Accepted Manuscript

Revalidation of the genus *Chiloguembelitria* Hofker: Implications for the evolution of early Danian planktonic foraminifera

Ignacio Arenillas, José A. Arz, Vicente Gilabert

PII: S1464-343X(17)30297-2

DOI: 10.1016/j.jafrearsci.2017.07.011

Reference: AES 2963

To appear in: Journal of African Earth Sciences

Received Date: 24 August 2016

Revised Date: 15 May 2017

Accepted Date: 17 July 2017

Please cite this article as: Arenillas, I., Arz, José.A., Gilabert, V., Revalidation of the genus *Chiloguembelitria* Hofker: Implications for the evolution of early Danian planktonic foraminifera, *Journal of African Earth Sciences* (2017), doi: 10.1016/j.jafrearsci.2017.07.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Revalidation of the genus Chiloguembelitria Hofker: implications for
2	the evolution of early Danian planktonic foraminifera
3	
4	Ignacio Arenillas [*] , José A. Arz and Vicente Gilabert
5	
6	Address of the authors:
7	* Corresponding author at: Departamento de Ciencias de la Tierra, and Instituto
8	Universitario de Investigación en Ciencias Ambientales de Aragón, Universidad de
9	Zaragoza, E-50009 Zaragoza, Spain. Tel: +34976762475. E-mail address:
10	ias@unizar.es
11	
12	José A. Arz: Departamento de Ciencias de la Tierra, and Instituto Universitario de
13	Investigación en Ciencias Ambientales de Aragón, Universidad de Zaragoza, E-50009
14	Zaragoza, Spain. Tel: +34976762507. E-mail address: josearz@unizar.es
15	
16	Vicente Gilabert: Departamento de Ciencias de la Tierra, Universidad de Zaragoza, E-
17	50009 Zaragoza, Spain. Tel: +34660286216. E-mail address: <u>vicengeo@gmail.com</u>
18	

20 ABSTRACT

21	Guembelitria is the only planktonic foraminiferal genus whose survival from the
22	mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly
23	proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of
24	two guembelitriid lineages in the early Danian: one biserial, represented by
25	Woodringina and culminating in Chiloguembelina, and the other trochospiral,
26	represented by Trochoguembelitria and culminating in Globoconusa. We have re-
27	examined the genus Chiloguembelitria, another guembelitriid descended from
28	Guembelitria and whose taxonomic validity had been questioned, it being considered a
29	junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria
30	mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the
31	aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria
32	shares its wall texture with Trochoguembelitria and some of the earliest specimens of
33	Woodringina, suggesting that it played an important role in the evolution of early
34	Danian guembelitriids, as it seems to be the most immediate ancestor of both
35	trochospiral and biserial lineages. Morphological and morphostatistical analyses of
36	Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and
37	three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata.
38	
39	Keywords: Guembelitriids, wall texture, K/Pg boundary, morphostatistical analysis,

40 Tunisia.

41

42 **1. Introduction**

43 The mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary 66 million
44 years ago eliminated almost all species of Maastrichtian planktonic foraminifera (Smit

45	1990; Arenillas et al. 2002; Molina et al. 2006, 2009), leaving vacant most of the
46	pelagic niches and triggering in the early Danian the most important radiation in their
47	evolutionary history. One of the most passionate debates in the Earth Sciences focuses
48	on the paleobiological and paleoenvironmental changes that occurred before, during and
49	after this extinction, as well as its relation with the massive eruptions in the Deccan
50	volcanic province in India (Chenet et al. 2007; Schoene et al. 2015) and/or with the
51	Chicxulub asteroid impact on Yucatan in Mexico (Hildebrand et al. 1991; Schulte et al.
52	2010).
53	Numerous new species of trochospiral and biserial planktonic foraminifera originated
54	after the K/Pg boundary (Luterbacher and Premoli Silva 1964; Smit 1982; Canudo et al.
55	1991; Liu and Olsson 1992; Molina et al. 1998). This evolutionary radiation happened
56	in two pulses (Arenillas et al. 2000b, 2004). The first occurred between approximately 5
57	and 20 kyr after the K/Pg boundary (Arenillas et al. 2016b), with the appearance of
58	species belonging to the parvularugoglobigerinids (Parvularugoglobigerina Hofker,
59	1978, and Palaeoglobigerina Arenillas, Arz and Náñez, 2007) and biserial taxa
60	(Woodringina Loeblich and Tappan, 1957, and Chiloguembelina Loeblich and Tappan,
61	1956). The second evolutionary radiation occurred between approximately 37 and 80
62	kyr after the K/Pg boundary, giving rise to species belonging to Trochoguembelitria
63	Arenillas, Arz and Náñez, 2012, Eoglobigerina Morozova, 1959, Parasubbotina
64	Olsson, Berggren and Liu, 1992, Globanomalina Haque, 1956, and Praemurica Olsson,
65	Hemleben, Berggren and Liu 1992 (Arenillas et al. 2010, 2012; Arenillas and Arz
66	2013a, 2013b, 2016a). Other genera appear shortly afterwards, such as Subbotina
67	Brotzen and Pozaryska, 1961, and Globoconusa Khalilov, 1956.
68	One of the presumed ancestors of the earliest Danian taxa was Guembelitria
69	Cushman, 1933, the only planktonic foraminiferal genus whose survival from the K/Pg

70	mass extinction event has been clearly proven (Smit 1982; Olsson et al. 1999; Arenillas
71	et al. 2000a; Ashckenazi-Polidova et al. 2014; Arenillas et al. 2016a). There is a general
72	consensus that Guembelitria is the ancestor of microperforate genera such as
73	Woodringina and Globoconusa (Olsson et al. 1999; Arenillas and Arz 2000; Arenillas et
74	al. 2010; Koutsoukos 2014). For the latter, Arenillas et al. (2012, 2016b) proposed the
75	evolutionary lineage Guembelitria-Trochoguembelitria-Globoconusa, instead of the
76	more direct derivation of Globoconusa from Guembelitria. Woodringina, with a mixed
77	triserial-biserial test, is in turn the ancestor of the wholly biserial genus
78	Chiloguembelina.
79	Guembelitria species were r-strategy opportunists that inhabited surface-water
80	environments (Nederbragt 1991) and bloomed during the stressful times of
81	Maastrichtian global warming events associated with the Deccan Traps eruptions (Pardo
82	and Keller 2008). Guembelitria also bloomed immediately after the Chicxulub impact,
83	during approximately the first 10 or 15 kyr of the Danian (acme-stage PFAS-1 of
84	Arenillas et al. 2006). Another, later bloom of triserial guembelitriids has been
85	recognized in the early Danian of Egypt, Israel, Tunisia and India. This was related to a
86	global warming episode linked to the last phase of Deccan volcanism (Punekar et al.
87	2014).
88	The main object of the present study is Chiloguembelitria Hofker, 1978, another
89	guembelitriid that originated in the first evolutionary radiation and whose taxonomic
90	validity has been questioned, it being considered a junior synonym of Guembelitria (e.g.
91	D'Hondt 1991; MacLeod 1993). However, Chiloguembelitria may be key to elucidating
92	the evolutionary relationships among the earliest Danian guembelitriids. Arenillas et al.
93	(2010) suggested that Chiloguembelitria includes at least three species: Chg. danica
94	Hofker, 1978, Chg. irregularis (Morozova, 1961) and Ch. cf. cretacea. However,

95 studies of its morphologic variability and species diversity have not been conducted so96 far.

97 In this paper, we document new specimens assignable to the genus 98 Chiloguembelitria mainly from the El Kef section (Tunisia) in order to assess its 99 taxonomic validity, advance the understanding of its phylogenetic relationships with 100 Guembelitria, Woodringina and other genera, and determine its species diversity. This 101 review will also help to date and correlate the climatic warming episodes of the early 102 Danian. The bloom of triserial guembelitriids linked to the last volcanic phase of the 103 Deccan has been ascribed to Guembelitria (Punekar et al. 2014). Nevertheless, it could 104 in fact be an acme of *Chiloguembelitria*, which replaced *Guembelitria* in the early 105 Danian, occupying the same ecological niche. Considering Chiloguembelitria and 106 *Guembelitria* as separate genera will make it possible to differentiate more easily the 107 possible Danian blooms of Chiloguembelitria from the PFAS-1 episode (acme of 108 Guembelitria inmediately after the K/Pg boundary), recognize and calibrate possible 109 hiatuses in lower Danian sections, and interpret and correlate more accurately the 110 paleoenvironmental changes occurring after the K/Pg boundary extinction event.

111

112 **2. Material and Methods**

Samples for this study were selected from the lower Danian of the El Kef section, Tunisia, which is the Global boundary Stratotype Section and Point for the base of the Danian Stage (Molina et al. 2006). All studied rock samples were disaggregated in water with diluted H_2O_2 , washed through a 63 \Box µm sieve, then oven-dried at 50°C. Analyzed specimens were mounted on microslides for a permanent record and identification. Planktonic foraminifera were picked from the residues and selected for scanning electron microscopy (SEM), using the JEOL JSM 6400 and Zeiss MERLIN

120	FE-SEM of the Electron Microscopy Service of the Universidad de Zaragoza (Spain).
121	The type-specimens of the new species described in this paper were deposited in the
122	Museo de Ciencias Naturales of the Universidad de Zaragoza (Aragon Government,
123	Spain). In addition to El Kef, specimens from other localities have also been taken into
124	account for taxonomic studies, such as those from Elles and Aïn Settara (Tunisia),
125	Caravaca and Agost (Spain), Ben Gurion (Israel), Lynn Creek (Mississippi), Nye Klov
126	(Denmark) and Bajada del Jagüel (Argentina).
127	For taxonomical and evolutionary studies, we have relied on morphological,
128	morphostatistical, ontogenetic and textural criteria, and a high-resolution
129	biostratigraphy. The morphostatistical studies were based on 124 specimens of
130	Chiloguembelitria randomly chosen from lower Danian sample KF19.50 of El Kef
131	(Table 1), 7.5 m above the K/Pg boundary. The foraminiferal preservation in El Kef is
132	good enough to analyze the wall texture, although corroded and recrystallized surfaces
133	can be observed. The ranges of the studied taxa were established after reviewing the
134	high-resolution biostratigraphic data from the El Kef section (Arenillas et al. 2000a),
135	which allowed us to pinpoint the first appearance of the taxa. We used the planktonic
136	foraminiferal zonations of Arenillas et al. (2004) and Berggren and Pearson (2005);
137	their equivalence is shown in Figure 1. Notably, the former is based on complete and
138	greatly expanded Tunisian and Spanish K/Pg sections such as El Kef, Aïn Settara, Elles,
139	Caravaca, Agost and Zumaia (see Molina et al. 2009). Biomagnetochronological
140	calibrations allowed Arenillas et al. (2004) to date the zonal boundaries of their
141	biochronological scale (Figure 1). The section studied at El Kef spans only up to the
142	Subbotina triloculinoides Subzone (Parasubbotina pseudobulloides Zone) of Arenillas
143	et al. (2004), or Subzone P1b of Berggren and Pearson (2005). For this reason, the range
144	tops of some species have been determined after reviewing previous biostratigraphic

studies at Spanish localities such as Caravaca, Agost and Zumaia (see Molina et al.146 1998).

147

148 [Figure 1 near here]

149

150 **3. Taxonomic and phylogenetic remarks**

151 All the planktonic foraminiferal taxa studied here have usually been considered to

belong to the family Guembelitriidae Montanaro-Gallitelli, 1957, except for

153 Chiloguembelina of the family Chiloguembelinidae Reiss, 1963 (Loeblich and Tappan

154 1987; Olsson et al. 1999), and *Trochoguembelitria* and *Globoconusa*, which have

recently been included in the family Globoconusidae BouDagher-Fadel, 2012 (see

156 Arenillas et al. 2016b). Guembelitriidae traditionally includes to planktonic foraminifers

157 with triserial tests, at least in their juvenile stage. Its type-genus, *Guembelitria*, is the

158 only one universally accepted as belonging to it. The other genera included within

159 guembelitriids show serial reduction (Woodringina) or proliferation (Guembelitriella

160 Tappan, 1940) throughout their ontogeny. *Guembelitriella* was proposed to include

161 irregular multiserial forms in the adult stage, being triserial in the early stage. However,

162 the systematic position of this genus is problematic, since Longoria (1974) and

163 Georgescu (2009) considered that its type-species, *Guembelitriella graysonensis*

164 Tappan, 1940, exhibits a trochospirally coiled test and is morphologically closer to

165 benthic *Praebulimina* Hofker, 1953, than to *Guembelitria*. The *Guembelitriella*-type

166 multiserial forms of the K-Pg transition, assigned to Guembelitriella postcretacea

167 Pandey, 1981, were not considered in the taxonomies of Arenillas et al. (2007) and Arz

168 et al. (2010) because they apparently belong to aberrant forms of *Guembelitria*.

- According to these authors, all survivor guembelitriids from the K/Pg boundary eventbelong to *Guembelitria*.
- 171

172 3.1. Upper Cretaceous triserial guembelitriids

- 173 *Guembelitria* is characterized by a test that is wholly triserial (Figure 2),
- 174 microperforate and with a pore-mounded wall texture (Loeblich and Tappan 1987;
- 175 Olsson et al. 1999; Georgescu et al. 2011), its type-species being Guembelitria cretacea
- 176 Cushman, 1933. After carrying out a morphostatistical analysis, Arz et al. (2010)
- 177 proposed three species in *Guembelitria* for the upper Maastrichtian: *G. cretacea* (Figure
- 178 2(a)–(d)), G. blowi Arz, Arenillas and Náñez, 2010 (Figure 2(e)–(g)), and G. dammula
- 179 Voloshina, 1961 (Figure 2(h)–(k)). Before being described, *G. blowi* was usually named

180 as *Guembelitria trifolia* (Morozova, 1961) because Blow (1979) used the specific name

- 181 *trifolia* for the low-spired triserial morphotypes. However, the holotype of Globigerina
- 182 (Eoglobigerina) trifolia Morozova, 1961, is an early Danian trochospiral form that
- 183 Olsson et al. (1999) later considered to be *Globoconusa*. On the other hand, Cretaceous
- 184 specimens of *G. dammula* have usually been attributed to *Guembelitria danica* (Hofker,
- 185 1978) (e.g. MacLeod 1993). Arenillas et al. (2007) and Arz et al. (2010) pointed out the
- 186 possible existence of two pseudocryptic species among Danian high-spired
- 187 Guembelitria, both usually referred to Guembelitria danica but one exhibiting pore-
- 188 mounds (G. danica sensu MacLeod 1993, and G. dammula sensu Arz et al. 2010) and
- 189 the other imperforate pustules and rugosities (Chiloguembelitria danica sensu Hofker
- 190 1978). The same applies to the species *Guembelitria irregularis*, herein referred to as
- 191 *Chiloguembelitria irregularis*, which includes triserial tests of irregular appearance.
- 192

194	
195	It is traditionally believed that the chronostratigraphic range of Guembelitria spans
196	from the upper Albian to the lower Danian (Loeblich and Tappan 1987; Kroon and
197	Nederbragt 1990). However, Georgescu (2009) restricted its range from the upper
198	Santonian to the lower Daniana, considering that the triserial taxa of the upper Albian to
199	Turonian triserial taxa belong to a different genus, Archaeoguembelitria Georgescu,
200	2009. Georgescu (2009) argued that Archaeoguembelitria and Guembelitria are not
201	phylogenetically related, and that the first derived from the buliminid Praeplanctonia
202	Georgescu, 2009. Archaeoguembelitria was excluded from the family Guembelitriidae
203	and assigned to the new family Archaeoguembelitriidae Georgescu, 2009, within the
204	buliminid superfamily Praeplanctonioidea Georgescu, 2009.
205	A relevant species for the evolutionary history of Guembelitria may be G.? turrita
206	Kroon and Nederbragt, 1990, which ranges from the upper Campanian to the lower
207	Maastrichtian. Georgescu (2009) considered that G. cretacea evolved from G.? turrita
208	during the upper Campanian. However, G.? turrita has triangular pustules that do not
209	tend to result pore-mounds (Georgescu et al. 2011). In addition, it usually has a
210	buliminid-shaped, asymmetrical aperture (Kroon and Nederbragt 1990), and therefore it
211	may represent a separate lineage of triserial planktonic foraminifera descending from
212	some still unknown buliminid (Georgescu et al. 2011). The benthic species Neobulimina
213	newjerseyensis Georgescu, Arz, Macauley, Kukulski, Arenillas and Pérez-Rodríguez,
214	2011, which exhibits small pustules and incipient circular pore-mounds, may represent a
215	major challenge in deciphering the origin of Guembelitria. The evolution of
216	Guembelitria from Neobulimina would be similar to that from Praeplanctonia to
217	Archaeoguembelitria in the late Albian. However, the occurrence of clear G. cretacea
218	specimens in Santonian sediments means that additional studies are required to define

more adequately the stratigraphical distributions of *G*.? *turrita* and *N. newjerseyensis* as
presumed ancestors of *G. cretacea* (see Georgescu et al. 2011).

221

224

222 3.2. Biserial and trochospiral lineages of Danian guembelitriids

223 The Paleogene biserial lineage descending from *Guembelitria* includes *Woodringina*

and Chiloguembelina (Figure 3). Woodringina clusters Danian species with a triserial

225 juvenile stage followed by biserially arranged chambers. Its type-species is *W*.

226 *claytonensis* Loeblich and Tappan, 1957. The description of its wall texture has varied

from one author to another, but it is usually considered to be pustulate with a variable

density of pustules, giving an appearance that is smoother if low density or more

229 muricate if high density. Although Loeblich and Tappan (1957) described it as very

230 finely hispid, Loeblich and Tappan (1987) later depicted it as smooth. Olsson et al.

231 (1999) and BouDagher-Fadel (2012, 2015) also suggested a smooth wall for

232 *Woodringina*, though sometimes bearing pore-mounds, at least in the juvenile stage.

Arenillas et al. (2007) proposed for *Woodringina* a papillate wall, with imperforate

blunt pustules, and suggested that its pustules are ontogenetically linked to modified

pore-mounds, which are only present in the most primitive forms (assigned herein to

236 Chiloguembelitria biseriata sp. nov.). Woodringina is considered the intermediate taxon

237 between *Guembelitria* and *Chiloguembelina* (Olsson et al. 1999). *Chiloguembelina* is

characterized by a wholly biserial test, and its wall texture was originally described as

239 smooth or hispid (Loeblich and Tappan 1956), or as granulate by Loeblich and Tappan

240 (1987). Olsson et al. (1999), Huber et al. (2006) and BouDagher-Fadel (2012, 2015)

241 described it as having with numerous small pustules, and Arenillas et al. (2007) as

242 having a finely or moderately papillate surface, with blunt pustules. Four species of

243 Woodringina and Chiloguembelina have been considered here: W. claytonensis

- Loeblich and Tappan, 1957 (Figure 3(a), 14(e)–(h)), *W. hornerstownensis* Olsson, 1960
- 245 (Figure 3(b)–(f)), Ch. taurica Morozova, 1961 (Figure 3(g)–(i)), and Ch. midwayensis
- 246 (Cushman, 1940) (Figure 3(j)–(k)).
- 247

248 [Figure 3 near here]

249

250 Various trochospiral genera from the earliest Danian have also been linked to or

included in the family Guembelitriidae (Olsson et al. 1999; Arenillas et al. 2007, 2012),

such as Parvularugoglobigerina, Palaeoglobigerina, Trochoguembelitria, and

253 Globoconusa. The first two have recently been excluded from the guembelitriids

254 (BouDhager-Fadel 2012; Arenillas and Arz 2013a, 2013b), and a benthic origin has

been proposed for them (Brinkhuis and Zachariasse 1988; Arenillas and Arz 2016). The

256 Paleogene trochospiral lineage descending from *Guembelitria* includes to

257 Trochoguembelitria and Globoconusa (Figure 4). The genus Trochoguembelitria,

258 whose type-species is *Guembelitria? alabamensis* Liu and Olsson, 1992, was proposed

by Arenillas et al. (2012) in order to include trochospiral specimens with a pustulate to

260 rugose wall texture (with decentred pore-mounds and perforate rugosities) previously

assigned to *Parvularugoglobigerina* (e.g. Olsson et al. 1999), restricting the latter genus

262 only to species with a smooth wall texture, such as Pv. eugubina (Luterbacher and

263 Premoli Silva, 1964) and *Pv. longiapertura* (Blow, 1979). *Trochoguembelitria* may be

triserial in the juvenile stage, at least in some specimens of *T. alabamensis*, revealing its

triserial evolutionary origin. Arenillas et al. (2012) suggested that *Trochoguembelitria* is

the ancestor of the pustulate-walled *Globoconusa*. After carrying out a morphostatistical

analysis of *Trochoguembelitria*, Arenillas et al. (2016b) proposed four species: *T*.

268 alabamensis (Liu and Olsson, 1992) (Figure 4(a)–(c)), T. extensa (Blow, 1979) (Figure

269	4(d)–(e)), T. liuae Arenillas, Arz and Náñez, 2016 (Figure 4(f)), and T. olssoni
270	Arenillas, Arz and Náñez, 2016 (Figure 4(g)). Moreover, three species have been
271	considered in Globoconusa: Gc. daubjergensis Brönnimann, 1953 (type-species, Figure
272	4(h)-(i)), Gc. conusa Khalilov, 1956 (Figure 4(j)), and Gc. victori Koutsoukos, 2014
273	(Figure 4(k)). The classification of BouDagher-Fadel (2012, 2015) still retained the
274	genus Postrugoglobigerina Salaj, 1986, basing it on characters similar to those
275	attributed to Trochoguembelitria. However, Postrugoglobigerina has been regarded as a
276	nomen dubium non conservandum due to the holotypes and type-material of its species
277	have been lost and are of doubtful application (see discussion in Arenillas et al. 2012).
278	Olsson et al. (1999) and Arenillas et al. (2012, 2016b) considered Postrugoglobigerina
279	a junior synonym of Parvularugoglobigerina. The latter has also usually been included
280	in Guembelitriidae because Guembelitria was considered its direct ancestor (Olsson et
281	al. 1999), but recent taxonomic proposals include it, together with Globanomalina, in
282	the family Globanomalinidae Loeblich and Tappan, 1984 (e.g. BouDagher-Fadel 2012).
283	

284 [Figure 4 near here]

285

286 4. Textural variability in lower Danian guembelitriids

The wall texture of upper Maastrichtian guembelitriids is usually described as poremounded (Loeblich and Tappan 1987; Olsson et al. 1999; Georgescu et al. 2011). The typical pore-mounds of *Guembelitria* are blunt pustules (papilla-type) marked by a more or less centered pore (Figure 5(a)). However, Loeblich and Tappan (1987) and Arenillas et al. (2007, 2010) reported that the microtextural variability among guembelitriids of the lowermost Danian is greater than in the upper Maastrichtian. For example, the most immediate descendants from *Guembelitria*, i.e. *Woodringina* (Figure 5(e)) and

294 Trochoguembelitria (Figure 5(d)), already had a different type of wall texture (a 295 pustulate or rugose wall), although this clearly evolved from the typical pore-mounded 296 wall of Guembelitria (Arenillas et al. 2012, 2016b).

297 These textural variations may consist of irregular pore-mounds with decentered 298 pores, imperforate pustules that may be blunt or sharp, and a high or low density of 299 pore-mounds and/or imperforate pustules on the surface. Moreover, pore-mounds and 300 blunt pustules can coalesce, generating small, non-aligned rugae or ridges (a rugose 301 wall). Some of these variations can be mixed in a single specimen. In the case of 302 triserial guembelitriids, these other types of wall texture have usually been considered 303 part of the microtextural variability in *Guembelitria* (e.g. Olsson et al. 1999). Although 304 part of this variability could have an ecophenotypic or ontogenetic origin, it has also 305 been related to pseudocryptic speciation, which resulted in species only distinguished by 306 their wall surface under the scanning electron microscope (Arenillas et al. 2010). 307

308 [Figure 5 near here]

309

310 4.1. Wall textures in lower Danian guembelitriids

311 Arenillas et al. (2007, 2010, 2012) and Arz et al. (2010) studied and illustrated the 312 textural variability of the guembelitriids of the K-Pg transition, including examples of 313 wall texture assignable to Chiloguembelitria. Among the earliest Danian guembelitriids, the following wall textures were recognized: 314

315 1) Pore-mounded wall, or papillate wall with pore-mounds (Figure 5(a)): wall texture 316 characterized by blunt pore-mounds irregularly distributed, generally with one pore per 317 papilla, approximately centered (regular pore-mounds), and sometimes two pores per 318 papilla; the density of pore-mounds is variable and, when the density is high, the pore-

319	mounds can be fused at their bases; this is the wall surface typical of Maastrichtian
320	specimens of Guembelitria from tropical to temperate latitudes in both oceanic and
321	neritic environments, and also in lowermost Danian specimens.

322 2) Pustulate/papillate to rugose wall, with irregular, decentered pore-mounds,

323 imperforate blunt pustules (papilla-type), and imperforate and perforate rugosities

324 (Figure 5(c)–(d)): wall surface characterized mainly by rugosities with or without

325 multiple pores, produced by the coalescence of pore-mounds or imperforate blunt

326 pustules; the pustules may also be sharp (Figure 5(g)); it is microperforate with tiny

327 pores within the rugosities and isolated pore-mounds, and in the smooth surface; pores

in rugosities and pore-mounds are very decentered, often situated in the basal part of the

329 ridges or mounds; in specimens with a higher pore density, the rugosities tend to be

330 smaller and more crowded (muricate-type); all these types of pustules and rugosities

331 may be found in a single specimen; this is typical of *Chiloguembelitria* and

332 Trochoguembelitria.

333 3) Pustulate wall, with small blunt pustules (Figure 5(e)-(f)): wall surface with blunt

334 pustules and tiny pores scattered over the smooth surface of the wall; this is typical of

335 Woodringina and Chiloguembelina; in specimens – mainly of Woodringina – with

higher pore density, the pustules tend to be smaller and more crowded (muricate-type);

in specimens – mainly of *Chiloguembelina* – with low pustule density or smaller
pustule size, the wall surface looks smooth.

4) Pustulate wall, with sharp pustules (Figure 5(h)): wall surface with sharp pustules
and small pores scattered over the smooth surface of the wall; the pustules may also be
blunt; both sharp and blunt pustules may be found in a single specimen; the density of
pustules is usually low; this is typical of *Globoconusa*.

343	Additionally, Loeblich and Tappan (1987) and Arenillas et al. (2010) distinguished a
344	granular or granulate wall in guembelitriids or in evolutionarily and/or ecologically
345	associated taxa (e.g. Chiloguembelina and/or Parvularugoglobigerina). This is
346	characterized by minute calcite crystallites with in a mosaic or jagged shape over the
347	entire test surface (Figure 5(b)). Salaj (1986) defined at El Kef two new Danian species
348	of Guembelitria (G. besbesi and G. azzouzi) that were also described as having small
349	pustules, referring probably to a granulate wall texture. Although these species were
350	later considered junior synonyms of G. cretacea (Olsson et al. 1999) and should be
351	regarded as nomina dubia non conservanda like the Postrugoglobigerina species (see
352	discussion in Arenillas et al. 2012), this is not the last time that this wall texture has
353	been recognized in guembelitriids. Arz et al. (2010) and Arenillas et al. (2010)
354	suggested that – unlike the specimens of other taxa in the same samples of Tunisian
355	sections - the wall surface of many Maastrichtian and Danian specimens of
356	Guembelitria is covered by a secondary granular crust (Figure 2(c), (g)). Without ruling
357	out the recrystallization processes which are usual in Tunisian sections, the authors
358	postulated that the granular wall could also be related to gametogenetic calcification, i.e.
359	a secondary outer calcite crust covering the normal pore-mounded surface. Some
360	specimens of guembelitriids show a granulate surface in all chambers except in the last
361	ones (e.g. Figure 2(1)), suggesting the likelihood of such a proposal. However, due to
362	the inability to demonstrate the difference between the diagenetically modified
363	gametogenetic calcification and the recrystallization itself, the suggestion of a granular
364	crust is here considered highly speculative for now.

365

366 4.2. Wall texture in Chiloguembelitria

367 Loeblich and Tappan (1987) considered that the main diagnostic character of
368 *Chiloguembelitria* is its wall texture, which made it possible to differentiate it from

369	Guembelitria. Hofker (1978) specified its wall texture by studying the type-species Chg.
370	danica, describing it as having small blunt pustules. Studying topotypes of Chg. danica,
371	Loeblich and Tappan (1987) concluded that Chiloguembelitria has a surface that is
372	finely pustulose but lacks pore-mounds. Later, Arenillas et al. (2010) described it as
373	papillate to rugose, with perforate or imperforate pustules and rugosities, and
374	BouDagher-Fadel (2012, 2015) as muricate, i.e. surface possessing high density of
375	pustules.
376	Kroon and Nederbragt (1990), D'Hondt (1991), MacLeod (1993), Jenkins et al.
377	(1998) and Olsson et al. (1999) among others have proposed, however, that
378	Chiloguembelitria is a junior synonym of Guembelitria, claiming that both genera bear
379	pore-mounds. MacLeod (1993) illustrated Maastrichtian specimens assigned to
380	Guembelitria danica exhibiting well-developed pore-mounds, and suggested that both
381	G. cretacea and Chg. danica – although distinct species – belong to the genus
382	Guembelitria, Chiloguembelitria being a junior synonym. However, Maastrichtian
383	specimens morphologically similar to the holotype of Chg. danica have recently been
384	attributed to G. dammula (Arz et al. 2010). Because the holotype of Chg. danica cannot
385	found (depository not given by the author), Jenkins et al. (1998) chose topotypes of
386	Chg. danica and designated a neotype. They conclude that these type-specimens bear
387	pore-mounds similar to those of Guembelitria, supporting the idea that the two genera
388	are synonymous. However, the specimens that they illustrated are poorly preserved and
389	seem to have imperforate pustules and rugosities, including the neotype of Chg. danica
390	selected by them. For these reasons, Arz et al. (2010) concluded that the presence of
391	regular pore-mounds in Chg. danica is very dubious, and proposed that their taxonomy
392	should be clarified by carrying out a more profound study of the wall texture and
393	morphology of this genus and other Danian guembelitriids.

394	
395	5. Morphological variability in lower Danian guembelitriids
396	5.1. Gross morphology
397	At the genus level, the serial guembelitriids were usually classified in accordance
398	with their chamber arrangement (Figure 6(a)), distinguishing the wholly triserial forms
399	(Guembelitria) and the triserial-biserial mixed forms (Woodringina). The types of wall
400	texture identified seemed to fit well with these two genera, Guembelitria having a pore-
401	mounded wall (usually with regular pore-mounds) and Woodringina a papillate or
402	pustulate wall (usually with a high density of blunt pustules).
403	At the species level, the main diagnostic criterion used in guembelitriids is the spire
404	height, bearing in mind that triserial and biserial are spiral forms with three and two
405	chambers per whorl respectively (Tyszka 2006; Figure 6). In Guembelitria (Arz et al.
406	2010), three species were distinguished according to whether they are low-spired (G .
407	blowi, or G. trifolia for some authors), medium-spired (G. cretacea), or high-spired (G.
408	dammula, or G. danica for some authors). Triserial guembelitriids of irregular
409	appearance (twisted test) have usually been classified within G. irregularis (herein
410	Chiloguembelitria irregularis). The separation of regular and "irregular" triserial
411	guembelitriids can be established using the rotation angle β , so that when β is
412	approximately between 120° and 130° they have a regular appearance (with some
413	twisting when further away from 120°) and when more than 130° they have an irregular
414	appearance (Figure 6(a)). In the adult stage, the spire height of <i>Chg. irregularis</i> is great,
415	similar to that of G. dammula or that of the original holotype of Chg. danica.
416	
417	[Figure 6 near here]

419	In Woodringina (Olsson et al. 1999; Arenillas et al. 2007), two species have been
420	distinguished according to whether they are low-spired (W. claytonensis) or high-spired
421	(W. hornerstownensis). The triserial juvenile stage of many specimens of W.
422	claytonensis and W. hornerstownensis, mainly the most modern ones, is greatly
423	shrunken (pseudotriserial, $\beta \approx 140-170^{\circ}$) or absent (biserial, $\beta \approx 170-180^{\circ}$) (Figure 6(a)).
424	Those that have a gross morphology similar to W. claytonensis have been assigned to
425	Woodringina kelleri MacLeod, 1993, and those similar to W. hornerstownensis have
426	usually been assigned to Chiloguembelina morsei (Kline, 1943) or Chiloguembelina cf.
427	morsei (e.g. D'Hondt 1991; Olsson et al. 1999; Arenillas and Arz 2000; Arenillas et al.
428	2000a, 2000b). MacLeod (1993) remarked that W. kelleri differs from W. claytonensis
429	in its laterally compressed adult chambers, and especially in its large, elongate aperture.
430	Olsson et al. (1999) considered W. kelleri to be a junior synonym of W. claytonensis
431	adducing that the differences proposed by MacLeod (1993) appear insufficient to
432	warrant maintenance of W. kelleri as a separate taxon. Arenillas et al. (2007) considered
433	Ch. morsei (Figure 3(1)) to be a junior synonym of Chiloguembelina midwayensis
434	(Cushman, 1940), since their holotypes are almost indistinguishable, and re-assigned the
435	high-spired specimens with a shrunken triserial initial stage within the morphological
436	variability of W. hornerstownensis.
437	Considering how species are discriminated in Guembelitria and Woodringina, it is
438	consistent to expect the existence of several species within Chiloguembelitria
439	distinguishable only by the spire height, as proposed Arenillas et al. (2010). In addition
440	to Chg. danica (sensu the original holotype of Hofker, 1978) and Chg. irregularis,
441	Arenillas et al. (2010) suggested the existence of a new pseudocryptic species in the
442	early Danian similar to G. cretacea but with rugose wall, which was provisionally

443 named *Ch.* cf. *cretacea* (assigned herein to *Chg. danica* sensu the neotype of Jenkins et444 al., 1998).

- 445
- 446 5.2. Aperture position and shape

447 Another of the criteria used to distinguish *Guembelitria* and *Chiloguembelitria* is the 448 position and shape of the aperture (Hofker 1978), because the *Chiloguembelitria* 449 aperture was originally described as more similar to that of *Chiloguembelina* than to 450 that of Guembelitria. Following the terminologies of Li (1987), Li et al. (1992) and BouDagher-Fadel (2012) for describing the position and morphology of the aperture, 451 452 Arenillas et al. (2016b) considered two types of apertural position in triserial-453 trochospiral tests: umbilical and umbilical-extraumbilical (Figure 6(b)), subdividing the 454 first into two subtypes: intraumbilical and anterio-intraumbilical, and the second into 455 another two subtypes: intra-extraumbilical and umbilical-peripheral. The apertures 456 outside the umbilicus may also be subdivided into three other subtypes (Figure 6(b)): 457 extraumbilical, equatorial (in spiral tests) and lateral (in biserial tests). According to this 458 terminology, most of the *Chiloguembelitria* specimens present umbilical-peripheral or 459 extraumbilical (rarely intra-extraumbilical) apertures, or lateral ones if they have a more 460 developed biserial stage. This diagnostic character separates *Chiloguembelitria* from 461 Guembelitria, whose species usually have intraumbilical or anterio-intraumbilical 462 apertures. 463 The apertures of the studied planktonic foraminifera have the following 464 morphologies: (a) a rounded, wide arch, (b) a marginally/laterally elongate, wide arch, 465 and (c) a high arch (like a loop). Most of the Chiloguembelitria specimens exhibit 466 apertures with a marginally or laterally elongate, wide arch, but rounded apertures

467 similar to those of *Guembelitria* and *Trochoguembelitria* are also frequent. The

468 apertural shape in *Chiloguembelitria* is almost identical to that of *Woodringina*,
469 although species of the latter tend to acquire an aperture with a higher arch, as in
470 *Chiloguembelina*. The aperture of all these genera is surrounded by a thin imperforate
471 lip, although some tend to acquire a thicker lip as in *Chiloguembelina*.
472
473 6. Morphostatistical analysis of wholly triserial *Chiloguembelitria*

474 The biometric and morphostatistical analysis has been applied to "regular", wholly

475 triserial specimens (Figure 6(a)) of *Chiloguembelitria*. The identification of other

476 species in *Chiloguembelitria* was based on qualitative morphological criteria, i.e. their

477 gross morphology: a strongly twisted, triserial test for *Chg. irregularis*, and a biserial

478 final stage for *Chg. biseriata* sp. nov.

479

480 6.1. Biometric parameters and indices and morphostatistical analyses

The biometric parameters used to delimit species are the following (Figure 6(c)–(d); Table 1): convexity angle (α) measured in axial view; length (L), width (W) and height (H) of the test; and length (CL), width (CW) and height (CH) of the chamber, used to calculate the chamber average diameter CAD = (CL × CW × CH)^{1/3}. In addition, we used the biometric indices H/L and CAD/H (Table 1). Other biometric indices have been explored, but these have not given consistent results for separating species. [Table 1 near here]

489

490 For morphostatistical analyses, the software used was the program PAST, version

491 3.11, by Hammer et al. (2001). The biometric parameters and indices were treated

492 statistically using the following analyses:

493	1) Univariate analyses: Two of the above-mentioned biometric indices (α and H/L)
494	were analyzed in an univariate manner in order to ascertain whether these biometric
495	variables are useful for discriminating species; the results of the univariate analyses
496	were displayed as histograms of 20 bins (Figure 7). Mixture analysis was applied to
497	each biometric variable in order to identify two or more univariate normal distributions
498	(Gaussian bell-shaped curves) based on a pooled univariate sample; this method is used
499	to identify species and study differences between them; Kernel density estimates were
500	also plotted on histograms.
501	2) Bivariate analyses: Variables α vs H/L were used to make bivariate analyses.
502	Kernel density estimates allowed us to make smooth maps of point density in XY
503	graphs (Figure 8); the density estimate is based on a Gaussian function, and scales give
504	an estimate of the number of points per area, not a probability density.
505	3) Multivariate analyses: R-mode cluster analysis and principal component analysis
506	(PCA) were used; the cluster analyses were based on Bray-Curtis index measures
507	among all specimens using the values of the above-mentioned biometric
508	indices/parameters (α , H/L and CAD/H) in order to find groupings that might represent
509	species (Figure 9). The PCA was applied to the values of the three biometric
510	indices/parameters (original variables). Such an analysis finds hypothetical variables
511	(components) that account for as much of the variance in the multidimensional data as
512	possible by reducing the data set to two variables (the two most important components)
513	through a routine that finds eigenvalues and eigenvectors (i.e. components) of the
514	variance-covariance correlation matrix. All the original data points were plotted as an
515	XY graph in the coordinate system given by the two most important components (PC1
516	and PC2) to enhance visualization of the data sets representing the possible species
517	(Figure 10); 95% confidence ellipses, which assume a bivariate normal distribution, and

518	convex hulls, which are the smallest convex polygons containing all points, were
519	presented in the scatter diagram.

520

521 6.2. Results of the morphostatistical analysis

The morphological and morphostatistical analyses discriminate at least three species within *Chiloguembelitria*. Whether or not the statistically identified morphogroups are biological species is a question that we do not intend to clarify. Nevertheless, there is no doubt that the three identified species fall within the concept of morphospecies, which is based on overall morphological similarity, and defined as the smallest morphogroup that is consistently and persistently distinct.

529 [Figure 7 near here]

530

531 [Figure 8 near here]

532

533 Frequency distributions of the univariate analyses (Figure 7), calculated for all 534 measured specimens and represented in plot histograms of 20 bins, suggest three 535 morphogroups of *Chiloguembelitria*, as also suggested by Gaussian bells and Kernel 536 density estimates. Both α and H/L variates seem to distinguish three groups, a low-537 spired group, assigned to Chg. trilobata sp. nov., a medium-spired group, assigned to 538 Chg. danica, and a high-spired group, assigned to Chg. hofkeri sp. nov.. Bivariate 539 analyses (Figure 8) also strongly suggest that the genus *Chiloguembelitria* contains the 540 three above-mentioned species; these are well observable in the Kernel density maps. 541

542 [Figure 9 near here]

544	Cluster analysis (Figure 9), based on the Bray-Curtis similarity index, produced
545	dendrograms with two primary clusters, one grouping the morphotypes with a low-
546	spired test (Chg. trilobata sp. nov.), and the other those with a high-medium-spired test,
547	which is subdivided into two sub-clusters, one grouping medium-spired (Chg. danica)
548	and the other high-spired morphogroups (Chg. hofkeri sp. nov.). The two resulting
549	dendrograms, one based on α and H/L variables (Figure 9(a)) and the other on α , H/L
550	and CAD/H variables (Figure 9(b)), made it possible to discriminate the three above-
551	mentioned species. The principal component analysis (PCA) based on α , H/L and
552	CAD/H variables showed similar results to those of the cluster analysis (Figure 10). The
553	principal component PC1 explains 94.5% of the variance. The PCA scatter diagram,
554	where X and Y are the principal components PC1 and PC2, distinguishes three sets of
555	points of higher density. We specified three groups of specimens, clustering them
556	subjectively by their gross morphology. These are approximately equivalent to those
557	obtained by the PCA. Except for the intermediate and/or anomalous specimens, the
558	convex hulls and 95% confidence ellipses clearly delimit the three above-mentioned
559	species. Their main characteristics are easily recognizable under the stereomicroscope.
560	

561 [Figure 10 near here]

562

543

563 **7. Paleontological systematics**

564 Olsson et al. (1999) showed that the phyletic relationship of *Trochoguembelitria*

565 (Parvularugoglobigerina according to them), Globoconusa, Woodringina, and

566 *Chiloguembelina* with *Guembelitria* indicates that trochospiral and biserial chamber

567 arrangements evolved divergently within the planktonic foraminifera. Such

568	relationships are not clearly accounted for by taxonomic schemes, which separate serial
569	and trochospiral morphotypes at the superfamily level (e.g. Loeblich and Tappan 1987).
570	It is broadly accepted that Chiloguembelina is lineally derived from Guembelitria, via
571	Woodringina (Olsson 1970; Li and Radford 1991; Liu and Olsson 1992; D'Hondt 1991).
572	The phylogenetic relationship between Chiloguembelina and Guembelitria indicates
573	that Guembelitriidae constitutes a paraphyletic family because it does not include
574	descendant species assigned to the family Chiloguembelinidae (Olsson et al. 1999).
575	Moreover, BouDagher-Fadel (2012, 2015) assigned the trochospiral guembelitriiids
576	Trochoguembelitria (Postrugoglobigerina according to the author) and Globoconusa to
577	the family Globoconusidae.
578	The new evidence reported here indicates that it is advisable to reconsider the
579	validity of the genus Chiloguembelitria, as its wall texture is distinguishable from those
580	of Guembelitria, and very similar to those described in Trochoguembelitria and in some
581	of the earliest specimens of Woodringina. Furthermore, the position of its aperture also
582	differs from that of Guembelitria. Chiloguembelitria should be assigned to the family
583	Guembelitriidae together with Guembelitria and Woodringina. The proposed
584	phylogenetic relationships of these genera are illustrated in Figure 11.
585	
586	[Figure 11 near here]
587	
588	The family Guembelitriidae is usually included in the superfamily Heterohelicoidea
589	Cushman, 1927, which has been excluded from the order Globigerinida Lankaster,
590	1885, in more recent taxonomies (e.g. BouDagher-Fadel 2012), and included separately
591	in the order Heterohelicida Fursenko, 1958. However, if it is confirmed that

Guembelitria evolved from the benthic *Neobulimina* or a similar buliminid, as

593	Georgescu et al. (2011) proposed, the family Guembelitriidae should also be excluded
594	from the superfamily Heterohelicoidea and the order Heterohelicida.
595	
596	? Order Heterohelicida Fursenko, 1958
597	? Superfamily Heterohelicoidea Cushman, 1927
598	Family Guembelitriidae Montanaro-Gallitelli, 1957
599	
600	Genus Chiloguembelitria Hofker, 1978, emended
601	
602	Type species. Chiloguembelitria danica Hofker, 1978
603	Type description. Test small, elongate, wholly triserial. All foramina and the aperture
604	are placed axially and perpendicular to the sutures, are slit-like elongate, with a distinct
605	lip which is crenulate at the axial side of the border of the apertures, as in
606	Chiloguembelina. It is like a Guembelina in which the biserial part is not yet developed,
607	and may be the true ancestor of that genus. Both Chiloguembelitria and
608	Chiloguembelina are monolamellar.
609	Emended description. Test small, subconical, wholly triserial tending to biserial, or
610	with an undeveloped biserial final stage. Chambers subspherical or globular. Outline
611	lobate, with incised sutures. Aperture interiomarginal, umbilical-extraumbilical to
612	extraumbilical (in the middle part of the suture between the last and the penultimate
613	chamber), rounded or elongate arch, generally asymmetrical, with an imperforate lip.
614	Wall calcareous, hyaline, microperforate, pustulate to rugose, with irregular or
615	decentered pore-mounds, imperforate blunt pustules (papilla-type), occasionally sharp
616	pustules, and both perforate and imperforate rugosities; rugosities and pustules
617	irregularly distributed.

618	Remarks. <i>Chiloguembelitria</i> was originally described in the lower Danian as having a
619	wholly triserial test, as Guembelitria, but with an aperture more similar to that of the
620	biserial genus Chiloguembelina. Hofker (1978) and Loeblich and Tappan (1987)
621	showed that the main diagnostic characters of Chiloguembelitria are its aperture shape
622	(similar to Chiloguembelina) and its wall texture with imperforate blunt pustules. Kroon
623	and Nederbragt (1990), D'Hondt (1991), MacLeod (1993), Jenkins et al. (1998) and
624	Olsson et al. (1999) suggested that Chiloguembelitria is a junior synonym of
625	Guembelitria, after concluding that its species bear pore-mounds similar to those of
626	Guembelitria. However, well-preserved Danian specimens of Chg. danica from DSDP
627	Site 47.2, Shatsky Rise (North Pacific) exhibit imperforate blunt pustules and rugosities
628	(Loeblich and Tappan 1987), which is different from the wall texture of Maastrichtian
629	specimens. Arz et al. (2010) and BouDagher-Fadel (2012, 2015) argued that
630	Chiloguembelitria is a valid taxon, since its wall texture and apertural position differ
631	from Guembelitria. Arenillas et al. (2010) described its wall texture as
632	pustulate/papillate to rugose, and BouDagher-Fadel (2012, 2015) as muricate (a surface
633	with a high density of pustules).
634	
635	Chiloguembelitria danica Hofker, 1978
636	(Figure 5(g); Figs 12(c)–(g))
637	non 1978 Chiloguembelitria danica Hofker, p. 60, holotype: pl. 4, figs. 14.
638	non 1987 Guembelitria danica (Hofker); Loeblich and Tappan, p. 452, part, topotype:
639	pl. 484, fig. 8.
640	non 1993 Guembelitria danica (Hofker); MacLeod, pl. 3, figs. 1, 5.
641	1998 Guembelitria danica (Hofker); Jenkins et al., p. 64, part, neotype: pl. 1, fig. 1;
642	topotype: pl. 1, fig. 5.

643 non 2007 Guembelitria danica (Hofker); Arenillas et al., p. 38, figs. 13.14–17.

645	Type description. Test small, elongate, with triserially arranged chambers throughout.
646	Chambers globular, with distinctly depressed sutures in between, gradually increasing in
647	size so that the whole test remains slender. Walls thin, consisting of only one lamella,
648	without secondary thickening. Walls finely perforate, with small blunt pustules.
649	Aperture high, elongate, narrow, with protruding lip at the axial side of the aperture, as
650	in Chiloguembelina. Length of test up to 0.1 mm; larger breadth near the apertural end
651	0.05 mm.
652	Emended description. Test subconical, medium-spired although higher than wide or
653	long. Triserial arrangement, often slightly twisted, with 9–12 subspherical chambers
654	distributed in 3–4 spiral whorls, with a moderate rate of chamber enlargement. Outline
655	subtriangular, lobate, with incised sutures. Aperture interiomarginal, umbilical-
656	extraumbilical to extraumbilical, rounded or elongate, generally asymmetrical,
657	surrounded by an imperforate lip. Wall surface microperforate, pustulate to rugose, with
658	isolated, decentered pore-mounds, perforate and/or imperforate rugosities, and blunt
659	pustules (papilla-type) and/or sharp pustules. Adult size range 100–150 μ m in height.
660	Occurrence. Lowermost Danian, from the upper part of Zone P0 to the lower part of
661	Zone P1c of Berggren and Pearson (2005), i.e. from the upper part of the Hedbergella
662	holmdelensis Subzone (Guembelitria cretacea Zone) to the lower part of the
663	Globanomalina compressa Subzone (Parasubbotina pseudobulloides Zone) of Arenillas
664	et al. (2004). It is very frequent in the Eoglobigerina trivialis Subzone (Parasubbotina
665	pseudobulloides Zone), i.e. in P1a (Figure 1).
666	Remarks. Kroon and Nederbragt (1990) suggested that Chg. danica is a junior
667	synonyms of G. cretacea, assuming that it bears pore-mounds. However, the presence

668	of regular pore-mounds in Chg. danica is doubtful (Hofker 1978; Loeblich and Tappan
669	1987; Arz et al. 2010; Arenillas et al. 2010; BouDagher-Fadel 2012, 2015).
670	Morphologically, G. dammula is very similar to the original illustration of the holotype
671	of Chg. danica. Since many authors have considered that Guembelitria and
672	Chiloguembelitria are synonymous genera, the Maastrichtian high-spired guembelitriids
673	assigned to Guembelitria dammula Voloshina, 1961, by Arz et al. (2010) have
674	frequently been named Guembelitria danica (e.g. MacLeod 1993). In any case, G.
675	dammula was originally defined from Maastrichtian beds and has priority in date of
676	publication over the species defined by Hofker (1978). The neotype selected by Jenkins
677	et al. (1998) for Chg. danica (Figure 12(c)) has a medium-spired test similar to that of
678	G. cretacea, thus not reflecting the original morphology (high-spired test) of the
679	Hofker's holotype (Figure 12(a)). Nevertheless, the designated neotype has priority
680	according to the Article 75 of International Code of Zoological Nomenclature, so that
681	the name "danica" should be used to refer to Chiloguembelitria specimens with a
682	medium-spired test.
683	
684	[Figure 12 near here]
685	
686	Chiloguembelitria irregularis (Morozova, 1961)
687	(Figure 12(i)–(n))
688	
689	1961 Guembelitria irregularis Morozova, p. 17–18, pl. 1, figs. 9–10.
690	1987 Guembelitria danica (Hofker); Loeblich and Tappan, p. 452, part, pl. 484, figs. 7,
691	9.
692	1993 Guembelitria irregularis Morozova; MacLeod, pt. 3, figs. 2-4, 6-7.

693 1998 Guembelitria danica (Hofker); Jenkins et al., p. 64, part, pl. 1, figs. 4, 6.

694 2007 Guembelitria? irregularis Morozova; Arenillas et al., p. 38-39, figs. 13.9–13.

718	higher spire, similar to Chg. danica. As was suggested by Arz et al. (2010), the species
719	name irregularis may have been used as a "wastebasket" grouping earliest Danian
720	species with a pustulate to rugose wall (Loeblich and Tappan 1987) and both
721	Maastrichtian and Danian aberrant forms with different types of wall texture. Chg.
722	irregularis should thus not be confused with aberrant forms or with some specimens of
723	Guembelitria with a relatively twisted test.
724	
725	Chiloguembelitria hofkeri sp. nov.
726	(Figure 5(c); Figs 12(h); Figs 13(a)–(d))
727	
728	1978 Chiloguembelitria danica Hofker, p. 60, pl. 4, figs. 14.
729	1987 Guembelitria danica (Hofker); Loeblich and Tappan, p. 452, part, pl. 484, fig. 8.
730	non 1993 Guembelitria danica (Hofker); MacLeod, pl. 3, figs. 1, 5.
731	2007 Guembelitria danica (Hofker); Arenillas et al., p. 38, figs. 13.14–17.
732	
733	Type-specimens. Holotype MPZ 2016/108 (Figure 13(a)). Paratype MPZ 2016/109
734	(Figure 13(b)). MPZ 2016/110 (Figure 13(c)). Paratype MPZ 2016/111 (Figure 13(d)).
735	Type-specimens deposited in the Museo de Ciencias Naturales de la Universidad de
736	Zaragoza (Aragon Government, Spain).
737	Diagnosis. Test elongated, subconical, high-spired. Triserial arrangement, often slightly
738	twisted, with 11-14 subspherical chambers distributed in 3.5-4.5 spiral whorls, with
739	low rate of chamber enlargement. Outline subtriangular, lobate, with incised sutures.
740	Aperture interiomarginal, umbilical-extraumbilical to extraumbilical, rounded or
741	elongate, generally asymmetrical, with an imperforate lip. Wall surface microperforate,

- 742 pustulate to rugose, with isolated, decentered pore-mounds, perforate and/or imperforate
- rugosities, and blunt pustules (papilla-type). Adult size range 120–180 µm in height.
- 744 **Derivation of name**. Species dedicated to Jan Hofker for the discovery and definition
- 745 of the Danian genus *Chiloguembelitria*.
- 746 **Type locality**. El Kef section, El Haria Formation, Tunisia.
- 747 **Type level**. 7.50 m above the Cretaceous/Paleogene boundary of the El Kef section
- 748 (sample KF19.50), in the lower part of Zone P1a, or the middle part of the
- 749 Eoglobigerina trivialis Subzone (Parasubbotina pseudobulloides Zone), lower Danian.
- 750 **Occurrence**. Lowermost Danian, from the upper part of Zone P0 to the middle part of
- 751 Zone P1b of Berggren and Pearson (2005), i.e. from the upper part of the *Hedbergella*
- 752 *holmdelensis* Subzone (*Guembelitria cretacea* Zone) to the middle part of the S.
- 753 triloculinoides Subzone (Parasubbotina pseudobulloides Zone) of Arenillas et al.
- 754 (2004). It is very frequent in the *Eoglobigerina trivialis* Subzone (*Parasubbotina*
- 755 *pseudobulloides* Zone), i.e. in P1a (Figure 1).
- 756 **Remarks**. It differs from *Chg. danica* in having a higher-spired test. The gross
- 757 morphology of *Chg. hofkeri* sp. nov. is similar to the original holotype of *Chg. danica*
- 758 illustrated by Hofker (1978). Nevertheless, because this holotype was invalidated
- 759 (depository not given by the author), the name "*danica*" should be used to refer to
- 760 Chiloguembelitria specimens with a medium-spired test, such as the neotype designated
- 761 by Jenkins et al. (1998). The difference in spire height of *Chg. hofkeri* sp. nov. from
- 762 Chg. danica and Chg. trilobata sp. nov. is similar to that of Guembelitria dammula
- 763 from G. cretacea and G. blowi (Arz et al. 2010). These two triplets of species differ
- from each other in the wall texture and the position and shape of the aperture. Danian
- specimens of *Chg. hofkeri* sp. nov. have commonly been attributed to *G. cretacea*
- 766 (MacLeod 1993; Olsson et al. 1999; Arenillas et al. 2000a, 2000b), but Arenillas et al.

767	(2007) and Arz et al. (2010) have already pointed out the possible existence in the early
768	Danian of a pseudocryptic species similar to <i>Guembelitria</i> spp. but with a rugose wall.
769	
770	[Figure 13 near here]
771	
772	Chiloguembelitria trilobata sp. nov.
773	(Figure 13(e)–(h))
774	
775	Type-specimens. Holotype MPZ 2016/112 (Figure 13(e)). Paratype MPZ 2016/113
776	(Figure 13(f)). MPZ 2016/114 (Figure 13(g)). Paratype MPZ 2016/115 (Figure 13(h)).
777	Type-specimens deposited in the Museo de Ciencias Naturales de la Universidad de
778	Zaragoza (Aragon Government, Spain).
779	Diagnosis. Test short subconical, low-spired. Triserial arrangement, often slightly
780	twisted, with 8–11 subspherical chambers distributed in 2.5–3.5 spiral whorls, with a
781	high rate of chamber enlargement. Outline subtriangular, lobate, with incised sutures.
782	Aperture interiomarginal, umbilical-extraumbilical to extraumbilical, generally rounded
783	and asymmetrical, with an imperforate lip. Wall surface microperforate, pustulate to
784	rugose, with isolated, decentered pore-mounds, perforate and/or imperforate rugosities,
785	and blunt pustules (papilla-type) and/or sharp pustules. Adult size range 90–120 μm in
786	height.
787	Derivation of name. Latin term <i>trilobata</i> referring to the shape of <i>three lobes</i> in the
788	equatorial outline.

Type locality. El Kef section, El Haria Formation, Tunisia.

- 790 **Type level**. 7.50 m above the Cretaceous/Paleogene boundary of the El Kef section
- (sample KF19.50), in the uppermost part of Zone $P\alpha$, or the lower part of the
- 792 Eoglobigerina trivialis Subzone (Parasubbotina pseudobulloides Zone), lower Danian.
- 793 **Occurrence**. Lower Danian, from the lower part of Zone Pα to the upper part of Zone
- P1b of Berggren and Pearson (2005), i.e. from the uppermost part of the
- 795 Parvularugoglobigerina longiapertura Subzone (Guembelitria cretacea Zone) to the
- 796 lower part of the *Globanomalina compressa* Subzone (*Parasubbotina pseudobulloides*
- 797 Zone) of Arenillas et al. (2004). It is very frequent in the *Eoglobigerina trivialis*
- 798 Subzone (*Parasubbotina pseudobulloides* Zone), i.e. in P1a (Figure 1).
- 799 **Remarks**. It differs from *Chg. danica* in having a lower triserial test. Specimens of *Chg.*
- 800 trilobata sp. nov. have been probably attributed to Guembelitria blowi (or G. trifolia for
- some authors; MacLeod 1993; Arenillas et al. 2000a, 2000b) or G. cretacea (Olsson et
- al. 1999). Nevertheless, Arenillas et al. (2007) and Arz et al. (2010) pointed out the
- 803 possible existence of pseudocryptic species of Guembelitria spp. in the lower Danian,
- 804 referring to some of the *Chiloguembelitria* species defined here. The gross morphology
- and size of *Chg. trilobata* sp. nov. resemble those of *Trochoguembelitria alabamensis*,
- 806 with which it shares the wall texture but from which it differs in the chamber
- 807 arrangement (triserial vs. trochospiral).
- 808

809 [Figure 14 near here]

- 810
- 811

Chiloguembelitria biseriata sp. nov.

- 812 (Figure 14(a)–(d))
- 813 ? 1998 Guembelitria danica (Hofker); Jenkins et al., p. 64, part, pl. 1, fig. 3.

- 814 ? 1999 *Woodringina claytonensis* Loeblich and Tappan; Olsson et al., p. 242, pl. 68, fig.
 815 1.
- 816
- 817 Type-specimens. Holotype MPZ 2016/116 (Figure 14(a)). Paratype MPZ 2016/117
- 818 (Figure 14(b)). MPZ 2016/118 (Figure 14(c)). Paratype MPZ 2016/119 (Figure 14(d)).
- 819 Type-specimens deposited in the Museo de Ciencias Naturales de la Universidad de
- 820 Zaragoza (Aragon Government, Spain).
- 821 Diagnosis. Test subconical to flaring, with 7–10 subspherical chambers and a medium-
- to-high rate of chamber enlargement. Triserial juvenile stage with 5–6 chambers
- 823 distributed in 1.5–2 spiral whorls, and biserial final stage with 1–2 pairs of chambers in
- a twisted plane of biseriality. Outline subtriangular, lobate, with incised sutures.
- 825 Aperture interiomarginal, lateral, rounded or elongate, generally asymmetrical, with an
- 826 imperforate lip. Wall surface microperforate, pustulate to rugose, with isolated,
- 827 decentered pore-mounds, perforate and/or imperforate rugosities, and blunt pustules
- 828 (papilla-type). Adult size range 120–160 µm in height.
- 829 Derivation of name. Latin term *biseriata* referring to the *biserial* final stage of its
- 830 ontogeny.
- 831 **Type locality**. El Kef section, El Haria Formation, Tunisia.
- 832 **Type level**. 8.50 m above the Cretaceous/Paleogene boundary of the El Kef section
- 833 (sample KF20.50), in the lower part of Zone P1a, or middle part of the *Eoglobigerina*
- 834 trivialis Subzone (Parasubbotina pseudobulloides Zone), lower Danian.
- 835 **Occurrence**. Lowermost Danian, from the lower part of Zone Pα to the upper part of
- 836 Zone P1a of Berggren and Pearson (2005), i.e. from the lower part of the
- 837 Parvularugoglobigerina longiapertura Subzone (Guembelitria cretacea Zone) to the
- 838 upper part of the Subbotina trivialis Subzone (Parasubbotina pseudobulloides Zone) of

839	Arenillas et al. (2004). It is not abundant, and is easily confused with Woodringina
840	claytonensis (Figure 1).
841	Remarks. It differs from other Chiloguembelitria species in its final biserial stage. The
842	species Chg. biseriata sp. nov. has previously gone unnoticed because it is
843	morphologically very similar to Woodringina claytonensis. However, W. claytonensis
844	differs in its wall surface (pustulate or muricate rather than rugose, and without pore-

845 mounds) and its reduced triserial initial stage (single whorl of three-chambered stage,

846 usually pseudotriserial rather than triserial). Olsson et al. (1999) included these

847 morphotypes within the phenotypic variability of *W. claytonensis*, adducing that some

specimens of *Woodringina* bear scattered pore-mounds. However, typical *W*.

849 claytonensis has a pustulate wall like other species of Woodringina and

850 *Chiloguembelina*, consisting of small imperforate blunt pustules (papilla-type). Many

851 pustules in the wall of Woodringina may have the same ontogenetic origin as the pore-

852 mounds in *Guembelitria*, although others perhaps may not.

853

854 Acknowledgements

855 This work was supported by the Spanish Ministerio de Economía y Competividad

856 [grant number CGL2015-64422-P], cofinanced by the European Regional Development

Fund; by the Universidad de Zaragoza [grant number UZ2015-CIE-02]; and by the

858 Departamento de Educación y Ciencia of the Aragonian Government [grant number

B59 DGA group E05], cofinanced by the European Social Fund (ESF). The authors would

860 like to acknowledge the use of the Servicio General de Apoyo a la Investigación-SAI,

861 Universidad de Zaragoza. The authors are grateful to Rupert Glasgow for improvement

of the English text.

863

864 **References**

- 865 Arenillas I, Arz JA. 2000. Parvularugoglobigerina eugubina type-sample at Ceselli
- 866 (Italy): planktic foraminiferal assemblage and lowermost Danian biostratigraphic

867 implications. Riv. Ital. Paleontol. S. 106(3):379–390.

- 868 Arenillas I, Arz JA. 2013a. Origin and evolution of the planktic foraminiferal Family
- 869 Eoglobigerinidae Blow (1979) in the early Danian (Paleocene). Rev. Mex. Cienc.

870 Geol. 30(1):159–177.

- 871 Arenillas I, Arz JA. 2013b. New evidence on the origin of nonspinose pitted-cancellate
- species of the early Danian planktonic foraminifera. Geol. Carpath. 64(3):237–251.
- 873 Arenillas I, Arz JA. 2016. Benthic origin and earliest evolution of the first planktonic
- 874 for a for a fter the Cretaceous/Paleogene boundary mass extinction. Hist. Biol. 1–
- 875 18, doi: 10.1080/08912963.2015.1119133.
- 876 Arenillas I, Arz JA, Molina E, Dupuis C. 2000a. An independent test of planktic
- 877 for aminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef,
- 878 Tunisia: Catastrophic mass extinction and possible survivorship. Micropaleontology
- 879 46(1):31–49.
- 880 Arenillas I, Arz JA, Molina E, Dupuis C. 2000b. The Cretaceous/Paleogene (K/P)
- 881 boundary at Aïn Settara, Tunisia: sudden catastrophic mass extinction in planktic
- foraminifera. J. Foramin. Res. 30(3):202–218.
- 883 Arenillas I, Arz JA, Molina E. 2002. Quantifying the evolutionary turnover across the
- 884 K/T boundary catastrophic planktic foraminiferal extinction event at El Kef, Tunisia.
- 885 GFF 124:121–126.
- Arenillas I, Arz JA, Molina E. 2004. A new high-resolution planktic foraminiferal
- zonation and subzonation for the lower Danian. Lethaia 37:79–95.

- 888 Arenillas I, Arz JA, Grajales-Nishimura JM, Murillo-Muñetón G, Alvarez W, Camargo-
- 889 Zanoguera A, Molina E, Rosales-Domínguez C. 2006. Chicxulub impact event is
- 890 Cretaceous/Paleogene boundary in age: new micropaleontological evidence. Earth
- 891 Planet. Sc. Lett. 249(3–4):241–257.
- 892 Arenillas I, Arz JA, Náñez C. 2007. Morfología, Biometría y Taxonomía de
- 893 foraminíferos planctónicos del Daniense basal: *Palaeoglobigerina* n. gen.
- 894 [Morphology, biometry and taxonomy of the lowermost Danian planktonic
- foraminifera: *Palaeoglobigerina* n. gen.]. Rev. Esp. Paleontol. 22(1):21–62. Spanish.
- 896 Arenillas I, Arz JA, Náñez C. 2010. Diversidad y evolución de la textura de la pared en
- 897 guembelítridos (foraminíferos planctónicos) en el tránsito Cretácico-Paleógeno
- 898 [Textural diversity and evolution of guembelitriids (planktic foraminifera) across the
- 899 Cretaceous-Paleogene transition]. Rev. Esp. Paleontol. 25(2):87–105. Spanish.
- 900 Arenillas I, Arz JA, Náñez C. 2012. Smooth and rugose wall textures in earliest Danian
- 901 trochospiral planktic foraminifera from Tunisia. N. Jb. Geol. Paläont. Abh.
- 902 266(2):123–142.
- 903 Arenillas I, Arz JA, Grajales-Nishimura JM, Rojas-Consuegra R. 2016a. The Chicxulub
- 904 impact is synchronous with the planktonic foraminifera mass extinction at the
- 905 Cretaceous/Paleogene boundary: new evidence from the Moncada section, Cuba.
- 906 Geologica Acta 14(1):35–51.
- 907 Arenillas I, Arz JA, Náñez C. 2016b. New species of genus Trochoguembelitria from
- 908 the lowermost Danian of Tunisia biostratigraphic and evolutionary implications in
- 909 planktonic foraminifera. Palaeontographica Abteilung A 305(4-6):133–160.
- 910 Arz JA, Arenillas I, Náñez C. 2010. Morphostatistical analysis of Maastrichtian
- 911 populations of *Guembelitria* from El Kef, Tunisia. J. Foramin. Res. 40(2):148–164.

- 912 Ashckenazi-Polivoda S, Rak C, Almogi-Labin A, Zsolt B, Ovadia O, Abramovich S.
- 913 2014. Paleoecology of the K-Pg mass extinction survivor Guembelitria (Cushman):
- 914 isotopic evidence from pristine foraminifera from Brazos River, Texas
- 915 (Maastrichtian). Paleobiology 40(1):24–33.
- 916 Berggren WA, Pearson PN. 2005. A revised tropical to subtropical Paleogene
- 917 planktonic foraminiferal zonation. J. Foramin. Res. 35(4):279–298.
- 918 Blow WH. 1979. The Cainozoic Globigerinidae. A study of the morphology, taxonomy,
- 919 evolutionary relationship and the stratigraphical distribution of some Globigerinidae
- 920 (mainly Globigerinacea). Ed. EJ. Brill, Leiden, Netherlands, Vol. 1: xv+752 pp.; Vol.
- 921 2: 1413 pp.; Vol. 3: xxi, 264 pls.
- 922 BouDagher-Fadel MK. 2012. Biostratigraphic and geological significance of planktonic
- 923 foraminifera (1st edition). Dev. Palaeontol. Stratigr. 22:1–289.
- 924 BouDagher-Fadel MK. 2015. Biostratigraphic and geological significance of planktonic

925 foraminifera (3rd edition). UCLPress, London, 298 pp, 12 charts.

- 926 Brinkhuis H, Zachariasse WJ. 1988. Dinoflagellate cysts, sea level changes and
- 927 planktonic foraminifers across the Cretaceous-Tertiary boundary at El Haria,
- 928 Northwest Tunisia. Mar. Micropaleontol. 13(2):153–191.
- 929 Canudo JI, Keller G, Molina E. 1991. Cretaceous/Tertiary boundary extinction pattern
- 930 and faunal turnover at Agost and Caravaca, SE Spain. Mar. Micropaleontol. 17(3–
- 931 4):319–341.
- 932 Chenet AL, Auidelleur X, Fluteau F, Courtillot VY, Bajpai S. 2007. ⁴⁰K-⁴⁰Ar dating of
- 933 the main Deccan large igneous province: Further evidence of KTB age and short
- duration. Earth Planet. Sc. Lett. 263:1-15.
- 935 D'Hondt SL. 1991. Phylogenetic and stratigraphic analysis of earliest Paleocene biserial
- and triserial planktonic foraminifera. J. Foramin. Res. 21(2):168–181.

- 937 Georgescu MD. 2009. On the origins of superfamily Heterohelicacea Cushman, 1927
- and the polyphyletic nature of planktic foraminifera. Rev. Esp. Micropal. 41(1–2):1–
 38.
- 940 Georgescu MD, Arz JA, Macauley RV, Kukulski RB, Arenillas I, Pérez-Rodríguez I.
- 941 2011. Late Cretaceous (late Santonian-Maastrichtian) serial planktic and benthic
- 942 for a mounds or pore mound-based ornamentation structures. Rev.
- 943 Esp. Micropal. 43(1–2):109–139.
- 944 Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software
- Package for Education and Data Analysis. Palaeontol. Electron. 4(1):9 p.
- 946 Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB,
- 947 Boynton WV. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary
- 948 impact crater on the Yucatan Peninsula, Mexico. Geology 19:867-871.
- Hofker J. 1978. Analysis of a large succession of samples through the Upper
- 950 Maastrichtian and the Lower Tertiary of Drill Hole 47.2, Shatsky Rise, Pacific, Deep
- 951 Sea Drilling Projet. J. Foramin. Res. 8:46-75.
- Huber BT, Olsson RK, Pearson PN. 2006. Taxonomy, biostratigraphy, and phylogeny
- 953 of Eocene microperforate Planktonic foraminifera (*Jenkinsina*, *Cassigerinelloita*,
- 954 *Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and Cassigerinella) and*
- 955 Problematica (*Dipsidripella*). In: Pearson PN, Olsson RK, Huber BT, Hemleben C.,
- 956 Berggren WA. (eds.) Atlas of Eocene Planktonic Foraminifera, Cushman Foundation
- 957 Special Publication, 41:461–508, Virginia, U.S.A.
- 958 Jenkins DG, Whittaker JE, Curry D. 1998. Palaeogene triserial planktonic foraminifera:
- 959 J. Micropalaeontol. 17:61–70.
- 960 Koutsoukos EA. 2014. Phenotypic plasticity, speciations, and phylogeny in Early
- 961 Danian planktic foraminifera. J. Foramin. Res. 44(2):109–142.

- 962 Kroon D, Nederbragt AJ. 1990. Ecology and paleoecology of triserial planktic
- 963 foraminifera. Mar. Micropaleontol. 16(1–2):25–38.
- Li Q. 1987. Origin, phylogenetic development and systematic taxonomy of the
- 965 *Tenuitella* plexus (Globigerinitidae, Globigerinina). J. Foramin. Res. 17:295–320.
- 966 Li Q, Radford SS. 1991. Evolution and biogeography of Paleogene microperforate
- 967 planktonic foraminifera. Palaeogeogr. Palaeoclimtol. Palaeoecol. 83(1–3):87–115.
- Li Q, Sally S, Radford SS, Banner FT. 1992. Distribution of microperforate Tenuitellid
- 969 planktonic foraminifers in Holes 747a and 749b, Kerguelen Plateau. Proc. Ocean
- 970 Drill. Program Sci. Res. 120:569–594.
- 971 Li Q, McGowran B, Boersma A. 1995. Early Paleocene Parvularugoglobigerina and
- 972 late Eocene *Praetenuitella*: does evolutionary convergence imply similar habitat? J.
- 973 Micropaleontol. 14(2):119–134.
- 974 Liu C, Olsson RK. 1992. Evolutionary radiation of microperforate planktonic
- 975 foraminifera following the K/T mass extinction event. J. Foramin. Res. 22(4):328–
- 976 346.
- 977 Loeblich AR Jr, Tappan H. 1956. Chiloguembelina, a new Tertiary genus of
- 978 Heterohelicidae (Foraminifera). J. Wash. Acad. Sci. 46:39–40.
- 979 Loeblich AR Jr, Tappan H. 1957. Planktonic foraminifera of Paleocene and early
- Eocene age from the Gulf and Atlantic coastal plains. B. U. S. Nat. Mus., 215:173–
- 981 198.
- 982 Loeblich AR Jr, Tappan H. 1987. Foraminiferal general and their clasification. Van
- 983 Nostrand Reinhold Company, New York, 2 Vol., 970 pp., 847 pls.
- 984 Longoria JF. 1974. Stratigraphic, morphologic and taxonomic studies of Aptian planktic
- 985 foraminifera. Rev. Esp. Micropaleontol. Extr. Number:11-107.

- 986 Luterbacher HP, Premoli Silva I. 1964. Biostratigraphia del limite Cretaceous-Terciario
- 987 nell Apennino Centrale [Biostratigraphy of the Cretaceous-Tertiary boundary in
- 988 Central Apennines]. Riv. Ital. Paleontol. S. 70:67–128. Italian.
- 989 MacLeod N. 1993. The Maastrichtian-Danian radiation of triserial and biserial planktic
- 990 foraminifera: Testing phylogenetic and adaptational hypotheses in the (micro) fossil
- 991 record. Mar. Micropaleontol. 21:47–100.
- 992 Molina E, Arenillas I, Arz JA. 1998. Mass extinction in planktic foraminifera at the
- 993 Cretaceous/Tertiary boundary in subtropical and temperate latitudes. B. Soc. Geol.
- 994 Fr. 169(3):351-363.
- 995 Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Hardenbol J, von Salis K,
- 996 Steurbaut E, Vandenberghe N, Zaghbib-Turki D. 2006. The Global Stratotype
- 997 Section and Point of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic)
- 998 at El Kef, Tunisia: original definition and revision. Episodes 29(4):263–278.
- 999 Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Grajales-Nishimura M, Murillo-
- 1000 Muñetón G, Zaghbib-Turki D. 2009. The Global Boundary Stratotype Section and
- 1001 Point for the base of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic):
- auxiliary sections and correlation. Episodes 32(2):84–95.
- 1003 Nederbragt AJ. 1991. Late Cretaceous biostratigraphy and development of
- 1004 Heterohelicidae (planktic foraminifera). Micropaleontology 37:329–372.
- 1005 Olsson RK. 1970. Planktonic foraminifera from base of Tertiary, Millers Ferry,
- 1006 Alabama. J. Paleontol. 44:598–604.
- 1007 Olsson RK, Hemleben C, Berggren WA, Huber BT. 1999. Atlas of Paleocene
- 1008 Planktonic Foraminifera. Smithsonian Contrib. Paleobiol. 85:1–252.
- 1009 Pandey J. 1981. Cretaceous foraminifera of Um Sohryngkew River section, Meghalaya:
- 1010 J. Paleontol. Soc. India 25:53–74.

- 1011 Pardo A, Keller G. 2008. Biotic effects of environmental catastrophes at the end of the
- 1012 Cretaceous and Early Tertiary: *Guembelitria* and *Heterohelix* blooms. Cretaceous
- 1013 Res. 29:1058–1073.
- 1014 Punekar J, Mateo P, Keller G. 2014. Effects of Deccan volcanism on paleoenvironment
- 1015 and planktic foraminifera: A global survey. GSA Special Paper 505, doi:
- 1016 10.1130/214.2505(04).
- 1017 Salaj J. 1986. The new *Postrugoglobigerina praedaubjergensis* Zone at the base of the
- 1018 stratotype of the marine Paleocene (El Kef, Tunisia). Geol. Zbornik, Geol. Carpath.
- 1019 Bratislava 37:35–58.
- 1020 Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SFR,
- 1021 Gerch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-

1022 Cretaceous mass extinction. Science 347(6218):182-184.

- 1023 Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson
- 1024 GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-
- 1025 Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C,
- 1026 Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR,
- 1027 Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra, M, Reimold WU, Robin E,
- 1028 Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT,
- 1029 Willumsen PS. 2010. The Chicxulub asteroid impact and mass extinction at the
- 1030 Cretaceous-Paleogene boundary. Science 327(5970):1214-1218.
- 1031 Smit J. 1982. Extinction and evolution of planktonic foraminifera after a major impact
- 1032 at the Cretaceous/Tertiary boundary. GSA Special Paper 190:329–352.
- 1033 Smit J. 1990. Meteorite impact, extinctions and the Cretaceous-Tertiary Boundary.
- 1034 Geol. Mijnbouw 69:187–204.

- 1035 Tyszka J. 2006. Morphospace of foraminiferal shells: results from the moving reference
- 1036 model. Lethaia 39:1–12.

1038	
1039	Figure captions
1040	Figure 1. Stratigraphic ranges at El Kef, Tunisia, of analyzed early Danian species of
1041	Guembelitria, Chiloguembelitria, Woodringina, Chiloguembelina, Trochoguembelitria
1042	and Globoconusa, as well as of index-species of the planktonic foraminiferal zonation
1043	of Arenillas et al. (2004); (1) planktonic foraminiferal zonation and calibrated numerical
1044	ages of the biozonal boundaries proposed by Arenillas et al. (2004), and (2) planktonic
1045	foraminiferal zonation after Berggren and Pearson (2005); dotted lines indicate
1046	uncertain range, based probably on reworked specimens or not supported by SEM-
1047	photographed specimens; shaded intervals indicate first and second early Danian
1048	evolutionary radiations at the El Kef section.
1049	
1050	Figure 2. Holotypes and specimens of <i>Guembelitria</i> spp. (scale bar = 100 microns; scale
1051	bar of detail SEM-micrographs = 10 microns). (a) Guembelitria cretacea Cushman,
1052	holotype, Upper Cretaceous, Guadalupe County, Texas, U.S.A. (SEM-micrograph from
1053	Olsson et al. 1999). (b) <i>Guembelitria cretacea</i> Cushman, sample KF13.50 (1.5 m above
1054	K/Pg boundary), Pv. longiapertura Subzone (G. cretacea Zone), El Kef, Tunisia. (c)
1055	Guembelitria cretacea Cushman, sample KF11 (1 m below K/Pg boundary), P.
1056	hantkeninoides Subzone (A. mayaroensis Zone), El Kef, Tunisia. (d) Guembelitria
1057	cretacea Cushman, sample KF 12.05 (5 cm above K/Pg boundary), H. holmdelensis
1058	Subzone (G. cretacea Zone), El Kef, Tunisia. (e) Guembelitria blowi Arz, Arenillas and
1059	Náñez, holotype, sample KF4.50 (7.5 m below K/Pg boundary), P. hantkeninoides
1060	Subzone (A. mayaroensis Zone), El Kef, Tunisia. (f) Guembelitria blowi Arz, Arenillas
1061	and Náñez, hypotype, sample JA680 (19 cm below K/Pg boundary), A. mayaroensis
1062	Zone, Bajada del Jagüel, Argentina. (g) Guembelitria blowi Arz, Arenillas and Náñez,
1063	hypotype, sample KF11 (1 m below K/Pg boundary), P. hantkeninoides Subzone (A.

- 1064 mayaroensis Zone), El Kef, Tunisia. (h) Guembelitria dammula Voloshina, holotype,
- 1065 Maastrichtian, Volin-Podolsk Plateu, western Russia. (i) Guembelitria dammula
- 1066 Voloshina, sample KF11 (1 m below K/Pg boundary), P. hantkeninoides Subzone (A.
- 1067 mayaroensis Zone), El Kef, Tunisia. (j) Guembelitria dammula Voloshina, sample
- 1068 KF13.00 (1 m above K/Pg boundary), Pv. longiapertura Subzone (G. cretacea Zone),
- 1069 El Kef, Tunisia. (k). Guembelitria dammula Voloshina, sample KF13.25 (1.25 m above
- 1070 K/Pg boundary), Pv. longiapertura Subzone (G. cretacea Zone), El Kef, Tunisia.
- 1071
- 1072 Figure 3. Holotypes and specimens of *Woodringina* spp. and *Chiloguembelina* spp.
- 1073 (scale bar = 100 microns; scale bar of detail SEM-micrographs = 10 microns). (a)
- 1074 Woodringina claytonensis Loeblich and Tappan, holotype, lower Danian, Clayton Fm.,
- 1075 Alabama, U.S.A. (SEM-micrograph from Olsson et al. 1999). (b) Woodringina
- 1076 hornerstownensis Olsson, holotype, upper Danian, Hornerstown Fm., New Jersey,
- 1077 U.S.A. (SEM-micrograph from Olsson et al. 1999). (c) Woodringina hornerstownensis
- 1078 Olsson, sample AEA 6.90 (5.9 m above K/Pg boundary), S. triloculinoides Subzone (P.
- 1079 pseudobulloides Zone), Elles, Tunisia. (d) Woodringina hornerstownensis Olsson,
- 1080 sample KF 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P.
- 1081 pseudobulloides Zone), El Kef, Tunisia. (e) Woodringina hornerstownensis Olsson,
- sample KF 19.50 (7.5 m above K/Pg boundary), E. trivialis Subzone (P.
- 1083 pseudobulloides Zone), El Kef, Tunisia. (f) Woodringina hornerstownensis Olsson,
- sample KF 19.50 (7.5 m above K/Pg boundary), E. trivialis Subzone (P.
- 1085 pseudobulloides Zone), El Kef, Tunisia. (g) Chiloguembelina taurica Morozova,
- 1086 holotype, lower Danian, Tarkhankhut Peninsula, eastern Crimea. (h) Chiloguembelina
- 1087 taurica Morozova, sample KF 21.95 (9.95 m above K/Pg boundary), lower part of the
- 1088 E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (i) Chiloguembelina

- 1089 taurica Morozova, sample 14cc, P. pseudobulloides Zone, Site 305 Shatsky Rise, North
- 1090 Pacific. (j) Gümbelina midwayensis Cushman, holotype, Eocene, Midway Fm.,
- 1091 Alabama, U.S.A. (SEM-micrograph from Olsson et al. 1999). (k) Chiloguembelina
- 1092 midwayensis (Cushman), sample KF 19.50 (7.5 m above K/Pg boundary), E. trivialis
- 1093 Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (l) Gümbelina morsei Kline,
- 1094 holotype, Danian, Porters Creek Clay (Midway series), Alabama, U.S.A. (SEM-
- 1095 micrograph from Olsson et al. 1999).
- 1096
- 1097 Figure 4. Holotypes and specimens of *Trochoguembelitria* spp. and *Globoconusa* spp.
- 1098 (scale bar = 100 microns; scale bar of detail SEM-micrographs = 10 microns). (a)
- 1099 Trochoguembelitria alabamensis, holotype, Millers Ferry, Alabama, U.S.A. (SEM-
- 1100 micrograph from Liu and Olsson, 1992). (b) *Trochoguembelitria alabamensis*, sample
- 1101 KF24.80 (12.8 m above the K/Pg boundary), S. triloculinoides Subzone (P.
- 1102 pseudobulloides Zone), El Kef, Tunisia. (c) Trochoguembelitria alabamensis, sample
- 1103 KF20.50 (8.5 m above the K/Pg boundary), middle part of the *E. trivialis* Subzone (*P.*
- 1104 *pseudobulloides* Zone), El Kef, Tunisia. (d) *Trochoguembelitria extensa*, holotype,
- 1105 Zone P1, DSDP Leg 6, South Pacific (SEM-micrographs from Blow 1979). (e)
- 1106 Trochoguembelitria extensa, sample KF18.50 (6.5 m above the K/Pg boundary), upper
- 1107 part of the *E. simplicissima* Subzone (*Pv. eugubina* Zone), El Kef, Tunisia. (f)
- 1108 Trochoguembelitria liuae, holotype, sample KF20.50 (8.5 m above the K/Pg boundary),
- 1109 middle part of the *E. trivialis* Subzone (*P. pseudobulloides* Zone), El Kef, Tunisia. (g)
- 1110 Trochoguembelitria olssoni, holotype, sample KF20.50 (8.5 m above the K/Pg
- 1111 boundary), middle part of the E. trivialis Subzone (P. pseudobulloides Zone), El Kef,
- 1112 Tunisia. (h) Globoconusa daubjergensis (Brönnimann), sample BG1000-4.25, S.
- 1113 triloculinoides Subzone (P. pseudobulloides Zone), Ben Gurion, Israel. (i) Globoconusa

- 1114 *daubjergensis*, sample BJ56+110, middle part of the *E. trivialis* Subzone (*P.*
- 1115 pseudobulloides Zone), Bajada del Jagüel, Argentina. (j) Globoconusa conusa Khalilov,
- 1116 sample BG1000-4.25, S. triloculinoides Subzone (P. pseudobulloides Zone), Ben
- 1117 Gurion, Israel. (k) Globoconusa victori Koutsoukos, sample BJ56+110, middle part of
- 1118 the E. trivialis Subzone (P. pseudobulloides Zone), Bajada del Jagüel, Argentina.
- 1119
- 1120 Figure 5. Wall textural details of *Guembelitria*, *Chiloguembelitria*, *Trochoguembelitria*,
- 1121 *Globoconusa, Woodringina* and *Chiloguembelina* (scale bars = $10 \mu m$). (a)
- 1122 Guembelitria cretacea Cushman, sample KF13.5 (1.5 m above K/Pg boundary), Pv.
- 1123 longiapertura Subzone (G. cretacea Zone), El Kef, Tunisia. (b) Guembelitria dammula
- 1124 Voloshina, sample KF13.00 (1 m above K/Pg boundary), Pv. longiapertura Subzone
- 1125 (G. cretacea Zone), El Kef, Tunisia. (c) Chiloguembelitria hofkeri sp. nov., sample KF
- 1126 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El
- 1127 Kef, Tunisia. (d) Trochoguembelitria alabamensis, sample KF20.50 (8.5 m above the
- 1128 K/Pg boundary), middle part of the *E. trivialis* Subzone (*P. pseudobulloides* Zone), El
- 1129 Kef, Tunisia. (e) Woodringina hornerstownensis Olsson, sample KF 19.50 (7.5 m above
- 1130 K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (f)
- 1131 Chiloguembelina taurica Morozova, sample 14cc, P. pseudobulloides Zone, Site 305
- 1132 Shatsky Rise, North Pacific. (g) Chiloguembelitria danica Hofker, Paratype MPZ
- 1133 2016/109, sample KF 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P.
- 1134 *pseudobulloides* Zone), El Kef, Tunisia. (h) *Globoconusa daubjergensis*, sample
- 1135 BJ56+110, middle part of the *E. trivialis* Subzone (*P. pseudobulloides* Zone), Bajada
- 1136 del Jagüel, Argentina.
- 1137

- 1138 Figure 6. (a) Types of chamber arrangement. (b) Types of aperture position. (c–d)
- 1139 Biometric parameters, abbreviations and descriptive terms used for the morphological
- 1140 analysis of the *Chiloguembelitria* tests.
- 1141
- 1142 Figure 7. Univariate analyses based on biometric variables α and H/L to delimit the
- 1143 Chiloguembelitria species, displayed as histograms of 20 bins; thick dotted lines are the
- 1144 Kernel density estimations; fine dot lines are univariate normal distributions (Gaussian
- 1145 beel-shaped curves) based on mixture analysis.
- 1146
- 1147 Figure 8. Bivariate analyses based on Kernel density estimations from paired variables
- 1148 α vs. H/L, and plotted in smooth map of point density; colour scale with deep red for
- 1149 highest density and dark blue for lowest.
- 1150
- 1151 Figure 9. R-mode cluster analysis based on Bray-Curtis index and applied to the values
- 1152 of the biometric variables measured in all SEM-photographed *Chiloguembelitria*
- 1153 specimens. (a) Cluster for biometric variables α and H/L; (b) Cluster for biometric
- 1154 variables α , H/L and CAD/H. D_{ik} = Bray-Curtis index value between specimen j and
- 1155 specimen k; x_{ij} = value of the variable i (biometric index/parameter i) of the specimen j;
- 1156 x_{ik} = value of the variable i (biometric index/parameter i) of the specimen k.
- 1157
- 1158 Figure 10. Principal components analysis (PCA), applied to the values of biometric
- 1159 variables (α , H/L and CAD/H) in all *Chiloguembelitria* specimens.
- 1160
- 1161 Figure 11. Proposed phylogenetic relationships of *Guembelitria, Chiloguembelitria*,
- 1162 Trochoguembelitria, Globoconusa, Woodringina and Chiloguembelina based on

- 1163 evidence reported here and previous phylogenetic studies (see Arenillas et al. 2012,
- 1164 2016b); thick dotted lines indicate doubtful range, based probably on reworked
- specimens. (1) Arenillas et al. (2004); (2) Berggren and Pearson (2005).
- 1166
- 1167 Figure 12. Holotypes and specimens of *Chiloguembelitria danica* Hofker and
- 1168 *Chiloguembelitria irregularis* Morozova (scale bar = 100 microns; scale bar of detail
- 1169 SEM-micrographs = 10 microns). (a) *Chiloguembelitria danica* Hofker, invalid
- 1170 holotype (considered here as Chg. hofkeri sp. nov.), middle Danian, DSDP Leg 6
- 1171 Shatsky Rise, northern Pacific. (b) Chiloguembelitria danica Hofker (considered here as
- 1172 Chg. hofkeri sp. nov.), topotype of Loeblich and Tappan (1987), Danian, DSDP Site
- 1173 47.2, Shatsky Rise, northern Pacific. (c) Chiloguembelitria danica Hofker, neotype of
- 1174 Jenkins et al. (1998), Danian, DSDP Leg 6, Shatsky Rise, northern Pacific. (d)
- 1175 Chiloguembelitria danica Hofker, sample KF 20.50 (8.5 m above K/Pg boundary), E.
- 1176 trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (e) Chiloguembelitria
- 1177 danica Hofker, sample KF 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P.
- 1178 pseudobulloides Zone), El Kef, Tunisia. (f) Chiloguembelitria danica Hofker, sample
- 1179 KF 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides
- 1180 Zone), El Kef, Tunisia. (g) Chiloguembelitria danica Hofker, sample KF 20.50 (8.5 m
- 1181 above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia.
- (h) *Chiloguembelitria hofkeri* sp. nov., sample KF 20.50 (8.5 m above K/Pg boundary),
- 1183 E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (i) Guembelitria
- 1184 *irregularis* Morozova, Holotype, lower Danian, Tarkhankut, Crimea (SEM-micrographs
- 1185 from Olsson et al. 1999). (j) Chiloguembelitria irregularis (Morozova), sample KF
- 1186 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El
- 1187 Kef, Tunisia. (k) Chiloguembelitria irregularis (Morozova), sample STW+45+47 (46

- 1188 cm above K/Pg boundary), Pv. longiapertura Subzone (G. cretacea Zone), Aïn Settara,
- 1189 Tunisia. (1) Chiloguembelitria irregularis (Morozova), sample KF 20.50 (8.5 m above
- 1190 K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (m)
- 1191 Chiloguembelitria irregularis (Morozova), sample KF 19.50 (7.5 m above K/Pg
- 1192 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (n)
- 1193 Chiloguembelitria irregularis (Morozova), sample KF 19.50 (7.5 m above K/Pg
- 1194 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia.
- 1195
- 1196 Figure 13. Type-specimens of Chiloguembelitria hofkeri sp. nov. and Chiloguembelitria
- *trilobata* sp. nov (scale bar = 100 microns; scale bar of detail SEM-micrographs = 10
- 1198 microns). (a) Chiloguembelitria hofkeri sp. nov., Holotype MPZ 2016/108, sample KF
- 1199 19.50 (7.5 m above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El
- 1200 Kef, Tunisia. (b) Chiloguembelitria hofkeri sp. nov., Paratype MPZ 2016/109, sample
- 1201 KF 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides
- 1202 Zone), El Kef, Tunisia. (c) Chiloguembelitria hofkeri sp. nov., Paratype MPZ 2016/110,
- 1203 sample KF 20.50 (8.5 m above K/Pg boundary), E. trivialis Subzone (P.
- 1204 pseudobulloides Zone), El Kef, Tunisia. (d) Chiloguembelitria hofkeri sp. nov.,
- 1205 Paratype MPZ 2016/111, sample KF 19.50 (7.5 m above K/Pg boundary), E. trivialis
- 1206 Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (e) Chiloguembelitria trilobata sp.
- 1207 nov., Holotype MPZ 2016/112, sample KF 19.50 (7.5 m above K/Pg boundary), E.
- 1208 trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (f) Chiloguembelitria
- 1209 trilobata sp. nov., Paratype MPZ 2016/113, sample KF 19.50 (7.5 m above K/Pg
- 1210 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (g)
- 1211 Chiloguembelitria trilobata sp. nov., Paratype MPZ 2016/114, sample KF 21.25 (9.25
- 1212 m above K/Pg boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef,

- Tunisia. (h) *Chiloguembelitria trilobata* sp. nov., Paratype MPZ 2016/115, sample KF
 20.50 (8.5 m above K/Pg boundary), *E. trivialis* Subzone (*P. pseudobulloides* Zone), El
 Kef, Tunisia.
- 1216
- 1217 Figure 14. Type-specimens of *Chiloguembelitria biseriata* sp. nov. and comparison
- 1218 with specimens of *Woodringina claytonensis* Loeblich (scale bar = 100 microns; scale
- 1219 bar of detail SEM-micrographs = 10 microns). (a) *Chiloguembelitria biseriata* sp. nov.,
- 1220 Holotype MPZ 2016/116, sample KF 20.50 (8.5 m above K/Pg boundary), E. trivialis
- 1221 Subzone (*P. pseudobulloides* Zone), El Kef, Tunisia. (b) *Chiloguembelitria biseriata* sp.
- 1222 nov., Paratype MPZ 2016/117, sample KF 19.50 (7.5 m above K/Pg boundary), E.
- 1223 trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (c) Chiloguembelitria
- 1224 *biseriata* sp. nov., Paratype MPZ 2016/118, sample KF 19.50 (7.5 m above K/Pg
- 1225 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (d)
- 1226 Chiloguembelitria biseriata, Paratype MPZ 2016/119, sample KF 18.50 (6.5 m above
- 1227 K/Pg boundary), E. simplicissima Subzone (Pv. eugubina Zone), El Kef, Tunisia. (e)
- 1228 Woodringina claytonensis Loeblich and Tappan, sample KF 20.50 (8.5 m above K/Pg
- 1229 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (f)
- 1230 Woodringina claytonensis Loeblich and Tappan, sample KF 19.50 (7.5 m above K/Pg
- 1231 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (g)
- 1232 Woodringina claytonensis Loeblich and Tappan, sample KF 19.50 (7.5 m above K/Pg
- 1233 boundary), E. trivialis Subzone (P. pseudobulloides Zone), El Kef, Tunisia. (h)
- 1234 Woodringina claytonensis Loeblich and Tappan, sample KF24.00 (12 m above the K/Pg
- 1235 boundary), S. triloculinoides Subzone (P. pseudobulloides Zone), El Kef, Tunisia.
- 1236
- 1237
- 1238

1239 Table caption

- 1240
- 1241 Table 1. Biometric measurements (in microns) of Chiloguembelitria specimens, and
- 1242 biometric indices H/L and CAD/H. Arithmetic means in bold type. L, test length; W,
- 1243 test width; H, test height; CAD, chamber average diameter; α, test convexity angle
- 1244 measured in axial view.
- 1245
- 1246
- 1247
- 1248

Chiloguembelitria danica

Specimen	L	w	н	CAD	α	H/L	CAD/H
1	83.4	83.0	104.7	57.2	64.4	125.6	54.6
2	102.5	104.8	146.3	69.1	60.9	142.7	47.2
3	102.4	101.6	137.0	62.2	65.5	133.8	45.4
4	96.8	92.1	121.3	60.6	69.5	125.3	49.9
5	88.1	85.1	124.7	65.0	63.6	141.6	52.2
6	87.8	84.7	122.3	59.0	59.9	139.2	48.2
7	85.4	86.2	121.7	57.8	72.9	142.5	47.5
8	107.5	90.7	140.9	70.0	68.9	131.0	49.7
9	88.1	81.4	110.0	61.3	71.2	125.0	55.7
10	87.1	87.8	115.7	56.6	68.7	132.8	48.9
11	97.8	102.0	123.1	61.7	68.6	125.9	50.1
12	89.1	87.2	127.1	57.7	60.4	142.6	45.4
13	79.8	79.4	111.7	57.7	67.4	140.0	51.7
14	80.9	85.6	112.1	57.0	65.3	138.5	50.8
15	90.4	88.4	113.1	60.9	72.8	125.1	53.9
16	80.2	82.5	102.0	58.6	73.6	127.1	57.5
17	89.6	90.2	125.0	65.3	70.4	139.5	52.3
18	94.1	94.7	134.6	64.4	67.7	143.1	47.9
19	94.2	89.9	128.6	63.8	70.3	136.5	49.6
20	/0.4	/0.4	92.6	44.0	65.3	131.5	47.5
21	83.6	83.4	120.7	59.3	62.8	144.3	49.1
22	//.3	6/.1	103.7	53.0	69.3	134.2	51.1
23	//.1	69.5	97.6	50.8	68.6	126.6	52.0
24	92.9	89.9	130.4	68.3	65.0	140.4	52.4
25	/5.2	/6.1 05 5	104.0	45.6	60.4 70.2	138.3	43.8
26	88.9	85.5	126.2	61.8	70.2	142.0	49.0 49.0
2/	72.0	74.4	95.9	40.5	60.7	142.2	48.5
20	74.7 05 1	//.U	100.1	50.9	69.4	142.1	40.0
29	80 3 02'T	03.0 71 /	106.0	52.2	70.0	122 1	40.4
30	73 0	60.3	100.9	JJ.J	61 5	1/0 7	49.9
32	79.3	70 /	107.0	51 Q	61.9	136.7	19.J
33	103.5	106.7	151 3	63.0	69.6	145.8	41.6
34	92.0	92.2	133.1	51 9	65.5	144.7	30 0
35	80.2	83.4	110.2	51.2	62.3	137.4	46 5
36	90.0	96.8	126.4	61.6	67.1	140.4	48.7
37	103.3	97.3	128.2	62.6	67.7	124.1	48.9
38	84.0	85.1	119.7	56.3	64.8	142.5	47.1
39	108.8	104.1	139.6	70.0	67.8	128.4	50.1
40	99.6	95.9	138.1	64.0	64.2	138.7	46.3
41	90.7	89.5	121.9	56.1	67.1	134.4	46.0
42	89.1	86.1	116.0	50.9	69.5	130.1	43.9
43	93.9	88.9	127.4	66.2	64.6	135.7	52.0
44	104.8	104.8	136.7	64.0	64.7	130.4	46.8
45	88.7	91.6	126.5	64.2	70.4	142.6	50.7
46	84.0	80.2	105.3	52.5	63.6	125.5	49.9
47	94.1	93.5	117.3	51.0	65.9	124.7	43.5
48	75.7	58.2	108.8	51.0	68.7	143.7	46.9
49	83.0	77.8	112.6	56.0	62.6	135.6	49.7
50	77.8	88.1	112.6	54.1	62.5	144.7	48.1

51	92.2	91.0	130.8	61.3	63.8	141.9	46.8
52	97.4	96.4	132.2	58.0	63.9	135.6	43.9
53	84.7	88.9	122.3	49.4	69.6	144.3	40.4
54	107.7	102.8	154.1	78.7	65.9	143.1	51.1
55	89.6	93.1	127.2	67.9	69.8	142.0	53.4
56	104.0	107.0	134.9	69.0	66.7	129.7	51.1
57	102.5	92.1	134.0	63.9	67.9	130.7	47.7
58	99.0	82.5	132.8	63.0	66.3	134.2	47.5
59	82.0	83.9	114.8	57.0	68.3	140.1	49.7
60	101.6	102.0	139.2	69.1	64.8	137.0	49.6
61	87.9	85.8	122.5	52.2	65.1	139.5	42.6
62	91.4	88.2	124.7	63.5	67.4	136.5	50.9
63	104.5	102.7	139.8	63.4	66.2	133.8	45.4
64	91.8	93.0	130.3	67.1	64.3	141.9	51.5
65	88.9	88.2	118.0	57.9	66.4	132.8	49.1
66	88.5	89.1	121.1	59.1	66.1	136.9	48.7
67	92.5	88.2	127.1	59.6	67.6	137.3	46.9
Average	89.6	87.9	122.1	59.2	66.5	136.3	48.6

Chiloguembelitria trilobata sp. nov.

Specimen	L	w	н	CAD	α	H/L	CAD/H
1	87.0	84.9	96.6	60.4	82.1	111.0	62.5
2	85.8	83.1	94.2	57.7	83.1	109.7	61.2
3	93.2	98.0	110.6	63.9	90.7	118.8	57.8
4	84.9	83.9	96.8	58.8	96.0	114.1	60.7
5	81.1	79.2	95.2	63.4	90.1	117.3	66.6
6	93.7	93.2	101.4	63.1	98.8	108.3	62.2
7	91.4	87.3	98.3	65.8	97.3	107.6	66.9
8	85.8	77.7	97.1	62.3	85.2	113.3	64.1
9	83.0	84.0	98.9	58.2	87.0	119.2	58.9
10	98.7	94.5	103.9	61.1	85.5	105.3	58.8
11	101.8	95.8	115.3	71.4	103.2	113.3	61.9
12	81.5	83.7	90.1	59.6	88.1	110.5	66.2
13	87.0	79.2	87.1	66.5	89.2	100.1	76.3
14	89.2	85.4	101.5	69.4	90.0	113.8	68.4
15	89.6	94.4	106.5	67.3	85.5	118.9	63.2
16	87.9	79.5	93.6	62.7	99.7	106.4	67.0
17	95.3	84.7	106.3	62.8	87.7	111.5	59.1
18	86.1	77.2	93.1	61.6	85.6	108.0	66.2
19	95.4	86.7	105.4	67.2	93.6	110.6	63.8
20	86.8	77.6	100.5	66.1	94.4	115.7	65.8
21	88.7	84.5	100.7	69.6	91.1	113.5	69.1
22	87.5	84.7	96.1	59.2	91.7	109.7	61.7
23	87.5	79.2	99.1	63.7	92.4	113.3	64.2
24	83.2	84.5	91.8	61.2	94.0	110.4	66.7
25	95.5	91.0	106.3	62.8	90.0	111.3	59.1
Average	89.1	85.4	99.5	63.4	90.9	111.7	63.9

Specimen	L	w	н	CAD	α	H/L	CAD/H			
1	92.7	91.6	140.4	64.3	53.2	151.4	45.8			
2	86.1	92.9	141.9	59.7	45.6	164.8	42.1			
3	89.9	99.6	141.5	65.7	48.0	157.4	46.4			
4	90.5	92.6	148.6	58.9	44.3	164.2	39.7			
5	106.0	105.6	170.0	70.9	48.0	160.4	41.7			
6	78.4	77.4	119.7	59.5	49.4	152.7	49.7			
7	80.9	75.2	126.9	53.1	50.8	156.9	41.8			
8	94.0	94.1	159.9	61.7	45.5	170.0	38.6			
9	82.5	77.8	128.4	53.1	48.3	155.8	41.4			
10	95.3	98.3	149.8	59.0	47.4	157.2	39.4			
11	84.0	82.6	126.8	56.4	56.7	150.9	44.5			
12	98.9	97.0	154.7	61.1	51.4	156.5	39.5			
13	76.4	78.1	115.6	48.3	55.8	151.3	41.8			
14	84.9	85.3	128.5	55.8	52.8	151.2	43.4			
15	82.3	85.8	125.3	53.1	53.9	152.3	42.4			
16	88.9	92.1	138.7	60.6	52.3	156.0	43.7			
17	80.9	81.9	125.9	54.6	54.1	155.8	43.3			
18	80.2	85.1	127.6	56.8	52.8	159.2	44.5			
19	81.3	81.6	123.3	54.2	53.9	151.7	44.0			
20	102.2	103.6	158.9	67.2	49.4	155.5	42.3			
21	110.7	114.1	179.1	69.1	50.4	161.7	38.6			
22	90.3	95.3	142.9	63.6	52.1	158.3	44.5			
23	107.2	110.0	167.7	66.0	50.3	156.4	39.4			
Average	89.8	91.2	141.0	59.7	50.7	156.9	42.5			

Chiloguembelitria hofkeri sp. nov.

										A	۱na	alyz	ed	ea	rly [Dar	nia	n s	bec	ies	;		Index-species						
Stage	Pl fora zo	anktor aminife onatior 1)	iic eral ns (2)	Thickness (m)	Lithology	Samples				retacea	Chg. danica Cha. hoficori	Chg. Holken Cha irregularis	cirg. in egularis ata	Chg. trilobata	W. claytonensis	W. hornertownensis	Ch. taurica	Ch. midwayensis	extensa			പ്പം. daubjergensis		F simolicissima	P. pseudobulloides	E. trivialis	S. triloculinoides	Evolutionary radiations	
	obulloides	- S. trilocu- ^{230 kh}	P1b	-						.0 .0			- Cha. biseri)				L 1		- T liuae	ssoni			anar					
AN	P. pseudo	E. trivialis	P1a	10— —			(F20.50														T. ol		apertura	- PV. eug					
DANI	v. eugubina [و E. simpli- الم	Ρα	5			<f18.50< td=""><td>. blowi</td><td>G. dammula</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pv. longi</td><td></td><td></td><td></td><td></td><td>2°</td></f18.50<>	. blowi	G. dammula														Pv. longi					2°	
	$[Gb. cre-]_{tacea} F$	sabina 0 kyr Pv. longia- pertura ~6 kyr Hdb. holm.	P0	-				9										I										1°	
MAASTRICHTIAN	A. mayaroensis	Pt. hantkeninoides		-5 —									-		:	sure dou	ran btfu	ige il rar	nge						C S M	lay ha Iarl	, le		

W. homertownensis Ch. midwayensis Gc. daubjergensis Stage Planktonic foraminiferal W. claytonensis Chg. trilobata Chg. hofkeri Chg. danica Ch. taurica zonations T. extensa T. alabamensis ---- G. cretacea Chg. irregularis (2) (1) Chg. biseriata T. liuae S. trilocu-linoides P. pseudobulloides P1b ł ۵ T. olssoni Ê ł I E. trivialis ł i Å P1a Ľ, ł DANIAN E. simpli-cissima E Pv. eugubina Ż Ţ George - G. dammula Pv. sabina Ê G. blowi Ρα Þ Ş Ø Pv. longia-pertura G. cretacea Ś Þ H. holm-delensis 6 i P0

HIGHLIGHTS

- The evolutionary radiation of earliest Danian guembelitriids was analysed.
- The genus Chiloguembelitria Hofker, 1978, is revalidated.
- Three new planktonic foraminifera species were identified.
- A new phylogenetic hypothesis is proposed based on the K/Pg boundary GSSP,

Tunisia.