
UNIFORM STABILITY FOR FRACTIONAL CAUCHY PROBLEMS AND
APPLICATIONS

LUCIANO ABADIAS AND EDGARDO ALVAREZ

Abstract. In this paper we give uniform stable spatial bounds for the resolvent operator fami-
lies of the abstract fractional Cauchy problem on R+. Such bounds allow to prove existence and
uniqueness of µ-pseudo almost automorphic ✏-mild regular solutions to the nonlinear fractional
Cauchy problem in the whole real line. Finally, we apply our main results to the fractional heat
equation with critical nonlinearities.

1. Introduction

In recent years, the study of fractional partial di↵erential equations has growth considerably
because those equations provide a useful framework to deal real-world problems in several dis-
ciplines as biology, chemistry, economics, engineering, medicine and physics. For example, frac-
tional models describe the motion of a viscous fluid between moving surfaces ([27]), as well as
the di↵usion phenomena in special types of porous medium ([39]).

Let A be a linear closed operator with dense domain defined on a Banach spaceX, and 0 < ↵ < 1.
We consider the nonlinear fractional Cauchy problem

(1.1)

8
<

:
CD

↵
t u(t) = Au(t) + f(t, u(t)), t � 0,

u(0) = u0 2 X,

where f : R+ ⇥ X ! X is a continuous function and CD
↵
t denotes the fractional Caputo

derivative. Under suitable conditions on the operator A (sectoriality), it generates two operator
families, (S(t))t�0 and (R(t))t>0, called resolvent and integral resolvent. In such case, existence
and uniqueness of mild solutions of the problem (1.1) depend on those operator families, see
[7, 15, 22] and references therein. These types of operator families are framed into the theory
of solutions of abstract Volterra integral equations studied in the book of J. Prüss [43]. Also,
algebraic, extension and subordination properties of them have been studied in [2, 3, 6, 7, 13,
28, 29, 30, 31, 35].

Historically, the importance of the asymptotic behaviour of the resolvent operator families is
shown in many works in the literature. For the first order case, the uniform stability of a
C0-semigroup (etA)t�0 generated by A is defined by the exponentially decay

ketAk  Me�ta, t � 0,
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where M,a are positive constants. This theory has been deeply developed in a large series of
monographs, see [4, 17, 44] among others. Also, many authors have used the uniform stability
of semigroups for specific problems. For example, Katznelson-Tzafriri type theorems for C0-
semigroups appear in the book of J. Van Neerven [44]. In [38], the stability of two-coupled
systems of PDE’s is shown. Recently, in order to face the third order Moore-Gibson-Thompson
equation, the authors study such equation as a first order system whose associated operator
matrix generates a exponentially stable semigroup on a Hilbert space, see [26].

In the book [40, Chapter 2, Section 6], A. Pazy shows uniform stable bounds for C0-semigroups
in the spaces constructed via the fractional powers of the generators. Particulary, when the
spectrum of the operator A satisfies that

(1.2) �(�A) ⇢ {� 2 C | Re� > a} with a > 0,

then
k(�A)�etAxk  Mt��e�atkxk, t > 0, � > 0, x 2 X.

It seems natural to ask about the uniform stability of the resolvent operator families for the
fractional problems. In a general context, C. Lizama and V. Vergara give su�cient conditions
to state exponential stability of resolvent families for the abstract Volterra integral equation,
see [32]. Also, for the fractional case, it is known that the resolvent and the integral resolvent
satisfy

kS(t)k  ME↵,1(�at↵), kR(t)k  Mt↵�1E↵,↵(�at↵), t > 0,

when the condition (1.2) holds for the spectrum of the generator, where E↵,� denotes the Mittag-
Le✏er functions. However, to the best of our knowledge, it seems newfangled to study the
uniform stability of the resolvent operator families for the fractional Cauchy problem on the
powers spaces.

Assuming conditions of sectoriality for an operator �A such that 0 2 ⇢(A) (resolvent set), we
get that uniform stability for the resolvent families is given by the Prabhakar functions E�

↵,� ,
which are a generalization of Mittag-Le✏er functions. In fact, we obtain that for all x 2 X

kS(t)xkX�  Mt�↵�E1��
↵,1�↵�(�at↵)kxk, kR(t)xkX�  Mt↵(1��)�1E1��

↵,↵(1��)(�at↵)kxk, t > 0.

These functions were introduced by T.R. Prabhakar in 1971, see [41]. Nowadays, they are
relevant in the study of fractional relaxation and di↵usion phenomena, see [18, 24] .

As an application, this spatial stability allows us to study the existence and uniqueness of mild
solutions to the fractional problem in the whole real line

(1.3) D↵
t u(t) = Au(t) + f(t, u(t)), t 2 R,

where f : R ⇥X ! X is a continuous function with critical nonlinearities. More precisely, we
will show that equation (1.3) has a unique µ-pseudo almost automorphic ✏-mild regular solution.

The space of µ-pseudo almost automorphic functions was introduced by Blot et al. in [10]. In
that paper the authors gave a result on existence and uniqueness of mild solutions for the first
order problem. On the other hand, De Andrade et al. [16] proved the existence and uniqueness
of pseudo almost periodic ✏-mild regular solutions to the first order problem in the real line. We
point out that the space of µ-pseudo almost automorphic functions contains the space of pseudo
almost periodic functions.

The paper is organized as follows. In Section 2, we present the Prabhakar functions and its
relation with the Wright functions (Proposition 2.1). Also we prove that, for some specific
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parameters, the Prabhakar functions are integrable on R+ (Proposition 2.3). In Section 3, we
recall the notion of the operator families associated to the fractional Cauchy problem on R+,
some properties, and the subordination generation formulas via C0-semigroups. Mainly, we state
the uniform stability for these operators families on the fractional power spaces defined by the
generator when it has sectorial properties (Theorem 3.6). In Section 4, we prove existence and
uniqueness of µ-pseudo almost automorphic ✏-mild regular solutions to the fractional problem
(1.3) in the real line. We illustrate it with an example. Finally, we include basic results about
µ-pseudo almost automorphic functions in Section 5 (Appendix), in order to get a self-contained
paper.

2. Mittag-Leffler, Prabhakar and scaled Wright functions

In this section we present some connection between the Prabhakar and Wright functions which
will be useful on the spatial bounds obtained in the next section.

Let � > 0, in the following we write g�(t) :=
t��1

�(�) for t > 0.

The Riemann-Liouville fractional derivative of order 0 < ↵ < 1 of a function u defined on
R+ := [0,1) is given by

RD
↵
t u(t) =

d

dt
(g1�↵ ⇤ u)(t) = d

dt

Z t

0
g1�↵(t� s)u(s) ds, t > 0,

and the Caputo fractional derivative of order 0 < ↵ < 1 is defined by

CD
↵
t u(t) = (g1�↵ ⇤ d

dt
u)(t) =

Z t

0
g1�↵(t� s)u0(s) ds, t > 0.

It is well known that CD
↵
t u(t) = RD

↵
t u(t)� t�↵

�(1�↵)u(0) for 0 < ↵ < 1.

Let ↵,� > 0. The Mittag-Le✏er functions are given by

E↵,�(z) =
1X

k=0

zk

�(↵k + �)
, z 2 C.

We write E↵(z) := E↵,1(z). They are the solutions of the classical fractional di↵erential problems

CD
↵
t E↵(!t

↵) = !E↵(!t
↵),

and

RD
↵
t

✓
t↵�1E↵,↵(!t

↵)

◆
= !t↵�1E↵,↵(!t

↵),

for 0 < ↵ < 1, under certain initial conditions. Fore more details see [7, 33, 36].

An extension of the Mittag-Le✏er functions are the Prabhakar functions

E�
↵,�(z) =

1X

k=0

(�)k
k!�(↵k + �)

zk, z 2 C, � > 0,

where (�)k = �(�+1) · · · (�+ k� 1) = �(k+�)
�(�) denotes de Pochhammer symbol. They are entire

functions. Note that for � = 1 we recover the classical Mittag-Le✏er functions. The Laplace
transform of the above functions is

(2.1)

Z 1

0
e��tt��1E�

↵,�(!t
↵) dt =

�↵���

(�↵ � !)�
, Re� > |!|1/↵.
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For convenience, we denote

e�↵,�(t,!) := t��1E�
↵,�(�!t

↵), ! 2 C.

It is a direct consequence by use of the Laplace transform that

(g� ⇤ e�↵,�(·,!))(t) = e�↵,�+�(t,!), � > 0.

These functions e�↵,�(·,!) are locally integrable and completely monotonic under the conditions

(2.2) 0 < ↵  1, 0 < ↵�  �  1, Re! > 0,

see [12]. For more details about Prabhakar functions see [19, 27, 33].

The Wright function, denoted by W�,µ, was introduced by E. Maitland Wright in a series of notes
starting from 1933 in the framework of the theory of partitions, see [45]. This entire function is
defined by

W�,µ(z) :=
1X

n=0

zn

n!�(�n+ µ)
, � > �1, µ 2 C.

Also, the Wright function can be represented through the following integral representation using
the Hankel formula for the Gamma function,

W�,µ(z) =
1

2⇡i

Z

Ha
��µe�+z���

d�, � > �1, µ � 0, z 2 C,

where Ha denotes the Hankel path defined as a contour that begins at t = �1� ia (a > 0),
encircles the branch cut that lies along the negative real axis, and ends up at t = �1 + ib
(b > 0). For more details see [33, Appendix F].

Recently in [3], two-parameter Wright functions, called scaled Wright functions, are introduced
in order to establish a general approach to face the subordination formulas for the solutions of
the fractional abstract Cauchy problems. For 0 < ↵ < 1 and � � 0, the scaled Wright functions
 ↵,� in two variables are defined by

 ↵,�(t, s) := t��1W�↵,�(�st�↵), t > 0, s 2 C.

Note that using the change of variable z = �
t , we get the integral representation

 ↵,�(t, s) =
1

2⇡i

Z

Ha
z��etz�sz↵ dz, t, s > 0.

The functions  ↵,� are considered in the literature in some particular cases: for � = 1 � ↵, it
was introduced in [34, Formula (6.2)] and studied in [33, p. 257] and [7]; for � = 0 it is the
stable Lévy process of order ↵, see [11] and [47, Chapter IX]. Several and interesting properties
satisfied by these functions are studied in [3].

The following result generalizes [3, Theorem 3 (iii) and (vi)].

Proposition 2.1. Let 0 < ↵ < 1, � � 0 and � > 0. Then
Z 1

0
e!sg�(s) ↵,�(t, s) ds = t↵�+��1E�

↵,↵�+�(!t
↵), ! 2 C, t > 0.
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Proof. First of all observe that by [3, Theorem 3 (iii) and (vi)] and the positivity of  ↵,� ([3,
Theorem 3 (i)]) the integral is convergent. So, it is enough to prove the result for ! 2 R. Using
Laplace transform for � > |!|1/↵ and Fubini’s Theorem one gets

Z 1

0
e��t

Z 1

0
e!sg�(s) ↵,�(t, s) ds dt = ���

Z 1

0
e!sg�(s)e

��↵s ds =
���

(�↵ � !)�
.

By the uniqueness of the Laplace transform and (2.1) we conclude the result. ⇤
Remark 2.2. Note that by the above proposition, if 0 < ↵  1, 0 < ↵�  �  1 and a > 0, we
have

0  e�↵,�(t, a) 
Z 1

0
g�(s) ↵,��↵�(t, s) ds = g�(t) ! 0, t ! 1,

where we have applied [3, Theorem 3 (vi)] and  ↵,��↵�(t, s) � 0 ([3, Theorem 3 (i)]).

The last result of this section shows that for � = �/↵ and a > 0, the Prabhakar functions

e
�/↵
↵,� (·, a) are, not only decreasing, but also integrable on R+, and in such case the identity (2.1)
is valid for Re� � 0.

Proposition 2.3. Let 0 < ↵,� < 1 and a > 0. Then
Z 1

0
e
�/↵
↵,� (t, a) dt =

1

a�/↵
.

Proof. The function e
�/↵
↵,� (·, a) is non-negative since the conditions of (2.2) are satisfied. Then

we can apply Fubini’s Theorem, and by Proposition 2.1 we have

Z 1

0
e
�/↵
↵,� (t, a) dt =

Z 1

0

Z 1

0
e�asg�/↵(s) ↵,0(t, s) ds dt

=

Z 1

0

Z 1

0
e�asg�/↵(s)t

�1W�↵,0(�st�↵) ds dt

=

Z 1

0
g�/↵(u)W�↵,0(�u)

Z 1

0
e�aut↵t��1 dt du

=
1

↵a�/↵

Z 1

0
u�1W�↵,0(�u) du =

1

a�/↵
,

where we have used the Laplace transform of t��1 and that
R1
0 u�1W�↵,0(�u) du = ↵ ([33,

(F.33)]). ⇤

3. Resolvent families

From now on we denote by B(X) the space of all linear and bounded operators on the Banach
space X. Let A be a linear closed operator with dense domain defined on X. If the operator
A generates a resolvent and an integral resolvent operators families, (S(t))t�0 and (R(t))t>0

respectively, it is well-known that the solutions of the fractional abstract Cauchy problem for
0 < ↵ < 1,

(3.1)

8
<

:
CD

↵
t u(t) = Au(t) + f(t, u(t)), t � 0,

u(0) = u0 2 X,
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where f : R+ ⇥X ! X is a continuous function, satisfy

(3.2) u(t) = S(t)u0 +

Z t

0
R(t� s)f(s, u(s)) ds, t � 0.

It is a simple check by use of the Laplace transform. Usually, it is not possible to ensure the
existence of strong solution for the fractional di↵erential problem (3.1), and therefore we look
for mild solutions for the associated Volterra integral equation (3.2). In many cases to do this
(it depends on the techniques), it is useful to know the spatial bounds for the operator families
that appear in the integral equation. In this section we will focus on studying such bounds with
stable decay.

Definition 3.1. [43, Definition 1.3] A family (S(t))t�0 ⇢ B(X) of bounded linear operators on
X is called a resolvent if the following conditions are satisfied.

(i) S(t) is strongly continuous on R+ and S(0) = I.

(ii) S(t)D(A) ⇢ D(A) and AS(t)x = S(t)Ax for all x 2 D(A) and t � 0.

(iii) The equation

(3.3) S(t)x = x+

Z t

0
g↵(t� s)AS(s)x ds for all x 2 D(A), t � 0,

holds.

A resolvent is unique, if it exists. In such case, we call the operator A the generator of the
resolvent (S(t))t�0. In addition, (g↵ ⇤ S)(t)x 2 D(A) for all x 2 X and t � 0 ([43, Proposition
1.1]).

Definition 3.2. A family (R(t))t>0 ⇢ B(X) of bounded linear operators on X is called an
integral resolvent if the following conditions are satisfied.

(i) R(t) is strongly continuous on (0,1) and lim
t!0

R(t)

g↵(t)
x = x for all x 2 X.

(ii) R(t)D(A) ⇢ D(A) and AR(t)x = R(t)Ax for all x 2 D(A) and t > 0.

(iii) The equation

(3.4) R(t)x = g↵(t)x+

Z t

0
g↵(t� s)AR(s)xds for all x 2 D(A), t > 0,

holds.

Remark 3.3. Definition 3.2 corresponds to a slight modification to those given by Prüss [43,
Definition 1.6] where (i) is replaced by local integrability instead of strong continuity and (iii)
is slightly di↵erent. We observe that the given condition near zero instead of the most common
R(0) = cI, with c the value of a corresponding kernel in zero, allows the treatment of singular
kernels g↵. The integral resolvent is unique, if it exists, and A is the generator of the integral
resolvent (R(t))t>0. Also, (g↵ ⇤ R)(t)x 2 D(A) for all x 2 X and t > 0. See also Li and Peng
[30]. In a general context, both the resolvent and integral resolvent have been studied in di↵erent
papers ([1, 2, 30, 31, 35, 43]).
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Remark 3.4. It is an easy computation that 1 = g↵⇤g1�↵. So if there exists an integral resolvent
(R(t))t>0 generated by A, then

(3.5) S(t)x := (g1�↵ ⇤R)(t)x =

Z t

0
g1�↵(t� s)R(s)x ds, x 2 X, t > 0,

is a resolvent generated by A. Indeed, it is clear that the conditions (ii) and (iii) of Definition
3.1 are satisfied. Also, let x 2 X and " > 0, by Definition 3.2 (i), there exists � > 0 such that

����
R(s)x� g↵(s)x

g↵(s)

���� < ", s 2 (0, �).

So,

kS(t)x� xk =

����
Z t

0
g1�↵(t� s)(R(s)x� g↵(s)x) ds

����

< "

Z t

0
g1�↵(t� s)g↵(s) ds = ", t 2 (0, �).

By continuity, we can define S(0) = I. In addition,

(g1�↵ ⇤R)(t)x = x+A(g1�↵ ⇤ g↵ ⇤R)(t)x = x+A

Z t

0
R(s)x, x 2 X,

therefore S(·)x = (g1�↵ ⇤R)(·)x 2 C1(R+, X) for x 2 D(A). Using (3.3), (3.4) and (3.5) we get

RD
↵
t R(t)x = AR(t)x, x 2 D(A),

d

dt
S(t)x = AR(t)x, x 2 D(A),

and

CD
↵
t S(t)x = AS(t)x, x 2 D(A).

We recall the following notion of operator theory.

Definition 3.5. (Sectorial operator) Let B : D(B) ⇢ X ! X be a linear operator. We say that
B is sectorial of angle # 2 [0,⇡) if

�(B) ⇢ ⌃#

and

k�(��B)�1k  M', � 2 C \ ⌃', for all ' 2 (#,⇡),

where �(B) denotes the spectrum of B, and ⌃# := {� 2 C : � 6= 0, |arg(�)| < #} for # 2 (0,⇡]
and ⌃0 := (0,1) if # = 0.

If b+B is sectorial of angle # with b 2 R, we say that B is b-sectorial of angle #.

For more information about the theory of sectorial operators we refer the reader to the mono-
graph [23].

It is well known that if an operator �A is closed, densely defined and sectorial of angle # 2
[0,⇡/2), then A generates a bounded holomorphic C0-semigroup (T (t))t�0 on X. The converse
is also true. Moreover, if �A is �a-sectorial of angle # 2 [0,⇡/2) with a > 0, then A generates
a uniform stable bounded holomorphic C0-semigroup, that is,

kT (t)xk  Me�atkxk.
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In such case, the semigroup has the following integral representation formula in terms of the
resolvent operator,

T (t)x =

Z

�a+�
e�t(��A)�1x d�, t > 0, x 2 X,

where � is the complex Hankel’s path given by

� = �r,! := {�ei! : � � r} [ {rei' : ' 2 (�!,!)} [ {�e�i! : � � r},
oriented counterclockwise, with r > 0 and ! 2 (⇡/2,⇡ � #). It follows that

(3.6) kAT (t)xk  M
e�at

t
kxk, t > 0, x 2 X.

Observe that if �A is closed, densely defined and sectorial of angle # 2 [0,⇡/2) with 0 2 ⇢(A),
then, since the spectrum is closed, we have that the generated C0-semigroup is uniform stable.
For example, the Laplace operator �� on L2(0, T ), with T > 0, is sectorial of angle 0, and the
eigenvalues are strictly positive. In this case, �� is �a-sectorial for all 0 < a < �1, where �1 is
the first eigenvalue (see [25, Exercise p. 23]). For more details see [25, Chapter 1].

From now on, we suppose that �A is a �a-sectorial of angle # 2 [0,⇡/2) with a > 0. Then one
can define the negative fractional powers of the operator

(�A)��x =
1

�(�)

Z 1

0
s��1T (s)x ds, � > 0, x 2 X.

This operator is injective, so we define (�A)� as the inverse of (�A)�� with domain D((�A)�) =
rg(�(A)��). For each � � 0, we will denote the fractional spaces

X� = D((�A)�)

with the graph norm kxkX� = k(�A)�xk. In such case, the exponentially stable bounded holo-
morphic C0-semigroup satisfies

(3.7) kT (t)xkX� Mg1��(t)e
�atkxk, 0  � < 1,

and the resolvent operator

k(�A)�(��A)�1k  M |�+ a|��1, � 2 �a+ ⌃⇡�#.

For more details see [25, Chapter 1].

In [3], the authors studied subordination formulas to get resolvent and integral resolvent families
via C0-semigroups, as particular cases of a general framework of subordination theory. For that
purpose, the scaled Wright functions are needed. If (T (t))t�0 is the semigroup generated by A,
then

(3.8) S(t)x =

Z 1

0
 ↵,1�↵(t, s)T (s)x ds, R(t)x =

Z 1

0
 ↵,0(t, s)T (s)x ds, t > 0, x 2 X,

are the resolvent and the integral resolvent generated by A. The following result shows that,
in fact, they are uniformly stable in the fractional spatial spaces X� for 0  � < 1, that is,
limt!1kS(t)xkX� = 0 and limt!1kR(t)xkX� = 0 for x 2 X. Moreover, the integral resolvent
(R(t))t>0 is integrable on R+. The proof is a straightforward consequence of (3.8), (3.7) and
Proposition 2.1.

Theorem 3.6. Let �A be a �a-sectorial of angle # 2 [0,⇡/2) with a > 0, and 0  � < 1. For
x 2 X it follows

(i) kS(t)xkX�  Me1��
↵,1�↵�(t, a)kxk, t > 0.
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(ii) kR(t)xkX�  Me1��
↵,↵(1��)(t, a)kxk, t > 0.

Remark 3.7. If we take � = 0 in the above result we have

(i) kS(t)xk  ME↵,1(�at↵)kxk, t > 0.

(ii) kR(t)xk  Mt↵�1E↵,↵(�at↵)kxk, t > 0.

The estimate given in part (ii) of this Remark appears in [37].

Remark 3.8. Observe that Theorem 3.6 is not valid for � = 1. To get the spatial bounds in this
special case, we use (3.6). Indeed, let x 2 X and t > 0, one gets

kR(t)xkX1  M

Z 1

0
 ↵,0(t, s)

e�as

s
ds

= Mt�1
Z 1

0
W�↵,0(�st�↵)

e�as

s
ds

= M↵t�1
Z 1

0
t�↵W�↵,1�↵(�st�↵)e�as ds

= M↵t�1
Z 1

0
 ↵,1�↵(t, s)e

�as ds

= M↵t�1E↵,1(�at↵),

where [33, (F.11)] and [3, Theorem 3 (iii)] have been used. Note that for the case 0  � < 1, the
spatial bound obtained in Theorem 3.6 implies the integrability of the family (R(t))t>0, however
this does not happen for case � = 1 because t�1E↵,1(�at↵) is not integrable at zero. This can be
compared to the semigroup case, see inequalities (3.6) and (3.7).

For the resolvent family (S(t))t�0, the subordination formula (3.8) does not give information to
get the spatial bound in case � = 1. Even doing use of the bound of (R(t))t>0, we can not obtain
the corresponding one for (S(t))t�0 with the relation S = g1�↵ ⇤ R since t�1E↵,1(�at↵) is not
integrable at zero.

From Theorem 3.6 one gets the following generalized spatial bounds.

Corollary 3.9. Let �A be a �a-sectorial of angle # 2 [0,⇡/2) with a > 0, and 0  ✓ < �  1.
For x 2 X� we have

(i) kS(t)xkX1+✓  Me��✓
↵,1�↵(1+✓��)(t, a)kxkX� , t > 0.

(ii) kR(t)xkX1+✓  Me��✓
↵,↵(��✓)(t, a)kxkX� , t > 0.

Remark 3.10. If �A is �a-sectorial of angle # 2 [0,⇡/2) with a > 0, then the associated
exponentially stable bounded holomorphic C0-semigroup (T (t))t�0 is characterized by the strong
continuity and its Laplace transform, that is,

(��A)�1x =

Z 1

0
e��tT (t)x dt, x 2 X, Re� > �a.

For more details see [4]. The same happens for the resolvent and the integral resolvent, that is,
(S(t))t�0 and (R(t))t>0 are characterized by the strong continuity and their Laplace transforms,

�↵�1(�↵ �A)�1x =

Z 1

0
e��tS(t)x dt, x 2 X, Re� > 0,
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(3.9) (�↵ �A)�1x =

Z 1

0
e��tR(t)x dt, x 2 X, Re� � 0.

This can be proved by subordination, or as a slightly variation of [31, Proposition 3.1].

Remark 3.11. In [15] and [22] the authors use the spatial bounds for the resolvent and integral
resolvent families generated by an operator �A which is sectorial of angle # 2 [0,⇡/2), in order
to get solutions for (3.1) where f has critical nonlinearities. It would be interesting to study
what happens if we consider a �a-sectorial operator, with a > 0, of angle # 2 [0,⇡/2), and how
this a↵ects to the solutions in the critical case. It seems that the solutions would behave locally
near to the origin as the Prabhakar functions do it.

In this paper our aim is other. We will use the integrability of the integral resolvent associated
to �a-sectorial operators, where a > 0, in order to get solutions in the spaces of µ-pseudo
almost automorphic functions to the fractional Cauchy problem on the real line with critical
nonlinearities.

4. µ-pseudo almost automorphic ✏-mild regular solutions

In what follows we will use the notation and some basic results given in the Appendix. We
encourage to the reader to see that section.

Let 0 < ↵ < 1 and A be a linear closed operator with dense domain defined on a Banach space
X. In order to show the relevance of the spatial bounds obtained in the previous section, we are
going to study µ-pseudo almost automorphic solutions for the fractional problem on the real line

(4.1) D↵
t u(t) = Au(t) + f(t, u(t)), t 2 R,

where �A is a �a-sectorial operator, with a > 0, of angle # 2 [0,⇡/2) on the Banach space X,
and f : R ⇥ X ! X is a continuous function with critical nonlinearities. Now, the fractional
derivative of order 0 < ↵ < 1 of a function u : R ! X is given by

D↵
t u(t) =

d

dt
(g1�↵ ⇤ u)(t) = d

dt

Z t

�1
g1�↵(t� s)u(s) ds

and it represents the Weyl, Caputo, Riemann-Liouville and Grunwald-Letnikov, which coincide
under some regularity assumptions, see [42].

Let u : R ! X be a solution of (4.1) and we denote by Fu the Fourier transform of u, that is,

(Fu)(⌘) =

Z 1

�1
e�i⌘tu(t) dt, ⌘ 2 R,

whenever the integral converges. In a formal way, if we assume regularity properties to apply
Fourier transform to (4.1), we have that

(Fu)(⌘) = ((i⌘)↵ �A)�1(Ff(·, u(·)))(⌘), ⌘ 2 R,
since (i⌘)↵ 2 ⇢(A) by the �a-sectoriality of �A, with a > 0. Therefore, by the above comment
and (3.9) we state the following definition.

Definition 4.1. Let ✏ > 0. We say that a function u : R ! X1 such that u 2 C(R, X1+") is an
✏-mild regular solution of (4.1) if it satisfies

u(t) =

Z t

�1
R(t� s)f(s, u(s)) ds, t 2 R.
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Now, we recall the notion of ✏-regular map due to Arrieta and Carvalho [5, Definition 2] to
establish the nonlinearities in the equation (4.1).

Definition 4.2. For ✏ > 0 we say that a map g is an ✏-regular map relative to the pair (X1, X0) if
there exist ⇢ > 1, �(✏) with ⇢✏  �(✏) < 1, and a positive constant c, such that g : X1+✏ ! X�(✏)

and

kg(x)� g(y)kX�(✏)  c(1 + kxk⇢�1
X1+✏ + kyk⇢�1

X1+✏)kx� ykX1+✏

for all x, y 2 X1+✏.

In this work we consider the following class of nonlinearities: with ✏, �("), ⇢, and c positive
constants, the class F(✏, �("), ⇢, c) is defined as the family of functions f such that, for t 2 R,
f(t, ·) is an ✏-regular map relative to the pair (X1, X0), satisfying

(4.2) kf(t, x)� f(t, y)kX�(✏)  c(1 + kxk⇢�1
X1+✏ + kyk⇢�1

X1+✏)kx� ykX1+✏ ,

(4.3) kf(t, x)kX�(✏)  c(1 + kxk⇢
X1+✏),

for all x, y 2 X1+✏.

Remark 4.3. Suppose that f : R⇥X1+✏ ! X�(✏) belongs to the class F(✏, �("), ⇢, c). We claim
that f satisfies Condition (C) in Theorem 5.13 (see Appendix). Indeed, let B be a bounded set
of X1+✏. Then there exists M0 > 0 such that kykX1+✏  M0 for all y 2 B. Therefore

kf(t, y)kX�(✏)  c(1 + kyk⇢
X1+✏)  c(1 +M⇢

0 ), (t, y) 2 R⇥B.

It follows that f is bounded on R⇥B.

In the remaining of this section we assume that µ 2 M satisfying Condition (H) (see Appendix).

Now, we state a technical lemma of convolution type, which will be used in the main result of
the section.

Lemma 4.4. Let h 2 PAA(X�(✏), µ). Then for every 0  ✓ < �(✏) we have that

H(t) :=

Z t

�1
R(t� s)h(s)ds 2 PAA(X1+✓, µ).

Proof. Let h = f + � with f 2 AA(X�(✏)) and � 2 E(X�(✏), µ). Then we can consider

H(t) := F (t) + �(t),

where

F (t) :=

Z t

�1
R(t� s)f(s)ds, �(t) :=

Z t

�1
R(t� s)�(s)ds.

First, we prove that F 2 AA(X1+✓). Indeed, since f 2 AA(X�(✏)), then given a sequence
(s0n)n2N of real numbers, there exists a subsequence (sn)n2N and a function g such that

kf(t+ sn)� g(t)kX�(✏) ! 0 (n ! 1),

and
kg(t� sn)� f(t)kX�(✏) ! 0 (n ! 1).
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This means that for � > 0 given, there exists N 2 N such that kf(t + sn) � g(t)kX�(✏) < �
provided n > N . Let

G(t) :=

Z t

�1
R(t� s)g(s)ds.

Note that

F (t+ sn) =

Z t

�1
R(t� s)f(s+ sn)ds.

Then by Corollary 3.9 we have that for n > N

kF (t+ sn)�G(t)kX1+✓ 
Z t

�1

��R(t� s)[f(s+ sn)� g(s)]
��
X1+✓ds

 M

Z t

�1
e
�(✏)�✓
↵,↵(�(✏)�✓)(t� s, a)

��f(s+ sn)� g(s)
��
X�(✏)ds

<
M�

a�(✏)�✓
,

where we have used Proposition 2.3. Hence kF (t+sn)�G(t)kX1+✓ ! 0 as n ! 1. Analogously
we prove that kG(t� sn)� F (t)kX1+✓ ! 0 as n ! 1. It follows that F 2 AA(X1+✓).

The next step consists in to prove that � 2 E(X1+✓, µ), that is,

lim
T!1

1

µ([�T, T ])

Z T

�T
k�(t)kX1+✓dµ(t) = 0.

Indeed, by Corollary 3.9 we deduce that

k�(t)kX1+✓  M

Z 1

0
e
�(✏)�✓
↵,↵(�(✏)�✓)(s, a)k�(t� s)kX�(✏)ds.

Then by Fubini’s Theorem

1

µ([�T, T ])

Z T

�T
k�(t)kX1+✓dµ(t) 

Z 1

0
e
�(✏)�✓
↵,↵(�(✏)�✓)(s, a)

✓
1

µ([�T, T ])

Z T

�T
k�(t�s)kX�(✏)dµ(t)

◆
ds.

Note that by Corollary 2.3 we get

e
�(✏)�✓
↵,↵(�(✏)�✓)(s, a)

1

µ([�T, T ])

Z T

�T
k�(t�s)kX�(✏)dµ(t)  e

�(✏)�✓
↵,↵(�(✏)�✓)(s, a) sup

�2R
k�(�)kX�(✏) 2 L1(R+).

On the other hand, by the translation invariance of E(X�(✏), µ) (see Theorem 5.6) one gets

lim
T!1

1

µ([�T, T ])

Z T

�T
k�(t� s)kX�(✏)dµ(t) = 0, s 2 R+.

Hence, it follows from Dominated Convergence Theorem that � 2 E(X1+✓, µ), and we conclude
that H 2 PAA(X1+✓, µ). ⇤

Finally, we present the main result of this section.

Theorem 4.5. Let f 2 F(✏, �("), ⇢, c) \ PAAU (X1+✏, X�(✏), µ). If the constant c satisfies

(4.4) McL(r) < a�(✏)�✏, where L(r) = max{r�1 + r⇢�1, 1 + 2r⇢�1},
then problem (4.1) has a unique µ-pseudo almost automorphic ✏-regular mild solution. Moreover,
this solution satisfies u 2 PAA(X1+✓, µ), for every 0  ✓ < �(✏).
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Proof. Let T : PAA(X1+✏, µ) ! PAA(X1+✓, µ) given by

(Tu)(t) =

Z t

�1
R(t� s)f(s, u(s))ds,

for each 0  ✓ < �(✏).

We divide the proof into 3 steps.

Step 1. First we see that T is well-defined. Let u 2 PAA(X1+✏, µ). Since f 2 PAAU (X1+✏, X�(✏), µ)
and u 2 PAA(X1+✏, µ) then by Theorem 5.13 we get f(·, u(·)) 2 PAA(X�(✏), µ), where we have
used Remark 4.3. On the other hand, by Lemma 4.4 we have Tu 2 PAA(X1+✓, µ).

Step 2. Let u 2 PAA(X1+✏, µ), we see that Tu : R ! X1+✓ is bounded and continuous. Let
t 2 R and h > 0. Then

k(Tu)(t+ h)� (Tu)(t)kX1+✓ =

����
Z t+h

�1
R(t+ h� s)f(s, u(s))ds�

Z t

�1
R(t� s)f(s, u(s))ds

����
X1+✓

=

����
Z t

�1
[R(t+ h� s)�R(t� s)]f(s, u(s))ds

+

Z t+h

t
R(t+ h� s)f(s, u(s))ds

����
X1+✓


Z 1

0
k[R(s+ h)�R(s)]f(t� s, u(t� s))kX1+✓ds

+

Z t+h

t
kR(t+ h� s)f(s, u(s))kX1+✓ds =: I1 + I2.

We claim that I1 ! 0 as h ! 0+. In fact, since (R(t))t>0 is strongly continuous on X we have
that k[R(s + h) � R(s)]f(t � s, u(t � s))kX1+✓ ! 0 as h ! 0+. Also, by Corollary 3.9 and
Proposition 2.3 we have

k[R(s+ h)�R(s)]f(t� s, u(t� s))kX1+✓  Mc


e
�(✏)�✓
↵,↵(�(✏)�✓)(s+ h, a) + e

�(✏)�✓
↵,↵(�(✏)�✓)(s, a)

�

⇥ (1 + sup
�2R

ku(�)k⇢
X1+✏)

 2Mce
�(✏)�✓
↵,↵(�(✏)�✓)(s, a)(1 + sup

�2R
ku(�)k⇢

X1+✏) 2 L1(R+),

where we have used that e
�(✏)�✓
↵,↵(�(✏)�✓)(·, a) is decreasing because it is completely monotonic, see

(2.2). It follows from the Dominated Convergence Theorem that I1 ! 0 as h ! 0+. Now,

I2  Mc(1 + sup
�2R

ku(�)k⇢
X1+✏)

Z t+h

t
e
�(✏)�✓
↵,↵(�(✏)�✓)(t+ h� s, a)ds

= Mc(1 + sup
�2R

ku(�)k⇢
X1+✏)

Z h

0
e
�(✏)�✓
↵,↵(�(✏)�✓)(⌧, a)d⌧ ! 0

as h ! 0+. Furthermore,

k(Tu)(t)kX1+✓  Mc(1 + sup
�2R

ku(�)k⇢
X1+✏)

1

a�(✏)�✓
.
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Step 3. Let

B(r) :=

⇢
w 2 PAA(X1+✏, µ) : sup

t2R
kw(t)kX1+✏  r

�
.

We claim that T (B(r)) ⇢ B(r). Indeed, for u 2 B(r) we have

k(Tu)(t)kX1+✏  M

Z t

�1
e
�(✏)�✏
↵,↵(�(✏)�✏)(t� s, a)kf(s, u(s))kX�(✏)ds

 Mc(1 + r⇢)

a�(✏)�✏
< r.

Next, we prove that T is a contraction. Let u, v 2 B(r). Then

k(Tu)(t)� (Tv)(t)kX1+✏  M

Z t

�1
e
�(✏)�✏
↵,↵(�(✏)�✏)(t� s, a)kf(s, u(s))� f(s, v(s))kX�(✏)ds

 Mc

Z t

�1
e
�(✏)�✏
↵,↵(�(✏)�✏)(t� s, a)(1 + ku(s)k⇢�1

X1+✏ + kv(s)k⇢�1
X1+✏)ku(s)� v(s)kX1+✏ds

 Mc(1 + 2r⇢�1)

a�(✏)�✏
sup
t2R

ku(t)� v(t)kX1+✏ .

Therefore T is a contraction. The conclusion follows from Fixed Point Theorem. ⇤

Example 4.6. Let ⌦ ⇢ RN be a bounded domain with smooth boundary. Let 0 < ↵ < 1, ⇢ > 1.
We consider the following heat equation with Dirichlet boundary conditions

(4.5)

⇢
D↵

t u = Au+ gh(u), in R⇥ ⌦,
u = 0 on @⌦,

where g 2 PAA(R, µ), h(u) = u|u|⇢�1 and A = � � a, with a > 0, on E0
q := Lq(⌦), where

q = N(⇢�1)
2 , defined on

D(A) = W 2,q(⌦) \W 1,q
0 (⌦).

We denote the fractional power spaces associated to A by {E�
q }�2R. Let A� be the realization of

A in E�
q . Then it is well known that

�A� : D(A�) = E�+1
q ⇢ E�

q ! E�
q

is a �a-sectorial operator. Define

X�
q := E��1

q , � 2 R.

Let f : R ⇥ X
�(✏)
q ! X1+✏

q given by f(t, u) = g(t)u|u|⇢�1. If 1 < q < N
N�2 , then by [5, Lemma

8] we have that f is ✏-regular map relative to (X1
q , X

0
q ) for 0 < ✏0(q) < ✏ < N

N+2q , with ✏0(q) =

N
N+2q

⇣
1� N

2 (1�
1
q )
⌘
and �(✏) = ⇢✏. It can be easily be checked that

f 2 F(✏, �("), ⇢, c) \ PAAU (X
1+✏
q , X�(✏)

q , µ).

If the constants M and c are as in Theorem 4.5 then there exists a unique ✏-mild regular solution
u 2 PAA(X1+✓

q , µ) of (4.5) for every 0  ✓ < �(✏).
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5. Appendix

In this appendix we provide some definitions and results about the theory of µ-pseudo almost
automorphic functions which are used along the paper, in order to simplify the reading.

Let X,Y be Banach spaces with norms k · k and k · kY , respectively. We denote by BC(X) the
Banach space of bounded continuous functions from R to X, equipped with the supremum norm
kfk1 = supt2R kf(t)k.

Definition 5.1. ([20]) A continuous function f : R ! X is said almost automorphic if for every
sequence of real numbers {s0n}n2N there exists a subsequence {sn}n2N such that

g(t) := lim
n!1

f(t+ sn)

is well defined for each t 2 R, and

lim
n!1

g(t� sn) = f(t)

for each t 2 R. The collection of all such functions will be denoted by AA(X).

Example 5.2. ([21, Example 2.1]) Let  : R ! R such that

(t) = cos

✓
1

2� sin⇡t� sin t

◆
, for t 2 R.

Then  is an almost automorphic function, but it is not uniformly continuous on R.

We recall the notion of µ-pseudo almost automorphic functions under the light of measure theory
given in [10], which is a generalization of the pseudo almost automorphy.

Let B be the Lebesgue �-field of R, M the set of all positive measure µ on B satisfying µ (R) = 1
and µ ([a, b]) < 1 for all a, b 2 R with a  b.

Definition 5.3. ([10, Def. 2.5]) Let µ 2 M. A function f 2 BC (X) is called µ-ergodic if

lim
T!+1

1

µ ([�T, T ])

Z

[�T,T ]
kf(t)k dµ(t) = 0.

We denote by E(X,µ) the set of such functions.

Proposition 5.4. ([10, Prop. 2.13]) Let µ 2 M. Then E(X,µ) is a Banach space with respect
to the supremum norm.

Definition 5.5. ([10, Def. 2.6]) Let µ 2 M. A continuous function f : R ! X is called
µ-pseudo almost automorphic if it can be decomposed as f = g + ', where g 2 AA(X) and
' 2 E(X,µ). We denote by PAA(X,µ) the collection of such functions.

Theorem 5.6. ([10, Th. 3.5]) Let µ 2 M satisfying the hypothesis

(H) For all ⌧ 2 R, there exist � > 0 and a bounded interval I such that µ ({a+ ⌧, a 2 A}) 
�µ (A) if A 2 B satisfies A \ I = ;.

Then E(X,µ) is translation invariant, and therefore PAA(X,µ) is also translation invariant.

Remark 5.7. (a) If the measure µ is the Lebesgue measure, then the space PAA(X,µ) co-
incides with the space of the pseudo almost automorphic functions PAA(X) ([46]).
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(b) Let ⇢(t) > 0 a.e on R for the Lebesgue measure, locally-Lebesgue integrable on R andR
R ⇢(t) dt = 1 . Let µ be the positive measure defined by

µ(A) =

Z

A
⇢(t)dt, for A 2 B,

where dt denotes the Lebesgue measure on R. Then PAA(X,µ) coincides with the space
of weighted pseudo almost periodic functions WPAA(X) ([9]).

Theorem 5.8. ([10, Theorem 4.9]) Let µ 2 M. Assume that PAA(X,µ) is translation invari-
ant. Then PAA(X,µ) is a Banach space with the supremum norm.

Definition 5.9. ([8]) A continuous function f : R ⇥ Y ! X is said almost automorphic in t
uniformly with respect to y in Y if the two following conditions hold:

(a) f(·, y) 2 AA(X) for all y 2 Y.

(b) f is uniformly continuous on each compact K ⇢ Y with respect to the second variable y.

We denote by AAU (Y,X) the set of such functions.

Theorem 5.10. ([14, Theorem 3.5]) Let f 2 AAU (Y,X). If u 2 AA(Y ), then f(·, u(·)) 2
AA(X).

Definition 5.11. ([10, Def. 5.3]) Let µ 2 M. A continuous function f : R ⇥ Y ! X is called
µ-ergodic in t uniformly with respect to y 2 Y if the following two conditions hold:

(a) f(·, y) 2 E(X,µ) for all y 2 Y .

(b) f is uniformly continuous on each compact set K ⇢ Y with respect to the second variable
y.

Denote by EU (Y,X, µ) the set of such functions.

Definition 5.12. ([10, Def. 5.4]) Let µ 2 M. A continuous function f : R ⇥ Y ! X is
called µ-pseudo almost automorphic in t uniformly with respect to y 2 Y if f = g + � where
g 2 AAU (Y,X) and � 2 EU (Y,X, µ). Denote by PAAU (Y,X, µ) the set of such functions.

Theorem 5.13. ([10, Th. 5.7]) Let µ 2 M, f 2 PAAU (Y,X, µ) and u 2 PAA(Y, µ). Assume
that the following hypothesis holds

(C) For all bounded subset B of Y , f is bounded on R⇥B.

Then t 7! f(t, u(t)) 2 PAA(X,µ).
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[9] J. Blot, G. M. Mophou, G. M. N’Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions
and applications to abstract di↵erential equations, Nonlinear Anal. 71 (2009), 903–909.

[10] J. Blot, P. Cieutat, and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New devel-
opments and applications, Nonlinear Anal. 75 (4) (2012), 2426–2447.

[11] S. Bochner, Di↵usion equation and stochastic processes, Proc. Nat. Acad. Sci. USA 35 (1949), 368–370.
[12] E. Capelas de Oliveira, F. Mainardi, and J. Vaz Jr, Models based on Mittag-Le✏er functions for

anomalous relaxation in dielectrics, Eur. Phys. J. Special Topics, 193:161-171, 2011. Revised version in
http://arxiv.org/abs/1106.1761.

[13] C. Chen and M. Li, On fractional resolvent operator functions, Semigroup Forum. 80 (2010), 121–142.
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