveal that most of the

| | om0 | b | (k) |
One World 6 148 0.001 0.78
Star Alliance 9 212 6-10°6 0.50
Sky Team 4 118 0.022 0.76

Table 3: Main descriptors of the graphs associated to LCCs and traditional carriers operating
in the the European Air Transportation System. The values of bs correspond to the bipartivity
of the merged multiplexes and (bs) to the average bipartivity of all the individual airlines in
a given alliance.
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Figure 5: Illustration of the relation between the airline carriers efficiency and the spectral
bipartivity index. The airline efficiency is measured by the number of passengers transported
divided by the number of hours flown. Blue nodes correspond to low-cost companies and red
nodes to traditional ones.

airlines contained in it show moderate bipartivity values, at variance with One
World and Sky Team. This result was already reported in Fig. 3 and Table 3.
Remarkably, only two airlines (Austrian and Brussels) show very high bipartiv-
ity indexes (0.8256 and 1.000 respectively) so that one would be tempted to say
that a merger between these two airlines, yielding a bipartivity of 0.3717, would
be beneficial for both airlines and the alliance itself.

5.2. Bipartivity versus Transportation Efficiency

It is easily imaginable that there are many economic drivers for the merger
of two airline companies. However, it is reasonable to think, on the basis of the
previous results, that increasing the level of frustration of the merged network
plays a fundamental role in increasing the productivity of the newly formed
group. For instance, let us consider a passenger who plans to visit Paris and
Amsterdam departing from Bucharest. By using Air France she can travel
directly from Bucharest to Paris and then to Amsterdam. At this point she has
to return to Paris to take a returning flight to Bucharest and totaling 4,370 km
(2,716 mi). However, using a shared code with Air France-KLM she can flight
Bucharest-Paris-Amsterdam with Air France and return directly from Schiphol
airport to Bucharest using KLM. This route totals 4,038 km (2,509 mi), which
is 332 km (207 mi) shorter than the previous one. Thus, the merging of the two
companies in this case has decreased the bipartivity of this route by creating a
triangle that connects the three locations using a combination of both carriers.

Consequently, we can measure the transportation efficiency, Eff as the ratio
of the number of passengers to the number of hours flown by a carrier. Then, we
can see that decreasing the bipartivity of a network should increase the efficiency

15



by transporting the same number of passengers by using less number of hours
flown. In fact, this is exactly what we observe when the number of passengers
(in millions) divided by hours flown is plotted versus the bipartivity of the air
transportation networks of 15 traditional and LCCs in Europe (see Figure 5).
The linear fit is given by the equation:

Eff ~ —6.61 - log bs + 36.59 (10)

with Pearson correlation coefficient —0.888. This correlation points out to the
fact that the lack of bipartivity in the transportation network is a major struc-
tural driver for the efficiency of the passenger airline carriers studied here.

6. Conclusions

We have proposed a novel way for calculating the bipartivity of a network
that relies on a single function of the adjacency matrix. This approach allows an
efficient and fast calculation of bipartivity that can be easily generalized to more
complex interaction frameworks. After showing the mathematical properties
of bipartivity in general and random graphs we have tackled the problem of
analyzing the bipartivity of a set comprising 33 real air transportation networks
operating in Europe. By computing the bipartivity of each airline we have
observed significant differences between traditional carriers and the low cost
airlines, being the bipartivity of the latter ones much smaller than that of the
former. Then, we have shown that alliances and major mergers of traditional
airlines lead to a decrease of bipartivity.

Motivated by the above findings we have observed that traffic efficiency (as
revealed from real data about the traffic flow of each airline) is strongly and
negatively correlated with the bipartivity of its network. Therefore, bipartivity
provides a good descriptor of the efficiency of transportation networks and can
be used to test the goodness of alliances and possible mergers of airlines. The
general way of computing bipartivity may allow its use to evaluate more complex
mixing of transportaion networks such as the sharecodes of flights between dif-
ferent airlines, which is the usual collaboration benchmark in air transportation
systems.
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