afe Escuela de
Ingenieria y Arquitectura -f:
1542 Universidad Zaragoza

Instituto Universitario de lnvestigacidn
en Ingenieria de Aragdn

Universidad Zaragoza

=

Mo Departamento de

RpN Informatica e
jfi Ingenieria de Sistemas
=== Universidad Zaragoza

15&2

Programa Oficial de Posgrado en Ingenieria Informatica

Distributed Algorithms on Robotic Networks for
Coordination in Perception Tasks

Rosario Aragiiés Munoz

Director: Carlos Sagiiés Blazquiz

Instituto de Investigacion en Ingenieria de Aragoén
Departamento de Informética e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Enero 2012

Contents

(1.2 Classical Approaches|o 0oL
(1.3 Objectives| e e
(1.4 Document Organization|
[L5 Contributionsl

Visual Information Management|

[2.4 Depth Computation and Feature Initialization|
[2.4.1 Undelayed Inmitialization|
[2.4.2 Delayed with Two Observations|
[2.4.3 Delayed until Condition|

Izlsti :il“(iis’!] I&[ﬂlllg“lsl
[2.5.1 Inverse-Depth Undelayed|
[2.5.2 Inverse-Depth Delayed with I'wo Observations|
[2.5.3 Cartesian Delayed with Two Observations|

2.5.4 Cartesian/Inverse-Depth Delayed until Finite Depth[.

2.5.5 Cartesian/Inverse-Depth Delayed until Feature Not Aligned|

(3

[3.2 Problem Description| o 0L
[3.3 Distributed Averaging|o
[3.4 Consensus on the Global Map|
[3.0 Partially Distributed Approach|
[3.6 Fully Distributed Approach|
[3.7 Properties|

13
18
19
20

4 CONTENTS

4 Dynamic Map Merging| 55
4.1 Introductionlo 55
[4.2 Problem Description| oL 57

.2.1 Proportional Integral (PI) Averaging Algorithm| 59
[4.3 Consensus on Constant Scalar Inputs| 61
[4.4 Dynamic Averaging Strategy|o 67
[4.5 Dynamic Map Merging Algorithm|. 71
[4.6 Convergence for Fixed Networks|. 72
[4.7 Convergence Speed for Fixed Networks| 73
[4.8 Properties of the Partial Estimates| 73
[4.9 Discussionl 75
[4.10 Conclusionsl e 7

(5 Distributed Data Association| 79
.1 Introductionl 79
[5.2 Problem Description| oL 81

[5.2.1 Matching between two cameras|, 82
[5.2.2 Centralized matching between n cameras| 82
[5.2.3 Matching between n cameras with limited communications| 83

[>.3 Propagation of Local Associations and Detection of Inconsistencies| 84
[>.4 Improved Detection Algorithm|. 87
[>.4.1 Example of execution|.o 89

[>.5 Resolution Algorithm based on Trees| 90
[>.6 Feature Labelingl L 93
[5.7 Resolution Algorithm based on the |
[Maximum Error Cutl 96
[>.7.1 Example of execution|.o 102

[B.8 Discussionl 103
0.9 Conclusionsl e 107

6 Distl T Tization 109
6.1 Introductionl 109
[6.2 Problem Description| oL 111
6.3 Noise-free Pose Localization| 113
[6.4 Noisy Pose Localization| 116

[6.4.1 Centralized algorithm|. 116
[6.4.2 Distributed algorithm|. 119
[6.5 Centroid-based Noisy Position Localization|. 124
[6.5. Distributed estimation relative to an anchor 124
6.5.2 Centroid estimationl. 127
[6.5.3 Distributed centroid estimation algorithm| 129
[6.5.4 2P and M?P matrices defined by blocks| 131
6.6 Discussionl 132
6.7 Conclusionsl e 140

CONTENTS 5

[7 Strategies for Improved Multi Robot Perception| 141
(.1 Introductionl e 141
(7.2 Improving the Map Precision with Motion Control|. 144

[7.2.1 Vantage locations| 0. 144
[7.2.2 Expected maps for the vantage locations| 146
[7.2.3 Cost minimization approach| 148
[7.2.4 Strategy tor improved perception| 149
[7.3 Improving the Convergence Speed| 152
[7.3.1 Consensus protocol and event-based controll 154
[7.3.2 Distributed computation of the algebraic connectivity| 155
[7.3.3 Distributed adaptive triggered average consensus| 163
(.4 Discussionl e 163
(7.5 Conclusionsl e 168

[8 Real Experiments| 169

9__Conclusions| 193

[Bibliography| 197

[A Averaging Algorithms and Metropolis Weights| 211

IB_Dataset Visual Datal 213

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Abstract

The increasing interest in multi-robot applications is motivated by the wealth of possibil-
ities offered by teams of robots cooperatively performing collective tasks. The efficiency
and robustness of these teams goes well beyond what individual robots can do. In these
scenarios, distributed strategies attract a high attention, especially in applications which
are inherently distributed in space, time or functionality. These distributed schemas do
not only reduce the completion time of the task due to the parallel operation, but also
present a natural robustness to failures due to the redundancy. Our research is focused
on distributed applications for perception tasks. Perception is of high importance in
robotics, since almost all robotic applications require the robot team to interact with the
environment. Then, if a robot is not able to obtain an environmental representation from
others, or an a priori representation is not available, it must posses perception capabilities
to sense its surroundings. Perception has been long studied for single robot systems and
a lot of research has been carried out in the fields of localization, map building and ex-
ploration. Among the different sensors that can be used to perceive the environment, we
are interested in visual perception using conventional or omnidirectional cameras. Each
individual robot perceives the portion of the environment where it is operating. In order
to make decisions in a coordinated way, the robots must fuse their local observations into
a global map. We can distinguish between centralized and decentralized or distributed
approaches. In distributed systems, all robots play the same role, and therefore the com-
putations can be distributed among all the robots. In addition, distributed systems are
naturally more robust to individual failures. We are interested in map merging solutions
for robotic systems with range limited communication, and where the computations are
distributed among the robots.

This thesis has been focused in identifying the different issues that appear in dis-
tributed perception scenarios and proposing solutions to all these issues, with a special
interest in robots equipped with cameras. In particular, (i) Firstly, to investigate in the
visual perception for a single robot; (ii) To propose methods for fusing the visual informa-
tion acquired by the robots; (iii) To address the problem of establishing correspondences
between the elements observed by different robots; (iv) To analyze the network localiza-
tion problem from relative measurements; and (v) To propose control motion strategies
to improve the perception of the environment.

During this thesis we have made important contributions to the field of distributed
perception: We have proposed algorithms for merging maps acquired by a robot team
with limited communication in a distributed way. We have considered both the static and
dynamic cases. We have considered all the topics that appear in a map merging scenario

7

8 CONTENTS

and have made contributions in all of them. The data association has been discussed
for the first time in the context of distributed robot teams with limited communication.
The initial correspondence or localization problem consists of reaching a consensus on a
global reference frame. This global frame will be used by the robot team during their
operation. In addition, we have made contributions to the problem of coordination for
perception in two aspects. First, we have proposed a method so that the robots decide
their next motions so that the global map is improved (it is more accurate). Second,
we have proposed a method that allows the robot to compute an important parameter
related to the network topology, which characterizes the speed of the previous distributed
algorithm and thus establishes the rate at which the different algorithms converge to the
values of interest. Therefore, controlling the network topology so that this parameter is
improved, or so that it does not fall below a pre-given value, let us have a deeper control
of the quality of our methods.

Part of the results obtained during this thesis have been published in international
journals with high impact in the robotics community: [8], Robotics and Autonomous
Systems journal. Several results have been presented in international conferences: [10],
Robotics: Science and Systems 2010; [7], [3], IEEE International Conference on Robotics
and Automation, years 2010 and 2011; [6], IEEE/RSJ International Conference on In-
telligent Robots and Systems, year 2009; [11], International Conference on Informatics
in Control, Automation and Robotics, year 2008. Some results have been presented in
international workshops: 5], Workshop on Network Robot Systems, IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems, year 2008. The most recent results have been submitted
to international conferences (|12], American Control Conference) and to journals ([9],
submitted to IEEE Transactions on Robotics; [93], submitted to IEEE Transaction on
Pattern Analysis and Machine Intelligence; [4], submitted to Systems & Control Letters)
and are currently under review. Additionally, we have participated in some research works
in collaboration with international universities [35-37,(147].

Chapter 1
Introduction

1.1 Motivation

The increasing interest in multi-robot applications is motivated by the wealth of possibil-
ities offered by teams of robots cooperatively performing collective tasks. The efficiency
and robustness of these teams goes beyond what individual robots can do. In these sce-
narios, distributed strategies attract a high attention, especially in applications which
are inherently distributed in space, time or functionality. These distributed schemas do
not only reduce the completion time of the task due to the parallel operation, but also
present a natural robustness to failures due to the redundancy. In addition to the clas-
sical issues associated to the operation of individual robots, these scenarios introduce
novel challenges specific to the coordination of the members of the robot team. Several
distributed algorithms are based on behaviors observed in nature. It has been observed
that certain groups of animals are capable of deploying over a given region, assuming
a specified pattern, achieving rendezvous at a common point, or jointly initiating mo-
tion or changing direction in a synchronized way (Fig. . In the robotics literature,
these behaviors are often called deployment, pattern formation, rendezvous, and flocking,
respectively. Species achieve synchronized behavior, with limited sensing or communica-
tion between individuals, and without apparently following the instructions of a group
leader. Robotic researchers have intensively investigated on coordination strategies for

Figure 1.1: Examples of flocking and pattern formation observed in animals.

multi-robot systems (Fig. capable of imitating these collective behaviors. In partic-

9

10 1. Introduction

ular, it is worth mentioning the following strategies: rendezvous, which consists of the
robots getting together at a certain location; deployment or coverage, which consists of
deploying the robot team over the region of interest, and agreement, which consists of
reaching consensus upon the value of some variable. Agreement has a special interest and
recently it has been shown that several multi-robot strategies, including pattern formation
and rendezvous, can be transformed into an agreement problem.

Figure 1.2: Examples of multi-robot teams.

Our research is focused on distributed applications for perception tasks. Perception
is of high importance in robotics, since almost all robotic applications require the robot
team to interact with the environment. Then, if a robot is not able to obtain an envi-
ronmental representation from others, or an a priori representation is not available, it
must posses perception capabilities to sense its surroundings. Perception has been long
studied for single robot systems and a lot of research has been carried out in the fields of
localization, map building and exploration. Among the different sensors that can be used
to perceive the environment, we are interested in visual perception using conventional or
omnidirectional cameras (Figs.[I.3). While the first kind of cameras (Fig. are widely

—

Rt

Figure 1.3: Examples of a conventional and an omnidirectional cameras.

known and used in any area, omnidirectional devices are very popular in robotic appli-
cations. These cameras are able to capture visual information within 360 degrees around
the robot due to the use of an hyperbolic mirror (Fig. [1.5). We manage bearing-only

1. Introduction 11

)

Figure 1.4: Examples of images taken by a team of 6 robots moving in formation equipped
with a conventional camera. Crosses are features extracted from the images and lines
between images represent feature matches.

Figure 1.5: Examples of omnidirectional images. Crosses are features extracted form the
images, and lines between images represent features matches.

information, which is the kind of information provided by cameras through the projection
of landmarks which are in the scene. In order to recover the position of these landmarks
in the world, multiple observations taken from different positions must be combined. The
manipulation of bearing data is an important issue in robotics. Compared with infor-
mation extracted from other sensors, such as lasers, bearing information is complicated
to use. However, the multiple benefits of using cameras have motivated the interest in
the researchers. These benefits include the property that cameras are able to sense quite
distant features so that the sensing is not restricted to a limited range. An additional
kind of cameras of high interest are RGB-D devices (Fig.[1.6). They provide both regular
RGB (Fig. first row) and depth image information (Fig. second row). Thus, it is
possible to compute the landmark 3D position from a single image (Fig. third row).

Robots sense the environment and combine the bearing data to build representations
of their surroundings in the form of stochastic maps. We use landmark-based representa-

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

12 1. Introduction

e

XBOX 360

Figure 1.6:

] mp ol
L sl

L

[T "' G o A

1000

100 0
-1000 -500 0 500 1000 z
X

0 :
t e w0 L0 100 150 w0 9, 1000, 0

Figure 1.7: An example of the images obtained with the RGB-D sensor.

tions, where the map is a set of estimates of the positions of the observed landmarks. Each
individual robot perceives the portion of the environment where it is operating. In order
to make decisions in a coordinated way, the robots must fuse their local observations into
a global map. We can distinguish between centralized and decentralized or distributed
approaches. Centralized strategies, where a central node compiles all the information
from other robots, performs the computations, and propagates the processed information
or decisions to the other nodes, have several drawbacks. The whole system can fail if the
central node fails, leader selection algorithms may be needed, and a (direct or indirect)
communication of all agents with the central system may be required. On the other hand,
in distributed systems, all robots play the same role, and therefore the computations can
be distributed among all the agents. In addition, distributed systems are naturally more
robust to individual failures. In distributed scenarios you cannot assume that the agents
can communicate with all other robots at every time instant. A more realistic situation
is when, at any time instant, robots can communicate only with a limited number of
other robots, e.g., agents within a specific distance. These situations can be best modeled

1. Introduction 13

using communication graphs, where nodes correspond to the agents and edges represent
communication capabilities between the robots. Additionally, since agents are moving,
the topology of the graph may vary along the time, given rise to switching topologies. We
are interested in map merging solutions for robotic systems with range limited communi-
cation, and where the computations are distributed among the robots. We consider that
a strategy is distributed when

e it does not rely on any particular communication topology and it is robust to changes
in the topology;

e every robot in the team computes and obtains the global information;
e cvery robot plays the same role, making the system robust to individual failures;

e information is exchanged exclusively between neighbors and there are no broadcast
messages or flooding methods.

1.2 Classical Approaches

Multi-robot systems have been deeply researched during the last years. A general overview
of the achieved results, and the current and future research lines in distributed multi-robot
systems can be found in [106[107,/123|. Important results have been obtained for the coop-
erative control strategies mentioned in the previous section. We provide here the following
references for the rendezvous [44,61,[89], the deployment and coverage [45,/89], and the
formation control problems [50,62}79,/135,[145]|, as some examples within the variety of
different existing works. The consensus or averaging problem has a special relevance in
multi-robot systems. It has been shown that the consensus problem is connected to diverse
applications in multi-robot systems, including sensor fusion, flocking, formation control,
or rendezvous, among others [102,[103|. Several ideas presented along this document are
built on consensus results in the books [27,[113].

Many existent solutions for single robot perception have been extended to multi-robot
scenarios under centralized schemes, full communication between the robots, or broad-
casting methods. In [117] a single global map is updated by all the robots. Robots search
for features in the global map that have been observed by themselves along the explo-
ration. Then, they use these coincident features to compute implicit measurements (the
difference between the Cartesian coordinates of equal features must be zero) and use these
constrains to update the map. In [56] maps are represented as constraint graphs, where
nodes are scans measured from a robot pose and edges represent the difference between
pairs of robot poses. Robot to robot measurements are used to merge two local maps
into a single map. An optimization phase must be carried out in order to transform the
constraint graph into a Cartesian map. [42] also represents the global map using a graph.
Nodes are local metric maps and edges describe relative positions between adjacent local
maps. The map merging process consists of adding an edge between the maps. Global
optimization techniques are applied to obtain the global metric map. [159] merges two
maps into a single one using robot to robot measurements to align the two maps and

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

14 1. Introduction

then detecting duplicated landmarks and imposing the implicit measurement constraints.
Particle filters have been generalized to multi-robot systems assuming that the robots
broadcast their controls and their observations [69]. The Constrained Local Submap Fil-
ter has been extended to the multi-robot case assuming that each robot builds a local
submap and broadcasts it, or transmits it to a central agent [149]. Methods based on
graph maps of laser scans [56},78,[110] make each robot build a new node and broadcast
it. The same solution could be applied for many existing submap approaches [108|. The
previous methods require that each robot has the capability to communicate with all
other robots at every time instant or with a central agent, i.e., they impose centralized
scenarios. As previously mentioned, we are instead interested in distributed scenarios due
to their robustness to robot or link failures, and due to their natural capability to operate
under limited communication.

Distributed estimation methods [1}40,65,71,96} {100,101, /143] maintain a joint esti-
mate of a system that evolves with time by combining noisy observations taken by the
sensor network. Early approaches sum the measurements from the different agents in IF
(Information Filter) form. If the network is complete [96], then the resulting estimator is
equivalent to the centralized one. In general networks the problems of cyclic updates or
double counting information appear when nodes sum the same piece of data more than
once. The use of the channel filter [65,/143] avoids these problems in networks with a
tree structure. The Covariance Intersection method [71] produces consistent but highly
conservative estimates in general networks. More recent approaches [1,140,/100,101] use
distributed consensus filters to average the measurements taken by the nodes. The interest
of distributed averaging is that the problems of double counting of information and cyclic
updates are avoided. They, however, suffer from the delayed data problem that takes
place when the nodes execute the state prediction without having incorporated all the
measurements available at the current step [34]. For general communication schemes [100],
the delayed data problem leads to an approximate KF (Kalman Filter) estimator. An
interesting solution is given in [L01] but its convergence is proved in the absence of obser-
vation and system noises. In the algorithm proposed in [40|, authors prove that the nodes’
estimates are consistent, although these estimates have disagreement. Other algorithms
have been proposed that require the previous offline computation of the gains and weights
of the algorithm [1]. The main limitation of all the previous works is that they consider
linear systems without inputs, and where the evolution of the system is known by all
the robots. We are however interested in a wider class of systems, without the previous
restrictions.

A related scenario are sensor fusion systems [30,31}59,88,151-153|, where measure-
ments acquired by several sensors are fused in a distributed fashion. Sensor fusion systems
differ from the distributed perception scenario that we consider in this thesis in several
aspects. First, sensor fusion approaches consider that the successive measurements, in our
case local maps, from the same robot must be independent. In a map merging scenario
this does not hold, since the local map of a robot is an evolution of any of its previous
maps. Second, sensors usually observe a set of variables which are a priori known by the
sensor network, e.g., temperature, humidity, etc. However, in distributed perception sce-
narios, robots discover elements in the environment dynamically, as they operate. Thus,

1. Introduction 15

it is not possible to predict which elements will be detected and inform the robot team
of these elements before starting the exploration. In addition, distributed perception
methods must address specific challenges such as associating the elements observed by
the robots in a globally consistent way, or computing the relative poses of the robots and
establishing a common reference frame for the whole robot team.

The data association problem consists of establishing correspondences between dif-
ferent measurements or estimates of a common element. Traditional data association
methods, like the Nearest Neighbor and Maximum Likelihood [64,[72,|159]|, the Joint
Compatibility Branch and Bound (JCBB) [97], or the Combined Constraint Data Asso-
ciation |16] are designed for single robot systems. They operate on two sets of elements,
one containing the feature estimates and the other one containing the current observa-
tions. Methods based on submaps [29}/114,149] use these data association algorithms by
transforming one map into an observation of a second one. Multi-robot approaches have
not fully addressed the problem of data association. Many methods rely on broadcasting
controls and observations or submaps, see e.g., [56.64,69,78,83,/110], and solve the data
association using a cycle-free order, thus essentially reducing the problem to that of the
single robot scenario. However, in a distributed map merging scenario, the robots may
fuse their maps with any other robot’s map in any order and at any time. Therefore, it
is not possible to force a specific order for solving the data association between the local
maps. In the distributed perception scenario considered in this thesis, it is of high interest
to let each robot solve its own local association with its neighbors in the communication
graph. This scenario is more flexible but may lead to inconsistent global data associations
in the presence of cycles in the communication graph. These inconsistencies are detected
when chains of local associations give rise to two features from one robot being associated
among them. These situations must be correctly identified and solved before merging
the data. Inconsistent associations have already been discussed in the computer vision
literature [53], although in centralized scenarios.

The problem of estimating the common reference frame for the team of robots is moti-
vated by the fact that, in general, the robots start at unknown locations and do not know
their relative poses. This information can be recovered by comparing their local maps
and looking for overlapping regions. This approach, known as map alignment, has been
deeply investigated and interesting solutions have been presented for feature-based [137]
and occupancy grid [38,139] maps. However, it has the inconvenience that its results de-
pend on the accumulated uncertainty in the local maps. Alternatively, the relative poses
between the robots can be explicitly measured [1204|]158,|159]. These methods present the
benefit that the obtained results do not depend on the uncertainties in the local maps.
They also allow the robots to compute their relative poses when there is no overlapping
between their maps, or even if they do not actually have a map. The previous meth-
ods give the relative position of a pair of robots. After that, a distributed method is
required to let the robots agree on a global reference frame and obtain their positions in
this frame. This problem is known as distributed network localization. Several network
localization algorithms rely on range-only [2,|32], or bearing-only [122] relative measure-
ments of positions. Alternatively, each agent can locally combine its observations and
build an estimate of the relative full-position of its neighbors using e.g., the approach de-

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

16 1. Introduction

scribed in [120}141] for 3D scenarios. When full-position measurements are available, the
localization problem becomes linear and can thus be solved by using linear optimization
methods [18,/119]. There exist works that compute not only the agents’ positions but also
their orientations, [57], and that track the agents’ poses [76]. It is also possible to use
a position estimation algorithm combined with an attitude synchronization [95,(121] or a
motion coordination [43| strategy to previously align the robot orientations. Formation
control [43]52,(70,/82] and network localization are related problems. While localization
algorithms compute agent positions that satisfy the inter-agent restrictions, in forma-
tion control problems the agents actually move to these positions. The goal formation
is defined by a set of inter-agent restrictions (range-only, bearing-only, full-positions, or
relative poses). Although some works discuss the effects of measurement noises in the
final result [43|, formation algorithms usually assume that both, the measurements and
the inter-agent restrictions are noise free [52,70,82|. Thus, additional analysis is necessary
in noisy localization scenarios. The noisy nature of the relative pose measurements has
already been taken into account in the field of cooperative localization. Here, a robotic
team moves along an environment while estimating their poses. Most of the time, each
robot relies on its proprioceptive measurements. When two robots meet, they obtain
a noisy measurement of their relative pose and update their estimates accordingly [118].
During this rendezvous, each robot must be able to communicate with all the other robots
in the team in order to update its estimate. In order to improve the usage of the net-
work, recently a more efficient algorithm based on quantization [140] has been presented.
Cooperative localization approaches, however, assume that an initial guess on the robot
poses exists.

An important issue that arises in multi-robot scenarios consists of placing the robots
at positions where they are more useful. Extensive research has been focused on the
optimization of facilities [98(99.|132], and on coverage problems [45,89|, where a group of
robots is optimally placed in an environment of interest to achieve maximum coverage.
Here, we are interested in controlling the robot motions to maximize the information
collected about the scene. This problem is highly related to exploration guided by infor-
mation and active sensing, which has been investigated for both single robot [131}/136|
and multi-robot systems [28|. The previous works are based on grid maps, where fron-
tier cells dividing between already explored and unknown sections can be easily detected.
Robots evaluate a cost function on this small subset of destinations and make decisions
propagating small pieces of information with the other robots. The exploration [115,116|
and feature tracking [155| problems turn out to be more complicated for landmark-based
representations, since the number of candidate destinations is infinite. It is common the
use of global optimization methods, where robots search for the best position to reduce the
whole map uncertainty. Every robot makes decisions based on its current local estimate
of the global map and propagates its observations to the other robots so that they can
update their maps. These approaches result in weak robot coordination, because without
a common global map estimate, different robots may end up exploring exactly the same
regions. In addition, many of these solutions use gradient methods to find minima on
the cost function. Gradient algorithms are computationally expensive since the gradient
must be reevaluated at every step. Besides, they may find local minima, and the step

1. Introduction 17

size adjustment is complicated. Alternatively, clustering methods can be used to select
a finite subset of candidate positions [150|. Instead of choosing frontier points, as it is
done in [150], we are interested in looking for already explored places which present big
uncertainties. We focus on one step strategies instead of considering path planning or
trajectory optimization methods [84,85]. These methods use a larger time horizon and
consider the cost function for multiple successive robot motions, and thus they present
important scaling problems for the multi-robot case.

The multi-robot perception can also be improved by speeding up the map merging
algorithms. These distributed methods have a rate of convergence that depends on the
algebraic connectivity of the network. Thus, it would be of high interest for the robots to
estimate this algebraic connectivity in a distributed fashion. Since distributed algorithms
are typically iterative and may take several iterations to converge, it would be useful for
the robots to have upper and lower bounds for the estimated algebraic connectivity at ev-
ery step. Note that some applications, such as the adaptive triggered consensus algorithm
in [124], require the robots to know upper or lower bounds of the algebraic connectivity.
Here we focus on distributed methods that iteratively compute the algebraic connectivity,
and that give lower and upper bounds at each iteration. Connectivity control methods
establish robot motions that preserve or maximize some network connectivity property.
The k—connectivity matrix of the graph is computed in a centralized fashion in [156].
There are several distributed methods that compute spanning subgraphs [157], the left
Laplacian eigenvector with eigenvalue 1 for directed unbalanced graphs [112], or the first
four moments (mean, variance, skewness and kurtosis) of the Laplacian eigenvalue spec-
trum [111]. In |126], the motion control strategy maximizes the algebraic connectivity
without actually computing it. Although the previous control methods improve the net-
work connectivity, they do not characterize any particular eigenvalue of the Laplacian as
required in our case. A method that computes and tracks the eigenvalues of the network
topology is given in [58]. Robots execute a local interaction rule that makes their states
oscillate at frequencies corresponding to these eigenvalues, and use the Fast Fourier Trans-
form (FFT) on their states to identify these eigenvalues. The main limitation of this work
is that the proper adjustment of the FFT, so that the eigenvalues can be correctly identi-
fied, is nontrivial. In addition, some robots may observe only a subset of the eigenvalues
and thus they need to execute additional coordination rules for propagating their data.
Several solutions to the computation of the Laplacian spectra rely on the power iteration
method or variations [63,74,/154]. Power iteration 68| selects an initial vector and then
repeatedly multiplies it by a matrix and normalizes it. This vector converges to the eigen-
vector associated to the leading eigenvalue (the one with the greatest absolute value) of
the matrix. The original matrix can be previously deflated so that a particular eigenvalue
becomes the leading one. A continuous-time version of the power iteration is proposed
in [154] for computing the Fiedler eigenvector, which is the one associated to the algebraic
connectivity of the graph. In [74] the orthogonal iteration method is used for simultane-
ously computing the k leading eigenvectors of a matrix. This algorithm can be seen as a
generalization of the power iteration where, at each step, the k vectors are multiplied by
the matrix and ortonormalized. The previous method is used in [63] for computing the
Fiedler eigenvector. The interest of power iteration methods is that each robot only needs

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

18 1. Introduction

to maintain its own component within the estimate of the eigenvector. Then, the product
of this vector by the Laplacian can be executed locally by the robots. However, the main
limitation of these approaches consists on the normalization and orthonormalization of
the vectors at each step. For [74], it involves a gossip-based information aggregation algo-
rithm [73] and for [154] a distributed averaging method [59]. Therefore, several iterations
of the previous algorithms must be executed by the robots between consecutive steps of
the power method in order to ensure that they have achieved the required accuracy in the
vector normalization. Besides, the previous methods only ensure convergence but they
do not give any upper or lower bound relating the true algebraic connectivity and the
estimates at each iteration.

1.3 Objectives

This thesis has been focused in identifying the different issues that appear in distributed
perception scenarios and proposing solutions to all these issues, with a special interest in
robots equipped with cameras. In particular,

(i) Firstly, investigate the management of bearing only data and visual perception;
(ii) Propose methods for fusing the visual information acquired by the different robots;

(iii) Address the problem of establishing correspondences between the elements observed
by different robots;

(iv) Analyze the network localization problem from relative measurements; and
(v) Propose control motion strategies to improve the perception of the environment.

We were specially interested in providing distributed solutions that allow the robot team
to operate in scenarios with limited communication. Our goal was to provide formal
proofs of the performance of the algorithms in the previous scenarios. In addition, we
were interested in validating our algorithms under real data as well.

This thesis has been developed in the Departamento de Informética e Ingenieria de
Sistemas (DIIS) in the Universidad de Zaragoza,

http://diis.unizar.es/

within the Instituto de Investigacion e Ingenieria de Aragon,

http://i3a.unizar.es/

and associated to the Robotics, Perception and Real Time (ROPERT) Group,

http://robots.unizar.es/html/home.php

that researches on robot navigation, perception and communication. This thesis has
been associated to the R&D Nacional project NERO (NEtworked mobile RObots for
service and intervention tasks, MEC DPI2006-07928), to the European project URUS
(Ubiquitous Networking Robotics in Urban Settings, European Union, IST Program, 6FP,
IST-1-045062-URUS-STP), and to the R&D National project TESSEO (TEams of robots
for Service and SEcurity missiOns, MEC DPI2009-08126). Within these projects, this
thesis has been focused on multi-robot systems, cooperative perception and distributed

1. Introduction 19

map merging. This research has been founded by the grant MEC BES-2007-14772 (grant
for the formation of researchers, FPI). Part of this research has been carried out in collab-
oration between the Universidad de Zaragoza and several international universities and
institutes, being supported by the program of short research stays (EEBB FPI). Specifi-
cally, in the University of California, San Diego, US (April 2008, 3 months); again in the
University of California, San Diego, US (March 2009, 3 months); in the Politecnico di
Torino, Italy (April 2010, 4 months); and in the Royal Institute of Technology, Sweden
(March 2011, 3 months).

1.4 Document Organization

This document is organized as follows:

Chapter [1| introduces the problem addressed in this thesis, the classical approaches to
solve it, and states the contributions.

Chapter [2| addresses the problem of visual perception. We discuss and propose several
visual information management methods and evaluate their performance. These methods
allow each robot to combine the visual information obtained with its camera and build a
local map of the portion of the environment explored by itself.

Chapter [3| merges the information acquired by each robot in the network to build a
global representation of the environment. This map merging is carried out after the robots
finish their exploration. We assume that the ground-truth data association is available at
the robots. We further assume that all the robots share a common reference frame and
that they know their pose in this frame.

Chapter [4] solves the dynamic map merging problem. Robots explore the environment
and, simultaneously, fuse their local maps and build the global map of the environment.
Therefore, robots have a representation of the environment beyond its local map during
all their operation. The fusion of the local observations of all the team members leads to
a merged map that contains more precise information and more features. This global map
enables other multi-robot tasks such as cooperative exploration, navigation, or obstacle
avoidance.

Chapter [5laddresses the problem of establishing correspondences between the elements
in the environment observed by different robots. Robots compute the associations with
their neighbors using classical matching methods. We propose distributed algorithms
that allow each robot to propagate this local data and obtain the global data association
relating its features with the ones of all the other robots in the network. In addition, they
are able to identify and correct associations which are inconsistent in the global level.

Chapter [0 discusses the problem of estimating the positions of the robots in a common
reference frame. Robots compute the relative position of their neighbors using classical
methods. From this information, they build the global frame and compute their positions
in this frame in a distributed fashion. We consider scenarios with both noise-free and
noisy measurements, and discuss the use of an anchor node to define the global frame and
well as more sophisticated methods.

Chapter [7] studies how the robot motions affect their perception of the environment.
This has two aspects: First, we analyze how they can improve the precision of the ob-

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

20 1. Introduction

served elements in a cooperative fashion. Second, we investigate on how to speed up the
convergence of the distributed algorithms proposed in this thesis. This can be achieved
by controlling the network topology. We propose distributed methods that allow each
robot to compute the algebraic connectivity of the network topology, that specifies this
convergence speed.

Chapter |8 evaluates the performance of some of our proposals in real scenarios.

Chapter [J presents the conclusions of this thesis.

The document finishes with a set of appendices. Appendix [A] contains several well
known results on average consensus algorithms which are included here for this document
to be self-contained. Appendix [B] describes a public dataset that we have used in several
of our experiments.

Within each chapter, we include a brief description of its contents, an introduction and
a discussion of the related work, a description of the problem and our proposal, specific
simulations, and the conclusions.

1.5 Contributions

During this thesis we have made important contributions to the field of distributed per-
ception:

e The proposal of algorithms for merging maps acquired by a robot team with lim-
ited communication in a distributed way. We have considered both the static and
dynamic cases.

e We have considered all the topics that appear in a map merging scenario and have
made contributions in all of them. The data association, to our knowledge, has been
discussed for the first time in the context of distributed robot teams with limited
communication.

e The initial correspondence or localization problem consists of reaching a consensus
on a global reference frame. This global frame will be used by the robot team during
their operation. We have proposed distributed algorithms for different scenarios.

e In addition, we have made additional contributions to the problem of coordination
for perception in two aspects. First, we have proposed a method so that the robots
decide their next motions to improve the global map. Second, we have proposed a
method that allows the robots to compute an important parameter related to the
network topology, which characterizes the speed at which the different distributed
algorithms converge to the values of interest.

The results about static map merging have been published in the journal Robotics and
Autonomous Systems [8], and in the Workshop on Network Robot Systems, IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems [5]|. The results regarding the dynamic
map merging case have been presented in the IEEE International Conference on Robotics
and Automation [7] and an extended version has been submitted to the journal IEEE
Transactions on Robotics |9] and is currently under review.

1. Introduction 21

The basic detection method and the resolution based on trees have been presented in
the conference Robotics: Science and Systems [10]. An extension with the feature labeling
appears as part of a paper [8| published in the journal Robotics and Autonomous Systems.
The improved detection algorithm and the resolution algorithm based on the maximum
error cut, together with several experiments with real data, have been submitted to the
journal IEEE Transaction on Pattern Analysis and Machine Intelligence and are currently
under review [93].

The noise-free pose localization appears as part of the paper |8] published in the journal
Robotics and Autonomous Systems. The pose localization from noisy measurements
algorithms was presented in the conference IEEE International Conference on Robotics
and Automation [3]. The centroid-based position localization has been submitted to the
Systems & Control Letters journal [4] and is currently under review.

The map precision improvement method appears in the proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems [6]. The results regarding
the convergence speed improvement have been submitted to the American Control Con-
ference 12| and are under review.

Part of the research has been carried out in collaboration between the Universidad
de Zaragoza and several international universities and institutes, being supported by the
program of short research stays (EEBB FPI). Specifically, in the University of California,
San Diego, US (April 2008, 3 months); again in the University of California, San Diego,
US (March 2009, 3 months); in the Politecnico di Torino, Italy (April 2010, 4 months);
and in the Royal Institute of Technology, Sweden (March 2011, 3 months).

The list of publications produced during this PhD follows.

e International Journals:

R. ARAGUES, J. CORTES, AND C. SAGUES. Distributed consensus algorithms for

merging feature-based maps with limited communication. Robotics and Autonomous
Systems, 59(3-4):163-180, 2011.

R. ARAGUES, J. CORTES, AND C. SAGUES. Distributed consensus on robot net-

works for dynamically merging feature-based maps. IEEE Transactions on Robotics,
2011, submitted.

E. MONTIJANO R. ARAGUES AND C. SAGUES. Distributed multi-view matching

in networks with limited communications. IEEFE Transactions on Pattern Analysis
& Machine Intelligence, 2011, submitted.

R. ARAGUES, L. CARLONE, C. SAGUES, AND G. CALAFIORE. Distributed cen-
troid estimation from noisy relative measurements. Systems & Control Letters, 2011,
submitted.

e International Conferences:

R. ARAGUES AND C. SAGUES. Parameterization and initialization of bearing-only

information: a discussion. In Int. Conf. on Informatics in Control, Automation
and Robotics, volume RA-1, pages 252-261, Funchal, Portugal, May 2008.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

29 1. Introduction

R. ARAGUES, J. CORTES, AND C. SAGUES. Motion control strategies for improved
multi robot perception. In IEFE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 1065-1070, St. Louis, USA, October 2009.

R. ARAGUES, J. CORTES, AND C. SAGUES. Dynamic consensus for merging vi-
sual maps under limited communications. In IEEE Int. Conf. on Robotics and
Automation, pages 3032-3037, Anchorage, AK, May 2010.

R. ARAGUES, E. MONTIJANO, AND C. SAGUES. Consistent data association in
multi-robot systems with limited communications. In Robotics: Science and Sys-
tems, Zaragoza, Spain, June 2010.

R. ARAGUES, L. CARLONE, G. CALAFIORE, AND C. SAGUES. Multi agent lo-
calization from noisy relative pose measurements. In IEEE Int. Conf. on Robotics

and Automation, pages 364-369, Shanghai, China, May 2011.

R. ARAGUES, G. SHI, D. V. DIMAROGONAS, C. SAGUES, AND K. H. JOHANSSON.
Distributed algebraic connectivity estimation for adaptive event-triggered consen-
sus. In American Control Conference, 2012, submitted.

International Workshops:

R. ARAGUES, J. CORTES, AND C. SAGUES. Distributed map merging in a robotic
network. In Workshop on Network Robot Systems, IEEE/RSJ Int. Conf. on Intel-
ligent Robots € Systems, Nice, France, September 2008.

Chapter 2
Visual Information Management

In this chapter we discuss feature parameterization and initialization for bearing-only data
obtained from vision sensors. The performance of the methods is analyzed under different
robot motions and depth of the features. The results are evaluated in terms of the sensi-
tivity to step size and performance under ill conditioned situations. The problem studied
refers to robots moving on the plane, sensing the environment and extracting bearing-only
information from uncalibrated cameras to recover the position of the landmarks and its
own localization.

2.1 Introduction

The manipulation of bearing information is an important issue in robotics. Bearing-only
data is the kind of information provided by cameras through the projection of the scene.
In order to recover the position of the landmarks in the world, multiple observations taken
from different positions must be combined. Compared with information extracted from
other sensors such as lasers, bearing information is complicated to use. However, the
multiple benefits of using cameras have motivated the interest in the researchers. These
benefits include their capability to sense quite distant features so that the sensing is not
restricted to a limited range. This sensing of the environment in the form of bearing
information may be used for many applications such as the Simultaneous Localization
and Mapping (SLAM), which consists of the computation of the landmark localization
in the environment and the calculation of the own robot pose. Algorithms which use
bearing information must deal with the problem of creating representations for features
by the combination of bearing data. The problem of feature parameterization and feature
initialization are of big importance here.

A classical feature parameterization approach is the cartesian [14]146,75,80]. In
the depth parameterization [47] features are stored as an starting point of the ray where
the feature lays, the inclination of the ray and the depth. The inverse-depth is an alterna-
tive similar to the depth parameterization, but using the inverse of the depth instead [92].
Some approaches use no explicit feature parameterization and instead represent landmarks
as constraints between three robot poses [139).

With regard to the feature initialization, undelayed techniques immediately introduce
features in the map so that they can be used to improve the robot estimation [46 80,
92,1139 while delayed methods defer the introduction into the map until the features

23

24 2. Visual Information Management

are near-Gaussian [14,75]. Delayed approaches often create temporal representations for
landmarks which are maintained in separate filters and evolve with the incorporation of
new observations of these landmarks until they are finally introduced into the map [47].

The problem of depth computation for landmarks is afforded in two separate ways.
Some approaches create depth representation from only one bearing, W assuming an ap-
proximate value for it. These techniques are able to cover depths from the position
were the landmark was observed until infinity or until a maximum depth within the
workspace [47,[80,92]. The other approach to depth computation is the combination of
observations taken from different robot poses, where triangulation techniques are used to
recover the depth [14}75].

The interest of this work refers to the comparison of the bearing-only data representa-
tions and initialization techniques, analyzed for different robot motions relative to depth
of the landmarks in the scene. Two feature parameterizations are studied. The first is
an standard cartesian parameterization, where features are described by their (z,y) po-
sition. The alternative representation is an adaptation of the inverse-depth in [92] to the
2D situation. Besides, both undelayed and delayed strategies for feature initialization
are used and their performance is compared in different scenarios. The problem studied
in this chapter refers to robots moving on the plane, sensing the environment and ex-
tracting bearing-only information from uncalibrated images to recover the position of the
landmarks and its own localization. As a result of this investigation, some theoretical
solutions are proposed, and their validity is supported by an exhaustive experimentation
using simulated data.

2.2 Problem Description

The problem studied in this chapter is related to the use of bearing-only information
for the SLAM problem using EKF. The robot moves on the plane and elements in the
map are represented by their 2D coordinates. Robot observes landmarks within a field of
view of 360° due to the use of omnidirectional cameras and obtains bearing-only measure-
ments. Odometry is used to predict robot motion in every step. The Extended Kalman
Filter (EKF) is a widely used technique in these problems and a lot of information can
be found in the literature. The data association problem is not discussed in this chapter.
The Joint Compatibility Branch and Bound (JCBB) [97] is used to select the observations
which are used in the filter update.

In order to make the reading easy, along the chapter we use the index ¢ € N to refer
to robots and the index j € N to refer to features. We let x,., = [z, ,,,0,]" be the
i-th robot pose, where z,,,y,, € R and 6,, € [—m,7]. When there is no confusion, the
subscript ¢ is omitted. The position of the j-th feature in the map is represented by
x; = [z;,y;]7 or x; = [z},9;,0;,pj]T for respectively the cartesian and the inverse-depth
parameterizations, where z;,y; € R, 6; € [, 7], and p; € R>g. We let x be the state
vector containing the current robot pose x, and the positions of the n landmarks,

T
X = [X,,X1..X5] ",

2. Visual Information Management 25

and P be its associated covariance matrix. The measurement taken from robot pose i to
feature j is denoted by z;;, or by z; when the robot that took the measurement is not
specified.

2.3 Feature Parameterization

The feature parameterization refers to the way in which features are stored in the state
vector x. In this section the cartesian and the inverse-depth landmark parameterizations
are compared. We discuss whether their landmark representations and observation models
are near-Gaussian and near-linear or not.

Cartesian parameterizations represent features by their (x,y)-coordinates. This pa-
rameterization is very intuitive since the feature position within the map can be easily
obtained. The initialization of features in this cartesian parameterization is problematic
due to the nonlinearity of the triangulation techniques used to recover its position based
on the observations taken from different robots poses. It can be easily shown that bear-
ings generate bigger uncertainties as landmark positions go away from the camera. The
observation model for a feature x; = [z;,y;]* observed from a robot pose x, = [z, Yy, 0,]7
is [14]

z; = h(x,,x;) = arctan (u) —0,.

Ly — Ty

Inverse-depth parameterizations represent each feature x; as a ray starting at the
position where the feature was firstly observed (z;,y;) with a global bearing 6; and a
depth of 1/p;. Let m; and R, be

m, — |:COSQJ' } 7 R = [cosf, sind, } .

sin 0; —sinf, cos6,

The position in cartesian coordinates of the j-th feature in the state vector with inverse-
depth representation x; = [z;,;,0;, p;]* is given by

[z, y;]" +1/p; my,
and its inverse-depth observation model is
hj = atan2(hf, h7), (2.1)

where hi¥ = [h7, hY]" are the coordinates of the feature j in the robot reference x, =

[, Y, 0],
o IR) ETES N

Provided that p; > 0, the inverse-depth observation model in (2.1)) remains valid if the
following expression is used instead of equation

=[] n o (3] [2])om)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

26 2. Visual Information Management

As advantage with respect to the cartesian parameterization, the inverse-depth obser-
vation model is near linear. Additionally, landmarks at infinity, p; = 0, or uncertainties
that extend to infinity can be represented. The main drawback of the inverse-depth is
that features are over-parameterized, and therefore the size of the covariance matrix is
greater.

2.4 Depth Computation and Feature Initialization

The feature initialization consists of combining the observations of a landmark to create
an estimate (mean and covariance) of its position, and introducing it into the map for the
first time. The feature initialization problem of bearing-only data is due to the fact that
features are only partially observable. Since a measurement only gives information about
the direction towards the landmark, then two or more observations must be combined in
order to recover the depth of the landmark. However, there are some situations where
the depth cannot be recovered.

Theorem 2.4.1. Let x,, be a robot pose and X, be a second pose translated but not rotated
with respect to X, . Let 215, 225 be observations of a feature j taken from respectively x,,
and X,,, and let o be o = 215 — z95. Let dy, and d; be the translation from x,, to X,, on
respectively a perpendicular and a paralell directions to z1;. Without loss of generality, let
dy be equal to zero. The landmark depth d; (distance between x,, and the landmark j) can
be totally determined from

dj =d,/tana.

Corollary 2.4.2. The problem of depth computation from pure translation motions has
the following properties,

(i) this is an undetermined problem (0/0) when simultaneously d, = 0 and o = 0 + k,

for k € Z;
(11) this problem remains undetermined independently of the magnitude of dy;
(iii) the landmark is at infinity if simultaneously « = 0+kw for k € Z and d,, is different

of zero.

Theorem 2.4.3. Let x,, be a robot pose and x,., be a second pose rotated but not translated
with respect to x,,. Let 21, z2; be observations of a feature j taken from respectively x,,
and X,,. The robot rotation 0,, can be absolutely determined as

97«2 = 215 — *2-

2. Visual Information Management 27

Corollary 2.4.4. The problem of depth computation from general robot motions has the
following properties,

(i) given a pure rotation motion, feature depth cannot be recovered;

(ii) given a translation and rotation motion with landmarks of infinite depth, the robot
rotation can be computed from z1; — z9; for any d, < oo and robot translation cannot
be recovered.

Based on the previous theorems, ill-conditioned situations are identified:

(a) Depth of features aligned with robot trajectory cannot be recovered. This situations

is formalized in Corollary (1)-(ii).
(b) Depth cannot be recovered with pure rotation motions as shown in Corollary (i).

(c) Landmarks at infinity give robot orientation, but no translation information can be
obtained from them (Corollary (ii)).

Feature estimates calculated when the depth computation problem is ill-conditioned
present high covariances and great estimation errors which may cause linealization prob-
lems. Once a feature has been wrongly initialized, new observations taken from robot
poses not aligned with the feature will not be able to correct its position. If a cartesian
parameterization is used, an additional problem is that features with infinite depth cannot
be represented and their initialization must be deferred.

2.4.1 Undelayed Initialization

The undelayed initialization consists of introducing landmarks into the system the first
time the landmark is observed. This technique presents many benefits since the informa-
tion attached to a landmark can be used earlier and it allows the use of landmarks which
may never been initialized if a delayed strategy is used.Since the first time a landmark is
observed only bearing information is available, undelayed techniques must deal with the
problem of creating a representation for the depth and its associated uncertainty.

If an inverse-depth parameterization is used, landmarks are introduced using a fixed
initial depth and an initial uncertainty covering all depths from some d,,;, to infinity.
This initial depth must be adjusted depending on the workspace. Since cartesian parame-
terizations require low covariances, an undelayed initialization is only possible if multiple
hypothesis in depth are created [80,81,/128]. All these approaches present a high com-
plexity and map size. Due to this complexity, approaches using undelayed initialization
together with cartesian parameterization are no longer analyzed in this chapter.

2.4.2 Delayed with Two Observations

This delayed method combines the first two observations of a landmark to recover its
position using a triangulation algorithm. This is a not purely delayed technique, since

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

28 2. Visual Information Management

there are no conditions which must be satisfied by the observations in order for the
landmark to be initialized, and all landmarks are introduced in the map provided that
they are observed from at least two robots poses. The main benefit of this initialization
strategy is that the solution is independent on the workspace. However, triangulation
algorithms used to recover the landmark position are highly non-linear and, depending
on the arrangement of robot poses and features, the problem may be ill-conditioned.

If a cartesian parameterization is used, the recovered feature position must be near-
Gaussian and covariances must be small. For this reason, additional tests are used to
check that features satisfy these conditions. If features are parameterized using inverse-
depth, this strategy may suppose a benefit in the sense that it is independent on the size
of the scene. Therefore higher covariances in the estimates are admissible and recovered
features are near-Gaussian even for low parallaxes.

2.4.3 Delayed until Condition

In a pure delayed initialization technique, observations of landmarks are accumulated and
its initialization is deferred until a condition of Gaussianity is satisfied; then observations
are used to create a representation for the feature [14}75].

If a delayed initialization is used, some landmarks may never been initialized. Since
the information provided by landmarks cannot been used until the landmark is initial-
ized, a delayed technique decreases the amount of information available to improve robot
the pose. Many delayed techniques present a high computational cost to calculate the
condition, and have their own problems and limitations. The main benefit is that the
representation for the landmark is more accurate and reliable than the obtained by an
undelayed strategy.

2.5 Studied Methods

Along this chapter, a comparison of cartesian and inverse-depth parameterizations com-
bined with delayed and undelayed initialization techniques is carried out. The following
studied combinations have been selected because are the most commonly used, being also
simple and of low computational complexity.

2.5.1 Inverse-Depth Undelayed

The following method is an adaptation to the 2D situation of the technique described
in [92|. Each feature j is introduced into the map using a single observation. The current
robot pose x, is used together with the measurement z; and an initial depth parameterized
in inverse-depth py to get the feature representation x;. This depth is worked out using
a minimal distance d,,;; which must be selected depending on the workspace,

1 o Pmin o Pmin
y Po = y Op =

2

Pmin =
dmin

2. Visual Information Management 29

where ppni, is the inverse of depth, pg is the initial inverse-depth, which is the middle value
of the interval [0, pmin, and o, is the standard deviation used to initialize py. It is selected
so that the 95% of p belongs to the interval [py — 20,, po + 20,] = [0, pmin]. The initial
value of the feature is calculated as

X; = gj(XT7 Zjs PO) - [xﬁ Yr, 07' + Zj, IOO]T

2.5.2 Inverse-Depth Delayed with Two Observations

As a proposal, an inverse-depth parameterization [92| is combined with a delayed initial-
ization technique where two observations z;;, z2; of a feature j taken from different robot
poses X,,, X,, are used to retrieve the feature position x;. Here, the second observation
29; is used to calculate the initial depth p, for the feature,

]T S92 C1 — C2 S1

X = 8(Xp, Xpy, 215, 225) = [T O, + 22i =
7 g(19 Aoy #1759 23) [ros Yros Urg 2i, Pol 5 Po c1 (yrl_ym)_sl (xrl_xm)

Y

where ¢;, s;, with i € {1,...,2} are
c; = cos(b; + zij), s; = sin(0; + zi;). (2.3)

An additional check is used in order to detect situations where inverse-depth cannot be
recovered and intersections take place in the opposite direction of the observation. In
these situations, the initialization is deferred.

2.5.3 Cartesian Delayed with Two Observations

Given the first two observations z;;, 29; of a landmark j taken from robot poses x,,,x,,,
the landmark position x; is calculated as follows |14]

. _ Ty 81— Ty 83 ¢ = (U — Yry) 1 o
ZTj _gj(XTNXT‘lej?Z?j) - ’
§1 62— 8520

 Yry S1C2—Ypy S2C1+ (r, — p,) S1 S2

"
Yi = G5 (Xrys Xy, 215, 225) =
i J 19 2) J? J S1 Coy — Sy €4)

where ¢;, s;, with ¢ € {1,...,2} are given by (2.3). Similarly a test is used to check that
features can be recovered and intersections of bearings are not in the opposite direction
of the observations.

2.5.4 Cartesian/Inverse-Depth Delayed until Finite Depth

A delayed strategy is proposed where feature initialization is deferred until finite un-
certainty in depth can be estimated. This is achieved by a test which compares two
observation rays and checks if they are parallel. This situation is characterized by Corol-
laries and When observation rays are parallel, the uncertainty in depth of
the recovered landmark extends to infinity and the initialization is deferred. This test is
especially useful when a cartesian parameterization is used, since infinite depths cannot

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

30 2. Visual Information Management

been modeled. Let x, for ¢ = 1,2 be the two robot poses where observations z;; to a
landmark j were taken.
The global bearings a;; to the landmark are

;= 0., + 25, (2.4)

for 7 = 1,2. If we name S,,,; the linearized propagated covariance for bearing c;; then the
Chi-squared test for Finite Depth is expressed as
(a1 — ag)°

2
> X0.99,1d.0.f*
Salj + SOQ]. ’

2.5.5 Cartesian/Inverse-Depth Delayed until Feature Not Aligned

The initialization of features aligned with the robot trajectory is a problematic issue
when working with bearing-only data. When a feature is observed from two robot poses
which are aligned with the feature, it is not possible to make a right depth initialization.
Corollary gives a formal explanation of this situation: a feature is aligned with the
robot trajectory when the observation rays are parallel and the robot translation takes
place in a direction which is parallel to the observation.

Let x,, for 7 = 1,2 be the two robot poses where observations to a landmark j were
taken and ay; and S,,; be respectively the global bearings to the landmark given by
and their linearized propagated covariances. Let 6, be the global inclination of the robot
trajectory from x,, to x,,,

0, = arctan <M) ,

Lryg — Ty

and Sy, be its linearized propagated covariance.
Observation rays are parallel when

2
(a1 — ag5) 9
o < X0.99.14
Salj ‘I‘ Sagj .99,1d.o.f»

and the trajectory is parallel to the observation rays when

0, — a;;)”
ﬁ < Xg.99,1d.o.f7
for 7 =1,2.

The initialization of features is deferred until a pair of observations is available where
the feature is not aligned with the trajectory. This delayed technique is less restrictive than
the explained in section and is specially useful for the inverse-depth parameterization
since it allows the initialization and the use of features of infinite depth.

2. Visual Information Management 31

2.6 Discussion

In order to analyze the performance of the different parameterizations and initialization
techniques, some experiments have been designed so that the performance and robustness
of the algorithms to deal with bearing-only data can be analyzed. The experimentation
and result analysis is carried out using a simulator which presents many benefits. First of
all, exactly the same experiment can be solved by several algorithms so that results are
fully comparable. Besides, ground truth information is available and therefore obtained
results can be compared with the true situation.

In the simulated experiments, an observation noise with an standard deviation of 0.125
degrees is used. Features are placed on the walls of a squared room. An initialization to the
system is introduced from three robot poses and the first 5 observed landmarks. It is based
on SFM techniques with the Trifocal Tensor [120]. The data association problem is not
discussed in this chapter and data association is supposed to be perfect. Algorithms have
been tested in different scenarios and under different conditions of wvisibility, trajectory
and step sizes. The sensor visibility affects to the number of visible landmarks. Two
possibilities are evaluated: total visibility, where all features are visible from all robot
poses, and section visibility, where the workspace is divided into four sections and, in
every step, robot observes the features within its section and a few from the neighborhood
in order to connect the sections. Observe that when the visibility is total, no loop closing
takes place and distant features are used.

As stated in Section the robot trajectory has an important influence on depth
computation in such a way that if landmark is on the direction of robot translation, depth
computation is an undetermined problem. Two trajectories have been evaluated. The first
is a squared trajectory composed by several pure translation motions and four 90° pure
rotations. In this trajectory some features are aligned with the robot movement for many
steps. The odometry noise is introduced as a function of the step size (st) and it can be
seen in Table 2.1 columns Pure translation and Pure rotation. The second trajectory is
circular. The robot describes a circumference when moving along the environment which
gives rise to mixed rotations and translations. No feature in the map is really aligned
with the trajectory, although for small step sizes features may seem to be in the direction
of the robot translation. The standard deviations of the odometry noise are shown in
Table (column Mixed motion). The Step Size st determines the distance (in meters)

Table 2.1: Odometry noise relative to the step size (st).

Standard Pure Pure Mixed

deviation | translation | rotation | motion
T, 0.01 st 0.03 st | 0.03 st
Y 0.01 st 0.03 st | 0.03 st
0, 2° 2.5° 2.5°

between two consecutive robot poses. This is the parameter which affects the most the
behavior of the algorithms. Step sizes of 0.125 m, 0.250 m, 0.5 m and 1 m are tested.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

32 2. Visual Information Management

The variables used in order to analyze the performance of an algorithm are listed
below.

e Final divergence: Percent of results where the final robot pose diverges from its
estimation. The condition which is tested for each component (z,,y,,6,) indepen-
dently can be written as

(a —a)°
Pa

being a the ground-truth for z,, y,, 6., whereas @ and P, are the estimated value
and covariance for z,., y, and 6,.

2
< X0.99,17

e Map consistency: Percent of features in the final map whose estimation is consis-
tent with the ground truth. A feature j is considered inconsistent if its estimated
x; or y; have a great estimation error,

la —al
—_— <15
+1/ Fa X(%.99,1

being a, @ and P, respectively the ground-truth, the estimate and covariance of
either the x; or y; coordinates.

e Trajectory divergence: Percent of steps in the trajectory where the robot pose
estimate (x,, y,, 6,) diverges.

e Feature initialization step: Average of the number of steps needed to initialize
a feature, computed as the difference between the step when a feature is observed
for the first time, and the step when the feature is introduced into the map.

e Feature usage: Average of the feature usage per step, computed as the percent of
features used in the filter update versus the number of features observed.

e Map consistency per step: Average of the percent of consistent features in the
map in every step.

Additionally, information related to the precision and error of the final robot pose, the
trajectory and the final map has also been studied.

A total of 160 experiments have been designed, and all of them have been solved using
the algorithms discussed in Section For the inverse-depth undelayed, a minimal depth
dpmin = 0.5m is used. The results are analyzed in three different blocks. In the first we
compare the cartesian delayed algorithms. In the second, we compare all inverse-depth
delayed approaches, and in the third block a general comparison is carried out where
the best of the cartesian delayed algorithms and the inverse-depth delayed method which
performs better are compared to the inverse-depth undelayed algorithm.

The results obtained by the cartesian delayed algorithms can be found in Fig. 2.1} The
cartesian delayed until finite depth (xy-f) algorithm performs better than the delayed with
two observations (xy-d) and the delayed until features not aligned (xy-1) methods. The

2. Visual Information Management 33

final divergence (Fig. 2.1la) and trajectory divergence (Fig. [2.1lc) are the lowest for all
step sizes, the map consistency (Figs. b, .f) are the highest, and the number of features
used to update (Fig. e) is higher than the used by the other cartesian algorithms for all
step sizes even though this algorithm needs more steps to initialize a feature (Fig. [2.1]d).

Final divergence Map consistency Trajectory divergence
100 — xy-d , 100 100 — xy-d
o c= xy-f o 8 c=e xy-f
S 80 - = xy-l 2 80 g 8o - = xy-l
5 : 5
g 60 = 60 g 60
5 g ©
< 40 @ 40 @ 40
£ g — xy-d 2
o 2 2 !
s 2 \2 0 cm xy~f W 0
S - xy—
0 0 xy-l 0
0.1250.25 0.5 1 0.1250.25 0.5 1 0.1250.25 05 1
step size step size step size
(a) (b) ()
0 L .
o Feature initialization step Feature usage Map consistency per step
2 5
E at — xy-d 2 100 % 100
o k cm=e xy—f ® T TS s e o @
Nas b - = xy-l 5 80F == = g0
8 v o 3
g 3 v § 60 g 60
a5 v N 3 o
% 5 NN $ 40 = 40 — xy—-d
@ AR ! — xy-d 2 v=e xy-f
2 AT ® 20 Y~ 2 20 o y_|
S 15 SelTsel 9 v xy—f 2 Xy’
3 -= L o0 == xy-l 8 o
£ X
5 0.1250.25 0.5 1 0.1250.25 05 1 0.1250.25 05 1
= step size step size step size

(d) (e) (f)

Figure 2.1: Cartesian delayed techniques comparison. Analysis of the results for dif-
ferent step sizes (x-axis). The algorithms used are cartesian delayed. xy-d: with two
observations. xy-f: until finite depth. xy-1: until feature not aligned with robot poses.

From the study of the results obtained by the inverse-depth delayed algorithms, we
can observe that all algorithms performed in a very similar way (Fig. . The final
divergence (Fig. [2.2]a), map consistency (Fig. [2.2lb), trajectory divergence (Fig. [2.2]¢),
feature usage (Fig. [2.2le), and map consistency per step (Fig. 2.2f) results are similar
for all inverse-depth delayed algorithms for the different step sizes. Only the feature
initialization step (Fig. .d) differs due to the use of the different delayed strategies.

An especial study is carried out in order to compare the capability of the inverse-
depth algorithms to deal with features which are observed during many steps as aligned
with the trajectory. The most critical situation is when the robot moves following an
squared trajectory and only observes landmarks within its section. In this situation the
problematic features are F12, F23, and F34 (Fig. . In this figure, the ground-truth
robot trajectory and landmark positions are displayed in red, while the estimates and
uncertainties calculated by the algorithms are drawn in blue. As can be observed, both the
trajectory and the landmark positions have been correctly estimated in all cases. However,
features F12, F23 and F34 present high uncertainty (Fig. a) when the algorithm used

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

34 2. Visual Information Management

Final divergence Map consistency Trajectory divergence
100 — id-d , 100 100 — id-d
g o id-f) 8 = id-f
2 80 - = id-l g & g 80 - = id-l
S 60 60 g o
= Q S
2 £ g
S . 2 20 P 40
= & - Q
£ g — id—d 5
= ! 7
s L \‘; 20 - !g_:’ b 20
- = id—
0 ° 0 0
0.1250.25 0.5 1 0.1250.25 0.5 1 0.1250.25 05 1
step size step size step size
(a) (b) ()
% tmitiali : .
o Feature initialization step Feature usage Map consistency per step
=]
g g
9D 4ty — id—-d Z 100 » 100
© E (= id-f [z g
Na3st v : o <
3 \ - = gl g 80 2 80
€ 3 v 2 60 % 60
a5 v N 3 3
ulg;) N /\/ g 40 E 40
7 ~ S =1 — id-d = — id-d
o REEY & . 2 .
%5 15 RGN g = id-f @ 20 c=eid—f
o - had - id— i
8 4 =~ S 9 id-1 8 o id-I
E 8
5 0.1250.25 05 1 0.1250.25 0.5 1 0.1250.25 05 1
= step size step size step size

(d) (e) (f)

Figure 2.2: Inverse-depth delayed comparison. Analysis of the results for different step
sizes (x-axis). The algorithms are: id-d: with two observations. id-f: until finite depth.
id-1: until feature not aligned with robot poses.

is the inverse-depth with two observations (id-d). Paying attention to the problematic
features (F'12, F23, I'34) in Fig. we can observe the results of an earlier initialization
of features aligned with the trajectory. Even though their initial estimate and covariance
correctly represent the feature position, posterior observations are not able to correct its
position due to the huge innovation. The inverse-depth delayed until finite depth (id-f)
and the inverse-depth delayed until feature not aligned with robot poses (id-1) algorithms
performed in a similar way. However, the second is preferred because of its capability to
initialize and use features of infinite depth.

Finally, the inverse-depth undelayed, with d,,;, = 0.5m, the inverse-depth delayed
until feature not aligned with robot poses, and the cartesian delayed until finite depth
algorithms are globally compared and their results are analyzed in order to find the one
which performs better. As can be observed in Fig. the behavior of the inverse-depth
undelayed algorithm (id-u) is seriously affected by the step size. For the smallest step
size (0.125m), almost all experiments converged in the last robot pose (Fig. 2.4la) while
for the other step sizes, many experiments diverged. The number of consistent features
in the final map (Fig. 2.4b) is lower than for the other algorithms. This behavior is
also observed for the number of consistent features per step (Fig. [2.41f). The behavior
of the cartesian delayed until finite depth (xy-f) algorithm is not so much affected by
the step size, although a better performance is observed when the step size increases.
Its final divergence (Fig. a) is slightly higher for smaller step sizes. The number of

2. Visual Information Management 35

FINAL MAP: INVERSE-DEPTH Delayed (two observations) FINAL MAP: INVERSE-DEPTH Delayed (Finite depth)

FINAL MAP: INVERSE-DEPTH Delayed Feature not aligned

F28 F27 F26 F25 R4 2k F28 F27 F26 F25 P24 F23
17 10 F34
433

2o w28 27 26 25 20 K23
o Fi2 L fho Py 1ok 17

Foo

33
TB e L fho P

A

£33 €
R S I

a1 F2i 8 *
6 F36r 15
42 F20bs s +
4 = 14
43 Fio a *
2 Fagr #13

Fg4 - F18) 21 R
BB ROy

0 Fagr

Figure 2.3: (a) Inverse-depth delayed with two observations. (b) Inverse-depth delayed
until feature not aligned with robot poses. (c) Inverse-depth delayed until finite depth.

Final divergence Map consistency Trajectory divergence
100 — id-l B 100 — id-l
. T T - - .
o c=rid-u o - 8 c=rid-u
§ 80 _ - = xy-f 2 e o £ 80 - - xy-f
g 60 oo T 2 60 = id-u g o0
() -
s ! c - = xy-f = -
S 1] o - © ‘~
< 40 - @D 40 Se = o 40 ‘~
c ! @ RV S 53 '~
= 1 1] > T e -
S 0f Leo_ 8 20 \fg 20 ~~________~
T 8 S -~ _
0 0 0
0.1250.25 0.5 1 0.1250.25 0.5 1 0.1250.25 05 1
step size step size step size
(a) (b) ()
8 Feature initialization step .
E Feature usage Map consistency per step
@ - o
O 4f N — id-l i)
= . 2 100 100 =
o A c=id-u 2 e i P
S \ - = xy—f 0 -t g
< 3 \ Xy B 8 o 80
= \ o 3 . @
£ So g 60 \ -_— !d—| 2 60 -
22 ~ 2 \ = id-u g N .
24 == 0 40 \ = = xy-f = 40 Se e
Q o - S e
%1 = 2 -
5 T 20 2 20 — id-l
5 “G;J g v=vid-u
QO rmrmrmmm === - S o 5 0 - = xy—f
X
E 0125025 0.5 1 0.1250.25 0.5 1 © 0.1250.25 05 1
< step size step size step size

(d) (e) (f)

Figure 2.4: Global comparison. Analysis of the results for different step sizes (z-axis).
The algorithms used are: id-u: inverse-depth undelayed, d,,;, = 0.5m. xy-f: cartesian
delayed until finite depth. id-1: inverse-depth delayed until feature not aligned with robot
POSES.

consistent features in its final map (Fig. 2.4b) and along the steps (Fig. 2.4lf) slightly
decreases for smaller step sizes. And its feature usage (Fig. [2.4le) remains high for all
step sizes. The algorithm based on inverse-depth delayed until features not aligned (id-
1) produced the best results exhibiting an stable behavior for all step sizes. Almost all
experiments converged both during the last step (Fig. a) and along the trajectory

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

36 2. Visual Information Management

(Fig. 2.4]c). Almost all features are consistent in the final map (Fig. 2.4b) and along the
steps (Fig. [2.4/f), and the feature usage is the highest (Fig. 2.4]e).

An interesting information about the features usage can be extracted from Figs.[2.4ld, .e.
It can be observed that when an undelayed strategy is selected, the percent of features
used to update the map at each step (Fig. 2.4le) is much lower than the used by the
delayed algorithms even though features initialization requires a lower number of steps
(Fig. 2.4ld). Therefore, delayed techniques provide important benefits due to the fact
that the initial estimates introduced into the map are better with lower covariance.

2.7 Conclusions

In this chapter we have discussed feature parameterization and initialization using bearing-
only measurements. Both considerably affect the results of the algorithms. However,
this chapter shows that even with a perfect feature parameterization, if the initializa-
tion problem is ill-conditioned the results are inconsistent. As conclusion we can state
that in general situations the delayed inverse-depth until features not aligned performs
competitively.

An interesting result of this study is the related to the cartesian parameterization
when it is combined with a finite depth test. It was expected that cartesian algorithm
based in triangulation techniques were to suffer a great degradation of their performance
for small step sizes. However, results show that the algorithm delayed until finite depth
with cartesian parameterization is not very sensitive to the step size and exhibits very
competitive results. Other interesting conclusion is that introducing features earlier in the
EKF does not mean that more/better information will be available to update the state.

In this chapter we have also stated ill-conditioned situations: a pure rotation motion
and features aligned with the trajectory. None of them can be managed in any case.
Some results have been given to detect these situations which will allow the algorithms
to decide which data can be used in each instant.

Chapter 3
Static Map Merging

In this chapter we present a solution for merging feature-based maps in a robotic net-
work with limited communication. We consider a team of robots that have explored an
unknown environment and have built local stochastic maps of the explored region. After
the exploration has taken place, the robots communicate and build a global map of the
environment. This problem has been traditionally addressed using centralized schemes
or broadcasting methods. The contribution of the work presented in this chapter is the
design of a fully distributed approach which is implementable in scenarios with limited
communication. Our solution does not rely on a particular communication topology and
does not require any central node, making the system robust to individual failures. Infor-
mation is exchanged exclusively between neighboring robots in the communication graph.
We give worst-case performance bounds for computational complexity, memory usage,
and communication load. We validate our results trough simulations.

3.1 Introduction

The increasing interest in multi-robot applications is motivated by the wealth of possibil-
ities offered by teams of robots cooperatively performing collective tasks. The efficiency
and robustness of these teams goes well beyond what individual robots can do. In addi-
tion to the classical issues associated to the operation of individual robots, these scenarios
introduce novel challenges specific to the coordination of multiple robots. An important
issue associated to the operation of a robot team is perception. In general, each robot just
observes a portion of the environment. In order to make decisions in a coordinated way,
the robots must fuse their local observations into a global map. Many existent solutions
for single robot perception have been extended to multi-robot scenarios under centralized
schemes, full communication between the robots, or broadcasting methods. In [117] a sin-
gle global map is updated by all the robots. Robots search for features in the global map
that have been observed by themselves along the exploration. Then, they use these coin-
cident features to compute implicit measurements (the difference between the Cartesian
coordinates of equal features must be zero) and use these constrains to update the map.
In [56] maps are represented as constraint graphs, where nodes are scans measured from
a robot pose and edges represent the difference between pairs of robot poses. Robot to
robot measurements are used to merge two local maps into a single map. An optimization
phase must be carried out in order to transform the constraint graph into a Cartesian

37

38 3. Static Map Merging

map. [42] also represents the global map using a graph. Nodes are local metric maps and
edges describe relative positions between adjacent local maps. The map merging process
consists of adding an edge between the maps. Global optimization techniques are applied
to obtain the global metric map. [159] merges two maps into a single one using robot to
robot measurements to align the two maps and then detecting duplicated landmarks and
imposing the implicit measurement constraints. Particle filters have been generalized to
multi-robot systems assuming that the robots broadcast their controls and their observa-
tions [69]. The Constrained Local Submap Filter has been extended to the multi-robot
case assuming that each robot builds a local submap and broadcasts it, or transmits it to
a central node [149]. Methods based on graph maps of laser scans [56L[78[110] make each
robot build a new node and broadcast it. The same solution could be applied for many
existing submap approaches |108].

The previous methods require that each robot has the capability to communicate with
all other robots at every time instant or with a central node. Centralized strategies, where
a central node compiles all the information from other robots, performs the computations,
and propagates the processed information or decisions to all the robots, have several
drawbacks. The whole system can fail if the central node fails, leader selection algorithms
may be needed, and a (direct or indirect) communication of all robots with the central
system may be required. On the other hand, in distributed systems, all robots play
the same role, and therefore the computations can be distributed among all the robots.
In addition, distributed systems are naturally more robust to individual failures. In
distributed scenarios you cannot assume that the robots can communicate with all other
robots at every time instant. A more realistic situation is when, at any time instant,
robots can communicate only with a limited number of other robots, e.g., robots within
a specific distance. These situations can be best modeled using communication graphs,
where nodes correspond to the robots and edges represent communication capabilities
between them. Additionally, since robots are moving, the topology of the graph may vary
along the time, given rise to switching topologies, see for instance [27]. We are interested
in map merging solutions for robotic systems with range limited communication, and
where the computations are distributed among the robots.

There has been an intensive recent research in distributed implementations of the
Kalman Filter that make use of its information form (IF). Measurement updates in IF
are additive and therefore information coming from different sensors can be fused in
any order and at any time. While optimal solutions exist for complete communication
networks [96], for general communication schemes [100,/130] the delayed data problem
leads to an approximate KF estimator. This problem appears when the robots execute the
state prediction without having incorporated all the measurements taken at the current
step. As a result, their estimates become suboptimal and give rise to disagreement. The
effects of this delayed data problem have been studied in [34]. A solution that reduces this
disagreement has been presented [101] and its convergence has been proved in the absence
of observation and system noises. However, this solution does not consider system inputs,
which usually model odometry measurements in typical robotic applications. Therefore,
it does not solve its associated delayed data problem. Other methods have been proposed
that require the previous offline computation of the gains and weights of the algorithm

3. Static Map Merging 39

and that are only applicable when the variance of measurement noises is constant and a
priori known [1]. Due to the limitations of these methods, the formulation of a multi-robot
perception problem as a distributed estimator presents multiple obstacles.

Here, instead we formulate the map merging as a sensor fusion problem, where each
robot can be seen as a sensor and its local map as a measurement. Instead of maintaining
a global estimator, we let each robot maintain its own local estimator, i.e., build its local
map using exclusively measurements acquired by itself. The information received from
other robots is introduced into its estimated global map, but not into its local map. Sensor
fusion approaches [31]| present the inconvenience that the successive measurements, in our
case local maps, from the same robot must be independent. In a map merging scenario
this does not hold, since the local map of a robot is an evolution of any of its previous
maps. However, since we discuss a static map merging where the maps are fused after the
exploration, our approach does not suffer from this limitation. In our solution, the local
maps of the robots are expressed in IF form and they are fused in an additive fashion
using a consensus filter [31,/152] to provide a distributed implementation.

In this chapter, we propose a solution to the map merging problem for a robotic net-
work modeled by a communication graph, where all computations are distributed among
the robots and where, at every time step, robots only use its own (local) data and the
information received from its neighbors in the graph. The solution is based on distributed
average consensus algorithms for data fusion problems [129}[152].

3.2 Problem Description

Throughout the chapter we use the following notation (Table :

Table 3.1: Notation.

Symbol Usage
1,1, 3,7 robot index
r,r',s,s feature index
G index used for referring to the global reference frame and map
t iteration number, t € N
i the r feature observed by the i robot
A s the (r, s) entry of matrix A
A;j the block (7,) of matrix A defined by blocks
[Aijlr.s the (7, s) entry of A;;
M,; size of the map of robot 4
Mg size of the global map

We consider a team of n € N robots with limited communication capabilities. Let G =
(V, €) be the undirected communication graph. The nodes are the robots, V = {1,...,n}.
If two robots i, j can exchange information, then there is an edge (i, j) € £ between them.
Let N; be the set of neighbors of robot 1,

Ni={j|(i,j) €& j#i}

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

40 3. Static Map Merging

The robots have explored an unknown environment. Along its operation, each robot
¢t has observed m; € N features whose true positions are unknown. Based on its own
observations, each robot ¢ has estimated its own pose together with the positions of the
features. It has built a stochastic map with M; = szr + m; szf elements, composed of a
mean X; € R™ and covariance matrix ¥; € RMi*Mi| The constants szr, szf represent
the size of, respectively, a robot pose and a feature position; szr = 3 for planar motions,
where the robot position (z,y) and orientation 6 are estimated; szf = 2 or szf = 3 for
respectively 2D or 3D environments. If x; € R is the vector with the true robot pose
after the exploration and with the true positions of the m; features, then

)A(i = X; + Vi, (31)

where v; is a zero mean noise with covariance matrix ;. The aim is to merge the local
maps to obtain a global estimate of the map.

Let m € N be the number of different features in the environment. As noted above,
each robot i € {1,...,n} has observed m; < m of them. Let x € RM¢ contain the true
poses of the n robots and the true positions of the m features, where Mg = n szr+m szf.
Let H; € {0,1}M*M¢c he the observation matrix that relates the elements in x with the
elements observed by robot i. It is a binary matrix, i.e., each entry is equal to 0 or 1,
where there is at most a 1 per row. Since x; = H;X, eq. becomes

}A(i = HL‘X + vy,

where v; has zero mean and covariance matrix ;. Considering all the local maps together,
we have that

& & = (HT . HD x4+ (V..

We assume that the noises v; are independent since every robot has constructed the map

T

based on its own observations, and thus E[(v7] .. .vn)T (vI...vD)] = diag (%4, ..., %,).

The local map of each robot ¢ is represented in IF form by its information matrix I; €
RMcxMa and its information vector i; € RMe,

I =HI'STHH, iy = HPS ', (3.2)

Given the n local maps in IF form, the operation that merges their information and
produces the global map,

n

Ic = zn:[ic=> i (3.3)
=1

i=1

is additive, commutative, and associative. For this reason, merging the maps in IF form
is a common practice [137]. The mean and covariance matrix of the global map are

%e = (Ie) Vg, Yo = (Ig)™ (3.4)

The goal is for each robot to compute the global map (3.3)-(3.4) in a distributed fashion.

3. Static Map Merging 41

3.3 Distributed Averaging

There is a rich literature in sensor networks, where the observations taken by a set of

sensors are fused in IF form to build a better estimate of a variable. A widely used

distributed sensor fusion method whose convergence conditions and properties have been

deeply studied is proposed in [152]. Each robot i maintains the variables I (t) € RMo*xMa
it,(t) € RM¢ | initialized as

15(0) = HI'S7'H;, iL(0) = HI'S 'k, (3.5)

and updated at each time step t > 0 by
IL(t+1) ZW”JJ L(t+1) ZWMG (3.6)

where x;, 3; is the local map of robot ¢ and W, ; are the Metropolis weights of G given
by eq. (A.3) in Appendix [A] This is a distributed averaging algorithm that, for a fixed
connected communication graph G, or a time-varying jointly connected graph, guarantees
that the estimates asymptotically converge to the average of the initial states,

tlgg IL(t) = Ig/n, tlgglo i (1) = ig/n, (3.7)
being I¢;, i the information matrix and vector of the global map (3.3). More information

about averaging algorithms can be found in Appendlxl Al Then, the variables X5 (t) € RMc
and 3% (1) € RMe*Ma at each robot i € V and each t > 0, defined as

. A -1 . . A -1
xi(t) = (I60) 16, et = (160) (3.8)
asymptotically converge to

lim %5(t) = Xq, lim 3% (¢) = nXg, (3.9)
t—00 t—o00
where X, Y¢ are the mean and covariance of the global map in (3.4). The mean x4 (¢)
and covariance x5 (t) estimated by each robot i € {1,...,n} executing this sensor fusion
algorithm have the following properties:

(i) the mean is an unbiased estimate [152] of the truth x and E [x% ()] = x for all ¢ > 0;

(ii) the temporal estimates are consistent |31, Lemma 2.1] for all ¢ > 0 since the true
uncertainty Q% (t) is smaller than the estimated uncertainty, Q4 (t) < X4 (¢).

This algorithm is fully distributed because the robots only use information about its
direct neighbors in the communication graph (W;; = 0 if j ¢ N;). Besides, under mild
connectivity conditions, it converges to the average even if the communication graph is
time-varying, G(t) = (V,£(t)). The convergence is asymptotic, and hence the global map
is obtained by each robot 7 in the limit as t — oo. However, for complete communication
graphs, the strategy converges in a single iteration.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

42 3. Static Map Merging

3.4 Consensus on the Global Map

Throughout this chapter we assume that the local maps have been previously expressed in
a common reference and the data association has been solved. These issues are discussed
in Chapters[5]and [6] In this section we address the problem of fusing the maps once they
are expressed in the same reference frame, and the robots know the data association.

In the previous section we presented a sensor fusion algorithm [152] (eqs. (3.5)-(3-9))
with several interesting properties. The use of sensor fusion algorithms for merging
stochastic maps has an important difficulty that must be addressed. Sensors usually
observe a set of variables which are a priori known, e.g., temperature, humidity, etc.
Specifically, during the initialization of the algorithm (Section eq. (3.5)) each robot
© knows the observation matrix H; relating its measurements with the variables to be
estimated. In a map merging scenario, this matrix H; relates the local features observed
by robot ¢ with the globally observed ones. However, in our case the robots do not know
the observation matrices since they do not know the whole set of features that have been
observed by the robot team. Initially each robot ¢ exclusively knows the labels £; of its
local features. The goal is that each robot discovers the feature labeling of all the robots
through the interaction with its neighbors. We propose an algorithm where the feature
labeling discovering and the data fusion are executed simultaneously.

After solving the data association (Chapter [5)), each robot i € V has its label set
L;={Li,..., L., } with the labels of its m; features. Two features f} and f from robots
i, j can be fused together if and only if their labels L. = (i,,r,), L? = (i,,r]) have the
same value,

. ./ ,
iy =1, and 7, =71,.

However, in the initialization stage in Section [3.3} (B.5]), the robots do not know the label
sets £; from the other robots, and thus cannot compute their matrix H;.

Throughout the discussion, we use a sorted version of the label sets £; that we term
label vectors L;. In a label vector L;, the labels L = (i,,,) appear sorted following the
lexicographic order (first by i, then by r,). We assume that initially each robot i sorts
its set L; to create its label vector L;, and that it arranges its local map accordingly. The
robot poses which have been estimated are always placed together at the first rows and
columns of the information matrices and vectors. In this case, the labels are exclusively
composed of the robot id. Let |L;| denote the number of labels in L;. Given two label
vectors L;, L;, we say that L, C L; if all labels of L; are contained in L;. We let I" be a
function that joins two label vectors L;, L; and returns a new one L;; with all the labels
in L; and L;, without duplicates, and sorted as prescribed above. It is not difficult to see
that the function I' satisfies the following properties:

(2) T'(Li, Ly) = T'(Ly, L);

(1) T'(Li, Li) = Li;
(dd) (Ls, T'(Ly, Ly)) = T(D(Ls, Ly), Ly);
(iv) L;, L; C (LZ,L)

3. Static Map Merging 43

for any label vectors L;, L;, Lj.

We let H be a function that computes the observation matrix between two label
vectors L;, L; with L; C Lj. H(L;, L;) returns a matrix H! € {0, 1}/Fil s2#xILil == tha¢
relates the Cartesian coordinates of the features with labels L; and the ones with labels
L;. Tt can be seen that A has the property that, if L, C L; C Ly, H(L;, L;) = H;,
and H(L;,L;) = Hj,, then H}Hj/ = Hj, = H(L;,Ly). Additionally, H also satisfies
H(L;, L;) = 1.

Given the labels of all the robots L;, for j = 1,...,n, we let Ly be the global label
vector which contains all the m different labels in Lq,..., L,,

L =T(D(...T(Ly, Ly),...), Ly). (3.10)

Note that the same Lg is obtained if the functions I' are applied to the label vectors
L; in any other order, as long as each L;, i € {1,...,n}, is used at least once. Each
observation matrix H; in is then H(L;, Lg). We propose two alternative approaches
to solve the problem of the global map merging. The first approach begins by reaching
consensus on the global label vector Lg, and then computes the matrices H; and executes
the sensor fusion algorithm in Section The second approach does not require the
initial consensus stage on the global label vector Ls. We let each robot ¢ start with its
own L; and, incrementally, incorporate the new labels discovered in its neighbors data, to
finally discover the full Lg. Simultaneously, each robot ¢ arranges its information matrix
and vector at each iteration ¢ according to this information.

3.5 Partially Distributed Approach

Our first approach to the problem of distributed map merging consists of the following
steps:

1. BFS tree construction: The robots begin by constructing a BF'S spanning tree
in the undirected graph using a variation of the flood with termination algorithm,
see e.g., [109]. As a result, all nodes in the graph know the identity of its parent
and its children in the graph, and also know its role (root, leaf or regular node).

2. Computation of the global label vector: After this, the leaves initiate the
incremental computation of the vector with the labels of all the features observed
by the robots. Robots fuse the label vectors from their children with their own label
vectors and send this data to their parents. When all information is available to
the root, it computes the final global label vector and uses a flooding algorithm to
propagate this information to all nodes in the graph.

3. Distributed averaging: Finally, the nodes compute the matrices H; and initiate
the basic sensor fusion algorithm in Section to compute the global map.

Next, we describe each of these steps in more detail.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

44 3. Static Map Merging

BFS Tree Construction

In order to construct the BES tree, all nodes in the undirected graph must know if they
are the root and also must know which nodes are their neighbors in the graph.

All nodes initialize 'parent id’ to null and ’children set’ to be the set of neighbors. The
root node initiates the process sending a ’parent request’ to all its neighbors. When a
node receives a 'parent request’ message, it checks the value of its 'parent id’; if it is null,
then it updates this value to be the sender id; if the node already has a parent, it replays
with a 'parent reject’ message. If during a step a node receives multiple 'parent request’
messages, it selects as a parent the node with the smallest id and sends a ’parent reject’
message to the other nodes. Nodes remove the parent id from the list of children. When
a node receives a 'parent reject’ message, it updates its children set, deleting the sender
from this set. A node with an empty children set is a leaf.

Some steps of this algorithm are illustrated in Fig. 3.1}

Figure 3.1: Example of BFS tree construction. (a): The root (circle) initiates the
process sending a parent request to all its children (blue arrows). (b): Nodes 3 and 5
update their parent and send parent requests (blue arrows) to all their children. (c):
Node 3 sends a parent reject (red arrow) to node 5 as a response to the parent request
received. Node 5 behaves in the same way. Node 6 selects as parent the node with the
minimal identifier (node 3) and sends a parent reject to node 5; then, it sends a parent

request to all its children. Node 8 updates its parent and sends a parent request to its
children.

Incremental Computation of the Global Label Vector

When a node detects that it is a leaf, it starts the process of computing the global label
vector. Nodes build child label vectors L4 containing their own local labels L; and the
child label vectors L;hﬂd from their child nodes j. Each leave node i builds its child label
with its own local labels, L = [; and sends it to its parent inside an "up’ message.
Each node i in the graph compiles all the child label vectors LM, ..., L;\}i}ﬁw sent by
its children child; and fuses this information with its own identity vector L; to create its
child label vector, L4 = T(T(D(.. . T(L§M9, L),), L;?‘}f}fd”), L;). Once a node 7 has
received "up’ messages from all its children, it sends an 'up’ message to its parent with the

3. Static Map Merging 45

resulting child label vector L4, When the root has received all the information from
its children, it computes the final global label vector, Lg = L. This global vector
contains all the labels of the features observed by all the robots in the team, without
repetition, and sorted in lexicographic order. Then the root sends this final vector Lg to
all its children in a ’down’ message. Every node that receives a ’down’ message, records
the global label vector Lgs and propagates this information sending a ’down’ message to
all its children.

Some steps of this algorithm are illustrated in Fig.

Yo p—)

Figure 3.2: Incremental computation of the global label vector. (a): Nodes 5 and
9 send an up message (yellow arrow) to their parent. (b): The root receives an up message
from node 2. It had previously received an up message from its other children (node 4).
(c): The root computes the final (global) parameter vector and starts a flooding process
to communicate this vector to all the nodes. It sends a down message (pink arrow) to all
its children.

Distributed Averaging

During the execution of the previous phase, all the robots receive the global label vector
L¢. In this phase, each robot ¢ computes the observation matrix H; from its local L; and
the global L¢ label vectors, H; = H(L;, Lg). Robots use their observation matrices H; in
eq. for initializing their estimates of the global map information matrices and vectors
I5(t),i5(t) and they update these estimates with the the sensor fusion algorithm (3.6)).

3.6 Fully Distributed Approach

We let each robot i start with its own L; and, incrementally, incorporate the new labels
discovered in its neighbors data, to finally discover the full Ls. Each robot i € {1,...,n}
maintains a label vector L;(t) with the different labels discovered by itself up to time ¢.
Additionally, it maintains the variables i, (t) € RMi® and I} (t) € RMiW*Mi®) where
M;(t) is the size of its estimated global map at time t, M;(t) = |L;(t)| szf. At t =0,

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

46 3. Static Map Merging

robot i initializes these variables with its own local information,
L;(0) = L;, I5(0) = o1, in(0) = 27 '%,. (3.11)

At each iteration ¢, the robot incorporates into its label vector L;(t + 1) the new labels
discovered from its neighbors data L;(t), with j € N; U {i},

LZ(t + 1) = F(F(g F(Lh (t)’ Lj2 (t))> s)7 LjNi+1 (t))7 (312)

where {j1,...,jn11} = N; U {i}. Then, it arranges the variables I},(t) and i, (t) accord-
ingly, and computes the new values,

It +1) = Z%H%HTJ%)H%H, Gt+1) ZWW ML), (3.13)

where Hi];fﬂ =H(L;(t), Li(t + 1)).

Proposition 3.6.1. The outcomes of the algorithms (3.11)-(3.13) and (3.6) are related
as follows: for allt >0 and all i € {1,...,n},

I5(t) = (Hg)T 166 He ig(t) = (He)'i6(t), (3.14)

where Héf = H(Li(t),Lg). Furthermore, after diam(G) iterations, the result of both
algorithms is exactly the same, i.e., for allt > 0 and all i € {1,...,n},

I§(diag(G) + 1) = I5(diag(G) +1), ig(diag(g) +t) = i(diag() +1). (3.15)

Proof. We only present the proof for the information matrices I5(t) (the reasoning is
analogous for the information vectors i, (¢)). We reason by induction. At ¢ = 0, equa-
tion (3.14) is satisfied since

50y = HI' S Hy = (HE) T I5(0)HEY, (3.16)

foralli € {1,...,n}. Assuming that (3.14)) is true for a given ¢, then for alli € {1,...,n},

IL(t+1) ZWHF ZWH (HENT I (t) HE (3.17)
7j=1

_ (Hgt—i-l)T Z(szf+1)T[] ()H’thtJrl Hz Jgt+1 (Hz t+1)TIG(t+ 1)H1 t+1

J=1

where we have used the facts that for all t > 0 and all 4, € {1,...,n}, HS = Hff+1H’ i
and > 7 W;; = 1. This concludes the proof of - Regarding - note that after
dlam(g) iterations of the algorithm (3.11)-(3.13), each robot ¢ € {1,...,n} has already
incorporated into its label vector 1nf0rmat10n from all the initial 1abe1 vectors L;, for
j =1,...,n. Therefore, for all t > 0, L;(diam(G)+t) = L, where L is the global vector
in (3.10). Then, Hédiam(g)+t = H(Lg, Lg) = I, and the result follows. O

3. Static Map Merging 47

Using the previous algorithm, the robots compute the same global map than if they
were given H; from the beginning, with the additional benefit that the information ma-
trices I5(t) can be inverted for any ¢ > 0 and ¢ € {1,...,n}, since they do not contain
any non informative zero columns or rows. Note that in the basic map merging algorithm
(Section , the information matrices I5(t) are initialized with zero rows and columns
for the features which are not local to robot i. Therefore, they cannot be inverted until
robot i has received informative (non zero) data for all the features. In case all the robots
have observed at least one exclusive feature, the robots have to wait for ¢ = diam(G)
iterations for inverting their information matrices and recovering a temporal estimate of
the global map. However, when the robots use the algorithm ([3.11)-(3.13)), their informa-
tion matrices I}(t) can be inverted for any ¢t > 0 and ¢ € {1,...,n} and thus the global
map can be computed at any step. In the next sections, we will analyze the presented
algorithm in terms of its theoretical and experimental performance. From now on, we let
X (t) € RMi® 1L (1) € RM:(O*Mi®) he the global map estimated by a robot i executing

algorithm (3.11)-(3.13),
xq(t) = (Ia(t)

1 1

il (1), Sat) = (I5) . (3.18)

3.7 Properties

The convergence is asymptotic, and hence the global map is obtained by each robot 7 in the
limit as t — co. However, for complete communication graphs, the strategy converges in
a single iteration. For general networks, the intermediate estimates have interesting
properties that allow their use at any time ¢:

(i) the intermediate estimates X, (¢) are unbiased,
E[x;(1)] =x,
for all £ > 0 and all i € V such that the information matrix I’,(t) can be inverted [152,
Theorem 3|;

(ii) the numerical covariance Qg(t) € RMexMe of xi(t) is bounded by the locally
estimated global map covariance 3, (),

Qit) = B[(%5() — %) (%() =)

. -1 .. —1

= (e (Z([Wﬂi,jfﬂfzfﬂj) (few)
7j=1

for all t > 0 and all i € V such that I%(¢) can be inverted. Since 0 < [W');; <1 for

all i,j € V and all ¢ > 0, then ([W'];;)* < [W'];; and

Qi) < (I5(0) = S5(0)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

48 3. Static Map Merging

where < means that 3% () — Q% (t) is a positive semidefinite matrix [31, Lemma 2.1].
Therefore, the numerical covariance Q% (¢) is bounded by the locally estimated global
map covariance 3(t). In particular, since S () — Q4 (t) is a positive semidefinite
matrix, the elements in the main diagonal satisfy [$4(t) — Q% ()], > 0, and thus
24 (O)]ry > [Q5(t)]rr. Therefore, any decision taken by the robots based on the
entries in the main diagonal of the covariance matrix, can also be taken based on
Yo (t).
Those properties of the intermediate estimates allow the robots to make decisions
based on their global map estimates at every time instant.
Here, we analyze the algorithm complexity regarding execution time, amount of com-
munication, and memory space required. Throughout this section, let M.« be the
highest size of the local map of any robot,

Mupax = max M,;,

ie{1,...,n}
and d,.x be the highest number of neighbors of any robot,
dmax = Mmax } N

i€{l,...,n
For time-varying topologies G(t) = (V,£(t)), dmax is defined as
Amax = max "/\/’Z (t)‘

i€{1,...,n},t>0

Computational complexity per iteration and robot

The consensus initialization operations in the map merging algorithm have a computa-
tional complexity per iteration and robot of O(M3,) that exclusively depends on the

local map size. During the general iterations, the cost is O(dy.x M%) to perform the
matrix additions.

Communication complexity per iteration and robot

Along the consensus iterations, each robot i exchanges its information matrix I%(¢) with
its neighbors, with a communication cost of O(dpaxMz). Notice that each I} (t)s is a
sparse information matrix, where the significant coefficients are grouped around the main
diagonal. Therefore, if a compression algorithm is used, the cost of exchanging I (t) can
be expressed as O(nM?2,_). Alternatively, it can be expressed as O(n +m) if we consider
the local map sizes as constants, giving rise to a total communication cost per robot of,
respectively, O(dmaxnM2,.) or O(dmax(n +m)). In addition, the robots exchange the

label vectors of the features, with a total cost of O(dyaxm).

Space complexity per iteration and robot

Along the consensus algorithm, the maximal space complexity for each robot is associated
to the matrix I}(t) that, as discussed above, can be considered O(n M2,) or O(n + m).

Additionally this algorithm requires extra storage for the label vectors, although it does
not have influence in the worst-case space complexity measure.

3. Static Map Merging 49

Time complexity until completion

As we mentioned before, the consensus is asymptotically reached, which means that the
time until completion is infinite. However, the convergence speed of the averaging al-
gorithm presents a geometric rate for fixed graphs [151], [30] which depends on the sec-
ond eigenvalue with the largest absolute value |Ay(1)| in the Metropolis weights matrix
(eq. (??) in Appendix [A). If we denote v = |[Ao(W)[, it can be shown that each entry
[T5(t)] s, [15(F)]- in the information matrices and vectors estimated by the robots evolve
according to

60 = [Helnsl < (0)'Vrmax {|[7(0)]rs = [Tals |} (3.19)
g} — licl] < (3)'vnmax {|lig(0)} — ficl|} (3:20)

forallie{1,...,n},all ;s € {1,..., M;(t)}, and all t > 0.
For graphs with switching topology G(t) = (V, £(t)), the convergence speed is geomet-
ric if the graph has an interval of joint connectivity 7 such that every subsequence

{G(to ‘I— 1), e G(to +T)}

of length 7 is jointly connected for all ¢y [30]. In these graphs, the 7-index of joint
contractivity 6 < 1 is given by

J = max {|A2(W)| | W primitive paracontractive} (3.21)
EW,

where W, is the set of all products of, at most, 7 Metropolis matrices W (t) that can
be obtained in the communication graph. The convergence speed of each entry [I5(t)],s,
[i,(¢)], in the information matrices and vectors estimated by the robots depends on the
T-index of joint contractivity,

&(0)]rs = Ualral < (07 Vimax {|[IZ(0)],s — [Lg]ral} (3.22)

lic(®)]: — licl| < (5)L3J\/ﬁm?><{|[ié(0)]r — ficl [}, (3.23)

where L% is the largest integer less than or equal to L.

Therefore, the convergence speed depends on the topology of the communication
graph. Moreover, from the time complexity analysis, we can see that when the com-
munication graph is complete, the robots reach consensus in one iteration. For complete
communication graphs, the Metropolis matrix is W = (1/n)117 and |A2(W)| = 0. Then,
IL&(O))rs — [Ia]rs) < 0, [[iL(t)], — [ig]-] < 0forall ¢t > 1, all i € {1,...,n}, and all
r,se{l,...,M;(t)}.

3.8 Discussion

A first set of simulations has been carried out where a team composed by 9 robots has
explored an environment, obtaining a set of local maps (Fig. [3.3|(a-1)). Black dots repre-
sent obstacles, red dots are the ground-truth location of landmarks, blue crosses are the

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

50 3. Static Map Merging

estimates of the landmark positions and blue ellipses are the estimated covariance. Each
robot explores only a small portion of the environment so that none robot observes all
the landmarks. Due to the short trajectories followed by the robots and to the nature of
bearing-only data, landmark estimates present large uncertainty in the local maps. In the
simulation, robots estimate their motion based on odometry information and sense the
environment using a camera device that provides bearings to the landmarks. The goal of

S~ —
P

o
© & & Y o N & o ®

|

Wb

S
+

A/
7 1T

(g) Robot 7 (h) Robot 8 (i) Robot 9

10 -10 -5 0 5 10

Figure 3.3: Local maps obtained by robots 1 to 9 (a-i). Red dots are the ground-truth
location of landmarks. Blue crosses are the estimates of the landmark positions and blue
ellipses are the estimated covariance.

the map merging process is the combination of the local maps to obtain the maximum-
likelihood estimate for the global map (see Fig. . The robots exchange data according
to the communication topology in Fig. 3.4, Each node executes the algorithm described
in this chapter so that their estimates asymptotically approach this maximum-likelihood
global map. Even thought the consensus is asymptotically reached, we can see that in
practice, the convergence of the averaging algorithm is very fast, and in a few steps the
estimates at every robot approach the global map. In Fig. we show the global map

3. Static Map Merging 51

e

R4 R6

A
R7 R8 R9

Figure 3.4: Communication graph between the 9 robots after the exploration.

estimated by robot 7 at iterations ¢ = 1 and ¢t = 10 compared to the centralized global
map t — 00.

Robot 7. t=1 Robot 7. t= 10

- PURPurY +_ 4 3
+ R S 2

N S S-S O S S
¥+
i~
t+
b ek g
+
I S S-S O S S
Ty w
++
g
+
b ik g
¥

~ ﬂ “ o - » ﬂ | - - n

= r\ -8r F'S . -+ : -8r FY Ay -+ :

710 *10//H \’5 /0/ // U5 1\] “ 10 7107*10 -5 0 5 . 10 7107*10 -5 0 5 - 10
(a) t=1 (b) t=10 (c) t =

Figure 3.5: (a) Global map estimated by robot 7 at ¢ = 1. (b) Global map estimated
by robot 7 at t = 10. (c¢) Maximum-likelihood goal global map that is obtained by the
robots as t — oo.

A second set of simulations has been carried out with a team composed by 7 robots
exploring an environment of 20 x 20 m with 300 features, see Fig. Each robot
executes 70 motion steps along a path of approximately 30 m. The robots estimate
their motion based on odometry information that is corrupted with a noise of standard
deviation o, 0, = 0.4 cm for the translations and oy = 1 degree for the orientations. They
sense the environment using an omnidirectional camera that gives bearing measurement
to features within 360 degrees around the robot and within a distance of 6 m. The
measurements are corrupted with a noise of 0.5 degrees standard deviation. Each robot
explores the environment and builds its local map (Fig. . Due to the presence of
obstacles (gray areas), each robot may have not observed some landmarks. Besides, the
precision of the estimated positions (blue crosses and ellipses) of the landmarks depends
on the trajectory followed by each robot. The 7 robots compute the global map as
described in Section under the communication graph in Fig. 3.7 Here, we just
display the global map x4 (¢),X5(¢) at robot 2 after 5 iterations. We provide a deeper
analysis of the performance of the map fusion algorithm under real data and different
communication networks below. Since the communication graph has a high connectivity,
in a few iterations each robot has received information from any other robot. After 5
iterations, the global map at robot 2 already contains precise estimates of the whole
explored environment (Fig. [3.9).

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

52 3. Static Map Merging

-10
-10 -8 -6 -4 -2 0 2 4 6 8

Figure 3.6: A team of 7 robots explore an environment of 20 x 20 m. Gray areas are
walls and red dots are the ground-truth location of landmarks. Initially, the robots are
placed in the black box region. They explore the environment and build their maps. We
display the trajectories followed by robots 2, 3, and 5, together with the final poses of the
7 robots.

Figure 3.7: Communication graph G associated to the final robot poses in Fig.[3.6] There
is a link (blue solid line) between any pair of robot poses (red triangles) that are within
a distance of 3 m.

10

Figure 3.8: Local map estimated by robot 2. The landmarks close to its trajectory
(red line) have been estimated (blue crosses and ellipses) with a high precision. Besides,
its estimated positions (blue crosses) are very close to the ground truth locations (red
dots). Due to the presence of obstacles (gray areas) some of the landmarks have not been
observed, or have been estimated with high uncertainty.

3. Static Map Merging 53

1°mum;gw¢ no ™ e ©
s °
52 & ‘ °
* g» ¢ .
T 4 Y *H* e
$ Y
Qg

0 |
—2% « A*
*
et * 3
6l Yy
; 1
78*# e 3 P

aHH »m

-10
-10

Figure 3.9: Global map x4 (t), Y% () estimated by robot 2 after ¢ = 5 iterations. Red
dots are the ground truth position of the features while blue crosses and ellipses are their
estimated positions. Red triangles are the ground truth poses of the 7 robots after the
exploration, and blue triangles are their estimated poses in the global map of robot 2.

3.9 Conclusions

We have presented a new method for merging stochastic feature-based maps acquired by
a team of robots for scenarios with limited communication. The robots explore an envi-
ronment and build their local maps. When they finish the exploration, they fuse their
local maps and build a global map. The whole method is fully decentralized, relying
exclusively on local interactions between neighboring robots. Under fixed connected com-
munication graphs, or time-varying jointly connected topologies, the estimates at each
robot asymptotically converge to the global map. Moreover, the intermediate estimates
at each robot present interesting properties that allow their use at any time: the mean
of the global map estimated by each robot is unbiased at each iteration; the numerical
covariance of the global map estimated by each robot, which cannot be locally computed,
is bounded by the locally computed covariance. The algorithm is robust to changes in
the communication topology and to link failures. We have studied the performance of the
method for robots equipped with omnidirectional cameras in a simulated environment.
Additional experiments with real data acquired with conventional cameras, link failures,
and changes in the topology, can be found in Chapter [8l To the best of our knowledge
this is the first method that solves the map merging problem in a fully decentralized way.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Chapter 4
Dynamic Map Merging

In the previous chapter we presented a distributed algorithm for merging feature-based
maps in a robot network after the exploration has taken place. In this chapter we discuss
the dynamic map merging case. Along its operation, each robot observes the environment
and builds and maintains its local map. Simultaneously, the robots communicate and
build a global map of the environment. The communication between the robots is limited,
and, at every time instant, each robot can only exchange data with its neighboring robots.
In our contribution to the problem of dynamic map merging we provide a fully distributed
solution which does not rely on any particular communication topology and is robust to
changes in the topology. Each robot computes and tracks the global map based on local
interactions with its neighbors. Under mild connectivity conditions on the communication
graph, the algorithm asymptotically converges to the global map. In addition, we give
means of its convergence speed according to the information increase in the local maps.
We validate our proposal with several experiments.

4.1 Introduction

As previously said, there is an great interest in multi-robot perception in scenarios where
a robot team operates in an unknown environment and individual robots only observe a
portion of it. In such situations, it is of interest for each robot to have a representation
of the environment beyond its local map. The fusion of the local observations of all
the team members leads to a merged map that contains more precise information and
more features. In a static map merging scenario, the information fusion is carried out
after the exploration. Dynamic solutions, where the information is fused while the robots
operate, are more interesting. They enable other multi-robot tasks such as cooperative
exploration, navigation, or obstacle avoidance. In this chapter, we study the problem of
dynamic map merging, where each robot’s communication radius is limited, and hence
the communication topology is not complete.

While multi-robot localization under communication constraints has received some
attention [86,118], most of the existing multi-robot map merging solutions are extensions
of the single robot case under centralized schemes, all-to-all communication among the
robots, or broadcasting methods. Particle filters [69] have been generalized to multi-
robot systems assuming that the robots broadcast their controls and their observations.
In multi-robot submap filters [149] and graph maps of laser scans [146| approaches, each

95

56 4. Dynamic Map Merging

robot builds a local submap and sends it by broadcast to all the other robots or to a central
node. The same solution could be applied for many existing submapping methods [108].
However, in robot network scenarios, distributed approaches are often necessary because
of limited communication, switching topologies, link failures, and limited bandwidth.

Distributed estimation methods [1}40,65,71,96}(100,101,/143] maintain a joint esti-
mate of a system that evolves with time by combining noisy observations taken by the
sensor network. Early approaches sum the measurements from the different robots in IF
(Information Filter) form. If the network is complete [96], then the resulting estimator is
equivalent to the centralized one. In general networks the problems of cyclic updates or
double counting information appear when robots sum the same piece of data more than
once. The use of the channel filter [65,/143| avoids these problems in networks with a
tree structure. The Covariance Intersection method [71] produces consistent but highly
conservative estimates in general networks. More recent approaches [1,140,/100/101] use
distributed consensus filters to average the measurements taken by the robots. The inter-
est of distributed averaging is that the problems of double counting the information and
cyclic updates are avoided. They, however, suffer from the delayed data problem that takes
place when the robots execute the state prediction without having incorporated all the
measurements taken at the current step [34]. For general communication schemes [100],
the delayed data problem leads to an approximate KF (Kalman Filter) estimator. An
interesting solution is given in [101] but its convergence is proved in the absence of ob-
servation and system noises. In the algorithm proposed in [40|, authors prove that the
robots’ estimates are consistent, although these estimates have disagreement. Other algo-
rithms have been proposed that require the previous offline computation of the gains and
weights of the algorithm [1]. The main limitation of all the previous works is that they
consider linear systems without inputs, and where the evolution of the system is known
by all the robots. Here instead we are interested in more general scenarios, without the
previous restrictions. We allow each robot to build its map by using system models not
necessarily linear or known by the other robots, or where the robot odometry is modeled
as an input, among others. A recent work that does not suffer from the previous lim-
itations is given in [87]. Here each robot records its own measurements and odometry,
as well as the observations and odometry from any other robot it encounters. Despite
being very interesting and going beyond the state-of-art, this work has the drawback that
robots must maintain an unbounded amount of memory, which depends on the time be-
tween meetings. Moreover, if a single robot fails or leaves the network, the whole system
fails, and the data association is not discussed. In our case, the information fusion is
carried out on the local maps of the robots for which efficient distributed data association
methods [10] already exist in the literature. Our approach is similar to a sensor fusion
problem, although the classical assumption [31,[153| that successive measurements taken
by a sensor must be independent does not hold here.

We propose a dynamic map merging method where robots average their maps instead
of their raw measurements. The local maps of the robots are expressed in IF form and
they are fused in an additive fashion using the consensus filter. We build on ideas from
consensus algorithms that allow the introduction of new information, regardless of the
independence between successive measurements [59,88]. We use a discrete-time version

4. Dynamic Map Merging o7

of the PI algorithm which is more appropriate for the robot systems we consider. As
weight matrices we use the Metropolis weights [152| which have been shown to perform
quite good in multi-agent systems [31,40,153] and that have the benefit that they can be
locally computed by the robots.

The contributions of this chapter are the following: (i) the proposal of the dynamic
consensus strategy where, at each step, a discrete-time version of the PI algorithm is
executed; (ii) the careful study of the convergence rate of the dynamic consensus strategy;
(iii) the applications of this study to characterize the errors in the map merging and to
understand the trade-offs between the number of iterations and the performance of the
algorithm; and (iv) the implementation for feature-based maps taking into account the
possibly different features discovered by each robot during the exploration.

4.2 Problem Description

Throughout the chapter we let n be the number of robots. Indices 7, j refer to robots, r, s
to elements within the maps, and G to the global map. The superscript £ € N is used for
exploration steps and ¢t € N for iteration numbers. We let I be the n x n identity matrix,
and 0 be a n x n matrix with all its elements equal to zero. When they are followed by a
subindex n; X ng, this specifies their dimensions. We let 1 € R” be a column vector with
all entries equal to 1. Given a matrix W, [W];; denotes its (i,7) entry, \;(W) refers to
its i—th eigenvalue with associated eigenvector v;(IW), and Aeg(W) is the modulus of its
eigenvalue with the second largest absolute value.

We consider a team of n € N robots exploring an unknown environment. At the
exploration step k, each robot i has observed m¥ € N features and it has estimated its
own pose together with the positions of the features. Let the constants szr and szf
represent the size of respectively a robot pose and a feature positionﬂ The estimates at
each robot ¢ € {1,...,n} and each step k are stored into a stochastic map with mean
xF € RM? and covariance matrix PV RMIXME | heing MF = szr + m} szf. Let
x¥ € RM! contain the true robot pose and the true positions of the m/ features, then

X; = x| + vy, (4.1)

where v is a zero mean noise with covariance matrix XF.

If at step k the information from the n robots was available, e.g., at a central node,
then the global map combining the information of the local maps at the n robots at step
k could be computed. Let m € N be the number of different features in the environment
and x € RM¢ be the vector with the true poses of the n robots and the true positions
of the m features, being Mg = n szr + m szf. Each robot i € {1,...,n} at step k has
observed m} < m features and we let HF € {0, 1}M5XMC be the observation matrix that
relates the elements in x and x¥ so that x¥ = HFx. The local map of each robot i
is a partial observation of x,

xF = Hfx + v, (4.2)

le.g., szr = 3 when the robot pose is composed of its planar position (z,y) and orientation 6; szf = 2
or szf = 3 for respectively 2D or 3D environments.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

58 4. Dynamic Map Merging

Robot 1 Robot 2 Robot n Global map
>< e
£ 2{F = e
< e
= 7 e == cooufm —
= :{| N [T il
= &
_'_l ‘*‘
— robot feat.
@.E' u.g ——— ——
= 2 O o (T e coonfls [T = LT

Figure 4.1: Centralized merging of the local maps of n robots in IF form. The global
information matrix I% and vector i are the addition of the local ones IF, i¥, for i €
{1,...,n}. The first rows and columns contain the robot poses, and the last ones, the
feature positions. The elements with zero value are displayed in white. Each robot i has
information of its own pose (light blue) and of the feature positions (dark blue), but it
has no information of any other robot poses j # i (white).

where we assume that the noises Vf,vf' are independent for different robots i # j and

all k, k' € N, since every robot has constructed the map based on its own observations.
Note that since the local map of a robot i at step k£ is an evolution of its map at any
previous step k' < k, then the noises v¥, vf/ are not independent. Let IF € RMe*Mc and
i* € RM¢ be the information matrix and vector of the local map at robot i and step k in
IF form,

I = (YT (S HE, i = ()7 ()% (4.3

for i € {1,...,n}. The information matrix I% and vector i¥, of the global map at step k
in IF form are

Ik = En: IF, ir, = En: ir. (4.4)
=1 =1

The previous operation is additive, commutative, and associative. For this reason, merging
the maps in IF form is a common practice [138]|. Equivalently, the global map at step k
can be expressed by its mean and covariance matrix,

X = (16)7" g, 56 =(5)" (4.5)

Maps in information form have the property that entries (r, s) and r in the information
matrix IF and vector i¥ associated to the elements not observed by robot i are zero
(Fig. white elements). Consider a feature observed by several robots R C {1,...,n}
(Fig. dark blue area). The associated entries (r,s) and r in the global map [I&], .,
(i), are the addition of the different values [IF], ;, [if],, for i € R,

[Ié]r,s = Z[Iz‘k]nm [ig]r = Z[lf]r

i€ER 1E€ER

4. Dynamic Map Merging 59

Here, each robot i reaches a consensus between its own and the others’ values [I}], s, [i}],
for 7 € R. Consider now the estimated pose of a robot i. It was exclusively observed by 1,
and thus for any other robot j # i the associated entries (1, s) and r are zero, [Ij]?]r,s =0,

[iﬁ?]r = 0. Only robot i is providing information of these entries for the global map,

[Ié‘]r,s - [Iik]r,sa [lg]r = [lf]h

and thus it is clear that here there is no need for consensus. The dynamic map merging
problem can be separated into two parts. The first part consists of propagating the rows
and columns of IF, i¥ associated the pose of a robot j. Any other robot i # j just
incorporates this data into its global map. The second part, which consists of reaching a
consensus on the entries associated exclusively to features, is discussed along the following

sections.

Problem 4.2.1. We consider n € N robots exploring and acquiring local maps at some
exploration steps k = 1,2,... as in eqs. —. The communication is range-limited
and two robots can exchange data only if they are close enough. We let GF = (V, EF) be
the undirected communication graph at step k. The nodes are the robots, V = {1,...,n}.
If robots i, j can communicate then there is an edge between them, (i,j) € EF. The set of
neighbors N¥ of robot i at step k is

NE={j|(,j) €& j+#i}.

The goal is the design of distributed algorithms so that each robot v € V computes and
tracks the global map in egs. (4.4)-([L.5]) based on local interactions with its neighbors NF.

4.2.1 Proportional Integral (PI) Averaging Algorithm

We propose a map merging algorithm based on averaging algorithms. They have become
very popular in sensor networks due to their capability to reach agreement in a distributed
way. In praticular, we use a discrete version of the Proportional Integral (PI) estimator
in [59], where each robot i € {1,...,n} has an input u; € R. It maintains variables
x;(t), w;(t) € R and updates them by the following rule,

i) = =y @i(t) = [Weliy [wi(t) — 20 + Y Wil [wi(t) — w;()] + 7 w,
i i
wi(t) = =Y (Wil [wi(t) — 2;(1)], (4.6)

JFi

where Wp and W are respectively the proportional and the integral weights matrices.
Those weights are compatible with the graph, so that [Wp|;; = [Wpl;; = [Wili; =
[Wil;: = 0if robots ¢ and j cannot communicate, j ¢ A;. The parameter v > 0 establishes
the rate at which new information replaces old information. It allows the network to slowly
forget errors introduced by robots entering or leaving the network.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

60 4. Dynamic Map Merging

If the inputs and variables at the n robots are considered simultaneously, u € R" =

(g, .. u,)t, x € R® = (2q,...,2,)7, w € R" = (wy,...,w,)", then the PI estimator
can be expressed in matrix form as follows,
x(t) | [-—I—-Lp LT x(t) v
{ wit)] - { Lo w0 ™ 47

where Lp and L; are the Laplacian associated to respectively the proportional Wp and
the integral W, weight matrices,

Lp = dlag(Wpl) — WP, L[= dlag(W[]_) — W].
Let ex(t) € R™ be the error vector,

T
ex(t) = x(#) — %u,

and II be the matrix II = [— % If each robot i € {1,...,n} executes the PI algo-
rithm (4.6) with v, Lp and L; so that

rank(L;) =n — 1, (4.8a)
¢ € R is such that II(Lp + LE)IT = 2I1, (4.8b)
~ > 0 is chosen such that v +¢ > 0, (4.8¢)

then, for any input u and any initial states x(0), w(0), the error vector ex(t) converges
to 0 exponentially as ¢ — oo |59, Theorem 5|.

The variables z;(t) asymptotically reach the same value for all i € V, i.e., they reach a
consensus, and moreover, the consensus value is the average of the inputs. Observe that
each robot i updates its variables x;(t), w;(t) using local information since the weights
matrices have zero entries for non-neighboring robots, [Wpli, j = [W;]i,j = 0 when j ¢ N.

A common choice for the weights matrices in distributed averaging are the Metropolis
weights W), € R™™ [152] given by eq. in Appendix[A] where each robot can compute
the weights that affect its evolution using only local information. The Metropolis weights
matrix Wy, is compatible with the graph, [Wy];; = [Wa];; = 0 if robots ¢ and j cannot
communicate. Besides, for undirected graphs, W), is symmetric and doubly stochastic
Wi = Wi, Wiyl =1, 1TW,, = 1. Tt has an eigenvalue at 1, and all its other eigenvalues
A(Wy) € (—1,1). Tts associated Laplacian,

LM = d1ag(WM1) - WM =1- ij, (49)

is symmetric and positive semidefinite [27, Theorem 1.37]. It has an eigenvalue at 0,
and all the others A\(Ly) € (0,2). Ly satisfies for connected graphs. It also
satisfies for ¢ = 0 taking into account that IT(Ly, + LI)IT = 2L, since Ly is
symmetric, and that L, is positive semidefinite. Then, condition (4.8c|) reduces to v > 0.
Thus, for connected graphs, the PI algorithm (4.7) with symmetric Metropolis weights
matrices Wp = W; = W), converges to the average of the inputs.

Along this chapter, we consider a discrete version of the PI algorithm, with equal and
symmetric Laplacian matrices Ly € R" so that Lp = L; = Ly, ij} = Ly. We let W

4. Dynamic Map Merging 61

be its associated weights matrix, Ly = diag(WW1) — W. Then, we extend these results
to the particular choice of the Metropolis weights matrix W = Wj,. We use the notation
Ai(A) for the i eigenvalue of a matrix A, and v;(A) for its associated eigenvector. When
the matrix is not specified, \; refers to the Ly,. We let r = \/Lﬁl be the eigenvector of Ly,

associated to the eigenvalue 0, and [r Sy ... S,] = [r S] be a basis of eigenvectors of Ly .

4.3 Consensus on Constant Scalar Inputs

We start by considering a simplified version of Problem [4.2.T] where there is a single
exploration step k. Instead of an information matrix and a vector, each robot ¢ € VV has
a single scalar input u; € R. The global data x € R is the sum of the inputs u; and we
let z,,4 € R be their average,

= 1< 1
To = Zui, Tavg = Zui = ¥ (4.10)
i=1 =1

The goal is that each robot i € V computes an estimate z;(t) € R of z4,, by local
interactions with its neighbors ;.

The previous simplified problem can be solved by distributed consensus algorithms [113]
for systems with constant inputs. In particular, we analyze in depth a discrete version
of the Proportional Integral (PI) estimator [59] in the context of dynamic consensus. As
we will show, the capabilities of the PI for re-using past information are crucial for the
considered map merging scenario.

Discrete-time algorithms are more appropriate for the robot systems we consider.
In this section we analyze a discrete-time version of the PI algorithm (4.7) with equal,
symmetric, positive semidefinite Laplacian matrices Ly, € R™ so that Lp = L; = Ly,
L, = Ly and we let W be its associated weight matrix, Ly = diag(W1) — W. We
analyze its convergence properties and its convergence speed depending on the step size h
and the parameter . The theoretical results we give are general for any weighting matrix.
We later extend them to the particular choice of the Metropolis weight matrix W = W),
(eq. in Appendix [A]) and its Laplacian matrix Ly = Ly given by eq. (4.9). From
now on, we let r € R” be the eigenvector of Ly, associated to the eigenvalue \;(Ly) = 0,

r=1/vn. (4.11)

We let Sy, ..., S, be the remaining n — 1 eigenvectors of Ly, so that [r Sy...S,] = [r 5]
is a basis of eigenvectors of Ly,

with the eigenvalues sorted as A\ (L) <,...,< Ay(Lw). This orthonormal basis exists
since Ly, is symmetric with real entries. For connected communication graphs, all the
other eigenvalues Ao(Ly), ..., A\ (Ly) are strictly greater than zero and we let L%,;l be

LY = @ -1 (Lw + rrT)f1 (I—rr"). (4.13)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

62 4. Dynamic Map Merging

For all i € V we let b; = b(\;(Lw)) be

b = b((Lw)) = /(v + ML) = (2 (L)) (4.14)

The discrete-time consensus algorithm with constant scalar inputs, with equal and
symmetric Laplacian matrices Ly, and step size h > 0 is given by

{ v)f’((lﬁ?fj_rll)) } =4 [v):f((?) } + [hgl } u, with (4.15)
ATl e [ey } ' (4.16)

The parameter p > 0 weights the relative effects of the Proportional and Integral compo-
nents. In the following we focus on the study of the system for the case u = 1 and we give
conditions on parameters h, v that ensure the convergence in real scenarios. The optimal
combination of the proportional and integral weighting matrices depends on the graph,
and on h and . The analysis of the properties for each case can be done as a replication
of the theoretical analysis presented here. Note that this algorithm is fully distributed as
each robot updates its states using information from its immediate neighbors. Along this
section we will show that under certain conditions, the states at the robots asymptotically
converge to the average of the inputs, z;(t) — 4., as t — 00; equivalently in vector form,
that x(t) — 124, We let the vectors x, and w, € R” be

X, = 1’ U = 124,,, w, = rr’ w(0) — vLE,;Uu, (4.17)

where r and L%,;l) are given by eqs (4.11) and (4.13).

In order to analyze the convergence conditions and convergence speed of algorithm ,
we first analyze the eigenvalues of the system matrix A in eq. (4.16). The following re-
sult establishes a relationship between them and the eigenvalues of the Laplacian Ly,
associated to the weight matrix.

Proposition 4.3.1. For each eigenvalue \;(Lw) of the Laplacian Ly associated to the
weight matriz, there exist eigenvalues \;(A) and \,1i(A) of the system matriz A in

eq. (4.16),
MN(A) = 1= h(y+ N(Lw) +5) /20 Ass(A) = 1= h(y+ N(Lw) —b) /2, (4.18)

fori €V, being b; given by (4.14). Note that for \i(Lw) = 0, eq. (4.18)) gives A\ (A) =
1 —hy and A\p11(A) = 1.

—’}/I — LW LW
L 0
between the eigenvalues and eigenvectors of A and Z for all i € {1,...,2n} is

Proof. Denote Z = }, such that A = Iy,x2, + hZ. The relationship

M(A) = 1+ hni(2), vi(A) = vi(2). (4.19)

4. Dynamic Map Merging 63

We define the change of basis Y = PTZP, with

I'SQ...Sn 0

0 rSy.. .S, | (4.20)

where [r SyS,] is an orthonormal basis of eigenvectors of Ly, as in eq. (4.12), so that
the eigenvalues and eigenvectors of Z and Y are related by

We focus on the matrix Y,

—AL—[r S]TLw[r S] [r ST Lw[r 9]
Y= { o ST Ll 8] 0 }) (4.22)

which because of eq. (4.12)) is equal to

Y — dlag(_’y_)‘h’_’y—)‘n) dlag<)\17a)‘n)
N —diag(A1, ..., \n) 0

9

where each A\; = \;(Ly) and we have omitted (Ly) for clarity. By solving for Yv;(Y) =
Xi(Y)vi(Y), we get the following expression for the eigenvalues of Y, for all i € V:

_’Y+/\Z+b,

’Y—i‘/\l—bZ
2 ’ '

)\i(Y) = 9

Anti(Y) = (4.23)

Its eigenvectors v;(Y), v, (Y") have all its elements equal to zero but the i—th and the
(n 4 7)—th components,

[vi(Y)]i =1, Vi(Y)]nri = =Ai(Lw) /N (Y),
[Vnti(V)]i = 1, Vnti(V)]nti = = Ai(Lw) [Ani (V). (4.24)

Combining eqs. (4.19),(4.21)),(4.23)), the expression for the eigenvalues of A in (4.18) is
obtained. []

Proposition 4.3.2. If the step size h and the parameter v satisfy

v = 3/2 Au(Lw), (4.25a)
hy <3/2, (4.25b)

where A\, (Lw) is the mazimum eigenvalue of Ly, then all the eigenvalues of A in (4.18))
are real. For connected communication graphs, all of them but \,11(A) = 1 have modulus
strictly less than one.

Proof. The eigenvalues of A are related to the ones of Ly, by as stated by Propo-
sition All the eigenvalues \;(Lw) are real and positive because Ly, is positive
semidefinite. Since both and h are real, the imaginary part of \;(A) is £Im [b;], which
is 0 because of (4.25a). As a result, all the eigenvalues of A are real.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

64 4. Dynamic Map Merging

Regarding the modulus, first note that for connected graphs \; > 0 for all i €
{2,...,n}. Due to b; given by eq. satisfies v < b; < 2/v/37, and both
Ai(Y) and A\, 1(Y) in eq. (4.23)) are decreasing functions satisfying —4/3 v < \;(Y) < —7,
—1/3 v < X\i(Y) <0, forall i € {2,... ,n}.

We first consider the eigenvalue A;(A) = 1 — h7y. It is strictly less than 1 since h > 0,
v > 0, and it is greater than —1/2 because of (4.25b). Then, its modulus is strictly less
than 1. For alli € {2,...n}, both \;(A) = 14+hN(Y) < 1and A\ (A) = 1+ 0N 4(Y) <
1, since h > 0 and A\ (Y) < 0,\,(Y) < 0. Besides, \;(A) > 1 —4/3hy > —1, and
An+i(A) > 1 —1/3hy > 1/2. Then the modulus of both \;(A) and A,;(A) are strictly
less than 1. Finally, A,;1(A4) = 1 as stated in Proposition [£.3.1] O

In particular, the selection of v > 3 and h < 3/(27y) when the Metropolis Laplacian
matrix Ly (eq. (4.9)) is used, satisfies Proposition [4.3.2]for any connected communication
graph, since its eigenvalues satisfy Ai(Ly) =0 and 0 < A\;(Ly) <2 foralli € {2,...,n}.

We discuss now which one is the second eigenvalue A\eg(A) of A with maximum absolute
value. Observe that \,;(A) > 1/2 is decreasing, thus the greatest absolute value of
Anti(A) for i € {2,...,n} is associated to A\,42(A). Also \;(A) is decreasing and takes
both positive and negative values. For all ¢ such that X\;(A) > 0, the associated A,;(A)
has greater modulus. For all ¢ such that \;(A) < 0, the maximum absolute value is
associated to A, (A). We conclude that \eg(A) = max{\,12(A), =\, (A)}.

At this point we are ready to prove the convergence of algorithm (4.15) and to char-
acterize its convergence speed.

Theorem 4.3.3. Let Ly be the positive semidefinite Laplacian matrix associated to the
connected undirected communication graph G. Let us consider that the robots execute
algorithm (4.15)) with a step size h > 0 and a parameter v > 0 as in Proposition .
Then, for any input u € R™ and any initial states x(0) € R", w(0) € R", the states
x(t) € R", w(t) € R" of the consensus algorithm (4.15) converge exponentially to
lim x(t) = x,, lim w(t) = w,, (4.26)
t—o00 t—o00
as t — 0o, where x, and w, are given by (4.17). Moreover, if we let 5 = 2+/10/3, then

the error vector exw(t) = (x(t)7, W(t)T)T — (XZ,W*T)T after t itemtion satisfies

HGXW<t)||2 < B)‘teff(A) ”€XW<O)||2 . (4.27)

Proof. First we prove the convergence. Let us assume that the relation in (4.27)) is true.
Since h and ~ satisfy conditions (4.25a))-(£.25D]) then, as stated by Proposition [4.3.2]
|An+1(A)| = 1 and the other eigenvalues have modulus strictly less than one |\;(A)| < 1.
In particular, this is true for Aeg(A), and thus A\,;(A) tends to 0 as ¢ — oo and the norm
of the error ||exw(t)||, converges to zero.

2All along this chapter, we characterize the convergence speed for an even ¢ in order to give more
accurate bounds.

4. Dynamic Map Merging 65

Next, we prove that the error vector satisfies (4.27). The discrete time consensus
algorithm (4.15)) expressed in terms of the error exy(t) is

exw(t + 1) =A exw(t)a exw(t) = At exw(o)-
We define the following change of basis,
C =PTAP =1+ hY,

where P and Y are given by (4.20) and (4.22), and we let e,, be the error in the new
coordinates,

sy (t) = PT eyn(t), exw(t) = P egy(t), (4.28)

which has the same Euclidean norm, ||exw(t)||; = [|ezy(t)|l,. We focus on the system in
the new coordinates,

eay(t +1) = C egy(t), eay(t) = C* ezy(0),

where the initial error is e,y (0) = (z(0)7,y(0)")” — (2, y!)". By applying the change of
basis to (4.26)), the limit values in the new coordinates are

[rTu B r'w(0)
Zy = |: 0, :|) Y« = |: —V(STLWS)_ISTU) (4'29)

where r’w(0) = [y(0)];. Note that as a result the component [,y (0)],+1 of the error in
the new coordinates is zero. Let us decompose the initial error into a linear combination
of the eigenvectors of C,

2n

eay(0) =Y a; vi(C), (4.30)

i=1
where it can be seen that for all i € {1,...,2n}
Xi(C) = Ni(A4), and v;(C) = v;(Y), (4.31)

being A;(A) and v;(C) given by respectively egs. (4.18) and (4.24). Now we compute the
coefficients a;, a,+; in eq. (4.30) as follows. Each pair [e,y(0)];, [€4y(0)]n+i of elements in
ezy(0) give two equations on a;, a4, for i € V,

[ezy(o)]i =a; + Qptis
[eay (0)ln+i = —aidi(Lw) /Ai(Y) = angidi(Lw) / Ansi(V),

For i = 1, the previous equations give [,y (0)]1 = a1 + ap+1 and [ezy(0)],+1 = 0. Thus, we
can chose the first coefficient a; to be the first element in the error vector, a; = [e,y(0)]1,

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

66 4. Dynamic Map Merging

and its associated a,, .1 = 0. Proceeding in a similar fashion with the remaining coefficients
i, Gpii, for i € {2,...,n}, we get

= =20 (fey (Ol + 570 ey (0.
Ai(Lw) Anti(Y)

onys = 22 ([ezym)]nﬂ- n [ezy«)m) , (4.32)

Xi(Lw)

where b; is given by (4.14)). With the initial error decomposed as in (4.30]), the error after
t iterations can be expressed as follows

2n
eay(t) = C" e,y(0) =D a; Mi(C)' vi(C),
i=1
which combined with and gives
€2y (1)]1 = (Al(A))t €2y (0)]1, ey (t)]nt1 =0,

and for all i € {2,...,n},

€2y (D)]i = Cinti [€ay(0)]nri + ciy [€2y(0)];, (4.33)
[ezy(t)]n-H = —Cin+i [ezy(o)]i + Cntinti [ezy(o)]n+i>
with
Cimti = Mi(Lw) [Anyi(A))" = (Ni(A))] /b, (4.34)

Cii = [Mri(Y) Anri(A4))" = M (Y)(Ni(A))'] /bs,
Cntimti = [=Ai(Y) Pngi(A)" + Ay (V) (Ni(A))] /bs.

2 of the error vector at iteration ¢, is given by

The squared Euclidean norm |le,y (t)][5

n

leay (D15 = D (leay (0)]:)* + ([eay ()]nt)* = (Aa(A)* ([eay (0)]1)*+

i=1

+ Y (i T) (eay (0] + D (G i + Ehinri) ([eay (O)]r)*+

=2 =2

+ Z 2Cinyi(Cii = Cntim+i)[€ay (0)]i[eay (0)]nts, (4.35)

i=2
where

2Ci,n+i<ci,i - Cn-i-i,n-l-i) = _2)\i(LW)<f>[;2+)\i(LW)) ((An'i‘i(A))t - ()‘i(A))t)2 :

)

4. Dynamic Map Merging 67

Note that when kja and kb have the same sign, then |kja — kob| < max{ky, ks } max{a, b}.
By taking into account that both (\,;;(A))" and (\;(A))! > 0 for ¢ even, and that 1/b; <
/v, Ai <2/3y, max{—=X\;(Y), =An4i(Y)} < 4/3, then it can be seen that

& oyi < (2/3)°N%(A),
ma’x{ci+i,n+i7 0121} < (4/3)2/\§ff(14>7

12¢i n4i(Cii — Cnsimra)| < (20/3)A2(A).

In addition,

n

D eay (0)]ileay (0nss] <> (max{|[eay (0)]il, lleay (0)]nsil})? < lleay (015 -
i=2 i=2
Combining the previous results, we get

leay ()15 < 40/3°X2(A) lleay (0)]]; - (4.36)

Then, [[exw(t)||y = |lesy(t)]], satisfies

lexw (£)]l5 < 2V10/3 Mg (A) [lexw (0)]l, , (4.37)
as in eq. (4.27) and the proof is completed.]

The convergence speed in Theorem [4.3.3|depends on Aeg(A) = max{A,42(4), =\, (A)},
which is related to the eigenvalues \o(Lyy), A, (L) of the Laplacian Ly, of the communi-
cation graph. These eigenvalues depend on the graph topology and require global infor-
mation of the network. In Chapter[7.3|we propose a distributed algorithm that allows each
robot to compute the leading eigenvalue A\,(Ly) and the algebraic connectivity As(Lyy)
of the Laplacian; alternatively, other distributed methods [58,63| could be used. Then,
the robots can compute \,(A), \,12(A) and find the one with the largest absolute value.
In this case, they can also compute the optimal step size h* such that —\,(A) = \,412(A),

h* = 4/(27 + An(Lw) + Aa(Lw) + by — by). (4.38)

4.4 Dynamic Averaging Strategy

Now we consider the dynamic scenario, where each robot i observes its input u?, whose
value varies along the steps £ = 1,..., K. The goal is that each robot computes and
tracks the average of the inputs % v uf up to step k.

We adopt an strategy where, each step £ = 1,..., K, the robots run the consensus
algorithm in Section to compute the average of the inputs up to step k (Figlt.2).
They initialize their consensus filters with their previous average estimate. They execute
a total number of L consensus iterations, divided into [iterations per input update step,

and the remaining L — [(K — 1) after the last step.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

68 4. Dynamic Map Merging

Input update steps

t=1

t=2

Consensus iterations

t=l

Figure 4.2: Dynamic consensus. Each robot i € {1,...,n} observes its inputs u¥ at
the input update steps k = 1,..., K. Between any two input update steps, they execute
[consensus iterations to compute the average of the inputs. Then, they use these average
estimates as an initial solution for the consensus iterations in the next step.

Remark 4.4.1. Throughout this section, we consider that the mazximum number of con-
sensus iterations L is limited by the problem requirements and it is a priori given to the
robots. This value L may depend, e.q., on the amount of energy each robot has for car-
rying out its operation, the power consumption of each data exchange operation, and the
enerqy assigned to other robot tasks. We consider that the number of iterations per step
[is also established a priori. It may be selected so that the timespan of input update
steps 1s the desired one, taking into account the time consumed by the computation and
communication operations executed by the robots.

In case the robot team does not have any of the previous limitations, then the robots
can select the desired I¥ for each step so that their estimates reach a certain precision.
For instance, if their goal is maintaining a relative estimation error of € at each step k,
|| ek (1) ‘2 / ||efm,(0)||2 < e, then, from eq. ([£.27)), the desired value of I} would be

i > (log (€) — log (8)) / log (Aer (A)) .

We do not specify the number of local observation-estimation iterations carried out by
each robot between consecutive steps k and k + 1. Using this strategy, if a map update
step starts, and a robot is not ready for transmitting its updated local map, it can act as
if it was disconnected from the communication network. [

From now on, we add the superscript k to the Laplacian L¥, which its associated to
the communication graph G* = (V,&*) at step k and we let [r S5...S5%] = [r S¥] be
a basis of eigenvectors of L, as in eq. (4.12). Note that the eigenvector r is common
to all the Laplacians L¥,. We let A* be the system matrix associated to L¥, given
by (£.16). We also add the superscript k to the inputs u* = (uf,...,u¥) and the states

rn

xF(t) = (2h(t),...,28(t)), wF(t) = (wh(t),...,wE(t)) of the consensus algorithm with

n n

constant inputs (4.15)) to identify the associated step k. We define x* and w¥ € R" as we

4. Dynamic Map Merging 69

did in the previous section but using the variables at step k,

x" = rrfu* = 1%1@7 wh = rrTw*(0) — y(LE,) " Pu*, (4.39)
being r, (L¥,)"Y as in (£.11), (£.13), and let A, be
A= max Ag(AY). (4.40)

ke{l,...,K}

The proposed dynamic consensus algorithm is detailed in Algorithm [4.4.1] where the
step size h > 0 and parameter v > 0 of the consensus algorithm with constant inputs
(Algorithm lines 6 and 13) are as in Proposition for all k. In the same way
that the consensus algorithm with constant inputs was fully distributed, the dynamic
consensus algorithm is distributed as each robot updates its data by local interactions
with its neighbors.

Algorithm 4.4.1 Dynamic consensus algorithm - Robot ¢
. — Inttialization at k=1
. 2%(0) = 0,wF(0) = 0, u¥ < current local map
: —Algorithm
: for each step k=1,..., K —1do

1
2
3
4
5: execute algorithm ([4.15)) for ¢ = [iterations:
6
7
8
9

[2%(t), wk ()] = consensus_alg (uf, 2F(0),wk(0))

3 2 17 3

initialize the states with the previous estimates:
2§ (0) = 2f(t), wf(0) = wi(t),

(2 3
u¥ + current local map

10: end for

11: — Final step at k=K
12: execute (4.15)) for the remaining ¢t = L — (K — 1)l iterations:

13: [2¥(t), wF(t)] = consensus_alg (uf (O), wk(0))

7 1 ’L 7

The rate of convergence for the dynamic consensus algorithm (Algorithm de-
pends on (7) the initial input and graph at & = 1, and (i7) the changes on both the
input and the graph topology during consecutive steps. We let o and o represent this
information,

a=qy for k=1, o= max oy, (4.41)
k{1, K1}

with ap = ([r"utll3 +2[[(Z4) ’“HQ)W
and oy, = ([|r"(u* — w5+ 7)1 (Lyy) TVt — (L H TP)Y, (4.42)
As the following result states, under mild connectivity conditions on the communication

graphs G*, the states z%(¢) at each robot i correctly track the average of the inputs m(wg
for each k.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

70 4. Dynamic Map Merging

Theorem 4.4.2. Assume all robots in V' execute the dynamic consensus strategy detailed
wn Algorithm and that their undirected communication graphs G are connected for
any step k € {1,...,K}. Then, the states x*(t) € R", w*(t) € R" of Algorithm m
converge exponentially to

*) * 9
t—o00 t—o00

lim x*(t) = x* lim w"(t) = w" (4.43)

as t — oo, where x¥ and w* are given by (4.39). Moreover, the error vector ef (t) =
()T, (wh ()17 = [(x5)T, (WE)T]T for each step k € {1,..., K} aftert iterations, with
t even, satisfies

lebw @l < e @], < afilt) + ogi(t), (4.44)
k—2
Fi(t) = BENHEDL g () = BALS “(BAL)P,
p=0

where [is the number of iterations of the consensus algorithm with constant inputs executed
per input update step, = 2v/10/3, and A, a and o are given by egs. (4.40) and (4.41)).

Proof. The convergence of the states x*(t) € R" and w*(¢) € R” to x* and w” in ([4.39)
is a consequence of Theorem Regarding the convergence rate, as stated by Theo-
rem [4.3.3] the error vector after [iterations satisfies

lef (D], < BAL [|eky, (0)]], - (4.45)

The final error vector e (1) at step k and the initial error vector e¥11(0) at the next step
k + 1 are related as follows:

k k+1
0 =+ | B | - | | (4.46)
Combining the previous results we get

el < BATE [les (O]

k—2 k—p—1 k—p
X — X
+ 5>‘i § (B)\i)p { Wk—p—l _ Wk—p :|) (447)
=0 * * 2

where at step k = 1 the states are initialized with zeros (Algorithm line 2), and
thus the initial error at step & = 1 and iteration ¢t = 0 is el (0) = [(—x})T, (—w})T]T.
We compute the norm of the initial error ||el, (0)]|2 and obtain « in eq. (4.41]), where
we have used the fact that ||(a”, bT)THz — |lal|> + [|b]|2. Proceeding in a similar fashion,
for k = 1,...,K — 1, the norms ||((x} —xM*)7 (wh — wtt)T)T|| are equal to oy in

eq. (4.42)), and thus they are smaller than o in eq. (4.41)). We finally obtain the expression
in eq. (4.44) and the proof is completed. 0

4. Dynamic Map Merging 71

The interest of the proposed dynamic consensus algorithm is that the robots use the
estimates at the previous step k — 1 for initializing their estimates at step k. As it can be
seen from the rate of convergence,

=
BNy 1 BN (BALY oy,

p=0

errors associated to previous steps 51“)\?(#1)[0(1, and BAL(BA)PP 1o, forp=1,... k=2,
are small since they have already been reduced by the execution of the algorithm. The
error associated to the last step S\ o1 depends on the variation of the input and graph
topology between steps k£ — 1 and k. Consider instead a zero-initialization strategy, where
at each step k the robots discard their old estimates and compute the average at step
k from scratch (initializing their estimates with zeros). The rate of convergence of this
zero-initialization strategy would be given by

B)\iOék

Note that the term a4 given by eq. depends on the input and the graph itself. There-
fore, if the variation of inputs and graph topologies o, are small compared to the input
itself ay, then the dynamic consensus algorithm is preferable to the zero-initialization
strategy.

Theorem [4.4.2] can further be used to analyze the behavior of the algorithm under
changes in the communication graph. So far we have assumed that at each step k, during
the [iterations employed by the robots to reach consensus on the average of the input u*,
the graph G* remains fixed. Now consider instead that after ¢+ < [iterations we let the
graph change. This is equivalent to having a new step k+ 1 with a smaller [, and with the
new graph G**! and with the same input, u* = u**!. In this case, the additional error
introduced due to the graph change o}, in eq. is y||(LEFYEDuk ||y Therefore,
as long as the changes in the topology o1 are small and slow enough compared to the
number of iterations ¢ and [, the algorithm will correctly track the average of the inputs.

4.5 Dynamic Map Merging Algorithm

We adapt the dynamic consensus strategy (Algorithm presented in Section to
operate on matrices and vectors instead of on scalar inputs. This generalization is key for
merging feature-based stochastic IF maps.

The local maps to be merged given by are represented by a Mg x M information
matrix and an information vector of size M. The robots execute in parallel many
instances of Algorithm on each entry (r,s) within its information matrix and on
each r entry within its information vector, for r,s € {1,... ,M(;}EI. Let us add the

subscripts {I,7, s} or {i,r} to the variables u¥, x%(t), w¥(t) to identify the instance we are

3Initially, this would suppose a total of MZ% + Mg instances of the consensus algorithm. However,
since the information matrix is symmetric, it only has 2 Mg(Mg + 1) different entries. Therefore, the
robots actually execute M¢ + 3 M (Mg +1) instances of the consensus algorithm instead of Mg +MZ,.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

72 4. Dynamic Map Merging

referring to. At step k, each entry within the information matrix [I}], s and vector [if], of

(2

the local map of robot i € V (4.3)) is used as an input for an instance of Algorithm [£.4.1]
Uf {Irst = [If]r,s> uf {ir} = [ii‘c]m

forr,s € {1,..., Mg}. The states 2%(t) of all the instances of Algorithm at iteration
t and robot i € V are arranged into the temporal information matrix IF(t) € RMe*Ma
and vector i¥(t) € RM¢ as follows,

[TE ()]s = 25 (1) (10 i ()] = 27 () 10,

for r,s € {1,..., Mg}. For each robot i € V, k € {1,..., K}, t =0,1,..., we define its
estimate of the mean x¥(t) € RM¢ and covariance X¥(t) € RMe*Mcé of the global map,
at iteration t and step k as

xE(1) = (IF) 7 i), SHE) = (I5®) " /n. (4.48)
Recall our discussion in Section about the two parts of the dynamic map merging:

(i) propagating the rows and columns of I, i¥ associated the pose of a robot j; and (i)
reaching consensus on the entries associated exclusively to features through the instances
of Algorithm [1.4.1] In eq. we are assuming that the information concerning the
poses of the robots has already been received by the robots and incorporated into their
information matrices and vectors.

For simplicity, we are presenting the structures of the information matrices and vectors
i¥(t), IF(t), as fixed and known by all the robots. Actually, the robots discover the features
observed by the others in the messages exchanged at each iteration, see Chapter [5] for a
detailed discussion of this issue. Robots use this information to introduce new columns
and rows into their information matrices and vectors. If a robot has never received
information of a feature, e.g., cause it has been observed by a distant robot, it simply
does not have any space for it in its information matrix and vector. As a result, the
information matrices and vectors do not contain non-informative zero rows and columns.
Therefore, If(t) in eq. (4.48) can be inverted at each iteration of the algorithm and thus

the global map can always be estimated.

4.6 Convergence for Fixed Networks

Corollary 4.6.1. Assume all the robots i € V execute the dynamic consensus (Algo-
rithm on each entry of its information matrix and vector as detailed above, and as-
sume that their undirected communication graphs G* are connected for all k € {1,..., K}.
Then, for the last step K, the mean XX (t) and covariance SX (t) at each roboti € V asymp-

totically converge to the mean X5 and covariance XK of the global map given by (4.5)),

: K _ oK : K _ vK
lim %(1) = %5 lim S5 (1) = 5. (4.49)

4. Dynamic Map Merging 73

4.7 Convergence Speed for Fixed Networks

Corollary 4.7.1. Assume all the robots i € V execute the dynamic consensus (Algo-
rithm on each entry of its information matrix and vector as detailed above, and as-
sume that their undirected communication graphs G* are connected for all k € {1,..., K}.
Let IF iF be the average of the local maps in IF form at step k,

avg’ (wg
Ly = Z i¥,, = Z it (4.50)

Let ayr,s and oy, s, be defined as o, o in ([{.41) for the inputs uf (st = (1,5
equivalently oy, o,y for the inputs uf G} = [i*],. We let oy and o5, respectively oy
and oz, be the maximum over all the entries of I, respectively of «j,

oy = max o or = max o1
r,s€{l,...Mg} {Lrsh r,se{l,...Mg} {Lrsh

;= max Qg oy = max Ofi,. 4.51

A i P dnax i) (4.51)

Then, for alli € V, ke {1,....K}, r,s € {1,..., Mg}, t >0, the entry [IF(t)], within
the information matriz and the entry [iF(t)], within the information vector estimated by
robot 1 after t iterations satisfy

H[ik(tﬂr,s [cwg]rs‘ < arf(t) + orgi(t),
|35 ()], — [i avg]r‘ < 0y fi(t) + oig(t), (4.52)

where the convergence speed expressions fi(t), gr(t), are defined in Theoreml|4.4.2, eq. (4.44).

4.8 Properties of the Partial Estimates

An interesting property of this map merging algorithm is that the temporal global maps
éf(t) estimated at each robot ¢, are unbiased estimates of the true feature positions x.
As a result, the robots do not need to wait for any specific number of iterations of the
map merging algorithm. Instead, they can make decisions on their temporal global map
estimates whenever they need.

Proposition 4.8.1. The estimates of the global map mean X%(t), for each robot i € V, at
astep k € {1,..., K}, aftert iterations of the dynamic consensus algorithm, are unbiased
estimates of the true feature positions X,

E[x5(t)] =B [(If(t))_l if(t)} = x. (4.53)

Proof. The temporal values of IF(t), i¥(¢), that evolve according to Algorlthm 4.4.1 can

be alternatively expressed as a functlon of the inputs Ij,..., I, ij,...,if, (4.3), and the

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

74 4. Dynamic Map Merging

initial states. Since the states at k =1 and ¢ = 0 are zero (Algorithm [4.4.1] line 2), then
IF(t) and i¥(t) are

n k—1 n
Izk(t):Z[Z]] +ZZ k7t7p 1,3]a
Jj=1 p=1 j=1
n k=1 n
() =Y _[®(k,)]y i+ [Qk,t,p))i; i, (4.54)
j=1 p=1 j=1

where the matrices ®(k,t), Q(k,t,p), U(t1,1s) € R*™ " are

Z\I/ T+ (—1lt—1+(k—1)1)[h31],

Q(k,t,p) = Z\If T4+ (—1lt—1+(k:—1)l)[hgl},

U(ty, to) = A(tg) LAt + 1) A(t),

and A(t + kl) = A¥(t) is the system matrix associated to the iteration ¢ and step k given
by ([.16). Since the local maps X% at each robot j are an estimate of the true x (4.2)),

= Hl'x + v}, with E[vf] =0,
then the inputs if = (H})"(3h)~'%Y are
1A = (H’-‘;) (E"f)_lvgC + I]l»“x. (4.55)

Combining eqs. and ([4.59)), variables i¥(¢) are given by

0 = D I8k D] () (S5

=1
k—1 n
S St 5
p=1 j=1
n k—1 n
(St #+ 3000100,)
j=1 p=1 j=1
where the last term is exactly IF(¢)x, with IF(¢) as in eq. (£.54). Then x = (IF(t))tik(2)

is

%7 (1) =x+ (17 (1)~ (Z[‘D(kﬁ, t)hg@ff@?)*\ff) +

j=1
k=1 n
—1 <ZZ k:tp kp) (Ek p) Vk p)
IJ J J :
p=1 j=1

Since the noises V;? have zero mean for all k € {1,..., K} and all j € V, the expected
value of x¥(t) is x. O

4. Dynamic Map Merging 75

Note that this property holds also for time-varying graphs, where A(t + kl) is differ-
ent for each iteration ¢ and each step k. For fixed graphs, W (t; + kl, ty + kl) is simply
(Ak)tg—tl—‘rl.

4.9 Discussion

A set of experiments has been carried out with a team composed by 9 robots that explore
the region inside the black box in Fig. The robots run a total of K =5 map update

201

101

—30}

L L h L L
-20 -10] 10 20

Figure 4.3: Trajectories followed by 9 robots. They cover a region of 30m x 30m of the
scene [60]. In order to give an idea of the scene structure, we display in black the path and
a set of artificial landmarks (black dots) placed on both sides of the trajectory, which are
not used in the experiment. Here, the rooms can be identified since robots enter and leave
them describing short trajectories. The long, straight motions correspond to corridors.

steps. Between consecutive map update steps k, k + 1, each robot performs 20 steps of a
bearing-only SLAM algorithm [11]. We display in different colors the 9 local maps for the
map update steps £ = 1, and k& = 2. (Fig. . The robots execute a total of L = 1000
consensus iterations. We experiment with 3 different configurations. In the first one, the
robots execute all the consensus iterations after the last map update step, [= 0. This is
equivalent to a static map merging. In the second case, we use | = %(L/K), and in the
last one, we use an equal number of iterations per step [= (L/K). The best results are
obtained with the first configuration [= 0 (Fig. , since the robots only need to agree
on the last map k& = K. In the second case, [= i(L/K), the robots employ their first
50 iterations on reaching consensus on the first map £ = 1. Then, every 50 iterations,
the input maps change again. They start to reach consensus on the map k = K after
the iteration 200. And after that, they converge very fast to the global map. In the last
configuration, I = (L/K), the robots use more consensus iterations than in I = (L/K)
for the maps at £ = 1,2,...,4. Their estimates of these temporal maps are better.
However, the robots start to estimate the last map & = K after iteration 800. After
the L iterations, the global maps HAZK(L), ng_(L), computed by the dynamic map merging

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

76 4. Dynamic Map Merging

e Robot 1
¢ Robot 2

e Robot 3
10 ¢ Robot4
¢ Robot5
Robot 6
51 « Robot7
Robot 8

ol ¢ Robot9 L4

(a) k=1

Figure 4.4: Local maps of the 9 robots used for the update steps k =1 (a) and k = 2 (b).
They have been obtained after, respectively, 20 and 40 SLAM steps. They are expressed
in a common reference frame. As it can be seen, in k = 2 the feature estimates have been
updated. In addition, the robots have introduced new features into their local maps.

x 10"
—_ =0 160
sH == [=1/4(L/K)
== =LK 1401
: O map updates, I=1/4(L/K)
ab H O map updates, I=L/K 1201
"
" 1001
3 n L
:: 801 LI
i LY
F
2 " 60 i b
7o ‘
1 LY
N 'R 40 ! 1
] [H -
1 1! ' 1 g
' [20k : '
! ' ! Y
1 'I [! N
. . <
of A~BTEve~sg. = = o = =

L L L L L L L L L L L
[200 400 600 800 1000 0 200 400 600 800 1000

(a) ||0%(t) — 0%|| along the L iterations (b) HTr(Z’; (t)) — Tr (3%(¢)) || along the L iterations

Figure 4.5: Estimation errors at robot 1 along the L consensus iterations. (a) ||0%(t)—6%|],
(b) ||Tr(2’gl_ (t)) — Tr (25(¢)) ||. The configuration { = 0 (black solid line) employs all the
iterations in reaching consensus on the last map k = 5. In the configuration { = (L/K)
(blue dashed line), every 50 iterations the local maps change (blue squares). The robots
start the consensus on the last map after the iteration 200. In the last configuration
I = (L/K) (red dash-dotted line), the map update steps start every 200 iterations (red
squares). The consensus on the last map begins at iteration 800.

4. Dynamic Map Merging 7

(a) Robot 1 (b) Centralized system

Figure 4.6: Global map estimated by robot : = 1 at the last consensus iteration, éZK(L),
Zg(L), for the configuration { = 1(L/K) (a), and global map that would be obtained by a

centralized system, 65 XK (b). We display in different colors the sections that correspond
to different initial local maps.

algorithm, are very close to the global map 05, L& that would be obtained by a
centralized system (Fig. b). We show the global map at robot 1, for the | = 3(L/K)
configuration (Fig. a), which is very similar to the maps computed by the other robots.
Similar results have been obtained using the other configurations.

4.10 Conclusions

In this chapter we have presented an algorithm for dynamically merging visual maps in
a robot network with limited communication. This algorithm allows the robots to have
a better map of the environment containing the features observed by any other robot in
the team. Thus, it helps the coordination of the team in several multi-robot tasks such
as exploration or rescue. The algorithm correctly propagates the new information added
by the robots to their local maps. We have shown that, with the proposed strategy, the
robots correctly track the global map. At the final step, they obtain the last global map,
which contains the last updated information at all the robots.

Future extensions of this work are related to the improvement of the communication
network usage. The number of consensus iterations may be optimized by a proper selection
of the weights and y in eq. or by controlling the network topology to maximize its
connectivity. The amount of information exchanged by the robots can be improved by
applying submapping ideas or by sending only the most informative elements.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Chapter 5
Distributed Data Association

In this chapter we address the data association problem of features observed by the robots
in a network with limited communications. At every time instant, each robot can only
exchange data with a subset of the robots, its neighbors. Initially, each robot solves
a local data association with each of its neighbors. After that, the robots execute the
proposed algorithm to agree on a data association between all their local observations
which is globally consistent. One inconsistency appears when chains of local associations
give rise to two features from one robot being associated among them. The contribution
of this work is the decentralized detection and resolution of these inconsistencies. We
provide a fully decentralized solution to the problem. This solution does not rely on any
particular communication topology. Every robot plays the same role, making the system
robust to individual failures. Information is exchanged exclusively between neighbors. In
a finite number of iterations, the algorithm finishes with a data association which is free of
inconsistent associations. We show the performance of the proposed algorithms through
exhaustive experimentation.

5.1 Introduction

In the commented multi-robot systems, a team of robots cooperatively perform some
task in a more efficient way than a single robot would do. In this chapter, we address
the data association problem. It consists of establishing correspondences between dif-
ferent measurements or estimates of a common element. It is of high interest in lo-
calization, mapping, exploration, and tracking applications [15|. The Nearest Neighbor
(NN), and the Maximum Likelihood (ML), are widely used methods which associate each
observation with its closest feature in terms of the Euclidean or the Mahalanobis dis-
tance [159], [72], [64]. Other popular method is the Joint Compatibility Branch and
Bound (JCBB) [97|, which considers the compatibility of many associations simultane-
ously. The Combined Constraint Data Association [16] builds a graph where the nodes
are individually compatible associations and the edges relate binary compatible assign-
ments. Over this graph, a Maximal Common Subgraph problem is solved for finding
the maximum clique in the graph. Scan matching and Iterative Closest Point (ICP) [41]
are popular methods for comparing two laser scans. Other methods, like the Multiple
Hypothesis Tracking, and the Joint Probabilistic Data Association, maintain many asso-
ciation hypothesis instead of selecting one of them. And exist many variations of these

79

80 5. Distributed Data Association

techniques that combine RANSAC [55] for higher robustness.

In solutions based on submaps, one of them is usually transformed into an observation
of another. The local submaps are merged with the global map following a sequence [149],
or in a hierarchical binary tree fashion [29]. All the mentioned data association approaches,
operate on elements from two sets. One set usually contains the current observations, and
the other one consists of the feature estimates. These sets may be two images, two laser
scans, or two probabilistic maps.

Lately, many localization, mapping, and exploration algorithms for multi-robot sys-
tems have been presented. However, they have not fully addressed the problem of multi-
robot data association. Some solutions have been presented for merging two maps [137],
[159] that do not consider a higher number of robots. Many approaches rely on broad-
casting all controls and observations measured by the robots. Then, the data associ-
ation is solved like in a single robot scenario, using scan matching and ICP for laser
scans [69], [56,/78,110], or NN, ML, and visual methods for feature-based maps [64], [83].
In these methods, the problem of inconsistent data associations is avoided by forcing a
cycle-free merging order. This limitation has also been detected in the computer vision
literature. In [53] they approach an inconsistent association problem for identifying equal
regions in different views. They consider a centralized scenario, where each 2 views are
compared among them in a 2-by-2 way. Then, their results are arranged on a graph where
associations are propagated and conflicts are solved. The work in [48], from the target
tracking literature, simultaneously considers the association of all local maps. It uses an
expectation-maximization method for both computing the data association and the final
global map. The main limitation of this work is that the data from all sensors needs to
be processed together, what implies a centralized scheme, or a broadcast method.

All the previous methods rely on centralized schemes, full communication between
the robots, or broadcasting methods. However, in multi-robot systems, distributed ap-
proaches are more interesting. They present a natural robustness to individual failures
since there are no central nodes. Besides, they do not rely on any particular communi-
cation scheme, and they are robust to changes in the topology. On the other hand, dis-
tributed algorithms introduce an additional level of complexity in the algorithm design.
Although the robots make decisions based on their local data, the system must exhibit a
global behavior. In this chapter, we address the data association problem for distributed
robot systems. Each of our robots posses a local observation of the environment. Instead
of forcing a specific order for associating their observations, we allow the robots compute
its data association with each of its neighbors in the graph. Although this scenario is
more flexible, it may lead to inconsistent global data associations in the presence of cy-
cles in the communication graph. These inconsistencies are detected when chains of local
associations give rise to two features from one robot being associated among them. These
situations must be correctly identified and solved before merging the data. Otherwise, the
merging process would be wrong and could not be undone. In this chapter, we approach
a distributed data association, under limited communications. Instead of comparing any
2 local observations among them, only the local observations of neighboring robots can
be compared. Besides, there is no central node that has knowledge of all the local associ-
ations and each robot exclusively knows the associations computed by itself. Then, each

5. Distributed Data Association 81

robot updates its local information by communicating with its neighbors. We present an
algorithm where, finally, each robot is capable of detecting and solving any inconsistent
association that involves any of its features.

5.2 Problem Description

We consider a robotic team composed of n € N robots. The n robots have communication
capabilities to exchange information with the other robots. However, these communica-
tions are limited. Let Geom = (Veom, Ecom) be the undirected communication graph. The
nodes are the robots, V.., = {1,...,n}. If two robots i, j can exchange information then
there is an edge between them, (i,7) € Eom- Let N be the set of neighbors of robot 4,

JV;' = {] | <Z7.]) € gcom}'

Each robot 7 has observed a set S; of m; features,

Si={fl,.... L}

It can compute the data association between its own set S;, and the sets of its neighbors
S;, with j € N;. However, these data associations are not perfect. There may appear
inconsistent data associations relating different features from the same set S; (Fig. . It
the robots merge their data as soon as they solve the local data association, inconsistent
associations cannot be managed since the merging cannot be undone. The goal of our
algorithm is to detect and resolve these inconsistent associations before executing the
merging.

Pis Robot B //

// Robot D
Figure 5.1: Robots A, B, C' and D associate their features comparing their maps in a two-
by-two way. Robot A associates its feature f{* with ff and with fZ; robot B associates
fE with fC; robot C associates fC with fP (solid lines). As a result, there is a path
(dashed line) between f and fP. This is an inconsistent situation. Finding this path
would require the knowledge of the whole association graph.

In order to make the reading easy, along the chapter we use the indices ¢, 7 and k to
refer to robots and indices 7,7/, s, s', to refer to features. The r* feature observed by the

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

82 5. Distributed Data Association

i"" robot is denoted as f’. Given a matrix A, the notations A, ¢ and [A], ¢ correspond
to the (r,s) entry of the matrix, whereas A;; denotes the (4, j) block when the matrix is
defined by blocks. We let I be the k& x k identity matrix, and O, xx, & k1 X ke matrix
with all entries equal to zero.

5.2.1 Matching between two cameras

Let F be a function that computes the data association between any two sets of features,
S; and §;, and returns an association matrix A;; € N> where

(A = 1 if fi and fJ are associated,
WINS T 0 otherwise,
forr=1,...,m; and s =1,...,m;. We assume that F' satisfies the following conditions.

Assumption 5.2.1 (Self Association). When F' is applied to the same set S;, it returns
the identity, F(S;,S;) = Ay = L

Assumption 5.2.2 (Unique Association). The returned association A;; has the property
that the features are associated in a one-to-one way,

m; m;

Z[Aij}r,s S 1 and Z[Aij]r,s S]-a

r=1 s=1
forallr=1,...,m; and s =1,...,m;.

Assumption 5.2.3 (Symmetric Association). Robots i and j associate their features
in the same way. Given two sets S; and S; it holds that F(S;,S;) = Ay = A]Ti =
(F(S;.8)"

Additionally, the local matching function may give information of the quality of each
associations. The management of this information is discussed in Section [5.7]

We do not make any assumptions about the sets of features used by the cameras. How-
ever, we point out that the better the initial matching is, the better the global matching
will be. Examples of features and matching functions that can be used in our method are:
Lines or invariant descriptors matched with epipolar or homography constraints [66]; 3D
points computed using mapping techniques matched with the Joint Compatibility Branch
and Bound (JCBB) [97]; Image templates of people, faces, objects, etc. matched with
sums of absolute differences of the pixels or correlation methods [104].

5.2.2 Centralized matching between n cameras

Let us consider now the situation in which there are n cameras and a central unit with the
n sets of features available. In this case F' can be applied to all the pairs of sets of features,
Si, S;, for i,57 € {1,...,n}. The results of all the associations can be represented by an
undirected graph Geep, = (Feen, Ecen). Each node in F., is a feature f!, for i = 1,...,n,
r=1,...,m;. There is an edge between two features f7, f7 iff [A;;]. = 1.

5. Distributed Data Association 83

Camera A Camera B Camera A Camera B Camera A Camera B
A

TS ‘TB g , i f5 B‘TB
P 5|3 A 2 B \/3 A - i B V3

I Y T f3 flon A 1 f3 flon - 2

288 1A 8 288 //’d‘ 8 ‘ % 8 2

] LN 1l ! I |

o \ 75| J‘Z—\g ifig L %& 75

P I | [s | | e [T By

Camera D Camera C Camera D Camera C Camera D Camera C
(a) (b) (c)

Figure 5.2: Different association graphs. (a) Centralized matching with perfect association
function. The graph is formed by disjoint cliques. (b) Centralized matching with imperfect
association. Some links are missed, (f{, f£) and (f3', f#), and spurious links appear, (f3', f2).
As a consequence, a subset of the features form a conflictive set. (c¢) Matching with limited
communications. Now, the links between A and C, and B and D, cannot be computed because
they are not neighbors in Geopn,. Moreover, the information available to each camera is just the
one provided by its neighbors.

\V4

For a perfect matching function, the graph G.., exclusively contains disjoint cliques,
identifying features observed by multiple cameras (Fig. (a)). However, in real situa-
tions, the matching function will miss some matches and will consider as good correspon-
dences some spurious matches (Fig. (b)). As a consequence, inconsistent associations
relating different features from the same set S; may appear.

Definition 5.2.4. An association set is a set of features such that they form a connected
component in Geen. Such set is a conflictive set or an inconsistent association if there
exists a path in G.., between two or more features observed by the same camera. A feature
1s inconsistent or conflictive if it belongs to an inconsistent association.

Centralized solutions to overcome this problem are found in [54], [13]. The latter one is
also well suited for a distributed implementation but yet requires that any pair of images
can be matched. In camera networks this implies global communications, which is not
always possible.

5.2.3 Matching between n cameras with limited communications

Let us consider now that there is no central unit with all the information and there
are n robots, each one with a camera and a process unit with limited communication
capabilities. The robots are scattered forming a network with communications described
with the undirected communication graph G.om = (Veom, Ecom) introduced at the beginning
of this section.

In this case, due to communication restrictions, local matches can only be found within
direct neighbors. As a consequence, the matching graph computed in this situation will
be a subgraph of the centralized one, Guis = (Fuis, Eais) C Geen, (Fig. (c)). It has the
same set of nodes, Fyis = Feen, but it has an edge between two features f7, f7 only if the
edge exists in G.., and the robots ¢ and j are neighbors in the communication graph,

Eais = L, FI) | (2, f1) € Ecen N (0,]) € Ecom}-

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

84 5. Distributed Data Association

Along this chapter, we name mg,,, the number of features, |Fys| = D | My = Mgym.
We name dy the diameter of Gy, the length of the longest path between any two nodes
in Gy, and we name d, the diameter of the communication graph, G.,,. The diameters
satisfy dy < mgym and d, < n. We name A € N™sum*Msum the adjacency matrix of Gy,

A Ay,
A= : , (5.1)
Anl Ann
where
. F(SZ,SJ> lfj € {MUZ},
Aij = { 0 otherwise. (5.2)

Let us note that in this case none of the robots has the information of the whole
matrix. Robot ¢ has only available the sub-matrix corresponding to its own local matches
A;;,j =1,...,n. Under these circumstances the problem is formulated as follows: Given
a network with communications defined by a graph, G..., and an association matrix A
scattered over the network find the global matches and the possible inconsistencies in a
decentralized way. In case there are conflicts, find alternative associations free of them.

5.3 Propagation of Local Associations and Detection of
Inconsistencies

Considering definition[5.2.4] we observe that in order to detect an inconsistent association it
is required to compute the paths that exist among the elements in Gg;,. As the following
lemma states |27, given a graph Ggs, the powers of its adjacency matrix contains the
information about the number of paths existing between the nodes of Gg;,:

Lemma 5.3.1 (Lemma 1.32 [27]). Let Gus be a weighted graph of order |V| with un-
weighted adjacency matriz A € {0, 1}""XW|7 and possibly with self loops. For all 1,5 €
{1,...,]V|} and t € N the (i,7) entry of the t*" power of A, A', equals the number of
paths of length t (including paths with self loops) from node i to node j.

The computation of the powers of A requires, a priori, the information about the
whole matrix. We show now that this computation can also be done in a decentralized
manner. Let each robot i € V., maintain the blocks within A’ associated to its own
features, X;;(t) € N™*™i j =1 ... n, t>0, which are initialized as

_J L j=q
and are updated, at each time step, with the following algorithm
Xij(t+1) Z A Xy (1) (5.4)

ke{N;Ui}

with A as defined in (5.2). It is observed that the algorithm is fully distributed because
the robots only use information about its direct neighbors in the communication graph.

5. Distributed Data Association 85

Theorem 5.3.2. Let [A"];; € N™*™i be the block within A" related to the associations
between robot i and robot j. The matrices X;;(t) computed by each robot i using the
decentralized algorithm (5.4) are exactly the sub-matrices [A"];;,

Xi(t) = (A, (5.5)
foralli,j € {1,...,n} and all t € N.

Proof. The proof is done using induction. First we show that eq. is satisfied for
t = 0. In this case we have that A® = I, thus for all 4,5 € {1,...,n}, [A%; = I and
[A%);; = 0, which is exactly the initial value of the variables X;; (eq. (5.3)).

Now we have that for any t > 0,

ZAzk At 1 j Z Azk k:j7
ke{N;ui}

because Ay, = 0 for k ¢ {N;Ui}. Assuming that for all i,j € {1,...,n} and a given
t> O, Xl](t — 1) = [Atil}i]‘ is true, then

Xi(t)= > AuXyt—1)= Y Ay, =[AT
ke{N;Ui} ke{N;Ui}
Then, by induction, X;;(t) = [A];; is true for all ¢ > 0. O

Corollary 5.3.3. The variables X;;(t) contain the information about all the paths of
length t between features observed by robots i and j.

Proof. By direct application of Lemma [5.3.1 m

Analyzing the previous algorithm the first issue to deal with is how to simplify the
computation of the matrices in order to avoid high powers of A. In the case we are studying
it is just required to know if there is a path between two elements in Gus and not how
many paths are. This means that in this situation it is enough that [X;;(¢)],s > 0 in
order to know that features f? and f7 are connected by a path. Another issue is to decide
when the algorithm in must stop. Since the maximum length of a path between any
two nodes in a graph is its diameter, then after d; iterations the algorithm should stop.
However, in general situations the robots will not know neither d; nor my,,, which makes
this decision hard to be made a priori.

Definition 5.3.4. We will say that two matrices A and A of the same dimensions are
equivalent, A ~ A, if for all r and s it holds

[A],s >0« [A],s >0 and [A],s =0 [A],,=0.

In practice any equivalent matrix to the X,;(¢) will provide the required information,
which allows us to simplify the computations simply by changing any positive value in
the matrices by 1. Moreover, the equivalency is also used to find a criterion to stop the
algorithm:

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

86 5. Distributed Data Association

Proposition 5.3.5. For a robot i, let t; be the first time instant, t, such that X;;(t) ~
Xii(t —=1) for all j =1,...,n. Then robot i can stop to execute the algorithm at time t;.

Proof. Let X,;(t) be the components in X;;(t), such that [X;;(t—1)], s = 0 and [X;;(¢)],s >
0. The cardinal, |X,;(¢)|, represents the number of features f7 € S; such that the minimum
path length in Gy between them and one feature f! € S; is t. At time t;, X;;(¢;) ~
Xij(ti — 1) Vj for the first time, and then > 7, |X;;(t:)] = 0 because no component has
changed its value from zero to a positive. This means that there is no path of minimum
distance t; linking any feature f! with any other feature in Gy;,. By the physical properties
of a path, it is obvious that if there are no features at minimum distance t;, it will be
impossible that a feature is at minimum distance ¢; + 1 and all the paths that connect
features of robot ¢ with any other feature have been found. O

Corollary 5.3.6. All the robots end the execution of the iteration rule (5.4) in at most
in dy + 1 iterations.

Proof. Recalling that the maximum distapce between two nodes in Gy, is the diameter
of the graph, denoted by dy, then > 7 [X;;(d; +1)[=0foralli=1,...,n.]

If a robot j at time ¢ does not receive the information X;;(¢) from robot i then it will
use the last matrix received, because robot ¢ has already finished computing its paths and
Xy(t) ~ Xy(t — 1),

It remains to analyze which features are conflictive and which are not. Each robot has
the information about all the association paths of its features and the features of the rest
of the robots in the network in the different variables X;;(¢;). The robots detect all the
conflictive features using two simple rules. A feature f! is conflictive if and only if one of
the following conditions are satisfied:

i) There exists other feature f%,, with r # r/, such that
T

[Xii(t)]r > 0; (5.6)

(ii) There exist features f/ and f,,s # s, such that

[Xz(tz)]r,s > (0 and [Xij<ti>]r,s’ > 0. (57)

In conclusion, the proposed algorithm will be able to find all the inconsistencies in
a finite number of iterations. The algorithm is decentralized and it is based only on
local interactions between the robots. Each robot only needs to know its local data
associations. It updates its information based on the data exchanged with its neighbors.
When the algorithm finishes, each robot ¢ can extract from its own matrices X;;(¢;) all
the information of any conflict that involves any of its features. If the robot has any
conflictive feature, it also knows the rest of features that belong to the conflictive set
independently of the robot that observed such features.

5. Distributed Data Association 87

5.4 Improved Detection Algorithm

The previous detection method has several drawbacks. The powers of A may contain
large values. However, in practice we do not require to compute all the paths of length ¢
between the features. In this case it is just required to know if there is a path between two
elements in Ggs. Moreover, the method does not exploit the local information of features
belonging to the same robot. In this section we propose a new algorithm that overcomes
these limitations reducing the complexity of the operations, the number of required steps
to execute it and the amount of transmitted information.

Let y2(0) = {[Aia]r1s-- -, [Ain)rm, } € {0,1}™m be the row associated with feature
fiand [yi(0)].,u = 1,..., Meum, the u'" component in the row. The new algorithm to
compute the paths between features is:

Algorithm 5.4.1 Inconsistency Detection - Robot ¢
Ensure: All the inconsistencies are found
1: repeat

2. Send yi(t), r € S; to all j € N;

3. Receive all yi(t), j € N}, s € S;

4: for all » € S; do

5: for all j e V;,s €S, | [A;],s =1do

6: yi(t+1) =y.(t) Vyit)

7: end for

8: for all v/ € §; satisfying that 3 v € {1,..., Mg} such that [y.(¢)], =
Yol=1do

9: yi(t+1) =y.(t) Vy.(t)

10: end for

11: end for

12: until y'(t + 1) = y'(¢), Vr € S;

The algorithm computes the logical “or” operation of rows of neighbor robots and
common matches. Lines 5-7 are equivalent to compute the powers of A using logical
values instead of integers. The second part of the update, lines 8-10, speeds up the
process by also considering that when two or more of features observed by the same robot
share a common third feature observed by a different robot, then eventually they will be
associated with each other.

The new algorithm reduces the complexity of the operations with respect to [10] by
replacing the products of matrices by logical operations between rows. This reduction
allows to avoid the large numbers that may appear when computing high powers of the
adjacency matrix and also allows us to reduce the amount of transmitted data.

Proposition 5.4.1. The amount of information exchanged by the network during the
whole execution of Algorithm can be upper bounded by 2m?

sum*

Proof. By the definition of the operations in lines 6 and 9 of Algorithm we can see
that the components of y’ change their value at most once during the whole execution, for

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

88 5. Distributed Data Association

all i € V., 7 € §;. This means that it is not necessary for the robots to send the whole
blocks y’ to their neighbors but just the indices of the components that have changed
their value from false to true. Each element can be identified by two data, the row and the
column and there are a total of m?,, elements, the size of A. Therefore, in the worst case,

the amount of transmitted information through the network during the whole execution
of the algorithm now is 2m? O

sum”*

Regarding the correctness of the algorithm we have the following result:

Proposition 5.4.2. After execution of Algorithm all the paths between features have
been found and they are available to all the robots with features involved in them.

Proof. Let yi(t) be the number of components in y(¢), such that [y’(t — 1)], = 0 and
[y:(t)], = 1,u = 1,..., Msum. This number represents the number of new paths found in
Guis at time instant ¢ that include the features in S;. These new paths come either from
the execution of line 6, or the execution of line 9.

Let ¢; be the first time instant such that y'(¢;) = y'.(t; — 1) Vr and y(¢;) = 0 because
no component has changed its value from zero to one for any of the features. This means
that, for any feature in S;, there are no new paths with other features. By the physical
properties of a path, it is obvious that if there are no new features at minimum distance
t;, it will be impossible that a new feature is at minimum distance t; + 1. In addition, if no
new paths at distance ¢;+1 can be found, line 9 of Algorithm will not find new paths
either. At this point the condition of line 12 is true and the algorithm ends. Since the
solution of the algorithm is equivalent to the computation of the powers of the adjacency
matrix, because of line 6, this also means that all the paths that connect features of robot
¢ with any other feature have been found. O]

When one robot j at time ¢ does not receive the information y'(¢),r = 1,...,m; from
robot 7 then it will use the last information it had, because it means that robot ¢ has not
found new paths and y'(t) = y.(t — 1).

Finally let us analyze the number of iterations that the algorithm requires to finish:

Theorem 5.4.3. All the robots end the execution of the Algorithm [5.4.1 in at most
min(dy,2n) iterations.

Proof. We already know that the algorithm finishes in at most dy iterations. In the case
that the matching does not contain any inconsistency d; < 2n and the result is valid.

Now let us suppose that there is one inconsistency. This implies that the communi-
cation graph, G..,, contains one cycle of arbitrary length, ¢. We divide the number of
iterations in three parts. First n — £ iterations are required to ensure that the information
of all the features belonging to the robots outside the cycle reaches at least one robot in
the cycle.

The second part requires %6 + 1 iterations. In the worst case, the diameter of the
subgraph defined by the cycle is £/2 and only ¢ + 1 features in the cycle form the in-
consistency, which means that only one robot will execute, at some point, lines 8-10 of
Algorithm It is clear that after £/2 + 1 iterations there will be at least two robots
in the cycle, at maximum distance from each other (¢/2), with all the information. One

5. Distributed Data Association 89

of the robots, the one with the inconsistency, will obtain the information from the exe-
cution of 810 in Algorithm [5.4.1] The other robot is the one with the common feature,
u, detected in lines 8-10 of the algorithm by the first one. After this point £/4 iterations
are required to share this information with the rest of the robots in the cycle and we can
ensure that all the robots in the cycle have all the information about the inconsistency.
If there are more than ¢ 4 1 features inside the cycle forming the inconsistency the result
is still valid.

With all the robots in the cycle knowing all the features that form the inconsistency,
the number of additional iterations required to transmit the information to the rest of the
network is upper bounded again by n—/. If we sum all the iterations we obtain 2n — %E +1.
Since the minimum length of a cycle is 3 the above quantity is always lower than 2n. [

Let us remark that this bound is conservative because it does not take into account
that during the initial n — ¢ and the final n — ¢ iterations the cycle is also exchanging
information.

5.4.1 Example of execution

R S R
N 1 11 13 g5 10 1 18 gf 0 98 0P 1P 118 18 1P 13 15 aE 15 55 1P 18 1t 1 g5 P 5P 08 f 05 IS P 1P
1] |1 1 i 1 1 S]] Ja ifa] [1]a S]] Jafa] Jaa] J1]a
HEREE 11 1 S 1 1] 1)1 Sala] Tafa] Jafa] [1]a

Cam.A
I\
ST

g 1 1 1

i 1 1 1 1|1 i 1 1[1 1(1 11 Bl 1(1 1(1 11
4 1 1 1 AR 1)1 1)1 1] ARE 1)1 1]1 11

Cam.B
I\
S
-
-

R
-
=
L

o
-
-
-
-

S
-
-
-
-
-
-
-
-
OB
-
-
-
-
-
-
-
-

Cam.D Cam.C

() (b) (c) (d)

Figure 5.3: Example of execution of the decentralized algorithm for detection of inconsistencies
applied to Fig. (c). A detailed explanation can be found in section 3.2.

Figure [5.3| shows an example of how the algorithm is applied. The example shows the
execution of the algorithm for the associations shown in Fig. (c). Each robot has
only the information about the rows corresponding to the features they have observed.
In Fig. (a) the matrix with the local matches found by all the cameras can be seen.
The zeros have been omitted in the figure for a better representation. For simplicity here
we will only explain the process for the robot A. After the first round of communications
and the execution of lines 5-7 of Algorithm the rows have the form of Fig. (b).
The components with green background are the new paths found by the algorithm. For
the case of the camera A, the first feature, f{!, is matched with the first feature of robot
D, which is a direct neighbor of A, thus, y{(2) = y2(1) V yP(1). The second feature is
matched with ff and fP so y(2) = y2' (1) vy P (1) vyP(1). Finally y4(2) = y{(1) vyZ(1).
After that robot A detects that f{* and f;' share a common match with f¢. Therefore
it executes lines 8-10 of the algorithm with these two features, as shown in Fig. (c).
Now the process is repeated, obtaining the matrix in Fig. (d). The algorithm has

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

90 5. Distributed Data Association

found all associations using only 3 < dy = 7 iterations. At this point the robot A knows
that f{! and f;' belong to one inconsistent association with features fZ2, f2, f¢ £, fP
and fP.

5.5 Resolution Algorithm based on Trees

The resolution of inconsistent associations consists of deleting edges from Gy, so that the
resulting graph is conflict-free.

Definition 5.5.1. Let C' denote the number of conflictive sets in Gg;s. We say a conflictive
set C is detectable by a robot i if there exists ar € {1,...,m;} such that f: € C. The set
of robots that detect a conflictive set C is R C V.o. The number of features from each
robot 1 € R involved in C is m;. We say Gus is conflict-free if C' = 0.

All the edges whose deletion transforms Gy, into a conflict-free graph, belong to any of
the C conflictive sets of Gg,. Since the conflictive sets are disjoint, they can be considered
separately. From now on, we focus on the resolution of one of the conflictive sets C. The
other conflictive sets are managed in the same way. The resolution problem consists of
partitioning C into a set of disjoint conflict-free components C, such that

UC,=C, and C,NC, =10,
q

for all ¢,¢' = 1,2,.... The number of such conflict-free components is a priori unknown
and it will be discussed later in this section.

Obtaining an optimal partition that minimizes the number of deleted edges is com-
plicated. If there were only two inconsistent features f!, f%, it could be approached
as a max-flow min-cut problem [105]. However, in general there will be more inconsis-
tent features, m; > 2, within C associated to a robot ¢+ € R. Besides, there may also
be m; > 2 inconsistent features belonging to a different robot j € R. The application
of [105] separately to any pair of inconsistent features does not necessarily produce an
optimal partition. It may happen that a single edge deletion simultaneously resolves more
than one inconsistent association. Therefore, an optimal solution should consider multiple
combinations of edge deletions, what makes the problem computationally intractable, and
imposes a centralized scheme. We propose a resolution algorithm that is not optimal but
is efficient and is proven to be correct. Besides, it allows a decentralized computation.

Proposition 5.5.2. Let R be the set of robots that detect C. Let i, be the robot with the
most features involved in C,

i, = argmaxm;. (5.8)
i€R
The number of conflict-free components in which C can be decomposed is lower bounded
by ﬁli*.

Proof. Each conflict-free component can contain, at most, one feature from a robot i € R.
Then there must be, at least, max;cg m; = m;, components. O]

5. Distributed Data Association 91

Algorithm 5.5.1 Spanning Trees - Robot ¢

1: — Initialization

2: for each conflictive set C for which i is root (i =i,) do

3 create m,;, components

4 assign each inconsistent feature f* € C to a different component C,
5: send component request to all its neighboring features

6: end for

T

8: — Algorithm

9: for each component request from f7 to f! do

10 if (b) or (¢) then

11: [Aii];s =0

12: send reject message to j

13: else if (d) then

14: assign f! to the component

15: send component request to all its neighboring features
16: end if

17: end for

18: for each component reject from f7 to f! do
19: [Aij]r,s =0
20: end for

The resolution algorithm constructs m;, conflict-free components using a strategy close
to a BFES tree construction. Initially, each robot ¢ detects the conflictive sets for which it
is the root using its local information X (¢;), ..., Xin(t;). The root robot for a conflictive
set is the one with the most inconsistent features involved. In case two robots have the
same number of inconsistent features, the one with the lowest robot id is selected. Then,
each robot executes the resolution algorithm (Algorithm [5.5.1)).

The root robot creates m;, components and initializes each component C, with one
of its features f* € C. Then, it tries to add to each component C, the features directly
associated to fi* € C,. Let us consider that f/ has been assigned to C,. For all f such
that [A;;].s = 1, robot j sends a component request message to robot i. When robot i
receives it, it may happen that

(a) f!is already assigned to Cy;

(b) f*1is assigned to a different component;

(¢) other feature f/, is already assigned to C,;

(d) f%is unassigned and no feature in ¢ is assigned to C,.

In case (a), f! already belongs to the component C, and robot i does nothing. In cases
(b) and (c), fi cannot be added to C,; robot i deletes the edge [A;j].s and replies with
a reject message to robot j; when j receives the reject message, it deletes the equivalent

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

92 5. Distributed Data Association

edge [Ajis,. In case (d), robot i assigns its feature f’ to the component C, and the
process is repeated.

Theorem 5.5.3. Let us consider that each robot i € V., executes the decentralized
resolution algorithm (Algorithm on Gais, obtaining G,

(i) after t = n iterations no new features are added to any component C, and the algo-
rithm finishes;

(ii) each obtained C, is a connected component in G, ;
(iii) C, is conflict free;

(iv) C, contains at least two features;
for all g € {1,...,m;, } and all conflictive sets.

Proof. (i) The maximal depth of a conflict-free component is n since, if there were more
features, at least two of them would belong to the same robot. Then, after at most n
iterations of this algorithm, no more features are added to any component C, and the
algorithm finishes.

(73) There is a path in Gy between any two features belonging to a conflictive set
C. Therefore, there is also a path in Gg between any two features assigned to the same
component C,. Since the algorithm does not delete edges from Gg;s within a component
(case (a)), then C, it is also connected in G/,.. Since none feature can be assigned to more
than one component (case (b)), the components are disjoint. Therefore, C, is a connected
component in G, .

(7i1) By construction, two features from the same robot are never assigned to the same
component C, (case (c)). Therefore, each component is conflict-free.

(iv) Each conflictive set has more than one feature. Because of Assumptions[5.2.1jand [5.2.2]
each feature and its neighbors are conflict free. Therefore, each component C, contains,
at least, its originating feature, and a neighboring feature. Thus, it has at least two
features. O

Corollary 5.5.4. After executing Algorithm the size of each conflict set C is reduced
by at least 2 m;,, where m; > 2.

When the algorithm finishes, each original conflictive set C has been partitioned into
m;, conflict-free components. It may happen that a subset of features remains unassigned.
These features may still be conflictive in G/,.. The detection algorithm can be executed
on the subgraph defined by this smaller subset of features.

Proposition 5.5.5. Consider each robot i iteratively executes the detection (Section
and the resolution (Section algorithms. Then, in a finite number of iterations, all
conflictive sets disappear.

5. Distributed Data Association 93

Proof. After each execution of the resolution algorithm, the size of each conflict set C is
reduced by, at least, 2 m;, > 4 (Corollary . Then, in a finite number of iterations,
it happens that |C| < 4. A set with 3 features f, f%, f7 cannot be conflictive; this would
require the existence of edges (f?, f7) and (f%, f7), what is impossible (Assumption [5.2.2).
A set with 2 features cannot be conflictive (Assumptions[5.2.1}and [5.2.2)), and a set with a
single feature cannot be inconsistent by definition. Therefore, there will be no remaining
inconsistencies or conflictive sets. O

The main interest of the presented resolution algorithm, is that it is fully decentralized
and it works on local information. Each robot uses its own X;;(t;) for detecting the root
robot of each conflictive set. During the resolution algorithm, the decisions and actions
taken by each robot are based on its local associations A;;, and the components assigned
to its local features. Moreover, each robot is responsible of deleting the edges from its
local association matrices A;;, with j € {1,...,n}. In addition, the presented algorithm
works in finite time. Let us note that although we presented the algorithm for a single
conflictive set, all conflictive sets are managed in parallel.

5.6 Feature Labeling

Simultaneously to the data association process, the robots assign labels to their features.
After checking feature f' is consistent, robot ¢ assigns it a label L. = (i,,r,) € N?
composed of a robot identifier i, and a feature index r, as follows. Assume f; and

features f7, fsj,/, ... form a consistent association set in Gz and thus they are observations
of a common landmark in the environment taken by robots 4,7,7',... . Among all the
candidates (i,7), (4,), (j',5'),..., a unique label (i,,r,) is selected by the robots, e.g.,
the one with the lowest robot id. Then, robot i assigns this label to f?, L' = (i,,r,); the
other robots j,7’,..., proceed in a similar way so that finally,

Li=L =17 = =(,r,).

We say a feature f' is ezclusive if it is isolated in Gy, corresponding to a landmark
observed by a single robot i; in this case, its label L’ is simply (i,7). Otherwise, we say
f% is non-exclusive and it may either be consistent or conflictive. Consistent features are
labeled as explained above, whereas robots wait until conflicts are resolved for labeling its
conflictive features. The data association and labeling process finishes with an association
graph Gy free of any inconsistent association and with all the features labeled. When
the algorithm finishes, two features f!, f7 have the same label, L. = L, iff they are
connected by a path in the resulting conflict-free G4s. The decentralized data association
and labeling algorithm is summarized in Algorithm This strategy makes use of
two subroutines to detect features and resolve inconsistencies that we explained in the
previous sections.

Throughout this section, we use S, C S, for the set of unlabeled features at robot
i € {1,...,n} and let |S;| be its cardinality, i.e., the number of unlabeled features at
robot i. The set of labels £; consists of the labels L% already assigned to the features
fie 8\ S, Given a matrix Xj; of size |S;| x |S;|, we define the function 7 = row (f?)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

94 5. Distributed Data Association

that takes an unlabeled feature f! € S; and returns its associated row in Xij, with
7€ {1,...,|Si|}. Equivalently, we define the function 5 = col(f/) for features in S;. We
let Aij € N'S XISil e like the local association matrix A;;, but containing exclusively the
rows and columns of the unlabeled features of robots ¢ and j.

Algorithm 5.6.1 Data association and labeling - Robot ¢
1: SNl — {flz,,f;nz}, L; + 0
2: Solve the local data association
3: ASSIGN_LABEL(L. = (i,7), f;) to each exclusive feature f;
4: while |S;| > 0 do

5: Run the detection algorithm

6: Find each consistent feature f! and its root f*

7 ASSIGN LABEL(L! = (iy,1y), f)

8: Run the resolution algorithm

9: Find each resolved feature f' and its component id [i,, 7]
10: ASSIGN_LABEL(L] = (ix, 1), f})

11: Find each exclusive feature f;

12: ASSIGN LABEL(L. = (i,7), f!)

13: end while
14: function ASSIGN LABEL(L:, f?)
16: end function

Initially, all the features of each robot i are unlabeled,

Each robot i solves a local data association with each of its neighbors 7 € N; and obtains
the association matrix A;; € N™*™i_ Then, the robot locally detects its exclusive features
f# which have not been associated to any other feature,

[Aj]rs =0 for all j € NV;, j#i, and all s € {1,...,m;}. (5.9)

Since an exclusive feature f! is always consistent, robot ¢ assigns a label L’ to it composed
of its own robot id and feature index and removes it from the set of unlabeled features,
Li = (i,7), Li=L; UL, S =S\ {fi}. (5.10)
Since its unlabeled features in S; may be conflictive, it executes the detection algorithm
on this subset.
. The detection algorithm is executed on the subgraph of G4, involving the features in
Si, for i € {1,...,n}. When it finishes, robot i has the power matrices X;; € N“S”X'Sfl,
for j = 1,...,n, which contain the entries in AdiamGais) gsgociated to the features in S;
and S;. There is a path between f! and f7 iff

[Xijlrs > 0, (5.11)

5. Distributed Data Association 95

being 7 = row(f!) and 5 = col(f7). These matrices give robot ¢ the information about
all the association paths of its features and the features of the rest of the robots in the
network.

Then, each robot i detects its consistent features. After a feature f! has been classified
as consistent, its robot ¢ proceeds to assign it a label. Here we show how robot ¢ decides
the feature label (i,,r,). Let us first give a general definition of the root robot of an either
consistent or conflictive association set.

Definition 5.6.1. The root robot i, for an association set is the one that has the most
features in it. In case there are multiple candidates, it is the one with the lowest identifier.

Equivalently, we define the root features ,’::,fri,*, ... as the features from the root robot
that belong to the association set.
Using the power matrices Xji, ..., X;,, robot ¢ can find the number of features m;

from a second robot j that belong to the same association set than f! with 7 = row(f?)
as follows,

iy = [{f! | [Xij]rs > 0, with 5 = col(f/)}|. (5.12)
If we let m, be the maximum m; for j € {1,...,n}, then the root robot i, and root
features fi-, fx,... for the association set of f} with 7 = row(f}) are

i =min{j | m; =nm.}, {r.r,...}={s|[Xulrs >0 with 5 =col(f*)}. (5.13)

When f? belongs to a consistent set, the root 4, corresponds to the robot with a single
feature f in the association set that has the lowest identifier,

1, = min {j | [Xijlrs > 0 for some 5 € {1,..., |5J|}} . T = {s | [Xii,]rs > 0 with § = col(fsi*)} ,
(5.14)

where 7 = row(f"). Robot i assigns to its feature f’ the label L’ = (i,,7,) and removes it
from the set of unlabeled features,

L= (iy,7), Li=L;ULL, Si =S\ {f} (5.15)

Thus, all features in the association set are assigned the same label. The robots proceed
with all its consistent features in a similar fashion. For the features classified as conflictive,
the resolution method (Algorithm presented in the previous section is executed to
solve the inconsistencies.

Let each component C, in Algorithm have the identifier (iy,7.) composed of
the root robot 7, and root feature r, responsible of creating the component. When the
resolution algorithm finishes, each feature f’ that has been assigned to a component
(4,7+) has become consistent due to the edge removals. We say that such features are
resolved. Thus, all the resolved features with the same component id form a consistent
association set. Each robot i uses the component id of f? as its label,

L:* = (i*a 7“*)7 Li=L;U Liv Si = Si \ {f;} <516>

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

96 5. Distributed Data Association

Additionally, due to edge removal, some unlabeled features f' & S; may have become
exclusive. Robot i detects such features f! by checking that

[Ailrs =0, forall j € N;, j#4, all 5€ {1,...,|S,|},

being 7 = row(f;), and it manages them as in (5.10). The remaining features may still
be conflictive. Each robot ¢ executes a new detection-resolution iteration on these still
unlabeled features 31

In a finite number of iterations, all features of all robots have been labeled, and the
algorithm finishes. The interest of the presented algorithm is that it is fully decentralized
and works on local information. Each robot i uses its own S;; and X;; to classify its
features.

5.7 Resolution Algorithm based on the
Maximum Error Cut

The previous resolution algorithm has the advantage of solving all the inconsistencies in
an easy way. However, the algorithm does not use information about the quality of the
matches, and therefore is not optimal and the provided solution is arbitrary.

Most of the matching functions in the literature are based on errors between the
matched features. These errors can be used to find a better partition of C. Let E be the
weighted symmetric association matrix

e if [A] =1,
[l = { —1 otherwise, (5.17)

with e,s the error of the match between f,. and f.
Assumption 5.7.1. The error between matches satisfies:
e ¢, =0,Vr;
o Errors are non negative, e.s > 0,Vr,s;
e FErrors are symmeltric, €., = €4., V7, S;

e Errors of different matches are different, e,s = epg < [r =1"Ns=5|V[r =5 As=
r');

Since the inconsistency is already known there is no need to use the whole matrix
but just the sub-matrix related with the inconsistency, E¢. Although all the errors in E¢
are small enough to pass the matching between pairs of images, we can assume that the
largest error in the path between two conflictive features is, with most probability, related
to the spurious match.

Definition 5.7.2. Gwven two conflictive features, we define a bridge as a single link whose
deletion makes the conflict between those two features disappear.

5. Distributed Data Association 97

Note that not all the links in one inconsistency are bridges. There are links that, if
deleted, would not break the inconsistency because:

e They do not belong to the path between the features to separate;

e They belong to the path, but they also belong to a cycle in the association graph,
and therefore, they are not bridges.

Our goal is, for each pair of conflictive features, find and delete the bridge that links them
with the maximum error.

Algorithm shows our solution to find the bridges using local interactions. Along
the section we explain in detail how it works. As we did in the detection algorithm, let each

Algorithm 5.7.1 Mazimum FError Cut - Robot ¢
Require: Set of C different conflictive sets
Ensure: Gy, is conflict free
1: for all C do
2: — Error transmission
ZT(O> = {[EC]r,h ey [Ec]nc}, r= 1, .. ,mi
repeat
z,(t + 1) = maxXsee, [Bc),,>0(2r (1), 25 (1) Pys)
until z,.(t + 1) = z,.(¢), Vr € m;
— Link Deletion
while robot i has conflictive features » and " do
Find the bridges (s, s’) :

10 (a) [zr]s = [2r]s, s # &,

11: (b) For all s” # s, [z,]s # [2,]s,

12: (c) For all 8" # &, [z,]g # [2]sn

13: Select the bridge with largest error

14: Send message to break it

15: end while

16: end for

robot initialize its own rows of elements as z,.(0) = {[Ec¢],1, ..., [Eclrc}, 7 € {1,...,m;}.

Each robot manages the m; rows corresponding to the conflictive features it has observed.
The update rule executed by every robot and every feature is

SHt+1) = z,.(t),zs(t)P,s), 5.18
Z(t+1) = max (@ (0).2.()P,.) (5.18)
where the maximum is done element to element and P, is the permutation matrix of the

columns r and s. We have dropped the super indices corresponding to robots because the
limited communications are implicit in the error caused by direct associations, eq. (5.17)).

Proposition 5.7.3. The dynamic system defined in (5.18) converges in a finite number
of iterations and for any r,s € C such that [Ec),.s > 0 the final value of z,. is the same
than z,P,.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

98 5. Distributed Data Association

Proof. The features involved in the inconsistency form a strongly connected graph. For
a given graph, the max consensus update is proved to converge in a finite number of
iterations [27]. For any r, s € C such that [Ec], s > 0, by eq. and the symmetry of
Ec, the final consensus values of z, and z, satisfy, element to element, that

z, > z,P,, and z, > z,P,, (5.19)

Using the properties of the permutation matrices, P,, = Py, = P;}, we see that z,P,, >
z,, which combined with eq. (5.19)) yields to z, = z;P,. O

Let us see the convergence values of the different elements. Considering again eq.
(5.18) for a given feature f., we can express it as a function of its elements, the u'®
component, [z,(t + 1)],, is updated as follows:

[z (£ + 1)l
max([z,(t)]u, [25(t)]s) if [Ec|rs >0Au=r

max([z,(t)]u, [2s(t)]-) if [Eclrs >0Au=1s :

max([z,(f)]u, [2s(t)]u) if [Eclrs > 0AT F#u#s

(5.20)

where the two first rows are due to the permutations. Let us first analyze the case in
which the inconsistency does not contain any cycle.

Theorem 5.7.4. If C is cycle free, then:
(i) For any r € C,|2.(t)], = 0,Vt > 0.
(ZZ) [Zr(t)]sl — [Ec]rl75/ = €prg/, where

r’ = argmin d(r,r"),
[A]T//7S/=1

and d(r,r") is the distance in links to reach node r" starting from node r. In other
words, f. is the closest feature to f, directly associated to fo.

Proof. For any feature, f,, taking into account eq. (5.20)), the update of the r** element
of z,,[z.(t + 1)],, is
(1t 1 r = (T ry [4s t)s)-
o+ D= max (e (0 (0]
Recalling the first point in assumption [5.7.1, the initial value of [z,(0)], = e, = 0, for all
r, then [z,(t)], = 0,Vt > 0.
The inconsistency does not have any cycles and there is a path between any two

features, the conflict is a spanning tree. Let us consider one link, (f,, fs). The link
creates a partition of C in two strongly connected, disjoint subsets

Cor = {r |d(r,r') < d(r,s)},

Coy ={s|d(s,s") <d(s,r")}.

5. Distributed Data Association 99

In the above equations it is clear that ' € C,» and s’ € Cy.
We will focus now on the values of the s'** element of the state vector for the nodes
in C,» and the r'** element for the nodes in Cy,

z,.(t)]s, 7 € Crry and [z4(t)],1, s € Cyr.
In the first case, for any r € C, \ v/, update rule (5.20) is equal to

1) = ’ 7 ’).
[Zr(t +)]8 T//ecr’fr[l]%()j(]nruzo([zr (t)]s) [ZT (t)]s)

because r # s’ # r”. The nodes in Cy are not taken into account because that would
mean that C has a cycle. The special case of feature f,» has an update rule equal to

et 4 Do =, max ([(O [z (Dl [0,

In a similar way the updates for features in C, are

[2s(t+ Dl = max ([z5(8)], [z (8)])

s"eCyr, [Ec]s,s// >0

s (t + 1)), ?EC l%%f 20([Z8’ ()] (25 ()], 20 ()] s)-

sl,s

Considering together all the equations and the connectedness of C,» and Cy, all these
elements form a connected component and they will converge to

max ([z,(0)]y, [25(0)]),

reC,, SECS/
Since all the features r € C,» \ v’ are not associated with fy, [z,(0)]s = —1. Analogously,
for all the features s € Cy \ &, [25(0)],» = —1. Finally, for the features " and s, by the

second and third point of assumption 12,/ (0)]s = ey = €y = [25(0)]r > 0> —1.
Therefore this subset of ¢ elements of the state vectors converge to the error of the link
(fi [s), €ws. From Proposition [5.7.3| we can also see that for any r € Cpv, [z,]5, s € Cy\ ¢,
will converge to the final value of [zy]s.

The same argument applies for the rest of the links and the proof is complete.]

Let us see what happens now in the presence of cycles in the inconsistency.

Theorem 5.7.5. Let us suppose the inconsistency has a cycle involving { features. Let
Cy be the subset of features that belong to the cycle. After the execution of (5.18)) it holds
that:

(1) Vr',s" € Co, 8" # 1’

[zr’]s’ — Esleaéi Crs-

(i) ¥r' & Cy, 5" € Cy, s' # argming e, d(r', s),

[z]s — ggé Eprs.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

100 5. Distributed Data Association

Proof. In the proof we will denote r, ..., r,, the set of features in C,. Without a loss of gen-
erality we will assume that the links that form the cycle are (f.,, fro)s (fras frs) -« (frys fra)-
For an easy reading of the proof of this result we will omit the time indices in the update
equations. Let us consider the update rule for element ry of feature f,,,

[Zn]m = max([zﬁ]m’ [ZT2]7’17 [Zw]Tz)v

where we have also omitted other possible features that are directly linked to f,., because
if they are also linked to f,o they belong to C, and if not they do not affect to the final
result.

From the above equation we observe that [z,,], depends on the value of [z,,],,. At the
same time this value is updated with

(21]y = maxX([Zry |1y [Zry]rs s [Zrs)r)

which depends on the value of [z,,].,. If we keep with the chain of associations we reach
the point in which [z,,], depends on [z,,],,, which has update rule equal to

[Zre]ﬁ = max([zw]h» [ZW—1]T17 [Zrl]w)-

As we have proved in Proposition in the end [z,], = [Zr]rys [Zro)rs = [Zrs)rys - - -
1z, .]r, = |2+,)r, and [z, = [2,,]-, Decause they are direct neighbors. This means that
after the execution of enough iterations of (5.18), (z,,]r, = [2r]r, = [2+)ry, V7 € Co \ 1.
By applying the same argument for any other feature in C; we conclude that after the
execution of the update, for any r € Cy, [z,|» = [z,]n, V7', 7" € C; \ 7. Thus, each feature
inside the cycle will end with ¢ — 1 elements in its state vector with the same value (the
maximum of all the considered links) and (i) is true. If there are any additional links
inside the cycle the result is the same including in the max consensus the weights of these
links.

Now let us consider the rest of the features in the inconsistency, C; = C \ C;. Given a
feature s € C; two things can happen:

e Junique r € C; such that f,. and f; are directly associated;

e s is not directly associated with any feature in C, but there exists at least one path
of features € C, that ends in a unique feature r € Cy;

The uniqueness of r comes from the fact that if there were another feature ' € C,
reachable from s without passing through r, that would mean that s is also part of the
cycle. Note that this does not discard the possibility that » and s belong to another cycle
different than C,.

As we have seen in the proof of Theorem [5.7.4) due to the fact that r is the only
connection with Cy, for any " € C; \ r,[zs|,» will have final value equal to [z, which
proves (ii). On the other hand [z], will have the value of the link that connects it to
feature r or, if f. and f; belong to another cycle different than C,, the maximum error of
all the links that form the second cycle. In both cases, doing a change in the names of
the indices, we can see that (ii) is also true. O

5. Distributed Data Association 101

Camera A Camera F Camera A Camera F Camera A Camera F
F F
1 1

i A iid it 8 3 B f; 1 8 I f
g g %4
A Camera E Camera B Camera E

Camera B Camera E Camera B

o i % o Nt 8K it
BN\, # | R g 7 b7 NG # :
3, - / <4 4,
N o SO R ot

it e it P i P

Camera C Camera D Camera C Camera D Camera C Camera D

(a) Inconsistency (b) Spanning Trees (¢) Mazimum Error Cut

Figure 5.4: Example of execution of the resolution of one inconsistency using the two approaches. (a)
Inconsistency. (b) Solution obtained using the Spanning Trees algorithm. (c) Solution obtained using
the Mazimum Error Cut approach. A detailed explanation can be found in section 4.3.

=
=
5
=
%
3
<
b~
=
i}
<
et}

)
wlo|w|ow|wls|wls

71t 18 1P 18 g 5P I A i
i'lo 1 78|43 i
7|9
0

NL
.y
~%
S5
-
]
-
]
-
=]

H1r8 aP 1B P ;2P B aE P A AT £ 13 1P 18 1f
o] 1 Ao Ta] T2 ile] Ta] J7]8
To] o 6 7 Tl e 3]s 13 o| [9]2]a
Ml 0 7 e 0 7/8 1 0 7|8
24 9 0 F 9 0
Al |7

k!

~
=

G
1|1
Fla

wlo[a]~
wlo|a|a
olwlw|w|a
o|o|o|o|o|a|o
w|w|o|o|a|w|e
w|o|w|w|wlw|w
olw|w|w|o|w|e
=y
olo|o|o|e|alc]a
o |00 |0 |0 [oa|oo|o|0o |
wo[w|w|w|[w|w|=
SS[~[S[<]e|~]=

7
7
7
7

NEEE

o|w|w|wlo|wle|w
[Y IV P e g Vg

o|o|o|o|lo|a|o|a

olo|lo|v|lo|v|v|w

®|o0|w|ofm|~|w|~

® |0 |00 m|oo|m|o

o|lw|lw(wlo|w|lo|w

wlo|w|o|w|eo|w|e

olo|a|a|e

olw|w|lw|e|w|[a
-

®|o|w(o|n|w|e

1
1
e
1

—~
&
~—
—~
=
~—
—~
@)
~—
—
(=8
~—
—
@
~—
—~
—
~—

Figure 5.5: Example of execution of the algorithm (5.18) for the inconsistency in Fig. |5.4| (a). Each
subfigure (a)-(f) represents a new step of the algorithm. In 6 steps the robots with inconsistent features
are able to decide which links delete to solve them. For more details see Section 4.3.

At this point we are ready to define the bridges in terms of the variables z, and to
propose a criterion to select the bridge to break. The bridges, (fs, fs), for any pair of
conflictive features f, and f,. satisfy

(a) [z/]s = [zv]s, s # 5,
(b) for all s” # s, [2,]s # [2,]s,
(c) for all 8" #£ &, [z]g # (2],

The first condition comes from Theorem B.7.4] and the other two come from Theorem
.75 Note that for any bridge, the error of the bridge is the same as the value of
[Z,]s, [2+]s = [27]s = ess. Therefore, each node can look in a local way at its own rows
and choose the best bridge that breaks the conflict, the one with the largest error. In
case one robot has more than two features in the same conflict, finding the optimal cut
becomes NP-hard. In this chapter we use a greedy approach that returns good results.
Our solution chooses two of the m; inconsistent features and selects the best bridge for
them. The bridge separates all the m; features in two disconnected subsets. The process
is repeated with each of the subsets until the inconsistencies are solved.

Note that we are considering only single-link deletions. Cycles in the association graph
are sets of features strongly associated, and therefore, it is better not to break links there.
If two conflictive features belong to the same cycle, then there are no bridges. However,
the algorithm is also able to detect this situation and the Spanning Trees can be used to
solve the conflict.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

102 5. Distributed Data Association

P8P e
f1ols 9(7)s|8!3

1
Bl1]o(7)9l8[8]3]6

£l1]e|o(9)7
AHABOKKE

Figure 5.6: Decision about which links should be deleted to solve the inconsistency. Robot B chooses
the link (f3', f£). Robot A discards the elements with values 8 and 9 because they belong to a cycle and
to a link that does not solve its inconsistency respectively. The match between ff and f{ solves the
inconsistency and has the largest error.

In conclusion, this algorithm is able to detect in a local way the best bridge to break
each inconsistency. This provides a more solid criterion to solve the inconsistencies than
just cutting arbitrary edges. Each robot is able to detect which set of links is best to cut
in order to solve the conflicts regarding its own features. The algorithm also finishes in
finite time and does not require much additional bandwidth because, as in the detection
algorithm, the amount of transmitted information can be optimized.

5.7.1 Example of execution

Let us consider one inconsistency as the one depicted in Fig. (a) where the communi-
cation graph is a ring with an additional link between robots C and E. The Spanning Trees
solution is shown in Fig. (b). In this case the root camera to manage the inconsistency
is the camera A. For each feature, camera A instantiates a different spanning tree. After
2 communications rounds, robots C and E send a request to D and also among them. fP
gets attached to fC and the other links are broken. After this point the algorithm has
ended its execution and the new association graph is conflict free.

Figure (c) shows the solution obtained using the Mazimum Error Cut algorithm.
The evolution of the z, vectors is shown in Figure Each one of the subfigures (a)-(f)
represents a new iteration of the algorithm in . The -1 values are omitted for clarity.
As an example of how it works, the third row in subfigure (b), corresponding to fZ,
executes with the first and fifth rows, sent by robots A and C because of features
f{* and fC. Robot B permutes the first and third element of the vector sent by robot
A and the third and fifth element of vector sent by robot C and chooses the maximum
(element to element) of the three vectors. As a result the sixth and seventh position
(features f and fF) change their values. It is interesting to observe how for the cycle
all the elements in the different vectors are receiving the value “8”, corresponding to the
largest value within the cycle. Once rule has finished, robots A and B look for the
bridges to break their inconsistencies (Fig. |5.6)). For robot B the best bridge is the one
matching features f;' and f£. For the robot A this is not a bridge because both features
have the same value in the same element. The next largest value is also discarded because
it belongs to a cycle. Finally, the bridge with error 7 is selected and the match between

5. Distributed Data Association 103

fE and fC is deleted.

5.8 Discussion

In order to show the performance of the algorithm, we have carried out several simula-
tions with a team composed by 7 robots exploring an environment of 20 x 20 m with
300 features, see Fig. Each robot executes 70 motion steps along a path of approx-
imately 30 m. The robots estimate their motion based on odometry information that is
corrupted with a noise of standard deviation o,,0, = 0.4 c¢m for the translations and
09 = 1 degree for the orientations. They sense the environment using an omnidirectional
camera that gives bearing measurement to features within 360 degrees around the robot
and within a distance of 6 m. The measurements are corrupted with a noise of 0.5 degrees
standard deviation. Each robot explores the environment and builds its local (Fig. [5.8).

-10
-10 -8 -6 -4 -2 0 2 4 6 8

Figure 5.7: A team of 7 robots explore an environment of 20 x 20 m. Gray areas are
walls and red dots are the ground-truth location of landmarks. Initially, the robots are
placed in the black box region. From these initial poses, they reach consensus on the
global reference frame. After that, they explore the environment and build their maps
according this global reference frame. We display the trajectories followed by robots 2, 3,
and 5, together with the final poses of the 7 robots.

Due to the presence of obstacles (gray areas), each robot may have not observed some
landmarks. Besides, the precision of the estimated positions (blue crosses and ellipses) of
the landmarks depends on the trajectory followed by each robot.

When they finish the exploration, they execute the consistent data association algo-
rithm under the communication graph in Fig. 5.9 We assume that a pair of robots can
exchange information if they are within a distance of 3 m. The local data associations
F(S;,S;) are obtained by applying the JCBB method [97] to the local maps of any pair of
neighboring robots (i, j) € E.om. Since all the trajectories followed by the robots traverse
the main corridor (Fig. there is a high overlapping between their local maps (Ta-
ble . Given any 2 local maps with approx. 122 features, there are approximately
89 true matches (ground truth). We can see that, although the local data association

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

104 5. Distributed Data Association

Figure 5.8: Local map estimated by robot 2. The landmarks close to its trajectory
(red line) have been estimated (blue crosses and ellipses) with a high precision. Besides,
its estimated positions (blue crosses) are very close to the ground truth locations (red
dots). Due to the presence of obstacles (gray areas) some of the landmarks have not been
observed, or have been estimated with high uncertainty.

Figure 5.9: Communication graph associated to the final robot poses in Fig. 5.7 There
is a link (blue solid line) between any pair of robot poses (red triangles) that are within
a distance of 3 m.

method has found a high amount of the ground truth links (good links or true positives),
it has also missed a few of them (missing links or false negatives). In addition, some
additional links have been detected that link together different features (spurious links or
false positives).

From the 858 features within all the local maps, there are 300 different features in the
ground truth sense (association sets). From them, 184 were observed by a single robot
(ground truth exclusive features), and the remaining where observed by around 6 robots
(ground truth size of the remaining association sets). As previously stated, there is a
high overlapping between the maps, and each non-exclusive feature has been observed by
almost every robot. In the data association graph Gy however, only 296 association sets
have been obtained, which means that different features have been mixed up together.
There are 184 exclusive features (ground truth exclusive features), although the local
data association algorithm has found 187 exclusive features. These additional 3 exclusive
features appear due to the presence of the three outliers, the features with high covariance

5. Distributed Data Association 105

ellipses in Fig. [5.10, Since their positions have been wrongly estimated, the local data
association method has failed to correctly associate them.

Table 5.1: Local data associations.

Features Per local map Total
Features observed 122 858
Data associations | Per pair of local maps Total
Links (ground truth) 89 2860

Links 88 2820
Good links 85 2750
Missing links 3 110
Spurious links 2 70
Association sets Obtained Ground truth
Association sets 296 300
Exclusive features 187 184
Non-exclusive assoc. 109 116
Size of non-exclusive 6.1 5.8

The robots execute Algorithm [5.6.1] on the non-exclusive features to detect and solve
any inconsistent associations. From the 109 non exclusive association sets, 102 of them
are consistent, and its associated 591 features are classified as consistent (Table[5.2). The
remaining 7 sets are conflictive, and they have associated 80 conflictive features. After
executing the resolution algorithm on the 80 conflictive features, all of them are resolved
and the process finishes. The original 7 conflictive sets are partitioned into 14 consistent
non-exclusive sets. Due to these additional sets, the number of consistent non-exclusive
association sets (Table. 5.2 third row), which initially was 102 (Table. first row), is
increased into 116 (102 + 14) after executing the algorithm. Equivalently, the number
of consistent non-exclusive features (Table. fourth row) which was 591 (Table. [5.2]
second row) becomes 671 (591 + 80) since the 80 inconsistent features are resolved.

Table 5.2: Detection and resolution of inconsistent associations.

Detection Conflictive Consistent non-exclusive Consistent exclusive
Association sets 7 102 187
Features 80 591 187

Resolution Conflictive Consistent non-exclusive Consistent exclusive
Association sets 0 116 (+14) 187
Features 0 671 (480) 187

The comparison between the final data association graph and the ground truth infor-
mation can be seen in Table [5.3] Since the resolution algorithm is based on link deletion,
the number of links here is lower than in Table [5.I] However, the number of association
sets is closer to the ground truth results. From the 303 obtained association sets, 3 of
them are due to the three outliers in Fig[5.10l Thus, there are 300 remaining association

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

106 5. Distributed Data Association

sets, which is exactly the same number of association sets in the ground truth data. The
same behavior is observed regarding their sizes. This means that the resulting associa-
tions are similar to the ground truth ones in spite of the fact that they have less links.
From the 26 links erased from Gg;,, 22 were spurious links, and only 4 where good links
that now are missing.

Table 5.3: Results after detecting and solving the inconsistencies.

Features Per local map Total
Features observed 122 858
Data associations | Per pair of local maps Total
Links (ground truth) 89 2860
Links 87 2794 (-26)
Good links 85 2746 (-4)
Missing links 3 114 (+4)
Spurious links 2 48 (-22)
Association sets Obtained Ground truth
Association sets 303 300
Exclusive features 187 184
Non-exclusive assoc. 116 116
Size of non-exclusive 5.7 5.8

10

o
H
4
8

M%HM& + -y
#
i
2l
%;
-,

g 3‘
+
S Aﬁ
Q#* “%e 00

-
e

\r«r

4 w#wﬁw .23 ¢mzi¢¢ m

8

t#i‘t#&#

#M

Figure 5.10: Global map x4 (t), X4 (t) estimated by robot 2 after ¢ = 5 iterations. Red
dots are the ground truth position of the features while blue crosses and ellipses are their
estimated positions. Red triangles are the ground truth poses of the 7 robots after the
exploration, and blue triangles are their estimated poses in the global map of robot 2.
The three landmarks with high covariance ellipses are outliers that have been wrongly
estimated by one of the robots. They have been classified by the algorithm as exclusive,
giving rise to the presence of 3 additional exclusive sets in the final association map (303)
compared to the ground truth information (300).

After associating their features, the 7 robots compute the global map as described in
Chapter [3| under the communication graph in Fig. [5.9] Since the communication graph

5. Distributed Data Association 107

has a high connectivity, in a few iterations each robot has received information from
any other robot. After 5 iterations, the global map at robot 2 already contains precise
estimates of the whole explored environment (Fig. [5.10]).

5.9 Conclusions

We have presented a new technique to match several sets of features observed by a team
of robots in a consistent way under limited communications. Local associations are found
only within robots that are neighbors in the communication graph. After that, a fully
decentralized method to compute all the paths between local associations is carried out,
allowing the robots to detect all the inconsistencies related with their observations. For
every conflictive set detected, in a second step the method is able to delete local associa-
tions to break the conflict using only local communications. The whole method is proved
to finish in a finite amount of time finding and solving all the inconsistent associations.
Experimental results show the performance of the method in scenarios with great interest
in robotic tasks. To the best of our knowledge this is the first algorithm that is able to
do it.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Chapter 6
Distributed Localization

As discussed at the beginning of this document, one of the issues in a distributed per-
ception scenario is that, usually, robots start at unknown poses and do not share any
reference frame. In this chapter we address the problem of distributed localization, which
consists of establishing this common frame and computing the robots’ poses relative to
this frame. Each robot is capable of measuring the relative pose of its neighboring robots.
However, it does not know the poses of far robots, and it can only exchange data us-
ing the range-limited communication network. In this chapter, we discuss three different
scenarios and propose distributed algorithms for them. In the first scenario, each robot
measures the planar position and orientation of nearby robots relative to its own frame,
being the measurements noise free. In the second case, we address the same problem but
assuming that the measurements are noisy. In the third case, the robots measure and esti-
mate their positions, i.e., they do not compute their orientations, being the measurements
corrupted with noises. We discuss the cases that the common frame is set at an anchor
robot, and that this common frame is placed at the centroid of the robot team. The
presented algorithms have the interesting property that can be executed in a distributed
fashion. They allow each robot to recover its pose using exclusively local information and
local interactions with its neighbors. Besides, they only require each robot to maintain
an estimate of its own pose. Thus, the memory load of the algorithm is low compared to
methods where each robot must also estimate the positions or poses of any other robot.

6.1 Introduction

Multi-robot tasks, such as pattern formation [22}/144] or collision avoidance [127], often
require the knowledge of the robots’ positions in a common reference frame. Typically,
robots start at unknown locations, they do not share any common frame, and they can
only measure the relative positions of nearby robots. We address the localization problem,
which consists of combining these relative measurements to build an estimate of the robots’
positions in a common frame.

Several localization algorithms rely on range-only [2,132,|33], or bearing-only [122] rel-
ative measurements of the robots’ poses. Other approaches assume that robots measure
the full state of their nearby robots. The relative full-pose of a pair of robots can be ob-
tained, for instance, by comparing their local maps [38,39,(137| and looking for overlapping

109

110 6. Distributed Localization

regions. This approach, known as map alignment, presents a high computational cost and
its results depend on the accumulated uncertainty in the local maps. Alternatively, each
robot can locally combine several observations to build an estimate of the relative poses.
The 2D relative pose can be retrieved from at least five noisy distance measurements and
four noisy displacements [158|. Bearing-only measurements can be also used to recover
the 2D relative pose in vision systems [120]. The 3D case has also been analyzed for
distance and bearing, bearing-only, and distance-only observations [141]. These methods
present the benefit that the obtained results do not depend on the uncertainties in the
local maps. They also allow the robots to compute their relative poses when there is no
overlapping between their maps, or even if they do not actually have a map.

Network localization algorithms properly combine the previous relative measurements
to produce an estimate of the robots’ poses. Some distributed algorithms compute both
the positions and orientations but assume that the relative measurements are noise free,
e.g., [57] where each robot reaches an agreement on the centroid of the network ex-
pressed in its local reference frame. Other methods compute exclusively the robot posi-
tions but not their orientations, and consider noisy relative measurements of the robot
positions [18/119]. This latter localization problem can be solved by using linear optimiza-
tion methods [18,119]. Although these works do not consider the robots’ orientations,
they can also be applied to such cases provided that the robots have previously executed
an attitude synchronization [95,121] or a motion coordination [43| strategy to align their
orientations.

Cooperative localization algorithms [76}|118}|140] do not just compute the network
localization once, but also track the robots positions. These algorithms, however, usually
assume that an initial guess on the robot poses exists.

Formation control [43,52,70,82] and network localization are related problems. While
localization algorithms compute robot positions that satisfy the inter-robot restrictions, in
formation control problems the robots actually move to these positions. The goal forma-
tion is defined by a set of inter-robot restrictions (range-only, bearing-only, full-positions,
or relative poses). Although some works discuss the effects of measurement noises in the
final result [43|, formation algorithms usually assume that both, the measurements and
the inter-robot restrictions are noise free [52,/70,82]. Thus additional analysis is necessary
in noisy localization scenarios.

Both, formation control and localization problems can be solved up to a rotation and
a translation. This ambiguity disappears when the positions of a subset of anchor robots
is given in some absolute reference frame. The range-only case |2| requires at least three
non-collinear anchors for planar scenarios. The density and placement of anchors has an
important effect on the accuracy of the solution for the bearing-only case [122]. In the
full-position case a single anchor is enough. Its placement influences the accuracy of the
final results and it is common to analyze the estimation errors at the robots as a function
of their distances to the anchor [20]. However, it is common to assume that the first robot
is the anchor placed at the origin of the common reference frame and make the other
robots compute their positions relative to the anchor.

In this chapter we focus on network localization methods where robots measure the
relative full-pose of their neighbors. We assume that one of the methods presented in the

6. Distributed Localization 111

second paragraph [120,[141}/158] is executed by the robots to compute the relative pose
measurements and their associated covariances. Since these methods do not require the
robots to have a map, it can be executed at any time. In particular, we execute it at
an initial stage, prior to any exploration taking place. The communication graph during
this initial stage must be connected. We consider scenarios with both noisy and noise-
free relative measurements. For the noisy case, we assume that these measurements are
independent since they are acquired individually by the robots. We do not further discuss
cooperative localization algorithms, since in a map merging scenario it is enough for the
robots to compute the global frame and their poses once. In addition, in this chapter
we discuss the selection of the common reference frame. We consider the cases that the
common frame is one of the robots (anchor-based), and that the common frame is the
centroid.

First, we discuss a scenario where each robot measures the noise-free pose of its nearby
robots in its own reference frame. We build in [142], where a camera network reaches an
agreement on the pose of an object observed from each camera. When the cameras do
not share a common reference frame, each robot uses the relative pose of its neighbors to
transform their estimates into its own reference frame. We show that this algorithm allows
the robots to compute their poses relative to the centroid of the team in a distributed
fashion. Then, we present an algorithm for noisy measurements of relative poses. The
robots estimate their poses relative to an anchor node in a distributed fashion. Finally, we
discuss the noisy position estimate case. We present a distributed algorithm that allows
the robots to simultaneously compute the centroid of the team and their positions relative
to the centroid. We show that when the centroid of the team is selected as the common
frame, the estimates are more precise than with any anchor selection.

In order to make the reading easy, along the chapter we use the indices i, j to refer to
robots and indices e, €’ to refer to edges. An edge e starting at robot ¢ and ending at robot
j is represented by e = (7, 7). Given a matrix A, the notations A, s and [A], s corresponds
to the (r,s) entry of the matrix. We let ® be the Kronecker product, I. be the identity
matrix of size r X r, and 0,4, be a r X s matrix with all entries equal to zero. A matrix
A defined by blocks A;; is denoted A = [A;;]. The operation A = blkDiag(B;,...,B,)
returns a matrix A defined by blocks with A;; = B; and A;; = 0 for 7 # j.

6.2 Problem Description

The problem addressed in this chapter consists of computing the localization of a network
of n € N robots from relative measurements. We consider three different scenarios.

In the first scenario, the goal is to compute the planar poses of n € N robots
{p{.....pS} expressed in the global frame G, where p§ = [z, y%, 0¢] € SE(3) for
i€{l,...,n}, given m € N measurements of relative poses between robots. The robots
measure the planar pose (position and orientation) of nearby robots expressed on their
own reference frame, being the measurements noise-free. We let pz € SE(3) be the pose
of a robot j relative to robot 7. This information is represented by a directed graph
G = (V,€&), where the nodes V = {1,...,n} are the robots, and £ contains the m relative

measurements, |£| = m. There is an edge e = (i,7) € £ from i to j if robot ¢ has a

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

112 6. Distributed Localization

relative measurement of the state of robot j. We assume that the measurement graph ¢
is directed and weakly connected, and that an robot ¢ can exchange data with both its in
and out neighbors N; so that the associated communication graph is undirected,

M: {j | (27]) €& or (]72) Gg}

We let A € {0,1,—1}"*™ be the negative incidence matrix of the measurement graph,

-1 ife=(i,j)
Aie=11 ife=(j,i) , forie{l,...,n},ee{l,...,m}, (6.1)
0 otherwise

and we let W, ; be the Metropolis weights defined in eq. in Appendix [A] associated
to G. The localization problem consists of estimating the states of the n robots from
the relative measurements. Any solution can be determined only up to a rotation and a
translation, i.e., several equivalent solutions can be obtained depending on the reference
frame selected. We compute the robot poses relative to a global frame G whose position
is the centroid of the team, and whose orientation is the Karcher mean [91] of the robots
orientations as explained in Section We assume that the orientations of the robots
satisfy —m/2 < 0; < w/2 for all i € V, so that the average orientation is well defined [91].

Alternatively [18], one of the robots a € V, e.g., the first one a = 1, can be established
as an anchor with state p? = 0341, and the poses of the non-anchor robots can be expressed
relative to the anchor. We call such approaches anchor-based and add the superscript a
to their associated variables. We let V* = V \ {a} be the set of non-anchor nodes and
matrix A* € {0,1, —1}""1*™ be the result of deleting the row associated to node a from
A in eq. . This is the case considered in our second scenario, where we address the
anchor-based localization problem for the case that the relative measurements are noisy.
Each edge e = (i,7) € £ in the relative measurements graph G = (V,) has associated
noisy measurements of the orientation z’ and the position z% of robot j relative to robot 1,
with associated covariance matrices 2,0 and Y.,2v. We assume that the measurements are
independent since they were acquired individually by the robots. The goal is to estimate
the robot poses p¢ of the non-anchor robots ¢ € V* relative to the anchor a from the
noisy relative measurements. As in the previous scenario, here we also assume that the
orientations of the robots satisfy —7/2 < 0, < w/2 for all 1 € V.

In the third scenario, instead of computing robot poses, we consider that each robot
t € V has a p—dimensional state x; € RP, and that the measurement z, € RP associated
to an edge e = (i, j) € & relates the states of robots ¢ and j as follows

Z, = X; —X; + Ve,

where v, ~ N (0,x,, X5,) is a Gaussian additive noise. Thus, we solve a position localiza-
tion problem, although the proposed method can be alternatively applied for estimating
speeds, accelerations, or current times. In addition, this method can be used in a pose
localization scenario, provided that the robots have previously executed an attitude syn-
chronization [95,]121] or a motion coordination [43| strategy to align their orientations.
We estimate the states x{" of the robots i € V relative to the centroid of the states,
and compare this representation with a classical anchor-based one x¢. In the following
sections we explain in detail the three scenarios.

6. Distributed Localization 113

6.3 Noise-free Pose Localization

In this section we address the problem of establishing a common reference frame for a
robot team in a planar environment and obtaining the robot poses in this frame. The
robots measure the relative poses (relative positions and orientations) of nearby robots
and we consider the case that the measurements are noise-free. We propose a distributed
strategy where the robots use the relative measurements to compute their pose relative
to the global frame. We define the global frame as the centroid of the robot positions
and the Karcher mean [91] of their orientations. We assume that the orientations of the
robots satisfy 0 < 0; < 7 for all i € V, so that the average orientation is well defined [91].

In this section, we represent the pose p{' = (RY, T) € SE(3) of robot i expressed in
the global frame G, by the following rotation matrix RS and translation vector T.C,

cos Y —sinf¢ 0 af
RY = | sinf® cosfS 0 |, T = | v¢ |, (6.2)
0 01 0

where z = 0 since the robots move on the plane, and the planar rotations are around the z-
axis. We let pz. = (R;, T]’) € SE(3) be the pose of a robot j relative to robot i. Recall that
as previously stated relative measurements are noise-free, thus we use pj indistinctively
for the true and the measured relative poses. Along this section we use the generic world
reference frame w as a tool for providing the theoretical results and definitions, and we let
p! = (RY,TF) € SE(3) be the pose of robot ¢ expressed in frame w. Note that this frame,
which is unknown by the robots, is only used for deriving our proposal and it is not needed
for executing the proposed algorithms. Instead, the proposed algorithms exclusively rely
on the relative poses pé between neighboring robots.

As previously stated, we define the global frame G as the centroid of the robot positions
and the Karcher mean [91] of their orientations. We begin by discussing what the centroid
of the robot team is. Suppose we are given the true robot poses py = (R, 7}) in a world
reference frame w. Then the position of the centroid 7T¢ in frame w is

W]' - W
T =~ > 17 (6.3)
j=1

The equivalent expression for the orientation of the global reference frame Rf. requires
further explanations on averages of rotations and it is discussed later in this section. Let
(RE,TY) be the inverse of (R, TE), i.e., the pose of the world frame w expressed in the
centroid frame, RS = (R%)", TS = — (R%)" T%. Then, the pose of each robot i € V with
respect to the centroid frame p§ = (RS, TE) is

RY = RCR, T¢ = ROTY + TC. (6.4)

The centroid G representation does not depend on the original reference frame w selected.
The same robot poses relative to the centroid p§’ are obtained regardless of the reference
w used in (6.3)-(6.4). Moreover, as we show in this section, the robots do not need to

know any world reference frame w in order to compute their poses p{’ = (RS, T.¢) with

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

114 6. Distributed Localization

respect to GG . More specifically, we let each robot ¢ compute the pose of the centroid
pL = (RL, T}) in its own reference frame; and p& can be obtained from pl, and vice versa
as follows:

RS =(Ry)", 1¢=-(RL)"T; RL=(RS)", T.=-(R%)"TF (65)
We first present the distributed algorithm for the positions and then we explain the
agreement on the orientations. Both algorithms exclusively rely on the relative poses pé-
between neighboring robots, here denoted by (R}, T;) € SE(3).

We are ready to present the distributed algorithm executed by the robots to agree on
the position of the global reference frame, computed as the centroid G of the robot team.
Let each robot ¢ € V have an estimate of the position of the centroid in its own reference
frame T}, (t) € R® which is initialized as T/ (0) = 0 and updated each time step ¢ € N
according to

Tot+1) = > Wi (RTL() +T)), (6.6)
JEN;U{i}

where W, ; are the Metropolis weights associated to the relative measurements graph G
as defined in eq. (A.3)) in Appendix . Then, we have the following result.

Proposition 6.3.1. Assume G is connected. Then, if each robot i € V executes the
algorithm (6.6), as t — oo, each T} (t) with i € V tends to the position of the centroid in

robot’s i reference T¢, as defined by eqs. ((6.3)-(6.9)),
Proof. First of all, we show that, by making a proper change of variables, the update

rule is actually an averaging algorithm (see Appendix [A]) and thus the states at the
robots asymptotically reach consensus. Consider the change of variables,

Ti(t) = RITL(t) + 17, TL(t) = (RN Ti(t) — (RO T7, (6.8)

that expresses each T%(t) in a world frame w, being (RY,TF¥) the robot poses in frame w.
We apply this change of variables to our system (6.6)),

Tit+1) = > WyRIRIRT(t)+ Y Wy (RIRT) + RT) +T7)
FEN;U{i} JEN;U{i}
JEN;U{i}

since > v Wiy = Lforalli € V. RIRIR] = Ri = 1, and RRIT] + RiT; + T} =

T¥ =0, for all i,7 € V. Thus, is an averaging algorithm like (A.1) in Appendix
which converges to (A.2) the average of the initial states,

1N B R,
hmT ZT EZR]Té(O)_‘_T] = EZTJ :TG’ (610)
j=1 Jj=1

t—o00

6. Distributed Localization 115

which is the position of the centroid (6.3) in the world frame w. Let us now reverse the

change of variables and use equations , and ,
lim T4 (t) = (R 18 — ()" 7 = — (R (RE)" 1€ — (B (RE)" RETY
= — (RS)" (RSTY + T¢) = — (RE) 1€ =T, (6.11)
and the proof is complete. O

Let us now discuss the agreement on the orientation of the global reference frame.
We use the Karcher mean [91] to compute the average of the robot orientations. Given
the robot orientations R} in some frame w, the orientation of the global frame R, is the
Karcher mean given by,

R{, = arg min d*(R*, RY), 6.12
G ng 1221: (z) ()
where d*(R¥, R) is the Riemannian square distance between R* and RY given by
1
d*(R*, RY) = =5 Tr{ flog ((R*)" B))I*}. (6.13)
Here log is the logarithmic map log : SO(3) — so(3) defined by
~f Osx3 if =0,

where § = arccos (1) The term Y7 d*(RY, R) in can be seen as a cost
function to be minimized. Recalling that the initial orientations 6; are located in a geodesic
ball of radius less than 7/2, then this cost function restricted to the geodesic ball is convex,
and the Karcher mean is well defined [91].

The orientation of the global frame R (t) relative to each robot 4 is then computed
using a distributed consensus algorithm on SO(3) [142] combined with the Metropolis
weights as defined in eq. in Appendix [Al Robot ¢ initializes its variable R5(0) =1
and updates it at each t € N by

Rg(t+1) = Rg()exp(wi(t), wi(t)=), Wi;log(Ro()" RiRG(1), (6.15)
JEN;U{3}
where W, ; are the Metropolis weights associated to the graph G given by eq. (A.3) in
Appendix [A] and exp is the exponential map exp : so(3) — SO(3) defined by

(win)=1] oo
exp(u; = I_f_si%ui(t)_i_k;#u?(t) if a #£ 0,

(3

where o = \/%Tr{uf(t)ui(t)}. Given that the robot orientations are planar and within a
range of &7, and that the graph G is connected, this algorithm converges to the unique
Karcher mean expressed in each robot’s reference frame

Jim RIR() = R, (6.16)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

116 6. Distributed Localization

for alli € V.

After executing this algorithm for order n*log(e~!) iterations each robot obtains its
pose relative to the global frame with a precision € (see Appendix . Robots can then
express their local maps according to this common reference frame.

6.4 Noisy Pose Localization

The problem addressed in this section consists of computing the planar poses of n € N
robots {p{,...,p%}, where py = [z¢,y%, 0¢] for i € {1,...,n}, relative to an anchor robot
a, given m € N noisy measurements of relative poses between robots. There is a single
anchor node a € V which is placed at the pose p% = 034;. By convention, we let the
anchor be the first node, a = 1, and denote V* = V\ {a} the set of non-anchor nodes. The
robots measure the planar pose (position and orientation) of nearby robots expressed on
their own reference frame. In the previous section, we assumed the measurements were
noise-free. Here, we instead consider that they are corrupted with noises.

Each edge e = (7, 7) € £ in the relative measurements graph G = (V, £) has associated
noisy measurements of the orientation z’ and the position z% of robot j relative to
robot ¢, with associated covariance matrices Y, and Y,zv. We let zg € R™, 7,y € R?™,
Y, € R™™ and ¥, € R*™*?™ contain information of the m measurements,

Zy = (Z?, B ,an)T, Zyy = ((ny)Ta R (Zfr?)T)Ta
Y., = Diag(zzel), . Ezgn), Yidey = blkDiag(ZzTy, e EZ%J).

We assume that the measurements are independent since they were acquired individually
by the robots. Thus, the goal is that each robot i € V estimates its pose p¢ relative to
this anchor.

This problem is solved by using a three-phases strategy:

Phase 1: Compute a suboptimal estimate of the robot orientations 67{‘5 € R” relative to
the anchor a for all the robots in V;

Phase 2: Express the position measurements z,, of the robots in terms of the previously
computed orientations;

Phase 3: Compute the estimated poses of the robots p% = ((x%)7, (A%)7)7.

During the rest of the section, we analyze each of these phases and present a distributed
implementation.

6.4.1 Centralized algorithm
Phase 1

During this first phase, an initial estimate of the robot orientations fya € R™! relative to
the anchor a is obtained. This estimate is computed based exclusively on the orientation

6. Distributed Localization 117

measurements zg € R™ with covariance ¥,, € R™*™. When the orientations measure-
ments are considered alone and they belong to +7, the estimation problem becomes linear,
and the estimated orientations are given by the Weighted Least Squares,

1

O = Bgo, A'S, ' 20, Sgg, = (AT, (AMT) (6.17)

where A% € {0,1,—1}""1™ is the result of deleting the row associated to the anchor
a from the incidence matrix A of the measurement graph in eq. . Recall that the
orientation of the anchor is set to zero, (9“ =0 for i = a. We let 05, € R" and Ega Rm™*"
contain the orientation of all the robots in V), including the anchor a,

6)(1/ = (07 (éga)T)T7 Eé% = Dlag(07 Eé%a)‘ (618)

Phase 2

Each relative position measurement z’ associated to the edge e = (i,), was originally
expressed in the local coordinates of robot i. During the second phase, these measurements
are transformed into a common orientation using the previously computed é{‘,

For each edge e = (i,) € € we let R, € R**? and S, € R**? be the following matrices
associated to the orientation 6; of robot i,

~ cav | cosBf —sin6f = Son | —sinf¢ cos6f

;o Se=8(0}) = . (6.19)

sin 0} cos 6 —cosff —sinbf

and let the block diagonal matrix R € R2"*2™ compile information from the m edges,
R = R(6%) = blkDiag(Ry, ..., Ry). (6.20)

The updated pose measurements in the global coordinates w € R?™+(*~1) and their
associated covariance X, are
Zay
QVa ’

Y4y O KT 0
: %H ph 1} (6.21)

where K € R?*™*2™ and J € R?*™*(~1) are the jacobians of the transformation with
respect to respectively, z,, and 0,

K =R, and Jei = S, z¥ if e = (i,7) for some j, and J.; = Oqy; otherwise. (6.22)

Phase 3

During the last phase, the positions of the robots X{,.. € R2=1 relative to the anchor
node a are computed, and an improved version 6%, € R"™! of the previous orientations

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

118 6. Distributed Localization

0%, is obtained. Let p%. € R3™ 1 contain both the positions and orientations of the
non-anchor robots,

P = { ’9‘: } = Ypo, BE,'W, Yo, = (Bz;leT)‘l, (6.23)

where B = blkDiag ((A* ® I5),1, 1), and X, and w are given by (6.21). The estimated
poses P € R3" of all the robots in V, including the anchor a, are given by

f’% = (nglﬂ (f)gl/“)T)T7 Ef’\az = blkDiag(03X3’ Ep%) (624)

Algorithm

Considering the three phases together, the estimated positions X{,. and orientations QA{‘N
of the non-anchor robots are

%0, = LA @ I)Y;, (Izm + T, JTTZWE> R z,,,

05 = (A°SHADT) LA, 2 + S0, V., E R z,,, where (6.25)
Ts., = <R2zfyRT> E=(A"0L) L7 (A" ©@ 1) Yz, — Lo,
e :((2%) JTTZWEJ) L=(A"®L)Y;, (A"®L)", (6.26)

and p{, is obtained from the previous expressions as in eq. . A full development
of these expressions can be found in the following section. From , it can be seen
that the computation of x§, and é% involves matrix inversions and other operations that
require the knowledge of the whole system. Although a priori the proposed strategy would
require a centralized implementation, in the next sections we show a proposal to carry
out the computations in a distributed way.

Development of the expressions of the localization algorithm
During the first phase, 5{‘5& and its covariance 25% are
= E(,a Ay T o Z0) 25% = (A%, (Aa))t (6.27)

In the second phase, the updated measurements w and a first order propagation of the
uncertainty X, are

W:|:Z~Zy:| [}szy}, Y =
Va V(L

The estimates in the third phase are the solution of the linear system

T
RS, BT+ TS JT IS,

(6.28)
e, " g,

P = {Z‘; } = (BX'BY)'Bx'w. (6.29)

6. Distributed Localization 119

To write in explicit form x§,. and é{‘;a we first compute the information matrix Yy, = X!

w

Tz, -T;,,J
Tw = —JT Egal 4 JTT) (630>
vll

J

Zyy Zoy

where T;, is asin eq. (6.26), Y5,, = (R,,, RY)!, and where we have used the following

EF],With

A B!
blockwise inversion relations { } = { P

¢ D

1

E=A"'4+A'B(D-CA'B)'CA™ = (A-BD'C)",
F=-A"B(D-CA'B)"' =~ (A-BD'C)"'BD™,
G=-(D-CA'B)'CcA'=-D'C(A-BD'C)",
H=(D-CA'B)" =D'+D'C(A-BD'C)”"'BD™". (6.31)

The information matrix Tpe, = (BX'B") and its inverse Ype = are

. [ABL)T, (A L) —(A' @) T;,,]
Pha = | —J s, (AT L) S+ T, T |
E va *
Pl = Zz’é P , Wit (6.32)
2 = ((Bge,) ™" = I Y5, B

Y=L+ LA @)Y,
Ef(,é = L_I(Aa ®1)Ys,, JE;,
E=A"L) LA @L)Y;, —1,

L=(A"®L)Y;, (A*®IL)". (6.33)

TSI, (A @ L) LY,

Zgy

Zay

6.4.2 Distributed algorithm
Phase 1

The initial orientation 9{‘; in the first phase of the algorithm can be computed in a dis-
tributed fashion using the following Jacobi algorithm [18]. Let each robot i € V maintain
a variable 0¢(t) € R. The anchor i = a keeps its variable equal to zero for all time steps
te N,

0%(0) =0, 0%(t +1) = 0%(¢), for i = a. (6.34)

Each non-anchor robot i € V* initializes its variable at ¢ = 0 with any value 6%(0), and
updates it at each time step t € N by

0rt+1)=Cle;+ Ot D (Sp0) 105 + O D (Sa0) T 03(1), (6.35)

e=(i,j)€€ e=(ji)€€

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

120 6. Distributed Localization

where
C; = — (ZZZ)ilzg + Z (Ezg)ilzza
e=(i,j)€€ e=(j,0)€€
C; = (Z0) '+) (Ze) (6.36)
e=(i,j)e€ e=(ji)e€

The previous expressions are the Jacobi iterations associated to (6.17). Let T(;%a and

s, be respectively the information matrix and vector of 5{‘20,
T§$a = (Eé$a)_1 = AQEZ_;(.A(I)T, ﬁé%a = AGE;GIZQ. (637)
Let C contain the elements in the diagonal of Té?,a?

C = Diag([Tga,l22, - - [Tga, Inn),
and D be D =C — Té;(; The first equation in can be rewritten as
Vg, 000 = 1150, e = C7' D8 + C Mg (6.38)
From here, we can write
0%, (t+1) = C~'DO%.(t) + C™ g, (6.39)

initialized at ¢ = 0 with 6%.(0). By operating with A°Y;'zy and AT, (A%)7, it can
be seen that (6.35)) is the i —th row of (6.39). The system (6.39) converges to f%. in

eq. (6.17), and equivalently each 6%(¢) in (6.35) converges to 6% for i € V*, if the spectral
radius of C71D is less than 1,

p(C7'D) < 1, (6.40)

and the anchor variable, é?(t) with ¢ = a, remains equal to 0 for all the iterations ¢. The
value p(C~1D) gives the convergence speed of the system, converging faster for p(C~'D)
closer to 0. Recalling that 3, is a diagonal matrix, then each variable éf(t) asymptotically
converges to the i-th entry éf of the vector é?,a in |[17.,[18] that would be computed
by a centralized system.

Observe that the computations are fully distributed and they exclusively rely on local
information. The constants C; and ¢; are computed by each robot i € V* using exclusively
the measurements z’ and covariances ¥, of its incoming e = (j,i) or outgoing edges

e = (i,7). Also the variables éj(t) used to update its own 6%(¢ + 1) belong to neighboring
robots 7 € N;.

6. Distributed Localization 121

Phase 2

Let us assume that the robots have executed t,,.x iterations of the previous algorithm,
and let 9“ be their orientation at iteration f,.y, 9‘1 = 9“(max)- Lhen, the second phase
of the algorithm is executed to transform the locally expressed measurements z,, into
the measurements expressed in the reference frame of the anchor node z,,. As previously
stated, the estimated orientations 6¢ do not change during this phase (6.21). Let R =
R0,) be defined by using the orientations 6¢ instead of 9“ in (6.20). Since the matrix
Ris block diagonal, each robot ¢ € V can locally transform its own local measurements,

7'V = Rz, for all e = (i,j) € £. (6.41)

Since the robots use 6 instead of 6, also the updated measurements obtained during the
second phase are z,, instead of z,,. This second phase is local and it is executed in a
single iteration.

Phase 3

In order to obtain the final estimate pf., the third step of the algorithm (6.23]) apparently
requires the knowledge of the covariance matrix ¥y, which at the same time, requires the
knowledge of 25{‘,@' However, a distributed computation of these matrices cannot be
carried out in an efficient way. Here we present a distributed algorithm for computing p$,.

Let each robot ¢ € V maintain a variable p(f) € R? composed of its estimated
position X%(¢) € R? and orientation 6%(t) € R, and let p%(t) be the result of putting
together the p?(t) variables for all i € V. The anchor robot keeps its variable equal to
zero for all the iterations,

Py (0) = 031, pi(t+ 1) = pi(t), for ¢ = a. (6.42)

Each non-anchor robot i € V* initializes its variable at ¢ = 0 with any value p¢(0) and
updates p;(t) at each time step t € N by

i (B(DY() +my), (6.43)

where

;= { "] . (6.44)

My M, fi
luz =) fz Y t)) = ’
{ M3 7\[4 :| (pv()) { f2 } mo
Let T;rv be the block within the matrix Y, in (6.26) associated to an edge e = (i, j) € &,

Tov = Re(Spe) 7 (Re)" (6.45)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

122 6. Distributed Localization

The elements within M; are
My= > Yot Y Ty,
e=(i,j)€€ e=(j,0)€E
M2 = Z ngyse Zey,

e=(ij)eE

M; = Z()(5) ze¥s

e=(i,j)€E
M= > @) 7(8) TSz + > (S Y (S) 7 (6.46)
e=(i,j)€E e=(i,j)€E e=(j,0)€E

The elements within f;(p§,(¢)), which is the term depending on the previous estimates
Py (t) = (ﬁ%(t)Tﬁ(t)v)T, are
= > T X Yoo X9(0) + Y Yam 8.zl 65(1),
e=(i,j)€E =(j,i)€8 e=(j,0)€€

fa= Y (#)(S.) 05 = D (Sa) 05(1). (6.47)

e=(i,j)€E e=(i,j)€E e=(ji)€€

(Qz
\./
’-%
&

<
Q.g
—~
~
SN—
|
—~
\g|

Finally, the terms within m; are

Z Yoz + Z Yoz + Z Y 5ev 52208 — Z Y o0 Sez2005,

=(i,j)€€ =(j,1)€E e= (1]65 =(j1)€E
my=— Y (2 (ée) Lozl + Y (2)(Se) v Sz
e=(i,j)€€ e=(i,5)e€
Z 10(1 Z ze 19a+ Z 19a+ Z 19a
e=(i,j)€E e=(ji)e€ e=(i,j)€E e=(ji)e€

(6.48)

Theorem 6.4.1. The estimates p;(t) computed by each robot i € V by the distributed
algorithm (6.42))-(6.43) converge to p¢ = [(x2)T0%T for connected measurement graphs G
with ring or string structure.

Proof. For the anchor i = a, it is true since p?(t) = 0 for all the time steps. Now we
focus on the non-anchor nodes in V. First of all, we show that p{ is an equilibrium point
of the algorithm for all i € V. Let Tpe, be the information matrix associated to
P, i, T, = (Spe,),

T

L ~AYs., } (6.49)

ﬁ%a:{—JTTZW(Aa@b)T ATS (AT + T,

Zay
where L and T5,, are given by (6.26). Analyzing the term BX_! in (6.23), it can be seen
that it is

| (A e L)Ts,, —(A*® I2)Tsz
BZW - |i _JTY'ZW Aa (Aa ®12) + JTTZWJ (650)

6. Distributed Localization 123

If we express the third phase in the following way
Tpo, PYa = B X, W, (6.51)

and then we consider the rows associated to robot 7, we get

~a)A(g — ~a
= | i | =M (w8 +m), (6.52)

with M;, fi(p$(t)) and m; as in (6.44))-(6.48).
Now we prove that the system is convergent. Let M = blkDiag(Ms,...,M,) and
4. be a permutation of pf. so that the estimates of each robot appear together, qf.. =

R 1T
[(f{%)Tﬁg, . (X?L)Tﬁg] . Equivalently, the permuted version of the information matrix
Tpe, 18 Tqe,. The estimates pf(¢) computed by each robot ¢ € V* with the distributed
algorithm (6.43)) converge to p¢ = [(x%)T09)T if p(M (M — T4e,)) < 1, or equivalently if

p(I— M 'Tg,) < 1. (6.53)

Since A(I—M"'Tga,) =1 —=A(M'T4q,), then (6.43) converges if 0 < A\(M ' Tqq,) < 2.
The first part 0 < A(M‘lT%Q) can be easily checked taking into account that both
M~ and Y4, are nonsingular, symmetric, positive definite, and that (M~ 'Tga,) >

)\min(Mil) :)\min(Mil) —1
W ’77, Lemma 1] Since 0 < W, then 0 <)\(M Té{‘{;a)‘

In order to prove the second part,)\(M_qu?}a) < 2, let us first focus on the structure
of the information matrix Tg¢,. This matrix has zeros for the elements associated to
non neighboring robots, and thus it is compatible with adj(G) ® I3, where adj(G) is the
adjacency matrix of the graph, and I3 is the 3 x 3 identity matrix. For ring or string
graphs, the adjacency matrix can be reordered grouping the elements around the main
diagonal resulting in a matrix that has semi bandwidth s =1, i.e.,

adj(G);; =0 for |i — j| > s.

As a consequence, the information matrix T4¢, has block semi bandwidth s’ =1, and as
stated by |77, Theorem 1],

/\max(M_lrfl‘\z;a) <2¥ =2
]

Due to the structure of the information matrices, the third phase of the algorithm can
be expressed in terms of local information ([6.43))-(6.48) and interactions with neighbors,
and thus it can be implemented in a distributed fashion. It is observed that the robots
actually use 9% instead of 5{‘; and as a result, the solution obtained is slightly different from
the one in the centralized case. We experimentally analyze the effects of these differences.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

124 6. Distributed Localization

6.5 Centroid-based Noisy Position Localization

This section addresses the problem of estimating the positions of the robots from noisy
measurements of the relative positions of neighbors. We propose a distributed method
for the estimation of the centroid of the network of robots. The localization of all robots
in the network is then obtained relative to the estimated centroid. The usual approach
to multi-robot localization assumes instead that one anchor robot exists in the network,
and the other robots positions are estimated with respect to the anchor. We show that
the proposed centroid-based algorithm converges to the optimal solution, and that such a
centroid-based representation produces results that are more accurate than anchor-based
ones, irrespective of the selected anchor. In previous sections we denoted p; the pose of
a robot 7. Since in this section we exclusively consider robot positions, for clarity we use
a different symbol x; for the robots variables.

Consider that each robot ¢ € {1,...,n} has a p—dimensional state x; € RP and it
observes the states of a subset of the robots relative to its own state, x; —x;. These states
can be, for instance, positions in cartesian coordinates, orientations, speeds, accelerations,
or current times. Each edge e = (4, j) € £ in the relative measurements graph G = (V,€)
represents that robot ¢ has a noisy relative measurement z, € R? of the state of robot 7,

Z. = Xj — X; + Ve, (6.54)

where v, ~ N (0,x,, X,) is a Gaussian additive noise. We let z € R™ and ¥, € R™P*"?
contain the information of the m measurements,

z=(z,. .. ,2))7, ¥, = blkDiag(3,,, . .., 3a,.), (6.55)

P m) —Zm

We assume that the measurement graph G is directed and weakly connected, and that an
robot i can exchange data with both its in and out neighbors N so that the associated
communication graph is undirected. The estimation from relative measurements problem
consists of estimating the states of the n robots from the relative measurements z. Any
solution can be determined only up to an additive constant. Conventionally [18] one
of the robots a € V, e.g., the first one a = 1, is established as an anchor with state

x4 = 0,. We call such approaches anchor-based and add the superscript a to their
associated variables. The Best Linear Unbiased Estimator of the states x§,, € RM=Dp,
X%, = ((x3)7,..., (x%)T)T, of the non-anchor robots V* = V\{a} relative to a are obtained

as follows [18],
Xpa =Yg, (A*®1,) %, 'z, Yo, = (A" L,)5 (A" @ Ip)T)‘l, (6.56)

where A¢ € R™D*™ ig the incidence matrix of G as in eq. (6.1), but without the
row associated to the anchor a. From now on, both x§, = (0], (x}.)")" and Yge =

blkDiag (0,xp, Ef{f‘l;a>, include the estimated state of the anchor a as well.

6.5.1 Distributed estimation relative to an anchor

We are interested in distributed strategies where each robot ¢ iteratively estimates its own
state in eq. (6.56) through local interactions with its neighbors N;. Among the different

6. Distributed Localization 125

existing methods for estimating the states x{, relative to an anchor, we use the Jacobi
algorithm [18], although other distributed methods such as the Jacobi Overrelaxation [26],
or the Overlapping Subgraph Estimator [19] could alternatively be applied. The approach
in [119], based on the cycle structure of the graph, could be used as well, although it
requires multi-hop communication.

Considering eq. (6.56), it can be seen that computing X$. is equivalent to finding
a solution to the system Tx{,. = 7, being n and T the information vector and matrix
associated to Xy, and Yz,

n=(A"®L)%; 'z, T=(A®L)S; (A @TL,)". (6.57)

This can be iteratively solved with the Jacobi method [26], where the variable x$.(t) €
R("=DP is initialized with an arbitrary value x%.(0) and it is updated at each step ¢ with
the following rule,

X% (t +1) = DTENXS. (1) + D', (6.58)
being D, N the following decomposition of T = [T;]:
D = blkDiag(Yas, ..., Thn), N=D-T. (6.59)

The previous variable x§. (t) converges to X}, if the Jacobi matrix J = D~'N has spectral
radius less than or equal to one, p(J) = p(D~'N) < 1. The interest of the Jacobi method
is that it can be executed in a distributed fashion when the information matrix T is
compatible with the graph (if j ¢ A, then T;; = T;; = 0,,), and when in addition the
rows of T and of 7 associated to each robot ¢ € V* only depend on data which is local
to robot i. Next, the general anchor-based estimation algorithm [18] base on the Jacobi
method is presented. It allows each robot i € V to iteratively estimates its own X{ within

X%, = ((x5)7, ..., (x%)T)T in a distributed fashion.

Algorithm 6.5.1. Let each robot i € V have a variable x$(t) € RP initialized at t = 0
with x¢(0) = 0,. At each time step t, each robot i € V updates X¢(t) with

M+l =) MBS+ > MY lze— > MY, 'z, (6.60)

JEN; e=(j,i)€€ e=(1,j)€€

where M; and B;; are p x p matrices with M; = 0 fori=a, M; = <deN) fori # a,
and

S s o= (if) = (i) €€
Bij =14 %} if e=(i,7) €&,(j,i) ¢E . (6.61)
SO e (i) e E (i) ¢ E

The convergence of this estimation algorithm has been proved [18, Theorem 1] for
connected measurement graphs with independent relative measurements, under the as-
sumption that either

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

126 6. Distributed Localization

(i) The covariance matrices of the measurements are exactly diagonal; or
(ii) All measurements have exactly the same covariance matrix.

However, we would like our algorithm to be applicable to a wider case of relative noises,
in particular to independent noises, with not necessarily diagonal or equal covariance
matrices. Next we use results on block matrices [51], see Section , to prove the
convergence of the Jacobi algorithm for this more general case.

Theorem 6.5.2. Let the measurement graph G be weakly connected, ¥, ,...,%,, be
the covariance matrices, not necessarily equal or diagonal, associated to m independent
p—dimensional measurements, and X, be their associated block-diagonal covariance ma-
triz as in eq. (6.55). Then, the spectral radius of D™'N, with D and N computed as in

eqs. (6.57)-(6.59)), is less than 1,

p(D7IN) < 1. (6.62)

Proof. In order to prove we use the definitions and results in Section[6.5.4 We first
analyze the contents of T and show that T is of class Z,_, according to Definition [6.5.7]
in Section Then, we use Lemma [6.5.8 and Theorem to show that Y is of class
M?! | asin Deﬁnition Finally, we show that Y+Y7 € M? | and use Theorem
to prove (6.62)). Note that the subscript n — 1 used in this proof instead of n comes from
the fact that T = [Y;;], with ¢,j € V* and |[V*| =n — 1.

We first analyze the contents of the information matrix T given by eq. (6.57). Each
block T;; of the information matrix T is given by

By fjEN,j#I - g
T”—{ 0 if j &N, j#d and T”‘J%E”’ (6.63)

for i,j € V*, where B;; is given by eq. (6.61). Note that B;; is symmetric and that
Bi; >~ (ﬂ and thus —B;; < 0 and symmetric. Therefore, matrix T is of class Z7_,
according to Definition [6.5.7]

Now we focus on Lemma [6.5.8] We are interested in showing that, given any subset
of robots J C V%, there exists ¢ € J such that Zjej T;; = 0. First we analyze the case
J =V Observe that T does not have rows or columns associated to the anchor robot
a,ie., T =[Y;] with i, j € V*. On the other hand, for each robot ¢ that has the anchor a
as a neighbor, a € N, the block Y;; includes B;,. Therefore, Zjeva Ti; = 0foralli e Ve,
specifically

Z T =0if a ¢ Ni, and Z Y;; = Bis = 0, when a € N,. (6.64)

Jjeve JjeVe

A - B (A = B) represent that matrix A— B is positive-definite (positive-semidefinite). Equivalently,
=<, = are used for negative-definite and negative-semidefinite matrices.

6. Distributed Localization 127

Since G is connected, a € N; for at least one robot i € V*. Now consider a proper subset
J & V. Note that for each i € J & V¢,

STy =0if N, CJ, and > Yi;= Y Bj >0, otherwise. (6.65)
jeg JjegJ JENNT

Since G is connected, given any proper subset J & V* of robots, there is always an robot
1 € J that has at least one neighbor outside [J or that has the anchor a as a neighbor,
for which 37, ; Ti; = 0. Therefore Lemma holds, and by applying Theorem W

taking ug,...,u, = 1 we conclude that matrix T € M?_,. Since T is symmetric, then
YT +7YT € MP |, and by [51, Theorem 4.7] we conclude that p(D™'N) < 1. O
Corollary 6.5.3. Let G be connected, Y,,,...,%, be the covariance matrices associ-

ated to m independent p—dimensitonal measurements, and X, be their associated block-
diagonal covariance matriz as in eq. (6.55)). Consider that each robot i € V executes the

Algorithm to update its variable X¢(t). Then, for alli €V,
lim %2(t) = %2, (6.66)

t—o00

converges to the anchor-based centralized solution X¢ given by eq. (6.56]).

6.5.2 Centroid estimation

The accuracy of the estimated states X3, ¥xq in anchor-based approaches depends on the
selected anchor a. Instead, we compute the states of the robots X{5", Yzcen relative to the
centroid given by the average of the states,

X" = (I — Hoen) X5, Sieen = (I— Heen) Szgy (T — Heen)” (6.67)
where Heep = (1, ® 1) (1, @ L,)" /n.

The interest of this representation is that the states of the robots Xj", Ygeen with respect
to the centroid are the same regardless of the anchor robot, i.e., the centroid solution is
unique. Additionally, as the following result shows, it produces more accurate estimates
than the ones provided by any anchor selection. We compare the block—tracef] blkTr of
their covariance matrices [20].

Proposition 6.5.4. The covariance matrices of the centroid-based Ygcen and anchor-based
Yxo estimates satisfy, for all anchors a €V,

Proof. Let P;; and Q;; be the p x p blocks of, respectively, the anchor and the centroid-
based covariances, Yizo = [Py, Ygeen = [Qij] with 4,5 € V. The block-trace of the
anchor-based covariance matrix is

bIKTr (Sge) = > Py (6.69)
i=1

2The block-trace of a matrix defined by blocks P = [P;;] with i,j € {1,...,n} is the sum of its
diagonal blocks, blkTr(P) = Y7 | Py

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

128 6. Distributed Localization

Cor.lsidering ed. . , each block in the main diagonal of the centroid-based Xzeen co-
variance matrix is given by
n

Qii:Bi—%ZmﬁPﬂ QZZ ” (6.70)

j=1 J=1j'=1

for + € V, and thus its block-trace is

DIKTY (Sgen) Z Qi = i P %i i P,
=1

i=1 j=1
= bIkTr (Ege) — (n ®1) S5 (1, @ L) /n. (6.71)

Since Yz is symmetric and positive-semidefinite, then (1, ® I,)"¥s (1, ® I,) = 0,
and thus bIKTr (Egeen) — bIKTE (Ege) < 0, as in eq. (6.68). Observe that the trace
of the block-trace of a matrix A is equal to its trace, Tr(blkTr(A)) = Tr(A). Since
blkTr (E cen) — blkTr (E) =< 0, the elements in the main diagonal of blkTr (E f)en) are

smaller than or equal to the ones in the main diagonal of blkTr (Zxr{;) so that
Tr(Xgeen) = Tr(blkTr(Xgeen)) < Tr(blkTr(Xze)) = Tr(Xzg).
O

In particular, from eq. (6.71), Tr(Xgs) — Tr(Sgeen) = = >0, D07 Tr(P;;). Note that
the previous result holds when the anchor state X is set to a general value, not nec-
essarily 0. It also holds when there is more than one anchor. Consider that the first
k robots are anchors. In this case, matrix ¥z = [P;] has its blocks P;; = 0 for
i,j €{1,...,k}, and eq. (6.71) gives blkTr(Xgeen) = bIkTr(Ygee) — 0, D20, 1) Piy/n,
where Zz_k-i-l Z]_kﬂ Pij/n = 0.

We propose an algorithm that allows each robot i € V to compute its state X{** with
respect to the centroid in a distributed fashion, where x§™ = ((x$)7, ... (x&™)T)T is
given in eq. (6.67). These states sum up to zero, X{* + --- + X" = 0, since (1, ®
IL,)I— H.,) = 0, and for neighboring robots i and j satlsfy X[= X — Xx§ + X{,
where x{, = ((xl)T, oo (XO)TT. Thus, a straightforward solution would Consist of firstly
computing the anchor-based states of the robots x{,, and in a second phase initializing
the robots’ variables so that they sum up to zero, x¢*(0) = 0, for ¢ € V, and updating

them at each step ¢ with an averaging algorithm that conserves the sum:

XA+ 1) = > Wi (R () — G + %) (6.72)
JEN;U{3}

for i € V, where W = [W, ;] is a doubly stochastic weight matrix such that W, ; > 0 if
(i,j) € € and W;; = 0 when j ¢ N;. Besides, W;; € [, 1], Wi; € {0} U [, 1] for all
i,j €V, for some a € (0,1]. More information about averaging algorithms can be found
at [27,[113,/152] and in Appendix [Al The term —x§ + x{ is the relative measurement z,
with e = (7,¢) for noise free scenarios, and the optimal or corrected measurement [119]
z, for the noisy case, z = (A ® L,)Tx$, with z = ((21)7,..., (Zn)")". In what follows
we propose an algorithm where, at each iteration t, is executed not on the exact
X7, %%, but on the most recent estimates x§(t), x}(t) obtained with Algorithm m

’L’ _]7

6. Distributed Localization 129

6.5.3 Distributed centroid estimation algorithm

Now we are ready to present the distributed algorithm for estimating the states of the
robots relative to the centroid.

Algorithm 6.5.5. Let each robot i € V have an estimate of its own state relative to the
centroid, X" (t) € RP, initialized at t = 0 with x5"(0) = 0. At each time step t, each
robot i € V updates X{"(t) with

Rt +1) = Y Wi (RS + X7 () — XI(1), (6.73)

where X7 (t),X$(t) are the most recent estimates that robots i and j have at iteration t of
the variables in Algorithm and W, j are the Metropolis weights as defined in eq. (A.3)
in Appendiz [A]

Theorem 6.5.6. Let all the robots 1 € V execute the Algorithm [6.5.5 and let G be con-
nected. Then, the estimated states X¢"(t) at each robot i € V asymptotically converge to

the state of i relative to the centroid X5 given by eq. (6.67)),

tli>rg> X{(t) = x5 (6.74)
Let €en(t) = [(X§(t) — %57, .. (%2 (t) — f(%e”)T}T be the error vector containing the

estimation errors of the n robots at iteration t. For fired communication graphs G, the
norm of the error vector after t iterations of Algorithm[6.5.7 satisfies

lean®ll2 < MOVl lean(O)]2 + 20(n — Doy (W) 3 (;é%%%%;) . (6)

where J is the Jacobi matriz J = DN, with D and N computed as in eqs. (6.57)-(6.59),
oy is a constant that depends on the initial Jacobi error and on J. W 1is the Metropolis
weight matriz as defined in eq. (A.3)) in Appendix and €cen(0) is the initial error at
t=0.

Proof. First of all, we derive the expression for the convergence rate in eq. (6.75). We
express Algorithm in terms of the error vectors associated to the centroid e, (t)
and the anchor-based e,(t) € R™YP estimation methods (Algorithms and ,

~cen ~cen T ~cen ; -cen ~cen ~cen T .
ecen(t) = [(Xl (t))Ta T (Xn (t))T] — Xy, with Xy = [(Xl)Ta) (Xn)T} given by

eq. (6.67), and &,(t) = [(x5(t)7,... ,kg(t)T]T—fc?,a, with X%, = [(x9)7,..., (&Z)T]T given

by eq. (6.56), where for simplicity we let the robot i = 1 be the anchor a. We let e,(t) be
(0], €.(t)")". Recall that Y-, -,y X7 (t) = X{(t) and that the estimated states relative

D a
to the centroid x§5™ are X§i" = (I — Heep,)X$ as in eq. (6.67). Algorithm becomes

€cen(t) = WRL)een(t — 1)+ (I, = W) @ L,)e,(t — 1) + Px3,, (6.76)
where the term P that is multiplying X, is

P=T-W&L)— (- WeL)I - He) = (1~ WEL)Hen. (6.77)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

130 6. Distributed Localization

We use the fact that W @ L,) Hee, = Heen, and the previous expression gives P = 0 and

eq. (6.76) becomes

ecen() (W o |)ecen(- 1) + ((In - W) ® Ip)ea(t - 1) =
= WeL) een(0)+> WaL) ™ (I-W)a1,) el (k). (6.78)

k=0

Then, the norm of the error e, (t) satisfies

lecen(®)ll2 < Aeg(W) llecen(0) ||2+QZ:Xf T llea(®)]l2, (6.79)

where we have used the fact that || (W —1I) ® L) |2 < 2 since W is the Metropolis weight
matrix given by eq. in Appendix .

We analyze now the norm of error |le,(t)||2, which is related to the error vector of
the Jacobi algorithm &,(t) € R™~ VP by e,(t) = (0,8 (¢))”. Let J be the Jacobi matrix,
and V; = [vpp1(J), ..., vip(J)] and Ay = Diag (A41(J), ..., Anp(J)) be its associated
eigenvectors and eigenvalues so that J = V; A\; V', and ||v;(J)||2 = 1. The error vector
€,(t) evolves according to

8a(t) = Jeu(t — 1) = J'&,(0). (6.80)

For each initial error vector €,(0) there exist o,.1,...,0n, such that

np

&.(0) = Y avi(J),

i=p+1

and then the error vector &,(t) after ¢ iterations of the Jacobi algorithm given by eq. (6.80))
can be expressed as

&a(t) = VIN VWi [opir, -y om)” = D aivi(J)AL().

Let 0; = max;? | |o;|, and p(J) = max;Z ., [\;(J)|. For all t > 0, the norm of the error
vector ||€,(t)||2 satisfies

llea(®)l]2 = [[€a(t)]]2 < p(n — 1)osp'(J). (6.81)

Linking this with eq. (6.79) gives that the convergence rate is

t—1

lecen(®)ll2 < A (W) llecen(0) 2 + 2p(n — 1) UJZV W) (), (6.82)

as in eq. (6.75)).

6. Distributed Localization 131

Now we prove the asymptotical convergence to the centroid (6.74). If both the Jacobi
and the general algorithm have the same convergence rate, p(J) = Aeg(WV), then eq. (6.82))
gives

lecen(®)l]2 < Mg OV)lecen (0)l]2 + 2p(n — Loy V)L, (6.83)
whereas for p(J) # Aeg(WV), it gives

2p(n —1)oy
p(J) -)\eff(w)

Note that Aeg(W) < 1 for connected graphs G. Then, the term Ag(W)||€cen(0)|]2 in
eqs. and exponentially tends to zero as t — oo regardless of the initial
error €., (0). For the case p(J) = Aeg(W), the term Xz(WV)t in eq. is decreasing
for t > 1iiﬁgzvv)v) and thus it tends to zero as t — oo. For p(J) # Aeg(WV), the term
(p"(J) = AgOW)) in eq. (6.84) asymptotically tends to zero since Aeg(W) is less than
1, and as stated by Theorem p(J) < 1. Therefore, lim;_, ||€cen(t)||l2 = 0, where

l|€cen(t)|l2 = 0 iff een(t) = 0, what concludes the proof. O

llecen(t)l]2 < A V) llecen (0) |12 + (p'(J) = Ag (V). (6.84)

6.5.4 Z! and M? matrices defined by blocks

In [51] a classification of matrices defined by blocks and a study of their properties is
given. Here we show a brief summary of some of these properties. We use the notation
A = [A;;] for a real matrix A € R™*" defined by blocks, where each block A;; is a p x p
matrix, for all 7,7 € {1,...,n}.

Definition 6.5.7. [51] Matriz A is of class Z% if A;; is symmetric for alli,j € {1,...,n}
and A;; 20 for all i,5 € {1,...,n},j # i. In addition, it is of class Zﬁ if A e ZP and
Ay =0 for alli € {1,...,n}. Matriz A is of class MP if A € Zﬁ and there exist positive
scalars uy, . ..,u, > 0 such that

ZUinj =0 forallie{1,...,n}.

J=1

Lemma 6.5.8. [51, Lemma 3.8] Let A € Z and assume that VJ C {1,...,n} there
exists i € J such that Zjej Aij = 0. Then, there exists a permutation m such that

ZjZi Ar(ymy) = 0, for all v € {1,...,n}.
Theorem 6.5.9. [51, Theorem 3.11] Let A € Z2, let uy,...,u, >0 and let

ZAZ‘]'U]' = 0, for all i € {17 R ,n}. (685)
j=1
Assume that there exists a permutation m of {1,...,n} such that
> " Aniym(ying = 0, for alli € {1,...,n}. (6.86)
Jj>i

Then, A € MP.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

132 6. Distributed Localization

Theorem 6.5.10. [51, Theorem 4.7] Let
A+ AT ¢ MP, D = blkDiag (A1, ..., A, and A=D — N.

Then p(D™'N) < 1.

6.6 Discussion

Noise-free pose localization

In order to show the performance of the noise-free pose localization algorithm, we have

carried out several simulations with a team composed by 7 robots exploring an environ-
ment of 20 x 20 m with 300 features, see Fig.

10+

-10
-10 -8 -6 -4 -2 0 2 4 6 8

Figure 6.1: A team of 7 robots explore an environment of 20 x 20 m. Gray areas are
walls and red dots are the ground-truth location of landmarks. Initially, the robots are
placed in the black box region. From these initial poses, they reach consensus on the
global reference frame. After that, they explore the environment and build their maps
according this global reference frame. We display the trajectories followed by robots 2, 3,
and 5, together with the final poses of the 7 robots.

Figure 6.2: Communication graphs associated to the initial robot poses in Fig. There
is a link (blue solid line) between any pair of robot poses (red triangles) that are within
a distance of 3 m.

6. Distributed Localization 133

Initially, the robots are placed within the black rectangle in Fig. We assume that
a pair of robots can exchange information and compute their relative poses if they are
within a distance of 3 m. The robots execute the consensus on the global reference frame
algorithm (Section using the initial communication graph G (Fig. [6.2). Based on
local interactions with its neighbors, each robot ¢ computes the position and orientation
of the global frame relative to its own pose (Fig.[6.3). The estimates (T5(t), R5(t)) of
each robot (gray triangles) converge very fast to the correct centroid and Karcher mean
of the team (T}, R%,) (red triangle). Recall that, from this estimates (T5(t), R5(t)), each
robot i locally computes its pose p¢ relative to the global frame G as in eq. . After
10 iterations, the errors in the z— and y—coordinates (Fig. (a), (b)) are less than
0.11 em and 2.12 em respectively, and the error in the estimated orientation (Fig. (¢))
is less than 0.43 degrees.

da a o
NG =
a

0 ﬁ

| =<

Figure 6.3: From the initial poses within the black box in Fig. the robots reach
a consensus on the global reference frame. Initially (¢ = 0), each robot i estimates the
global frame (T} (t), R%(t)) as its own pose (black triangles). During successive iterations,
they update (T%(t), R5(t)) based on their neighbors estimates and their relative poses
(Tj(t), Ri(t)). We display the centroid and Karcher mean estimated by the 7 robots (gray
triangles), transformed into a common reference frame, for iterations ¢ = 1,3,7. Their
estimates after 7 iterations are very close to the ground truth centroid and Karcher mean
(TE, RY,) (red triangle).

Noisy pose localization

A set of simulations have been carried out to show the performance of the noisy pose
localization algorithm and to compare the results of the distributed (Section and
the centralized (Section approaches.

In the first set of experiments, a team of n = 20 robots are placed along a ring
of radius 4 m with their orientations randomly generated within £7 (Fig. . Each
robot measures the relative pose of the next robot and these measurements are corrupted
with noises in the z- and y- coordinates of 6 cm standard deviation, and of 1 degree for
the orientation. The robots execute the proposed method to compute their pose with

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

134 6. Distributed Localization

. 1
—6f \ .

650

sl un

e e

i - s

R -05;

f ol P
-85} g

0 4 8 10 0 4 8 10 0 4 8 10

(a) x—coordinate (b) y—coordinate (c) orientation

Figure 6.4: Position of the centroid and Karcher mean orientation estimated by the 7
robots (blue dashed) compared to the true centroid and Karcher mean (red solid), along
10 iterations.

respect to the anchor node R1. The experiment is repeated 100 times and the average

¢ Zqéﬂi?$

Al 4 174

sl Dwms NQ
4 % i\
ST
R

* 3 ﬁv$'>%&2

Figure 6.5: A team of 20 robots are placed along a circle of 4m radius. Each robot (red
triangles) measures the relative pose of its next robot (outgoing arrow), and exchanges
data with both its previous and next robots.

results can be seen in Table [6.1l The solution computed by the localization algorithm
in Section [6.4.1] presents a high accuracy. The greatest difference between the ground
truth and the obtained positions are of around 25 ¢m for the x— and y— coordinates,
with around 13 ¢m standard deviation, and of around 4 degrees for the orientation, with
approximately 1.7 degrees of standard deviation.

The distributed implementation of the algorithm (Section has also been tested
for the scenario in Figl6.5|and its results have been compared to the ones that would be ob-
tained by the centralized algorithm in Section We use the flagged initialization [18]
that is known to produce fast convergence results. The convergence speeds during the
first and the third phases depend on the values of respectively p(C~'D) in and
p(I—M"'Tqa,) in (6.53). The closer to one the values are, the slower the system con-
verges. Observe that the second phase is always executed in a single iteration and for
this reason it does not have any convergence speed associated. In this experiment, both
p(C7'D) and p(I—M~"Tqq,) are close to one (0.99), and thus we expect the algorithm to
converge slowly. After executing the first phase during ¢ = 50 iterations, the obtained 5{‘;
still differs from the centralized solution 9~§‘, by around 0.16°. If we increase the number of
iterations we obtain better approximations that differ only by 0.01 (¢ = 100) and 8.5¢ —05

6. Distributed Localization 135

Table 6.1: Results for the scenario in Fig. [6.5

LOCALIZATION RESULTS VS. GROUND TRUTH
Max error Avg standard deviation
Orientation phase 1 3.38° 1.87°
x-coordinate phase 3 | 27.85 cm 13.45 em
y-coordinate phase 3 | 24.33 cm 12.31 em
Orientation phase 3 4.03° 1.66°
DISTRIBUTED IMPLEMENTATION (flagged-initialization)
p(C~1D) 0.99
p(I— M”Tq]a}a) 0.99
Max error t =50 t =100 t =200
Orientation phase 1 0.16° 0.01° 8.5e — 05°
x-coordinate phase 3 | 1.74 em 1.64 cm 1.64 ecm
y-coordinate phase 3 | 0.84 cm 0.49 cm 0.48 cm
Orientation phase 3 0.29° 0.12° 0.11°

(t = 200) degrees. The next three rows show the results after executing the second phase
followed by 200 iterations of the third phase. Since the second and third phases have been
executed using A% instead of A%, the final results also differ. For the case t = 200 (third
column), the difference between the pose estimated by the distributed and centralized ap-
proaches is small (1.64 ¢m and 0.48 e¢m for the z— and y— coordinates, and 0.11 degrees
for the orientation), and similar results are obtained for ¢ = 100. However, for ¢ = 50
the final errors are larger (1.74 ¢m and 0.84 ¢m for the x— and y— coordinates, and 0.29
degrees for the orientation), which is due to the use of a less accurate approximation of
05,.

A simulation with 10 robots placed as in Fig. has been carried out. A robot @
measures the relative position and orientation of a second robot j if there is an arrow from
¢ into j. The measured positions are corrupted with additive noises of standard deviation
proportional to the distance d between the robots, 5% d for the z-coordinate, and 0.7% d
for the y-coordinate. And the measured orientations are corrupted with additive noises of
2.5 degrees of standard deviation. The robots execute the distributed algorithm (Fig.
during the phase 1 to compute their orientations with respect to the anchor node R1. At
t = 0 they initialize their orientations to 0 (black). Along the iterations the robots
update their estimates (gray), which successively approach the orientations that would be
obtained by a centralized system (blue). After the first phase (Fig.[6.7|(a)), the orientations
computed by the robots (blue) are very close to the ground truth data (red). After
that, they execute the second phase to transform their local measurements. The relative
positions measured by the robots were initially expressed into the reference frame of the
observer. After the phase 2, they are expressed in the reference frame of the anchor
node (Fig.[6.7(b)). And finally, they execute the last phase to obtain both, their positions
and orientations relative to the anchor node (Fig.[6.7)(c)). As an example, a detail of the
evolution of the estimates at R10 can be observed in Fig. Although the convergence
was previously proved only for graphs with low connectivity (ring or string graphs), in

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

136 6. Distributed Localization

| \ ! \
b A
: T T T 7
Py
~
Py
©
Py
P
S

N
|
v
.

Figure 6.6: A team of 10 robots are placed at unknown poses in a planar environment.
Each robot can measure the relative pose (position and orientation) of a subset of the
other robots (outgoing arrows).

y K 0 w1 ; S % %

>— >— o >—
= B\J\ X . &,_ @ﬁ % . w ﬂ %Rm
(a) Phase 1 (b) Phase 2 (c) Phase 3

Figure 6.7: The robots execute the proposed strategy to obtain their poses relative to the
anchor R1 for the experiment in Iig. The estimates (blue dashed) are compared to the
ground truth data (red solid). The covariances computed by the centralized approach are
also displayed (blue solid). (a) After the first phase, the robots obtain their orientations
relative to the anchor R1 (blue dashed). These orientation are very similar to the ground
data (red solid). (b) The robots transform their local position measurements according to
the previously obtained global orientation. (c¢) Finally, the robots compute their position
relative to the anchor (blue triangles). We are also displaying the covariances obtained
by the centralized algorithm (blue ellipses).

the experiments with general communication graphs the algorithm has been found to
converge as well.

Centroid-based noisy position localization

We study the performance of the algorithm presented in Section in a planar multi-
robot localization scenario (Fig. with n = 20 robots (black circles) that get noisy
measurements (gray crosses and ellipses) of the position of robots which are closer than
4 meters.

Each robot @ € V is used as an anchor and its covariance matrix Ygi, 18 computed.

The eigenvalues of the block-traces blkTr(Z%) of their covariance matrices are depicted in

6. Distributed Localization 137

—— Centr.
- t=0
—_—t=1
-25F — t=3
— =7
t=15
t=31
t=63
t=100

8 85 9 95 10 105 11 15

Figure 6.8: Phase 1 of the proposed strategy. The orientations estimated by the robot
R10 along different iterations of the distributed algorithm (gray) successively approach
the centralized solution (blue).

1

4

-1) == Centr.
- t=0

— t=200
2| — t=400

— =600 A
t=800
R t=1000
t=1200 .
t=1400 i
L

5 L L L L L ,
=2 0 2 4 6 8 10

Figure 6.9: At ¢t = 0 the estimated pose of R10 in Fig. is initialized in the origin
(black). Along the iterations, its estimated orientation almost does not vary, while its
pose (gray) successively approaches the centralized solution (blue).

10
0 R 19

R , N

7
2

6 rR18 ©
o O R14 R13

‘ o
0 2 4 6 8 10 51 2 3 4 5 6
(a) Ground truth scenario (b) Measurements of R19’s position

Figure 6.10: (a) 20 robots (black circles) are placed randomly in a region of 10 me-
ters x 10 meters. There is an ingoing or outgoing edge e = (7, j) € £ (red arrows) between
pairs of robots that are closer than 4 meters. (b) Each robot ¢ has a noisy measurement
z. (gray crosses and ellipses) of the relative position of its out-neighbors j, with e = (i, j).
The noises are proportional to the distance between the robots.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

138 6. Distributed Localization

Fig. (a) (black crosses). For all the possible anchors ¢ € V, the eigenvalues associated
to the anchor-based covariance matrices blkTr(Xy;) are larger (more uncertain) than the
ones associated to the centroid-based covariance matrix blkTr(Xeen) (red circle). Robots
R3 and R12 which produce respectively the most and the least precise anchor-based
results, and robot R1 which is conventionally used as the anchor (in blue) are studied in
detail. Fig. (b) shows the estimated states relative to the centroid X§5", Ygeen (black
crosses and ellipses) and the anchor a = R1, X{,, ¥ze (blue crosses and ellipses) compared
with the ground-truth positions of the robots (red crosses). The ground-truth position
of the centroid is marked with a black 'x’. The errors and covariances associated to the
centroid-based estimates (black) are in general smaller than the ones obtained by using

R1 as the anchor (blue).

25 r12 [x]
2
R1
< Lo x E
X x
1 R3
#*
0.5 cen O
0 ‘ ‘ ‘ ‘
0 0.5 1 15 2 ‘ ‘ ‘ ‘ ‘ ‘
A 0 2 4 6 8 10
(a) Eigenvalues of blkTr(E&@) (b) Estimated positions

Figure 6.11: (a) The eigenvalues of blkTr(X;) when each robot i € V is taken as the
anchor (black crosses) are always greater than the ones of the centroid-based blkTr(Xgcen)
representation (red circle). The values when the anchor is R1 which is the classical
situation, and when it is 3 and R12 which are the extreme values are shown in blue.
(b) The positions estimated relative to the centroid (black crosses and ellipses) are in
general more accurate and closer to the ground-truth (red crosses) than the ones estimated

by using R1 as the anchor (blue crosses and ellipses).

We analyze the states estimated by the n robots along 1000 iterations of the proposed
algorithm (Fig. [6.12). Robots initialize their states X(t), X" (t) with zeros and execute
Algorithms and We generate specific noises as the ones in Fig. for 100
different samples. For each of them, we record the norm of the error vector containing the
difference between the estimates at the n robots and the ground-truth positions at each
iteration ¢. In Fig. (a) we show the results of Algorithm when each robot i € V
is used as the anchor (gray lines). The special cases that the anchor is R1, R3 and R12
are displayed in blue. The black line is the asymptotic error reached with the centroid-
based estimation method. As it can be seen, the errors reached with the anchor-based
solutions are greater than the ones associated to the centroid. This is even more evident
in Fig. (b), which shows the last 100 iterations in Fig. (a). In Fig. (c) we
show the equivalent errors for the centroid-based estimation algorithm (Algorithm ,
using all the possible anchors for Algorithm [6.5.1] Here, in all cases the error estimates
(gray lines) converge to the asymptotic error of the centroid-based estimation method
(black line).

6. Distributed Localization 139

35 26

2.4

2.2\

2

30

25

2 18

15 16

1.4
10

12

1

5

o

200 400 600 800 1000 900 920 940 960 980 1000

(a) Anchor-based errors (b) Last 100 iterations of (a)

18

11
16

1.08
104 \

L . 0.94
0 200 400 600 800 1000 900 920 940 960 980 1000

(c) Centroid-based errors (d) Last 100 iterations of (c)

14

12

10

1S

o N & o ®
o o -
© © o
S ®© N

Figure 6.12: The experiment in Fig. is generated 100 times with the same noise
levels but different noise values. We display the average norm of the error with the
difference between the estimates and the ground truth for the 100 different experiments.
(a) Results of Algorithm when each robot i € V is used as the anchor (gray lines).
The special cases that the anchor is R1, R3 and R12 are shown in blue. The black
line is the asymptotic error reached with the centroid-based estimation. (b) Detail of
iterations 900-1000 in (a). The errors of the anchor-based solutions are bigger than the
ones associated to the centroid. (c) Results of Algorithm using all the possible
anchors. (d) Detail of iterations 900-1000 in (c¢). The anchor choice affects to the
convergence speed of Algorithm However, the final accuracy is independent on
the selected anchor, and in all cases the errors converge to the asymptotic centroid error
(black line).

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

140 6. Distributed Localization

6.7 Conclusions

Along this chapter, the network localization problem has been addressed for three differ-
ent scenarios: the pose network localization from noise-free relative measurements, the
pose network localization from noisy relative measurements, and the position network
computation from noisy measurements. We have proposed distributed strategies that al-
low the robots to agree on a common global frame, and to compute their poses relative
to the global frame. The presented algorithms exclusively rely on local computations and
data exchange with direct neighbors. Besides, they only require the robots to maintain
their own estimated poses relative to the common frame. Thus, the memory load of the
algorithm is low compared to methods where each robot must also estimate the positions
or poses of any other robot. The noise-free pose localization algorithm has been demon-
strated to perform properly in noise-free scenarios and to have a fast convergence speed.
For the noisy case, the pose localization algorithm has been shown to correctly compute
the poses of the robots relative to an anchor node, for ring or string topologies. The
centroid-based position localization method has been proved to produce more accurate
results than any anchor-based solution. Besides, in the experiments we have observed
that it converges faster than the anchor-based solutions.

Chapter 7
Strategies for Improved Multi Robot
Perception

This chapter discusses strategies for improving the multi-robot perception. First, we
propose a method that allows the robots to decide their next motions so that the global
map is more precise. We define a cost function measuring the perception improvement
when a robot moves to a new position. Each robot selects a finite set of candidate next
positions within its local landmark-based stochastic map and evaluates the cost function
on the candidate positions. Then, based on this information, robots in the team coordinate
their next motions. We present a solution designed for omnidirectional cameras, although
the results can be extended to conventional cameras. Second, we propose a method that
allows the robots to compute the algebraic connectivity, which is very important in the
context of network topology. This parameter characterizes the speed of convergence of
most of the distributed algorithm presented in this thesis, i.e., it establishes the rate at
which the variables maintained by the robots converge to the desired values. Thus, we can
have a deeper control of the quality of our methods by controlling the network topology
so that the algebraic connectivity remains within some specific values.

7.1 Introduction

The convenience of having groups of robots working cooperatively has been stressed along
this document. An important issue in these scenarios comnsists of placing the robots
at positions where they are more useful. Extensive research has been focused on the
optimization of facilities [98.(99.]132], and on coverage problems [45,89|, where a group of
robots is optimally placed in an environment of interest to achieve maximum coverage.
Here we focus on controlling the robot motions so that their perception of the environment
is improved. In the previous chapters, we have proposed several methods that allow the
robots to cooperatively perceive the environment and to acquire a global map of their
surroundings. In this chapter, we discuss strategies to optimize individual robot motions
to maximize the information collected about the scene, and to optimize the convergence
speed of the distributed map merging algorithms.

First, we discuss the cooperative selection of next robot motions. We focus on strate-
gies that improve the local maps taking into account the proposed improvements of other

141

142 7. Strategies for Improved Multi Robot Perception

robots, giving rise to an improvement of the global map. This problem is highly related
to exploration guided by information and active sensing, which has been investigated for
both single robot [131}136] and multi-robot systems [28]. The previous works are based on
grid maps, where frontier cells dividing between already explored and unknown sections
can be easily detected. Robots evaluate a cost function on this small subset of destinations
and make decisions propagating small pieces of information with the other robots. The
exploration [115,/116] and feature tracking [155] problems turn out to be more compli-
cated for landmark-based representations, since the number of candidate destinations is
infinite. Tt is common the use of global optimization methods, where robots search for the
best position to reduce the whole map uncertainty. Every robot makes decisions based
on its current local estimate of the global map and propagates its observations to the
other robots so that they can update their maps. These approaches result in weak robot
coordination, because without a common global map estimate, different robots may end
up exploring exactly the same regions. In addition, many of these solutions use gradient
methods to find minima on the cost function. Gradient algorithms are computationally ex-
pensive since the gradient must be reevaluated at every step. Besides, they may find local
minima, and the step size adjustment is complicated. Alternatively, clustering methods
can be used to select a finite subset of candidate positions [150]. Our work belongs to this
latter class, although instead of choosing frontier positions as in [150|, our robots look for
already explored places which present big uncertainties. We focus on one step strategies
instead of considering path planning or trajectory optimization methods [84,85]. These
methods use a larger time horizon and consider the cost function for multiple successive
robot motions, and thus they present important scaling problems for the multi-robot case.

We define a method for landmark-based maps which lets the robots select a finite set
of destinations based on their local data. Each robot associates to these positions cost
values that can be sent to other robots in the team with the aim of negotiating their next
motions. This solution presents multiple appealing features due to its low computation
complexity and to the fact that the robots do not need to wait for having a good global
map estimate. Instead, they can negotiate on small pieces of information, ensuring that
the resulting global map will be improved.

In the second part of this chapter, we discuss the problem of improving the conver-
gence speed of the distributed map merging algorithms. The algebraic connectivity is an
important network property for several multi-robot systems to reach convergence and it
characterizes the convergence rate. In this chapter, we address the problem of comput-
ing this algebraic connectivity in a distributed fashion. We provide a successive solution
where, at every iteration, each robot obtains a more accurate estimate of the algebraic
connectivity. As an application, we use this algebraic connectivity estimation algorithm to
derive an adaptive version of the event-triggered consensus protocol in [124], where at each
iteration, the robots adjust their behavior according to their most recent estimate of the
algebraic connectivity. Connectivity control methods establish robot motions that pre-
serve or maximize some network connectivity property. The k—connectivity matrix of the
graph is computed in a centralized fashion in [156]. There are several distributed methods
that compute spanning subgraphs [157], the left Laplacian eigenvector with eigenvalue 1
for directed unbalanced graphs [112], or the first four moments (mean, variance, skewness

7. Strategies for Improved Multi Robot Perception 143

and kurtosis) of the Laplacian eigenvalue spectrum [111]. In [126], the motion control
strategy maximizes the algebraic connectivity without actually computing it. Although
the previous control methods improve the network connectivity, they do not characterize
any particular eigenvalue of the Laplacian as required in our case. A method that com-
putes and tracks the eigenvalues of the network topology is given in [58|. Robots execute
a local interaction rule that makes their states oscillate at frequencies corresponding to
these eigenvalues, and use the Fast Fourier Transform (FFT) on their states to identify
these eigenvalues. The main limitation of this work is that the proper adjustment of the
FFT, so that the eigenvalues can be correctly identified, is nontrivial. In addition, some
robots may observe only a subset of the eigenvalues and thus they need to execute addi-
tional coordination rules for propagating their data. Several solutions to the computation
of the Laplacian spectra rely on the power iteration method or variations [63}(74}154].
Power iteration [68] selects an initial vector and then repeatedly multiplies it by a ma-
trix and normalizes it. This vector converges to the eigenvector associated to the leading
eigenvalue (the one with the greatest absolute value) of the matrix. The original ma-
trix can be previously deflated so that a particular eigenvalue becomes the leading one.
A continuous-time version of the power iteration is proposed in [154] for computing the
Fiedler eigenvector, which is the one associated to the algebraic connectivity of the graph.
In [74] the orthogonal iteration method is used for simultaneously computing the & lead-
ing eigenvectors of a matrix. This algorithm can be seen as a generalization of the power
iteration where, at each step, the k vectors are multiplied by the matrix and ortonormal-
ized. The previous method is used in [63] for computing the Fiedler eigenvector. The
interest of power iteration methods is that each robot only needs to maintain its own
component within the estimate of the eigenvector. Then, the product of this vector by
the Laplacian can be executed locally by the robots. However, the main limitation of
these approaches consists on the normalization and orthonormalization of the vectors at
each step. For [74], it involves a gossip-based information aggregation algorithm [73] and
for [154] a distributed averaging method [59]. Therefore, several iterations of the previ-
ous algorithms must be executed by the robots between consecutive steps of the power
method in order to ensure that they have achieved the required accuracy in the vector
normalization. Besides, the previous methods only ensure convergence but they do not
give any upper or lower bound relating the true algebraic connectivity and the estimates
at each iteration.

We propose a method for computing the algebraic connectivity where, at each step
k, the robots compute the k—th power of a deflated Laplacian in a distributed fash-
ion. The computation of the powers of the adjacency matrix was first discussed in [10].
Whenever the robots want to obtain an estimate of the algebraic connectivity, they run
a max —consensus method [134]. The robots do not need to wait for the max —consensus
to finish before starting the next step k + 1. Instead, they can continue executing the
matrix power algorithm in parallel. An additional benefit of our method is that it auto-
matically provides the total number of robots n. We provide proofs of convergence of the
algebraic connectivity computation algorithm, we characterize its convergence speed, and
give upper and lower bounds for the true algebraic connectivity at each iteration. Then,
we combine the previous ideas with [124] and present an adaptive triggered consensus

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

144 7. Strategies for Improved Multi Robot Perception

algorithm where the most recent estimate of the algebraic connectivity is used at each
step. We show that both processes can be executed simultaneously due to the upper and
lower bounds of the true algebraic connectivity.

7.2 Improving the Map Precision with Motion Control

In this section, we propose a method that allows the robots to decide their next motions so
that the global map is more precise. We define a cost function measuring the perception
improvement when a robot moves to a new position. Each robot selects a finite set of
candidate next positions within its local landmark-based stochastic map and evaluates the
cost function on the candidate positions. Then, based on this information, robots in the
team coordinate their next motions. We present a solution designed for omnidirectional
cameras, although the results can be extended to conventional cameras.

We consider n robots exploring an unknown environment. Robots move on the plane
and estimate their motions (translations and rotations) using odometry information. They
are equipped with an omnidirectional camera sensor that gives bearing-only measurements
of some features in the environment. Every robot has a local map of the portion of
the environment observed by himself, expressed as a set of estimates of the position of
static features in the environment. Those estimates have an associated covariance that
represents how precise the estimate is, and the quality of the map can be measured
in terms of these covariances. Robots can improve their local estimates of features via
robot redeployment that let them reduce the feature uncertainty. The n robots have
communication capabilities for exchanging information between them.

7.2.1 Vantage locations

In order to manage a finite set of vantage locations for every robot, we adopt a one-feature
improvement strategy. Every robot in the team will attempt to improve, at least, the
observation of one of the landmarks. As a side effect, the observations of other landmarks
are also improved. We compute vantage locations where the observation of the landmark
produces a high uncertainty reduction. In [125] authors discuss uncertainty minimization
within the Extended Kalman Filter (EKF) framework. They show that the minimization
of the map uncertainty P is highly related to the maximization of the covariance of the
innovation S. In addition, they show that if the system is driven to the optimal position
to obtain maximum information gain, it results in numerically unstable update steps for
the EKF. The system becomes more unstable as the robot moves closer to a landmark.
To derive the vantage locations to observe the landmarks, we analyze the robot locations
that lead to the maximization of S.

In this section, we discuss the best poses for observing a landmark. We frequently
refer to Section where a full development of the Extended Kalman Filter (EKF) is
given. For a landmark 4, the covariance of the innovation S; is

S; =H,P(k+1|k)H] + 02

7. Strategies for Improved Multi Robot Perception 145

If we take P(k + 1|k) = I and apply (7.5)), (7.6), we can express S; as

Si=1402+42/17,

where r = /(@41 — 2:)2 + (yr1 — vi)? is the distance between the robot pose and the
landmark. As it can be observed, the maximization of S; is equivalent to the minimization
of 7. Now we introduce into the study the landmark covariance, taking|

P(k + 1|k) = blkDiag (I,{Pm 0]I)
0 Py

and expressing P, = kP,,, with k£ > 1. This models an uncertainty ellipse with its mayor
axis perpendicular to the y-axis. For robot poses at a constant distance r, xp,1 = 7 cosa,
Yr+1 = Tsina, the value of S; is

i +(k—1)—- cos? (),

Si=1+0+—;
r r

Computing the first and the second derivative of S;, the critical points of S; are o =
0+nm,n€Zand a =5 +nm,n € Z. Besides we have that

025,

Pil?$
o = 2k —1)

r2

(1 —2cos*(a)).

Since k£ > 1, S; reaches a maximum for « = 0 4+ nm,n € Z and a minimum for o =
5 +nm,n € Z. Then we can conclude that S; is maximized when the distance between
the robot and the feature is minimized, and that for constant distances, .S; is maximized
when the landmark is observed from a position in a line perpendicular to its mayor axis.

However, minimizing r may make the system unstable [125]. To avoid this situation, we
compute the optimal position for observing a feature so that it lays outside its uncertainty
ellipse. It is at a distance from the center so that the angle o between the lines from the

vantage point to the extremes of the ellipse must be less than 7 (Fig. .

(a) ellipse (b) circle

Figure 7.1: Optimal positions for observing a feature with o = 90, 70 and 50 degrees when
its associated uncertainty is an ellipse (a) or a circle (b). As long as o < /2 the optimal
position remains outside the uncertainty ellipse associated to the feature.

! A = blkDiag(Bj, ..., B,) returns a matrix A defined by blocks with A;; = B; and A;; = 0 for i # j.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

146 7. Strategies for Improved Multi Robot Perception

7.2.2 Expected maps for the vantage locations

When a robot moves to a vantage location and takes new measurements of the environ-
ment, its local map estimate may become more precise. We compute this expected map
applying the same algorithm used by the robots to build their local maps, using the same
measurement and odometry models, and assuming that i) the measurements are exactly
the expected bearings to the features from the new robot pose, and ii) the odometry esti-
mate is exactly the new robot pose. In the following, we provide the expressions associated
to the Extended Kalman Filter (EKF) executed by the robots.

Relative motion computation

We let X,.(k) = (2, U, ék)T be the robot pose at time k, X;(k) = (&;, ;)" be the feature
estimates at time k for i € {1,...,m}, and (k) = (%(k)7, %, (k)7 ..., %m(k)T)" be the
local map estimate at time k, with associated covariance P(k). Let x, = (24,%,,0,)" be
the goal vantage location where the robot plans to move to. The relative translation and
rotation x}_; between %X, (k) and x, can be computed as:

k -
X1 = (6% (k) © %,
where the operator © is the inverse location vector

— T cos O — Y sin b,
ox, (k) = T sin 0, — 1, cos 0,
—0,

The operator & is the composition of two location vectors. It returns a location vector that
transforms coordinates between the reference frames %, (k) and x,. Then, the expression
for the relative transformation x},; between the robot pose at time k and the goal pose
at k+ 1 is:

(xy — Zy) cos é;f + (yg — Ux) sin é’i
XiH = | —(xy — &) sin by +A(yg — gp) cos by | . (7.1)
0, — 0y

EKF prediction

The prediction step of the localization and mapping algorithm computes the map X(k +
1) =x(k+1lk) = X (k+1)T, % (k+1)7T ... %, (k+1)T)T, with associated covariance P (k+
1|k), based on the previous state X(k), P(k), and on the odometry measurements x},, =
(Todoms Yodoms Podom) With covariance matrix Pogom. Here, X,.(k + 1) = (Zps1, Urrt, Orrr)”
and X;(k+1) = (z;,4;)" fori € {1,...,m}. The odometry measurements x}, ; are given by
, and the odometry noise is modeled as three independent noises in the perpendicular

and parallel translations and rotation, P,4,, = Diag (Ug,ai,ag), where o, = K,d and

0, = K,d are proportional to the translation distance d = \/(z, — 24)? + (y; — Ur)% The

7. Strategies for Improved Multi Robot Perception 147

equations used to predict the new state are

Rk+1) = (XE+D))" 20,01, T, Gm)” = (Ze(k) @ X5, 20,01, s Ty Tn) T
Pk + 1k) = J1P(E)IT + JoPgom Iz, (7.2)

where the operator @ is the composition of the location vectors %, (k) and x}

jjk + Todom COS ek — Yodom sin Qk
~ ko - . A A
XT‘(k) S XkJrl - Yk + Todom SIN elc + Yodom COS 0k)
Qk + eodom

and Jq, Jo are the Jacobians of the prediction operation relative to, respectively, the map
and the odometry measurement:

J, = blkDiag(j;,I), Jy = ((G2)", 0)7,
1 0 —z,4omsin ék — Yodom COS ék cos ék —sin ék 0

J1=10 1 Zogom c080r — Yodom sin Oy, , Jo= sinf, cosb, 0. (7.3)
0 0 1 0 0 1

Measurement prediction

For every feature with coordinates X;(k + 1) = (Z;,%;)” in the map, the expected bearing
measurement with respect to the robot that should be obtained from the predicted robot
location X,.(k + 1) = (Txr1, Yur1, Opi1)? is

hi(%,(k +1),%;(k + 1)) = atan2 <_(Xi — M) 50 G + (5 = Vi) COS_Q““) (T4

(% — K1) €08 Ot + (Fi — Fiepr) sin O

The Jacobian of the observation model is

Hi:[L 0---0 Oh; 0...()]7

9%, (k+1) 0%, (k-+1)
0%, (k+1) Lot O e |0 gk +1) L 9% w7 '
where Oh; /00,1 = —1 and
oh; Y+1 — Yi oh; Tht1 — T4
OTpp1 Tk — 2+ Worr — 5)° Okt (T —)+ (e — 50)°
oh; Yk+1 — Yi oh; Tpt1 — X
—_ — D) _ IRCE — T _\2 _ _\2" (7~6)
OTi (Tpyr = 25)” + (Jet1 — i) 9Yi (B — 23)" + (U1 — Ui)
and h and H collect the information from all the features in the map,
h=(hl,....,hDH7T, H=MH, . . H)" (7.7)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

148 7. Strategies for Improved Multi Robot Perception

EKF update

The final map estimate X(k + 1) = x(k + 1|k + 1) and covariance P(k + 1|k + 1) are
obtained as

xX(k+1)=%x(k+1)+K(z—h), Pk+1k+1)=10-KH)P(k+1lk),
K=P(k+1/k)H'S™, S=HP(k+1k)H" + R, (7.8)

where v = z — h is the innovation, S is the innovation covariance and K is the Kalman
gain. z is the vector with all the measurements of the features. Since the observations
are taken equal to the predicted measurements, then z = h and the innovation v is zero.
Therefore the state vector does not change, X(k 4+ 1) = X(k + 1). The matrix R is the
covariance of the observation noise and is equal to o1, where o, is the standard deviation
of the visual sensor noise.

7.2.3 Cost minimization approach

Before proceeding with the explanation of the proposed strategy, we briefly discuss here
alternative methods based on cost minimization. For each of the positions where the
robot can move X = (11, Yr+1), we define the following cost function f(x),

F(x) = Te(P(k + 1]k + 1)),

where P(k + 1|k + 1) is the covariance associated to the expected map given by eq. (7.8).
Note that from the analysis performed in the previous section, the robot orientation has no
effect on the cost function. Now we use the following gradient descendant algorithm [24]
that looks for (global or local) minima of the cost function,

X<O> = ('rlﬁyk:)? X = —Vf(X),
whose discrete version is
x(0) = (2, yx), x(t + 1) = x(t) — hV f(x(1)), (7.9)

where (4, yx) is the current robot position, x(t) is the value of x at time ¢, V f(x(¢) is the
gradient of f evaluated in x(¢) and h is the time step. In the continuous formulation, a
local minimum point is found when %X = 0, and in the discrete one when x(¢ + 1) — x(t) is
small enough. We execute this algorithm using a map with a single feature (Fig. (a),
blue ellipse) and show the cost values for a region around the feature (Figs. (b)
and (c)). Darker areas represent lower values of the cost function. The trajectory followed
by the robot when it executes the gradient descendant algorithm is shown in blue. As it
can be seen, the lowest cost robot positions correspond to the locations we identified as
vantage in Section [7.2.1] Moreover, the last part of the robot trajectory follows a direction
perpendicular to the major axis of the ellipse, as we did in Section for selecting
vantage locations. If no additional mechanisms are used, the gradient algorithm drives the
robot to a final location inside the uncertainty ellipse of the feature (Figs.|7.2/(b) and (c)),
which may lead to ill-conditioned situations which are prone to filter divergence [125].

7. Strategies for Improved Multi Robot Perception 149

Therefore, the selection of vantage points discussed in Section is capable of choosing
locations similar to the ones from a gradient descendant, with a much lower computational
cost, and with the additional benefit that we can explicitly impose the robot to remain
outside the uncertainty region associated to the feature. In Fig. we perform a similar
analysis for features parameterized in inverse-depth, and conclude that it seems that it
would be possible to compute vantage locations also for these representations.

Initial map

atures: 1 ¢ 4 -6 -4 -2 0 2
(a) (b)

Figure 7.2: Cost function, cartesian parametrization. (a): The initial map with a single
feature. The blue ellipse represents the feature estimate, and the blue triangles are the
estimates of the robot poses. The ground truth positions for the feature and the robot are
displayed in red. (b): The cost function resulting of placing the robot in different positions
in the environment, computing the predicted map. Darker regions represent lower costs.
The blue arc begining at the last robot pose represent the (z,y) robot positions used by
the gradient algorithm to find minima in the cost function. (c): Detail of the final robot
position found by the gradient algorithm.

7.2.4 Strategy for improved perception

As previously discussed, we are interested in motion control strategies where robots make
decisions based on their local maps, that produce improvements in the global map. The
global map of the robot team is as explained in Chapters |3 and Thus, the strategy
we present here does not necessarily have to be executed after the map merging process.
Instead, it can be executed after the localization (Chapter @ data association processes
(Chapter [5), in parallel to the execution of the map fusion. Recall that given the n
independent local maps with mean X; and a covariance matrix ¥; = P;(k + 1|k + 1), for
i € {1,...,n}, the mean and covariance matrix of the global map of the robot team is

given by (Section [3| eq. (3.4))
—1

n -1 n n
Xg = <Z H} &%) Y OH!'S %, Se=(_HIS'H) (7.10)
=1

i=1 i=1

where H; are the observations matrices relating the features observed by the robots.
From this expression, we can see that feature estimates with smaller covariances have

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

150 7. Strategies for Improved Multi Robot Perception

x10

| - i
| — | \\\'\i Z

(a) (b

Figure 7.3: Cost function, inverse-depth parametrization. (a): The initial map with a
single feature. The blue ellipse represents the feature estimate, and the blue triangles
are the estimates of the robot poses. The ground truth positions for the feature and
the robot are displayed in red. (b): The cost function resulting of placing the robot
in different positions in the environment, computing the predicted map. Darker regions
represent lower costs. The blue arc beginning at the last robot pose represent the (z,y)
robot positions used by the gradient algorithm to find minima in the cost function. (c):
Detail of the final robot position found by the gradient algorithm.

5
SX
as,
.
a5,
s

larger information matrices and thus they greatly influence their estimates in the global
map. Therefore, a precise estimate of a feature can be obtained if, at least, one robot has
observed it with high precision. This observation motivates our strategy.

Aggregate objective function

The global cost function F' measures the best contributions for the estimate of every
feature

F(xy,- ,%,) = Zmiin fii(x:)), (7.11)

where x; is the next position of the robot i at time k + 1, for i € {1,...,n} and f;; is the
individual cost for the feature j in the local map of the robot ¢ when the next position of
the robot 7 is x;.

The individual cost functions f;;(x;) evaluate the covariance matrix P;(x;) of the
expected map of robot ¢ when it moves to the location x;. They measure the uncertainty
of the sub-matrix [P;(x;)];; within P;(x;) associated to the feature j. There exist many
metrics for measuring the uncertainty in a covariance matrix. [148| compares metrics based
on the determinant, eigenvalues and trace, concluding that all of them perform properly.
Here, we select the trace. The individual cost f;; is

fij(xi)) = Tr([Pi(x:)]55)- (7.12)

7. Strategies for Improved Multi Robot Perception 151

Table 7.1: Predicted costs for the candidate next motions for robot ¢

feat 1 --- featm
X% fz'l(Xz'1> T fim(le)
Xf(fil(XiK) fzm(XLK)

Table 7.2: Global cost for a specific selection of next robot poses

feat 1 . feat m
x|t fulxl) f 1m(Xl11)
Xi{L fnl(xg’?> fnm(ln)
min | min; fﬂ (Xil) <++ ming fzm()

Coordination strategy

The proposed strategy for motion coordination consists of an iterative algorithm where,
at every time step, the team of robot performs the following actions:

1. Optimal position for feature observation: Every robot i computes the best
position for observing the K features with higher covariances in its local map, where
K <m; forie {1,...,n} is adjusted depending on the performance requirements.
As a result, robot i € {1,...,n}, obtains K next position candidates which we

express as x}, -+ ,xX.

2. Map prediction: For all the candidate next positions x}, - -, xX robot i computes
the predicted map and evaluates the local cost function f;;(x!) for all the features,
le{l,...,K},je{l,...,m}, i € {l,...,n}. If an estimate of the feature j cannot
be found in the local map of robot i, then we set f;;(x}) = oo foralll € {1,..., K}.
Every robot ¢ can construct a table with the values of f;; (see Table [7.1)).

3. Minimization of the global cost: Given a selected combination of next robot
poses X!, - - - , its associated global cost is computed as > 7" | min, fij(x)). This
is equivalent to sum the values in the last row (min) in Table [7.2] The best robot-
vantage location assignment is the one minimizing the global cost F' (see equa-
tion ([7.11))). Every robot can compute this value, based on the information received
from the other robots, and on its own data.

4. Motion and observation: Once the best motions have been decided for the team,
the robots move to the new positions, they observe the environment and update their
local maps.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

152 7. Strategies for Improved Multi Robot Perception

In the coordination strategy presented so far, the computationally expensive opera-
tions, consisting of finding vantage locations and computing the cost function, are carried
out locally by each robot, which it very interesting. On the other hand, the process
of exchanging data and negotiating on the next robot poses, implicitly assumes all-to-
all communications. A possible solution would consist of clustering together features
that simultaneously benefit from a robot being placed nearby them. Then, a problem of
robot-to-cluster assignment (assign different robots to different clusters of features while
minimizing the total cost) would be addressed, instead of the robot-to-feature strategy
presented along this section. The robot-to-cluster assignment problems can be solved
by the use of auction algorithms [23|25|, for which exist distributed implementations for
robot networks [90]. Future extensions of the work presented in this section can be in the
line of these discussed ideas about clustering of features.

7.3 Improving the Convergence Speed

In multi-robot control problems, the convergence properties and the convergence speed of
the system depend on the algebraic connectivity of the graph. Several examples appear
in the distributed methods proposed in this thesis. The convergence speed of the static
map merging algorithm presented in Chapter [3] depends on the second eigenvalue of W
with the largest absolute value A\o(W) associated to the Metropolis weight matrix W
(Section 3.7 eq. (3.20)). The localization methods in Chapter 6| Sections and
also present a convergence speed depending on Ay(W). The rate of convergence of the
dynamic map merging algorithm in Chapter 4| depends on the second smallest Ao(Lyy)
and the largest \,(Ly) eigenvalues of the Laplacian matrix Ly (Section . In this
section, we present a novel distributed algorithm where the robots estimate the leading
eigenvalue of a weight matrix or a Laplacian, obtaining a more accurate estimate at each
iteration. We extend this method to allow the computation of the algebraic connectivity
of the Laplacian Ao(Lw). Note that for the Metropolis weight matrix W, robots can
compute the algebraic connectivity Ao(Ly/) of the associated Laplacian Ly = I — W, and
then get A\o(W) = 1—Aa(Lw). This algorithm relies on the distributed computation of the
powers of the adjacency matrix. We provide proofs of convergence and convergence rate
of the algebraic connectivity estimation algorithm. In addition, we give upper and lower
bounds at each iteration of the estimated algebraic connectivity. We apply this method
to an event-triggered consensus scenario, where the most recent estimate of the algebraic
connectivity is used for adapting the behavior of the average consensus algorithm. We
show that both processes can be executed in parallel, i.e., the robots do not need to wait
for obtaining a good estimate of the algebraic connectivity before starting the averaging
algorithm. We use the notation defined in Table [7.3]

Consider a set of n € N robots with indices ¢ € {1,...,n}. The robots can exchange
information with nearby robots. This information can be represented by an undirected
graph G = (V,€), where V = {1,...,n} are the robots, and & are the edges. There is an
edge (i,7) € € between robots i and j if they can exchange data. We say a n x n matrix
C'is compatible with G if C;; = 0 iff (i,7) ¢ € for j # i; note that we let the elements in
the diagonal Cj; be either equal or different than 0. The adjacency matrix A € {0, 1}"*"

7. Strategies for Improved Multi Robot Perception 153

Table 7.3: Notation.

Indices
n | Number of robots. | k | Iteration number, k& € N.
1,7 Robot indices. t Time, t € R¢>o.
Matrix operations, eigenvalues and eigenvectors
A, [Alij (i,7) entry of matrix A.
diag(bl, .. .,b,«) matrix A with Au = bz and Aij =0.
Ni(A), vi(A) i'" eigenvalue and eigenvector of A.
A diag(A(A),. .., A\ (A)).
Va [Vi(A),...,v,.(A)].
1Al s Induced co—norm of A, max; > 7, |Ajl.
| All2 Spectral norm of A, max; v/ \;(ATA).
p(A) Spectral radius of A, max; |\;(A4)].
Special matrices
I, r X r identity matrix.
0,, 1, | Column vectors with the r entries equal to 0 and 1.
A Adjacency matrix of the graph.
L Laplacian matrix of the graph, £ = diag(.A1) — A.
M(L) | Algebraic connectivity, the second-smallest \;(L).

of G is defined by

1 if(i,y) e .
Aij = { 0 otherwise , fori,j € V. (713)

We assume that the undirected communication graph G is connected. We use N for the

set of neighbors of a robot ¢ with whom 7 can exchange data, N; = {j | (i,7) € £}, and

we let d; be the degree of node i defined as the cardinality of N;, and dp.x = max;ey d;.
The Laplacian matrix £ € R™ " of G is the positive-semidefinite matrix

L = diag(A1) — A. (7.14)

Note that both A and £ are compatible with the graph. In this chapter we sort the
eigenvalues of £ as follows,

ML) < Ao(L) < - < (L) (7.15)

The Laplacian matrix £ has the following well known properties, see e.g., [102]:

(i) It has an eigenvector vi(£) = 1/+/n with associated eigenvalue A\;(£) = 0, £L1/y/n =
0;

(ii) When the graph G is connected, then all the other eigenvalues are strictly greater
than 0,

0=X(L) <A(L) <-+- < Au(L); and

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

154 7. Strategies for Improved Multi Robot Perception

(iii) Its eigenvalues are upper-bounded by A, (£) < 2dpax.

The algebraic connectivity of G denoted by A\, (L) is the second-smallest eigenvalue A2(L)
of the Laplacian L.

7.3.1 Consensus protocol and event-based control

Consider each robot ¢ € V has single-integrator dynamics

where u; denotes the control input at robot ¢ given by

ui(t) = = D (wi(t) — (1)), (7.17)

JEN;
With stack vectors x = [z1,...,2,]7, u = [u1, ..., uy,],
x(t) = —Lx(t), z(0) = xo. (7.18)

A well known result [103] is that if G is undirected and connected, then the previous
algorithm globally asymptotically solves the average consensus problem, i.e.,

n
lim (1) = ; 2:(0)/n. (7.19)
However in general it is necessary to implement the continuous-time law on a digital
platform. This has motivated the research on event-based and time-scheduled control.
It is of special interest the triggered-based control method in [124], where each robot
monitors its own state x;(¢) continuously. However, the robots do not have continuous
communication but instead propagate their most recent states at some time instances.
Also the control law is piecewise constant. The following rule given in [124, Theorem 4|
allows each robot ¢ to locally determine when to trigger and transmit its new state. Let
ei(t) be the measurement error at robot i containing the difference between its actual
current state xz;(t) at time ¢ and the last transmitted one z;(t),

with stack vector e(t) = [e1(t), ..., e,(t)]T. Let 1, a be constants satisfying
>0 and 0<a <A\ (L). (7.21)

The authors define the time-dependent trigger function
fz(t, 61(t>> = ‘€Z(t>| - Cleiat, (722)

where an event for robot i is triggered as soon as f;(¢,e;(t)) > 0 resulting in robot i
sending its most recent state z; to its neighbors. Whenever an event is triggered, i.e.,

7. Strategies for Improved Multi Robot Perception 155

robot ¢ transmitting its new state x;(¢) or receiving an updated state x;(t) from one of
its neighbors, it (i) updates its control-law immediately, and (i7) reevaluates the trigger
function and computes the next triggering time. As stated by [124, Theorem 4|, for
connected graphs if robots execute the previous procedure, then for all initial conditions
xo the overall system converges to average consensus asymptotically. Furthermore the
closed-loop system does not exhibit Zeno-behavior.

Note however that condition (7.21)) requires all the robots to know A\, (L) or a lower
bound of it.

Problem 7.3.1. Our goal is to design distributed algorithms to allow the robots to compute
M(L) (or a lower bound of) in a distributed fashion. Then, we modify the trigger function
so that instead of using a fized «, robots adapt this value depending on the most recent
and accurate estimate of the algebraic connectivity A, (L).

7.3.2 Distributed computation of the algebraic connectivity

First of all, we present a novel algorithm for computing the algebraic connectivity A.(L)
of the graph in a distributed fashion. This algorithm relies on the observation that (i) the
induced infinite norm of a matrix ||C||» can be easily computed in a distributed fashion
with a max—consensus method, provided that each robot knows a row of this matrix;

and that (i) HCkHéo successively approaches the spectral radius p(C) of matrix C'. This
allows us to propose a method for estimating the algebraic connectivity that is suited for
distributed implementation.

We start this section presenting some results about the computation of the powers of
matrices which are compatible with the graph.

Distributed computation of power of matrices

We show that if matrix C' is compatible with the graph structure, the computation of its
powers can be done in a distributed fashion. Our discussion refers to fixed undirected com-
munication graphs, although the method can be easily extended to time-varying graphs.
The presented algorithm was originally proposed in [10]| for adjacency matrices defined
by blocks. Here we propose an improved version that does not require the knowledge of
n.

Algorithm 7.3.2 (Basic Distributed Power Computation). Let each robot i € V maintain
an estimate Ci;(k) of the (i,7) entries of the k—th power of C, [C*];;, for all j € V. At
k =0, robot i initializes its variables C;;(k) with

Cii(0) =1, and C;;(0) = 0 for j € V\ {i}. (7.23)
At each k > 1, robot i updates these variables as follows,

Cij(k+1)= Y CiyCyi(k), for j € V. (7.24)
7' eEN;U{e}

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

156 7. Strategies for Improved Multi Robot Perception

Note that this algorithm is distributed and each robot ¢ updates its variable using
exclusively information from its neighbors j € N; and from itself. It requires each robot
1 to store n scalars and to exchange n scalars at each iteration k. We discuss now the
outcomes of this algorithm.

Proposition 7.3.3. When C' is compatible with the graph, the outcomes of algorithm ([7.24)
at each step k > 0 are exactly the entries of the k—th power of C, C*.

Proof. Each robot i maintains exactly the i—th row of C*. For k = 0, it is straightforward
to see that eq. - gives the identity matrix I which is exactly C°. For k > 1, we consider
the explicit expression for C**! = CC*, where each (i,) entry is given by

[CF1, = ZCM (7.25)

Since C' is compatible with the graph, then Cj; = 0 for j* ¢ N; U {i} and the previous
expression gives

C** = > CiylCMy, (7.26)
3'EN;U{i}
which is exactly what algorithm (7.24) does. O

Observe that the previous algorithm does not compute an estimate of the centralized
one. Instead, it exactly computes the same solution as a centralized system, but distribut-
ing the operations over the robots. Observe that it remains valid if the communication
graph is time-varying, in which case each robot ¢ computes

[C(k))i; = [C(E)C(k —1)...C(0)];;, for j € V.

The main limitation of the previous procedure is that it assumes that in the initial
phase (eq. (7.23)) each robot knows the total amount of other robots in the network n,
and that at each step k (eq. -) it knows the identities j, j’ associated to each piece
of data C] j(k). We show here that the algorithm can be slightly modified so that the
previous requirement is not necessary. We only impose the assumption that each robot i
has assigned a unique identifier 1D(i), e.g., its IP address.

Algorithm 7.3.4 (Distributed Power Computation). Let each robot i € V maintain a set

1i(k) with the identifiers ID(j) of the robots j it has discovered, and an estimate Ci;(k) of

the (i,7) entries of the k—th power of C, [C*];;, associated to these robots j, ID(j) € ;(k).
At k=0, each robot i € V initializes a single variable é”(k) and a single identifier,

Cii(0) =1, 1;(0) = {ID(i)}, (7.27)

and sends this data to its neighbors N;.
At each step k > 1, robot 1 first looks for new robots in the information l;(k) received
from its neighbors, and updates its identifiers l;(k) accordingly,

Lk+1) = | 4k (7.28)

JEN;U{i}

7. Strategies for Improved Multi Robot Perception 157

Then, robot i creates a new variable Ci;(k) initialized with 0, Cy;(k) = 0, for each recently
discovered robot 7,

ID(j) € li(k+1) and ID(j) ¢ L;(k).
Finally, robot i and updates all its variables Cij(k), for ID(j) € ;(k + 1), by

él]<k +].) - Z Cz'j’éj’j(k>> (729)

JENULHID()E (k)
and sends these variables Ci;(k), for ID(§) € l;(k), to its neighbors as well as its discovered
identifiers 1;(k).

Proposition 7.3.5. Let us define for each robot ©+ € V and each step k > 0 wvariables
C’l](k) =0 for all ID(j) ¢ l;(k). Then, when C' is compatible with the graph, the outcomes
of algorithm are exactly the outcomes of . As a result, they are exactly the
entries of the k—th power of C, C*.

Proof. We first consider Algorithm together with the robot identifier management
rule, with initialization
1;(0) = {ID(i)}, Cii(0) =1, C;;(0) =0, for j # 1, (7.30)
and update rule
U Gk}, and Cyk+1)= > CyCyy, forall jeV. (7.31)
JEN;U{i} 3/ eN;U{i}

We want to show that if j ¢ [;(k) then the element Cj; is zero. This is proved by induction.
It is true for k = 0, see eq. - Let us assume that for £ it is true that, for all ¢ E V if
j ¢ (k) then Cj; = 0. Consider a j which at k + 1 satisfies j ¢ [;(k+1). By eq. it

means that j & (J;cn.un il (k)} and therefore for all j* € N; U {i} the element CJ/] = 0.
Then, the update rule (7.31) gives
Cii(k+1)= Y Cy0=0. (7.32)
3 ENU{i}

Now we prove that the outcomes Cy;(k) of algorithm (7 are exactly equal to Cj; (k)
forall k > 0,7 €V and all j € [;(k). Note that for all k > 0 all i€Vandallj¢ (k) the
elements Cj;(k) do not exist whereas Cy;(k) = 0 as shown above. This can be shown by
induction by taking into account the following issue. We pay attention to eq. for
ID(j) € s(k+ 1),

J'eNiU{iLID(5)€ s (k)

For j ¢ (k) we have C;;(k) = 0. If Cji;(k) = Cji;(k) at k, then at k + 1 we have

Cij(k+1) = > Ci;iCyri (k) + > Ci10, (7.34)
3 €NV}, ID ()€ ;1 (k) 3'ENIU{i}ID(5) ¢ v (k)
which is exactly the update rule for C’Zj(k +1). 0

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

158 7. Strategies for Improved Multi Robot Perception

Therefore Algorithm provides each robot i with all the elements [C*];; for j € V
of the i — th row of the power matrix C*. It is fully distributed and only requires each
robot i to have a unique identifier 1D(7).

The results presented so far hold for both fixed and time-varying graphs. Now we
show that in addition, for fixed graphs, the previous method can be used for obtaining
the number of robots n.

Proposition 7.3.6. For each robot i € V, let k; be the first instant for which l;(k) =
Li(k—1),

k; = min{k | (k) = Lk — 1)) (7.35)
Then, n = |l;(k;)].

Proof. Note that [;(k — 1) contains the identifiers of the (k — 1)—hop neighbors of i. By
the definition of a path, if there are no new robots at distance k, then there cannot be
new robots at distances greater than k. Therefore [;(k— 1) already contains the identifiers
of all the robots that are connected with 7. Since the graph is connected, these robots are
all the robots in the network and n = |I;(k;)|. O

Distributed computation of the spectral radius

Now we present a distributed algorithm that allows the computation of the spectral radius
of a symmetric matrix C' compatible with the graph. It relies on the observation that, for
any induced norm ||.||, [67, Chapter 5.6]

p(C) < |CIl, and p(C) = lim || C*||%. (7.36)

We propose to use the induced co—norm ||.||o, which is the maximum absolute row sum
of the matrix,

I = ma D0l (737)

since it can be easily computed by the robots using a distributed max—consensus algo-
rithm provided that each robot i knows the i — th row of C*.

Algorithm 7.3.7 (Distributed Spectral Radius). Consider the robots executing Algo-
rithm for a symmetric matriz C' compatible with the graph. At each iteration k we
define for each robot the sum c;(k) of the absolute values of its variables C;;(k),

k)=, Gk (7.38)
ID(5)€li(k)

Robots execute the following max —consensus [134)] on their variables ¢;(k),

Bi(k) = ci(k), Bi(k+7+1)= max

JEN;U{i

}Bj(k +7), (7.39)

7. Strategies for Improved Multi Robot Perception 159

which finishes after T = diam(G) communication rounds with variables 5;(T) at all the
robots i € V containing the mazimum of the inputs c;(k) over all the network,

ik +T)="-=pB,(k+T) :me%xci(k). (7.40)
The spectral radius G (k) estimated by each robot i at step k > 1 is given by

Bi (k) = (Bi(k + T))* = (maxc;(k))*. (7.41)

JeV

Observe that this computation of ¢;(k) in eq. (7.38)) is local to each robot 4, since it
maintains the i — th row of C*. Note that the estimated spectral radius 3; (k) associ-
ated to step k is available at the robots T iterations later (at iteration k + 7). How-
ever, the max —consensus iterations are executed independently (in parallel) to
the Algorithm [7.3.4] This means that robots do not have to wait T iterations for the
max —consensus to converge before executing a new iteration of Algorithm [7.3.4]

Now we present a result that establishes the convergence of the previous algorithm to
the spectral radius of the matrix C'.

Theorem 7.3.8. Consider each robot i executing Algorithm with a symmetric matriz
C' compatible with the graph. Then, as k — oo all the variables (k) converge to the
spectral radius p(C) of matriz C,

klgn Bi(k) = p(C), for allieV, (7.42)
and for all k > 1,
(V)T B; (k) < p(C) < B; (). (7.43)

Proof. First note that Algorithm [7.3.7 computes the k—th root of the induced infinite
norm of C*. Since we showed that Cj;(k) = 0 for ID(j) ¢ I;(k), then ¢;(k) in eq.
is exactly the absolute sum of the i — th row of C*¥. The max —consensus provides
each robot with the induced infinite norm of C*. Therefore, 5;(k) in eq. equals

B2 (k) = (|| C* o) *, which combined with eq. (7.36)) gives
(€)= Jim [k = im 5:(k), (r.44)

as stated in eq. (7.42)).
Now we focus on the inequalities in eq. (7.43). From (7.36)),

p(C) = (p(C)E < ICHIE = B2 (k), (7.45)

7

which gives the right part in eq. (7.43)). Since matrix C' is symmetric, then its spectral
norm ||C||z = max; \/A;(C?) equals its spectral radius p(C) = max; |\;(C)],

p(C) = [ICll2 = IC*]5. (7.46)

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

160 7. Strategies for Improved Multi Robot Perception

The spectral ||C*||y and induced infinite ||C*||,, norms of a matrix C* are related by
(V1) CF|loo < ||C*¥|l2, |67, Chapter 5.6], which combined with eq. (7.46)) gives

1 1 1 1
(V) k57 (k) = (Vn) = [|C*][& < | CH||3 = p(C), (7.47)
as stated in eq. (7.43)) and the proof is completed.]

Observe that in the previous process the robots are not required to know n. Now we
are ready to show how the algebraic connectivity of the graph A,(£) can be computed by
using the previous algorithm.

Distributed computation of the algebraic connectivity

The method roughly consists of transforming the Laplacian £ matrix associated to the
undirected and connected graph G into a new matrix C' where the algebraic connectivity
A(L) becomes the leading eigenvalue, i.e., the spectral radius p(C) is an expression that
depends on A.(£). Then, the procedure presented in the previous sections is used for
computing p(C) in a distributed fashion. The estimated algebraic connectivity is finally
obtained by reversing the transformation.

Proposition 7.3.9. Consider the following deflated version of the Perron matriz [102,
151|154 of the Laplacian,

C=1-p3L-11"/n. (7.48)

The relationship between the eigenvalues of C and L is
AL(C) =0, A(C) =1— BN(L), fori € {2,...,n}. (7.49)

p(C) is associated to the algebraic connectivity A (L) by

M (L) = (1— p(C))/5, if 0< B <1/M(L). (7.50)

The previous result can be easily proven as follows. Note that similar results can be
found at [102,/151},[154].

Proof. First of all, we show that £ + r117 /n has the same eigenvalues as L for i €
{2,...,n}, but the first one that is equal to r,

M(L+r11T/n) =1, and \;(L£ + 7117 /n) = N(L) for i € {2,...,n}. (7.51)

Consider the following orthogonal matrix V,; composed of eigenvectors of L,

Ve = [1/vm,va(L), ... va(L)] = [1/@ f/ﬁ] : (7.52)

7. Strategies for Improved Multi Robot Perception 161

which exists since £ is symmetric. Then,
VILV: = Ap = diag(0, \o(L), ..., \(L)), (7.53)
We apply the same operation to £ + 7117 /n and get
1T1/n 17V:/n 10
T T _ . RV AL
VE (e Ve=ae | grlin prn | e[o)
= diag(r,)\Z(E)v R ,/\n(ﬁ)), (754>
since 171 = n and 17V, = 0, what yields eq. (7.51). Now note that the eigenvalues of
the Laplacian £ and of the deflated Perron matrix C' in eq. (7.48)) satisfy
N(C)=1—=8N (L+(1/8)117 /n), for i € V, (7.55)

which combined with eq. (7.51)), with » = 1/, gives the relationship in eq. (7.49).
Now let us define 3 as follows

B =c¢e/ (L), forsomee € (0,1), (7.56)
and express the eigenvalues of C' accordingly,

A(C) =0, and for i € {2,...,n},

Mi(C) =1—=eX(L)/ (L), (7.57)
Recall that A\, (L) > X\ (L£) > 0 for all i € {2,...,n}. Then,
1> X(C)>--- > X,(C) > M\ (C) =0, (7.58)

and the eigenvalue of C' with largest absolute value is A\y(C'), what concludes the proof. [

The previous deflated Perron matrix C' =1 — 3£ — 117 /n is not compatible with the
graph and thus Algorithm [7.3.7] cannot be immediately applied in a distributed fashion.
Note however that, since 1/4/n is the eigenvector v (C) of C associated to the eigenvalue
A1(C) =0, then, for all £ > 1,

CP=1-pL—-11"/n)" =1 - pL)" — 117 /n, (7.59)

where matrix I — SL is compatible with the graph. We propose to use a variation (Algo-
rithm of Algorithm [7.3.7]

Before presenting Algorithm we discuss some issues regarding the number of
robots n. Note that the number of robots n is used in the computation of 3. In case
the robots do not know n from the beginning, they can compute 8 = £/(2dyax), Which
satisfies 5 < 1/A\,(L) as in Proposition by executing a max —consensus algorithm
on the robots degrees in an initial phase. Once § has been computed, robots can start

Algorithm [7.3.10l At each step k£ of Algorithm [7.3.10, robots can always execute Algo-

rithm 4] for computing the powers of matrix C' = I — L. However, they can only
execute eqs. (7.61)-(7.63) for getting the output Ai(k) when they know n. At each step k
robots use Proposition to find out if they have already found n and thus if they can
proceed with eqs. (7.61)-(7.63). Alternatively, n can be computed in an initial phase as,
for instance, in [94].

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

162 7. Strategies for Improved Multi Robot Perception

Algorithm 7.3.10 (Distributed Algebraic Connectivity). Let € € (0,1) be known by all
the robots and 8 = ¢/(2n). Consider the robots execute Algorithm [7.3.4) for computing
the powers of matriz C=1- BL. At each step k > 1, each robot i € V has variables
Ci;(k) with the (i,7) entries of the k—th power of matriz C, [C*]i;, for all the robots it
has discovered so far, ID(j) € l;(k). Note that

with C being the deflated Perron matriz in eq. (7.48)).
At each step k, each robot i computes

ak) =Y |Cy(k) = 1/n|+ (n— |L(k)])/n. (7.61)
ID(G)eli(k)

it ezecutes a max — consensus algorithm to obtain max;cy é;(k) and lets 57 (k) be

1

B; (k) = (max é; (k))*. (7.62)
JEY
The algebraic connectivity estimated by each robot 1 € V at step k > 1 is given by
Sak) = (1= 537 /8. (7.63)

Theorem 7.3.11. Consider each robot i executes Algorithm[7.5.1(for a connected graph.
Then, as k — oo all the variables \;(k) asymptotically converge to the algebraic connec-
tiwity M\ (L),

lim \;i(k) = \.(L), forieV, (7.64)

k—o00

and for each step k > 1 we have the following lower- and upper-bounds for \,(L):

(k) < ML) < (V)T Ailk) + (1= (V) 7) /8. (7.65)

Proof. First note that 8 = ¢/(2n) satisfies 0 < 8 < 1/A,,(£) since € € (0,1) and A, (L) <
2dmax < 2n, where dy., is the maximum degree in the graph. Therefore, as stated in
Proposition [7.3.9] the algebraic connectivity is \.(L) = (1 — p(C))/B, where C is the

~

deflated Perron matrix C' = I — 3£ — 117 /n = C' — 117 /n. From Proposition for
all i € V, the variables C;;(k) are equal to [C*];; for ID(j) € l;(k), whereas [C¥];; = 0 for
D(j) ¢ l;(k). Linking this with eqs. (7.59)), (7.60) yields
[CH];; = [C*];j — 1/n, for ID(j) € Li(k),
[C*];; = —1/n, for ID(j) ¢ l;(k), (7.66)
for all i € V, k > 1. Therefore ¢;(k) in eq. (7.61) is the absolute row sum of the i—th row
of C*, and G (k) in eq. (7-62) is Br(k) = ||C¥||&. As stated from eqs. (7.44)-(7.47),

wﬁﬁuc’wé < p(C) < ||CH|&, (7.67)

since C' is symmetric. Combining this with eqs. (7.63) and (7.50) we get eqgs. (7.64)
and (7.65)) and the proof is completed. O

7. Strategies for Improved Multi Robot Perception 163

7.3.3 Distributed adaptive triggered average consensus

In this section we apply the Distributed Algebraic Connectivity algorithm previously
presented to an event-triggered consensus scenario. Event-triggered control strategies [49,
1241|133| are appropriate for scenarios where the state variables evolve in continuous time
but where the robots may exchange data only at specific time instances. They have
the advantage that they save communication costs and that they keep the control law
piecewise constant. The event-triggered control algorithm proposed in [124] requires the
knowledge of the algebraic connectivity for properly adjusting the algorithm parameters
and ensuring convergence and absence of Zeno-behavior.

The adaptive triggered average consensus algorithm is as the one presented in Sec-

tion [7.3.1],
x(t) = —Lx(t) = u(t), ei(t) = z;(t) — x;(t), (7.68)
except for the trigger function, which now is
lei(t)] < cre™", (7.69)

where now « is not fixed but is adapted depending on the previously estimated algebraic
connectivity as follows:

a(k) = Mk), for k € N, and a(t) = ya(k), for t € [k k+ 1), (7.70)

where 0 < v < 1 is a constant and 5\(/’{:) is the outcome of the algorithm in the previous
section, satisfying

a(k) = Ak) < M\(L). (7.71)

Theorem 7.3.12. Algorithm (7.68))-(7.70) asymptotically converges to the average of the

initial states and does not exhibit Zeno-behavior.

Proof. The result holds based on similar analysis as in [124]. O

7.4 Discussion

Map precision

In order to show the performance of the strategy for improving the map precision, a simu-
lation has been carried out where a team composed by three robots explore an obstacle-free
environment. They estimate their motions based on odometry information and sense the
environment using an omnidirectional camera that provides bearing to the landmarks.
The observation noise is 0, = 1 degree whereas the odometry noises are o, = 0.01d,
oy = 0.01d, 09y = 2.5 degrees, where the translation noise is proportional to the traveled
distance d. Robots process the odometry data and the measurements and build their local
maps (Fig. (a)). The ground-truth data is displayed in black, and points, lines, and
triangles represent respectively landmark positions, robot motions, and robot poses. The

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

164

7. Strategies for Improved Multi Robot Perception

15;
¢ gt
10l + Global map F20
F13 €F15
F1
5¢ lI:SFlg’ F14
F18
| F6 e F4 %5t
&o F10
_d F12 ¢ “F8 " Fl1
F2e F3
F9 ¢
-10 F17 ¢
_1‘; L L L
% -10 0 10 20 ~10 0 10
(a) Initial maps for robots 1, 2, 3 (b) Initial global map
15 15,
+ rl ¢ gt
10t : g 10lL_* Global map ¢ F20
® o e eFig e
5¢ 50 F5 ¢ % Fl14
¢ F18
of of F6 & F7F8 oy *ri6
9 #:+ F10
g g Fi2 ¢ F3 Fl1
F2 ¢
Fo &
-10 -1¢ Fi7 #
-15 ‘ ‘ -1 ‘ ‘ ‘
=20 -10 0 10 -20 -10 0 10
(c) Maps for robots 1, 2, 3 at step 1 (d) Global map at step 1
15; 15¢
+ 1l ¢ gt
0] ¥ 2 10/L_* Global map ¢ F20
+ 3 F15
F13 . F19
¢ gt F1o® ¢
5r ¢ F14
i F16 F5 ¢ F18
¢
ol ol F6 ¢ F7F8 ops? F15
% 0: F10
d F12 ¢ F3
-5 -5 F11
29
Fo ¢ ¢
10 G -10 F17
- L L L —l‘ L L L
-20 -10 0 10 -20 -10 0 10

(e) Maps for robots 1, 2, 3 at step 2 (f) Global map at step 2

Figure 7.4: Some steps of the strategy for improving the map precision are displayed.
Black dots are the ground-truth landmark positions. Local map estimates from different
robots are shown in different colors (a, ¢, e). Figures at the right column (b, d, f) show
the global map X, X associated to the local maps, whose uncertainty is reduced as an
indirect result of the improvement in the local maps.

7. Strategies for Improved Multi Robot Perception 165

maps and trajectories estimated by the robots are shown in different colors. The global
map (Fig. (b)), given by (7.10)), associated to the initial local maps (Fig. (a)) has
several features with large uncertainties.

Robots compute their candidate next positions, and evaluate the cost function at
these vantage locations. Then, they solve the robot-to-feature assignment as explained
in Section and move to the selected locations (Fig. (¢)). Observe for instance
the feature F'16, which has been observed by the three robots; robot r1 (blue) possess a
very uncertain estimate, r3 (red) has a better estimate, and the estimate at r2 (green)
is very precise. Since at least one of the robots that has a precise estimate of F'16, the
global map already has a precise estimate of F'16 (Figs. (b) and (d)). Robots do
not move to better observe F'16 but instead move to more interesting locations. This
illustrates the proposed strategy, where robots attempt to reduce the uncertainty of the
global map, instead of focusing on their local features estimates. As a result of the robot
motions (Figs. [7.4] (¢)), the precision of the most uncertain features (F'6, F'7, F'8, F'3) in
the initial global map (Figs. [7.4] (b)) are greatly reduced (Figs. (d)). Robots execute
the proposed strategy again (Figs. (e)), improving the precision of their local maps
and of the global map (Figs. (f)). Since this global map has reached a high precision,
next iterations of the algorithm add no significant improvements.

Convergence speed

In order to show the performance of the algorithm to compute the algebraic connectivity,
we have performed a set of simulations with n = 20 robots randomly placed as in Fig. [7.5]
The algebraic connectivity 5\1(/’{) estimated by the robots ¢ € V at each step k using
the proposed method is depicted in Fig. [7.6l \;(k) (light gray solid) is the same for all
of them at each step k. It is a lower-bound for the true algebraic connectivity A.(L)
(dark gray solid), and asymptotically converges to A,(£). The expression (v/n)® A (k) +
(1 — (y/n)7®)/8 (light gray dashed) is an upper-bound for A, (L) for each step k and it
asymptotically converges to A\.(L).

We have studied the performance of our algorithm compared to the distributed power
iteration algorithm for the matrix I — S£ — 117 /n (Figs. , ,

y(k) = w(k)/normalization cons.(w(k)),
w(k+1) = (I—pL)y(k) — deflation cons.(y(k)),

After each power iteration step, robots execute Teons = 10,25, 50, and 100 consensus iter-
ations for deflating I — £ and normalizing w(k). The consensus iterations are computed
with a classical discrete-time averaging rule, z(t + 1) = Wz(t), and using the Metropolis
weight matrix W [153] given by eq. in Appendix

In Fig. we show the estimates produced by our algorithm, Xz(kz) (light gray solid),
which are the lower-bound, and the upper-bound (v/n)® (k) + (1 — (vn)*)/8 (light
gray dashed). Recall that in our algorithm, these estimates are equal for all the robots
i € V. For the power iteration estimates, we are displaying the Rayleigh quotient w(k +
)Ty (k)/yT(k)y(k), that considers simultaneously the estimates at all the robots. The
estimates of our algorithm converge much faster than the ones produced by the power

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

166 7. Strategies for Improved Multi Robot Perception

10

©
T

Figure 7.5: 20 robots (black squares) are placed randomly in a region of 10 x 10 meters.
There is an edge e = (i,7) € £ (gray lines) between pairs of robots that are closer than
4 meters.

30

. —_— L)

20n Estimated A(k)
" = = = Upper-bound
10 v
‘
~ -
or =t

_10,
=20
-30
_a \ \ \ \ |

0 20 40 60 80 100

Figure 7.6: The algebraic connectivity (k) estimated by the robots i € V (light gray
solid) using the proposed method is the same for all of them at each step k. It is a lower-
bound for the true algebraic connectivity A\.(L£) (dark gray solid), and asymptotically
converges to \,(£). The expression (v/n)® \i(k) + (1 — (/n)®)/f (light gray dashed) is
an upper-bound for \,(L£) for each step k and it asymptotically converges to A\.(L).

iteration algorithms, due to the fact that we do not need to wait for a consensus process
to finish before starting a new step. In addition, our estimates asymptotically converge to
the true algebraic connectivity, whereas the power iteration methods only converge to a
neighborhood which is further from the true \,(£) as the number of consensus iterations
T.ons for normalizing and deflating decreases.

A benefit of power iteration methods compared to our proposal is that, at each itera-
tion, the robots send constant size messages, whereas in our case the messages have size
n. We have made an analysis of the evolution of the estimates of the algorithms versus
the total size of messages sent per robot (Fig. . As it can be observed, also in this case
the estimates produced by our method are more accurate than for the power iteration

7. Strategies for Improved Multi Robot Perception

167

141

12}

10t

2

— ()
Estimated A(k)
= = = Upper-bound
Powerlt 10
Powerlt 25
Powerlt 50
Powerlt 100

Figure 7.7: The estimates obtained with the proposed method (light gray dashed and
solid lines) converge very fast to A.(£) (dark gray solid). The estimates produced with the
Power iteration algorithm (colored solid lines), with T = 10, 20,50 and 100 consensus
iterations for normalizing and deflating, need much more iterations to converge. Besides,
they do no converge exactly to A\.(L), but to a value which is closer to A\.(L) as the
number of consensus iterations T..,s increases.

methods.

14+

12+

10

600 800 1000
Iterations

—_— (L)
Estimated A(k)

= = = Upper-bound
Powerlt 10
Powerlt 25
Powerlt 50
Powerlt 100

e

Figure 7.8: With the proposed algorithm, each robot i sends messages of size n per
iteration, whereas for power iteration methods, messages have constant size. However,
also in this case our method behaves better than the power iteration approaches. For
the same communication usage, the estimates produced by our algorithm (light gray
dashed and solid lines) are more precise than the ones obtained with the power iteration

algorithms (colored solid lines).

, ,)
600 800 1000
Messages per agent

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

168 7. Strategies for Improved Multi Robot Perception

7.5 Conclusions

In this chapter we have discussed strategies for improving the multi-robot perception.
First, we have proposed a motion control strategy for improving the precision of the local
feature-based maps, and as a result, of the global merged map. The described strategy
selects a finite set of candidate motions to the robots, and computes its associated cost in
the form of the individual contributions of every feature. Therefore, this cost presents a
space complexity linear on the map size. This information is used by the team members
to negotiate their next motions, presenting the benefit that robots do not need to wait
for having a good global map estimate when they coordinate. Second, we have presented
a distributed method to compute the algebraic connectivity for networked robot systems
with limited communication. The algebraic connectivity establishes the convergence speed
of the map merging algorithm. At each iteration, the algorithm produces both an upper
and a lower bound estimates of the algebraic connectivity. We have proved theoretically
and experimentally that both estimates asymptotically converge to the true algebraic
connectivity. We have shown that our method outperforms the classical distributed power
iteration, providing more accurate estimates, and improving the network communication
usage. The ability to give upper and lower bounds of the algebraic connectivity has
been demonstrated to have a great importance for combining this method with higher
level algorithms for adaptive consensus in a parallel fashion, i.e., where both processes
are executed simultaneously. We have combined this algorithm with an event-triggered
adaptive consensus scenario where, at each iteration, the most recent estimate of the
algebraic connectivity is used by the consensus method.

Chapter 8
Real Experiments

We have tested the methods proposed in this document under real data and different com-
munication schemes. We have conducted several experiments using a data set from [60]
with bearing-only data described in Appendix [Bfor studying the performance of the static
and dynamic map merging algorithms and the data association method. We have also
tested the data association algorithm using real images acquired with cameras. Addition-
ally, we have analyzed our algorithms under real data acquired with an RGB-D sensor,
which may perform better in these kind of scenarios.

Static Map Merging

We use a data set from [60] described in Appendix [B with bearing information obtained
with vision in an environment of 60m x 45m performing 3297 steps. It is an indoor
scenario where the robot moves along corridors and rooms. The data set contains real
odometry data and images captured at every step (Fig. . The images are processed
and measurements to natural landmarks are provided. The natural landmarks are verti-
cal lines extracted from the images and processed in the form of bearing-only data. The
observations in the dataset are labeled so that we have the ground-truth data association.
This dataset is very challenging for a conventional visual map building algorithm due to
the limited field of view of the camera (Sony EVI-371DG). Furthermore, the camera is
pointing forward in the same direction of robot motion and the robot traverses rooms and
corridors with few features in common. Notice that this situation is much more complex
than situations where the camera can achieve big parallax, or systems with ominidirec-
tional cameras, where features within 360 degrees around the robot are observed.

We have carried out these experiments with 9 robots. The total area covered by the
robots is a square of 30 m x 30 m (Fig. . We run a separate SLAM in each robot
and obtain 9 maps. We use a bearing-only SLAM algorithm with features parameterized
in inverse-depth [92] followed by a transform to Cartesian coordinates before the merging
process. The reader is referred to Chapter [2| to find a detailed explanation of the SLAM
algorithm we used. We express the local maps in global coordinates according to the
relative robot poses seen in Fig. [8.2] obtaining the results shown in Fig. Note that
this is the result of putting the maps together, without applying a merging method. The
team of robots execute the fusion algorithm presented in Chapter [3| to merge the local

169

170 8. Real Experiments

Figure 8.1: An example of the images used by the 9 robots during the navigation to test
the proposed method . Although the data set also provides artificial landmarks (white
circles on the floor), we do not use them, and instead we test the algorithm using the lines
extracted from natural landmarks (in yellow).

201

10+

—10F

L L ! L L
-20 -10 0 10 20

Figure 8.2: Trajectories followed by the 9 robots. They cover a region of 30m x 30m
of the whole dataset map. In order to give an idea of the scene structure, we display
in black the path in the dataset and a set of artificial landmarks (black dots) placed on
both sides of the trajectory, which are not used in the experiment. Here, the rooms can
be identified since robots enter and leave them describing short trajectories. The long,
straight motions correspond to corridors.

maps. We study the behavior of the map merging method under three different scenarios:

8. Real Experiments 171

%

rive

°
®
(1]

m
L]

n

N

w

o~

L L L L L L L
-5 0 5 10 15 20 25

Figure 8.3: Local maps obtained by robots 2 (green), 6 (yellow), and 9 (pink) after
following their trajectories in Fig.[8.2l The feature F23 within the black box will be used
for testing purposes within this section.

a fixed communication graph, a graph with switching topology and a graph with link
failures (Fig. [8.4). We illustrate the performance of our algorithm by comparing the

“““

\ R3 Or3
R4 O R4
\ l". “‘
R5 Ve O R5

(a) Fixed graph (b) Switching graph (c¢) Link failure graph

Figure 8.4: Communication graphs. (a) The topology is a string, with robots 1 and 9
in the extremes. Each robot has two neighbors, except the extreme robots, that have
a single neighbor. This graph remains fixed for all the iterations of the algorithm. (b)
For each iteration t, there exists a single edge linking robots ((¢ — 1) mod 9) + 1 and (¢
mod 9) + 1. (¢) A connected communication graph where at each iteration one of its link
fails.

global map estimated by the robots along the iterations with the actual global map. We
use two features to do this: F23, which has been observed by several robots, and F368,
which belongs to a room visited exclusively by robot 4.

In Figs. we show the estimated information matrices I}(t) and vectors il (t)
(colored lines) during 40 iterations, compared to the global map I, ig (black line). We
display the subcomponent associated to the z-coordinate of features F23 and F368. As can
be observed, in all cases the estimates converge to the average value very fast. However,
for F368, the consensus is reached faster than for F23. This happens because only robot
4 possess an initial value for F368 (Fig. iteration 0). As the other robots receive
information of F368, their estimates are displayed in colors. We can see that, since this
initial value is the unique source of information for F368, the other robots do not disagree
with this information and they just incorporate it into their estimates. In a few iterations,

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

172 8. Real Experiments

all the robots possess an estimate for F'368 very close to the average value. However, for
F23 there exist many initial values at iteration 0 (Fig. from robots 1,7,8,9. The
robots receive different information for F23 from different sources and, therefore, they
must reach an agreement. As a result, there is a higher discrepancy in their estimates.

20000f, -, 20000 T, 200001%,

‘e
.
.
.
'.
.
.
L
N

10000 10000 10000

.
.
.

0 20 40 0 20 40 0) 20 40

(a) I.(t) Fixed graph (b) Ii(t) Switching graph (c) I’ (t) Link failure graph
2000} ", 2000} " 2000} %,
000 | e 1000 1000{| -,

" e) R

Of m— — Of e W o of B it
-1000 ﬁ _____________ -1000| —1000/

0 T2 40 0 20 40 0 20 40

(d) i, (t) Fixed graph (e) i, (t) Switching graph (f) i, (¢) Link failure graph

Figure 8.5: Estimated position (z—coordinate) of F23 at each robot along 40 iterations.
We display its associated components within the information matrices I} (¢) (first row)
and vectors i () (second row). We analyze the results for the fixed (first column), the
switching (second column) and the link failure (third column) communication graphs.

We analyze the evolution of the mean x%(t) and covariance XL (t) for F23 and
F'368 estimated by each robot i (Figs. , . We compare them with the mean xg
and covariance Y of the global map, and with the numerical covariance Q% (t) at each
iteration. Tt can be seen that x%(f) converges to xg, and X4 (t) converges to nX. Besides,
it can also be seen that the numerical covariance Q% (¢) remains bounded by X4 (¢) for all
the iterations (Figs. B.8). When we analyzed the estimates in the information form,
we observed that only robot 4 was providing information for F368. However, when we
study the evolution of the estimates in the mean and covariance form (Fig. , , we
can see that robots which did not observe F368 are providing estimates which disagree
with those from robot 4. This is due to the effect of the correlations between F368 and
the other features. Therefore, modifications in the estimates of features correlated with
F368 produce modifications in the estimate of F368.

We analyze the effects of the communication topology on the performance of the
algorithm. TIn the fixed and the switching communication graphs (Fig. , first and
second column), the convergence is slower than for the link failure graph (Fig. third
column). In this fixed graph (Fig. (a)) the topology is a string, with robots 1 and 9
in the extremes. This is a specially bad configuration since the time needed to propagate
information from the extreme robots to the whole network is maximal. The per step

8. Real Experiments 173

x 10

.......

0

0 20 40 0 20 40

40
(a) I.(t) Fixed graph (b) I.(t) Switching graph (c) [5(t) Link failure graph
3000y, 3000t .-ex--. 3000r,
2000 2000 T e, 2000/ | *
1000 1000 1000
0 .- 0 % 0
0 20 40 0 20 40 40
(d) i, (¢) Fixed graph (e) i, (t) Switching graph (f) i5,(¢) Link failure graph

Figure 8.6: Feature F368, information matrices I (t) and vectors i, (t). We display the
entry within the information matrix I (¢) associated to the z—coordinate of F368, along
40 iterations. For the three network topologies, the estimates at each robot (color solid
lines) remain within the theoretical bounds (black dashed lines) while they asymptotically
approach the global map I (black solid line).

convergence factor v = |A\o(WW)| (3.20)) depends on the Metropolis weights matrix, which
is

2 1 0 .0
11 1 0 0
1
W==>=10 .0
3
0 1 1 1
00 0 1 2|

We obtain a value for v = 0.96 close to 1. This produces a slow convergence. The
convergence bounds are displayed in black dashed lines (Figs. 8.6 first column). In
the switching graph case (Fig. (b)), at every time instant, only one communication
link exists in the graph and this sequence takes place in a circular fashion. This is a
very extreme communication scheme where, although the conditions for convergence are
satisfied, the converge speed is expected to be slow. We can see that (Figs. , second
column) for each robot, estimates remain unchanged during long periods of time, then
they experiment two consecutive changes, and then they remain unchanged again. FEach
robot remains isolated during 7 iterations, maintaining its estimates unchanged. Then, it
exchanges information with its previous neighbor and, in the next iteration, with its next
neighbor. In our case, at each iteration ¢, there exists a single edge linking robots ((¢t — 1)
mod 9) + 1 and (¢ mod 9) + 1. The index of joint connectivity is 7 = 8 since every

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

174 8. Real Experiments

5.8 5.8 5.8
5.6 5.6 5.6
N
5.4 5.4 5.4
0 20 40 0 20 40 0 20 40

(a) x;(t) Fixed graph (b) x4 (t) Switching graph (c) x(¢) Link failure graph

0.2 0.2 0.2
\ E'Q‘ v e
0 0 e 0
-0.2 -0.2 ET. -0.2
0 20 40 0 20 40 0 20 40

(d) 24 (t) Fixed graph (e) XL (t) Switching graph (f) X4 (¢) Link failure graph

Figure 8.7: Estimated position (z—coordinate) of F23 at each robot along 40 iterations.
We display its associated components within the mean x4 (¢) (first row) and covariance
¥L(t) (second row) estimated by each robot i. We analyze the results for the fixed (first
column), the switching (second column) and the link failure (third column) communica-
tion graphs. All the mean estimates x5 (¢) (color solid lines) approach the average value
(black solid line). The numerical covariance matrix Q%4 (t) (color dashed lines) asymp-
totically approaches the covariance matrix g (black solid line) of the global map. The
numerical covariance Q% (t), which cannot be computed by the robots using local infor-
mation, is bounded by the locally computed covariance matrix X5 (¢) (color solid lines).
This matrix converges to ng.

8 iterations the joint graph is connected. There are only 9 different Metropolis weight
matrices W (t), depending on the linked robots at time ¢, that are repeated successively.
We obtained a value for § = 0.89 using (B.21)). We draw the bounds using black dashed
lines (Figs. [8.5 [8.6] second column).

In the link-failure graph (Fig. (c)), at each iteration one of the links in the graph
fails although the graph remains connected. Thus, we obtain an index of joint connectivity
of 7 = 1. Evaluating all the possible Metropolis weight matrices in this graph, we obtain
d = 0.80. We show the convergence speed bounds (Figs. , third column) using black
dashed lines. This communication scheme exhibits the fastest convergence speed, since
0.80" < 0.96* < 0.89//%* for all t = 0, 1,.... This faster convergence can also be observed
in the estimated mean and covariance (Figs. , where the estimates approach the
global map faster for the link failure graph (third column). It is noted that regardless
of the presence of link failures or changes in the communication topology, the numerical
covariance remains bounded by the locally computed covariance matrix (Figs. .

In addition, we display (Fig. the global map estimated by robot 1 after 5, and 20
iterations (colored lines) of the merging algorithm, and under the fixed communication

8. Real Experiments 175

23 23 23
_& | v \\;
225 /i’i 22.5 ‘ ; 22.5 f
22 22 22
0 20 40 0 20 40 0 20 40

(a) x(t) Fixed graph (b) x4 (t) Switching graph (c) x(¢) Link failure graph

0.5 0.5 0.5
S~ A— - -

0 0 0
— — -
-0.5 -05 -05
0 20 40 0 20 40 0 20 40

(d) 24 (t) Fixed graph (e) XL (t) Switching graph (f) X, (¢) Link failure graph

Figure 8.8: Estimated position (z—coordinate) of F368 at each robot along 40 iterations.
We display its associated components within the mean x5 (t) (first row) and covariance
¥4 (t) (second row) estimated by each robot i. We analyze the results for the fixed (first
column), the switching (second column) and the link failure (third column) communica-
tion graphs. All the mean estimates x5 (¢) (color solid lines) approach the average value
(black solid line). The numerical covariance matrix Q4(t) (color dashed lines) asymp-
totically approaches the covariance matrix g (black solid line) of the global map. The
numerical covariance Q% (t), which cannot be computed by the robots using local infor-
mation, is bounded by the locally computed covariance matrix X4 (¢) (color solid lines).
This matrix converges to ng.

graph (Fig. (a)). The maps estimated by the 9 robots are similar. We compare
the estimates at robot 1 to the global map in (3.4) (black lines). Due to the network
configuration, after 5 iterations robot 1 has received information from the initial local
maps of robots 1 to 6. However, it still knows nothing of the local maps of robots 7
to 9 (Fig. (a)). As previously stated, this fixed communication graph has a slow
convergence speed. However, after 20 iterations the map estimated by robot 1 is very
close to the global map (Fig. (b)). In addition, it is observed that the information
fusion leads to a great improvement in the map quality, where not only the uncertainty
is greatly decreased, but also the local maps are corrected.

Finally, we have studied the performance of the map merging algorithm in terms of
execution times (Fig. 8.10). During the first iterations, the peaks on the execution times
are due to the expansion and arrangement of the information matrices and vectors I%(t)
and i,(t) that are performed by the robots whenever they discover new features in its
neighbors’ information. These memory allocation operations, which are computationally
expensive, give rise to this behavior. In the fixed graph case (in blue solid) this situation
continues until iteration 5, when robot 5, the robot in the central position within the

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

176 8. Real Experiments

15

15 ‘ [4

10

o
T

/
L]
.
!
Y
@
:
{
4

-
T\ v 2wy -
= 4
o of — ‘%f be s
F —_—l - \' s00 0
-5 5 _—— ' s LY
: \ i \«'.B’ ‘
~10f -10(5 / 'S P=S \ PP Py | 1Y
Gz 7/ “ o &g o 7 @
| <@ - @ o P
15} 15 (——— .
7 o
r r)
5 0 5 10 15 20 25 5 0 5 10 15 20 25
(a) 5 iterations (b) 20 iterations

Figure 8.9: Global map estimated by robot 1 after 5 (a) and 20 (b) iterations of the
merging algorithm, and under the fixed communication graph (Fig. (a)). Different
colors identify the source local map. Although the global map contains a single estimate
per feature, the features observed by more than one robot are displayed by multiple
colored ellipses. The global map xg, ¥ is displayed in black. Although there is a slow
convergence speed associated to the fixed communication graph used here, the estimated
global map after 20 iterations is very close to the global map.

14r

— Fixed graph
== Switching graph
= Link failure graph

1.2r

L

H
l':.

I
g 08f .
o |
o :
Lo .
- .
: .
o4re fr S\y H
o\
Y e mEmaumssmEELmasEEs=rTaas
0.2 ,3 -
- 4
35
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40

Iterations

Figure 8.10: Execution times (per iteration and robot) exhibited by the merging algorithm
under the three tested communication graphs.

string graph, has received information from all the robots. Its information matrix I%(5)
reaches its maximum size and, from here to the end of the experiment, its global map
estimate changes but its size remains unchanged. The execution times reach a peak at
iteration 5 and from here on, it decreases. From iterations 5 to 9 other robots achieve
the maximal size of their matrices I%(t), and finally, from iteration 9 to the end of the
experiment, the global map size remains unchanged for all the robots. For this reason,
we can see that the execution times are drastically reduced from iteration 9 to the end of
the experiment. For the switching graph (in black dashed), the first robots that receive
information from all the others are 8 and 9, at iteration 8, and from iterations 9 to 15

8. Real Experiments 177

robots 1 to 7 successively expand their maps to the maximum size. Finally, from iteration
16 to the end, all the robot’s global map estimates present the maximal size and only
its contents change. For this reason, the execution times decrease. Finally, for the link
failure graph (in dotted red), due to its higher connectivity, all the expansion operations
are carried out during the first 4 iterations, giving rise to the larger peak observed in
the plot. After these expansion operations, the execution times are similar for the three
communication graphs.

Dynamic Map Merging

In the second set of experiments, we also use real data from the data set described
in Appendix [B| with bearing information obtained with vision (Sony EVI-371DG). The
landmarks are vertical lines extracted from the images (Fig. [8.11)).

Figure 8.11: An example of the images that the robot team uses during the navigation
to test the proposed method . We test the algorithm using the lines extracted from
natural landmarks (in yellow).

We select 8 subsections of the whole path for the operation of 8 different robots
(Fig. [8.12). The robots execute the proposed algorithm for merging their local maps
communicating through range-limited graphs as in Fig.[8.13] with the Metropolis weights
(eq. (A.3) in Appendix[A]) and its Laplacian matrix (eq. (4.9)), and with the parameters
v = 1.8 and h = 0.8. In this experiment, we get A\, = 0.97. They execute a total of
L = 500 consensus iterations. The robots run a total of K = 5 map update steps. Between
consecutive map update steps k, k + 1, each robot performs 10 steps of a bearing-only
SLAM algorithm (Fig. [8.14)).

The algorithm is executed for 3 different configurations. In the first one, the robots
execute a small number of consensus iterations [= 25 after each map update step k =
1,...,4, and the remaining L — (K — 1)l = 400 iterations after the last one. In the second
case, they use [= 50 and execute the remaining 300 at ¥ = K. And in the last one,
they use an equal number of iterations per step [= (L/K) = 100. The obtained scaled
estimation errors for the information matrices [[If(t)],s — [I},,]rsl/0r and information
vectors |[if (t)], — [i%,,]+|/o; are displayed in Fig. @ (a) and (b) along the L consensus
iterations. During the intermediate steps £ = 1,..., K — 1, the configuration [= 100
(red solid) exhibits the fastest convergence, whereas [= 50 (green dashed) also produces
good results. The configuration [= 25 (blue dashed-dotted) however is less precise and

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

178 8. Real Experiments

6 | |
4 — Rl
— R2
ol — R3
— R4
0 =— R5
R6
=27 R7
4l —R8
-5

Figure 8.12: Approximate trajectories followed by the 8 robots (dots). Since there is
no ground truth information available, a set of artificial landmarks (black squares) are
displayed to give an idea of the scene.

R2 R3

D b R6

w O

8

o

A
A

o
N
~E
(o))
[e¢]
)
N

Figure 8.13: Sample communication graph for the 8 robots. There is an edge (gray lines)
between two robots (black triangles) if their distance is smaller than 7.5 m.

its estimates are further from the average value. During the last step £ = K both [= 25
and [= 50 configurations reach a small final error. However, the configuration [= 100
which was reaching the best results during the previous steps, finishes with the worst
final error. The configuration [= 50 produces interesting results since the intermediate
errors are almost as good as for [= 100, whereas the final error is similar to the obtained
by | = 25. After the L iterations, the final global maps x¥(¢), X¥(¢), computed by the
dynamic map merging algorithm are very close to the global map %%, Y£, at step
k = K that would be obtained by a centralized system. We show the global map at robot
1, for the [= 100 configuration (Fig. after L iterations, which is very similar to the
maps computed by the other robots (they are equal in the limit). Similar results have
been obtained using the other configurations.

We compare the behavior of the dynamic consensus algorithm with a zero-initialization
strategy (Fig. (a)). The errors associated to the information vectors for even iteration
numbers ¢ are showed for both the dynamic consensus algorithm with [= 100 (black solid)
and the zero-initialization strategy with [= 100 (red solid). For & = 1 both errors are

8. Real Experiments 179

TANAN
AR WN P

—2F

-4 L L L L L L L |
-8 -6 -4 -2 0 2 4 6 8

Figure 8.14: Local map estimated by robot R7. Gray triangles represent the pose of R7
for the different map update steps k = 1,...,5. R7 initiates a new map update step after
executing 10 motions. Its local map at steps k = 4 (gray) and k = 5 (light gray) is also
displayed. Between steps k = 4 and £ = 5, R7 introduces new features into its local map
and also improves the previous estimates at k = 4.

0.8F 3r

----- 1=25 ‘==]=25
07t 1=50
: — =100

(a) max; s |[[IF(D)]r.s — [LEyglr.sl /o (b) max;, |[if ()]r — [{og]rl/o10

Figure 8.15: Estimation errors along the L consensus iterations. (a) max; ., |[IF(t)],s —
L5, glrsl/or, (b) max . |[if ()], — [if,,]r|/oi. The configuration [= 25 (blue dashed-dotted)
maintains a high error along the intermediate steps £ = 1,..., K — 1, but at the last
step, it gets a high precision. For [= 100 (red solid) the precision at the end of each
intermediate step k = 1,..., K — 1 is very high, but finishes with the worst final error.
The configuration [= 50 (green dashed) produces accurate results during both the last
and the intermediate steps.

equal since the dynamic consensus algorithm performs a zero-initialization. For the other
steps k = 2, ..., K, the errors of our proposed algorithm are smaller than the ones obtained
with the zero-initialization strategy. They are upper bounded by the theoretical rate of
convergence in eq. (gray dashed). We analyze the behavior of the algorithm under

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

180 8. Real Experiments

20

Figure 8.16: Global map x¥(t), ¥¥(¢), estimated by robot i = 1 at the last consensus
iteration L for the configuration [= 100. The sections associated to the inputs of the
different robots are displayed in different colors. As it can be seen, it is very similar to
the global map %%, Y% at step k = K, displayed in black. The black squares are the same
artificial landmarks than in Fig. and they are displayed to give an idea of the scene.

3 Bound 3 Fixed graph
m— Algorithm 1 = Switching graph

25¢ — Zero-init

20
15¢

1k
0.5r

0 C L L L L L L C L L L L L L

k=1 k=2 k=3 k=4 k=5 end k=1 k=2 k=3 k=4 k=5 end
(a) max;,, [[iF(O)]r — [if,glrl/oi versus fi(t)ai/oi + gi(t) (b) max;p [[if ()]r — [ifyg]rl/oi

Figure 8.17: Estimation errors along the L consensus iterations for [= 100. (a) Compar-
ison with a zero-initialization strategy and with the bounds for even iteration numbers
t. The errors obtained with the configuration [= 100 (black solid) are always within
the theoretical bounds (gray dashed) and they are smaller than the errors associated to
the zero-initialization strategy (red solid). (b) Comparison with a switching graph. The
robots execute Algorithm using the communication graph G in Fig. where, at
each iteration t and step k, one of the links is selected randomly and erased from G.
The behavior of the algorithm under the fixed (black solid) and the switching (red solid)
graphs is compared for [= 100. The estimation errors for both the fixed (black solid) and

switching (red solid) graphs converge to zero.

time-varying communication graphs (Fig. (b)). Robots exchange data according to
the communication graph G in Fig. At each iteration ¢t = and step k, one of the
links G fails and it is erased from G. We display the estimation when the robots execute
the proposed algorithm with with [= 100 under the fixed graph in Fig. without
(black solid) and with (red solid) link failures. Here, although the variations in the graph

8. Real Experiments 181

topology take place very often (at each iteration), these variations are small. Therefore,
as discussed in Section the estimates of the proposed algorithm correctly track the
average of the inputs (red solid). Obviously, this convergence is slower than for the fixed
graph case (black solid).

Data Association of Stochastic Maps

The behavior of the data association algorithm is analyzed also with the data set
described in Appendix [B| with bearing information obtained with vision (Sony EVI-
371DG). The landmarks are vertical lines extracted from the images (Fig. [8.18). The
measurements are labeled so that we can compare our results with the ground-truth data
association. We select 9 subsections of the whole path for the operation of 9 different
robots (Fig. [8.19 (a)). A separate SLAM is executed on each subsection, producing the 9
local maps (Fig.[8.19](b)). The local data associations are computed using the JCBB
since it is very convenient for clutter situations like the considered scenario (Fig.[8.19|(b)).
The JCBB is applied to the local maps of any pair of neighboring robots. We analyze the
performance of the algorithm under 3 communication graphs (Fig.|8.20)).

Figure 8.18: An example of the images used by the 9 robots during the navigation to
test the proposed method . Although the data set also provides artificial landmarks
(white circles on the floor), we test the algorithm using the lines extracted from natural
landmarks (in yellow).

Table [8.1] gives statistics about the number of inconsistencies found considering the
different network topologies in Fig. [8.20f We show the obtained associations compared
to the ground truth results. The number of association sets is the number of connected
components of A*. The number of good links (true positives) are obtained associations
between 2 features which are true (ground truth). The missing links (false negatives) are
associations that are in the ground truth information, but have been not detected. And
spurious links (false positives) are associations found between features that are different
according to the ground truth. The sixth row, C| is the number of conflictive sets. The
next row in the table shows the total number of features which have been associated to any
other feature from other local map. The last row gives information about how many of
those features are conflictive. The amount of missing and spurious associations obtained
is very high for the three network topologies. This is the expected result for many real
scenarios, where the landmarks are close to each other, and where the only available
information are their cartesian coordinates. As a result, the conflictive features are more
than a 10% of the total. In communication graphs with more cycles (Fig. [8.20] (b)(c)),

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

182 8. Real Experiments

—— Robot 8

_ I I / J— | —— Robot 9
-20 -10 0 10 20 -5 0 5 10 15

Figure 8.19: (a) Section of the dataset used in the experiments. (b) Local maps acquired
by 9 robots exploring the region in (a).

(a) One cycle (b) Four cycles (c) Complete

Figure 8.20: Communication graphs between the 9 robots after the exploration.

there are more conflictive features. In the three cases, after a single execution of the
detection and the resolution algorithms, all the inconsistencies are solved (Table Ist
row). An interesting result is that, although our algorithm cannot distinguish between
good and spurious edges, in practice a high number of the deleted edges (last row) are
spurious.

Data Association of Images

We have also tested the performance of our proposal with a set of images. A team of robots
equipped with cameras and limited communication capabilities is a typical situation in
which not all the images are available to execute a global matching. A solid set of matches
is required independently of the task the team is performing (visual SLAM, formation
control, etc.). In the proposed experiment 6 robots moving in formation are considered
(Fig. [8.21).

Each robot acquires one image with its onboard camera and extracts SURF fea-
tures [21]. The local matching is only applied to pairs of images which are connected
in the communication graph. For the local matching the epipolar constraint combined
with RANSAC is imposed [66]. The detection and resolution of inconsistencies is analyzed
for four different typical communication graphs (Fig. [8.22).

8. Real Experiments 183

Table 8.1: Initial associations between the 9 local maps

Comm. graph (a) (b) (c)
Association sets (ground truth) | 242 284 400
Association sets 182 218 290

Good links (true positives) 160 190 228
Missing links (false negatives) | 82 94 172
Spurious links (false positives) | 22 28 62

Conflictive sets (C) 3 5 8
Number of features mgym 138 144 154
Conflictive features 16 24 51

Table 8.2: Management of the inconsistencies

Comm. graph (a) (b) (c)

[terations 1 1 1

Initial conflictive sets 3 5 8

Deleted links 6 10 34

Good deleted links (true positives) 2 2 12
Spurious deleted links (false positives) | 4 8 22

Figure 8.21: Images acquired by a team of 6 robots moving in formation. We illustrate
as well an example of one inconsistency found by the algorithm. The inconsistency is
represented by the whole set of depicted links (green, blue and black). Tt is observed that
if all the links are considered, features of the same image are matched. After executing
Algorithm (Chapter |5)) the inconsistency is solved. In this example the root of the
inconsistency is the top-middle image. The black line is the link deleted by the algorithm.
Solid green lines represent one of the conflict free components and dashed blue lines the
second. For clarity, the rest of the SURF features are only shown in the top middle image.

Although the epipolar constraint discards most part of the wrong matches, some spu-
rious associations are still found. Figure |8.21|shows an example of an inconsistency found

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

184 8. Real Experiments

(2 W R

a) Ring b) Pyramidal) Star-Ring (d) Complete

Figure 8.22: Formations used in the experiments

by our algorithm in the case of the formation (d). The figure also shows how the Al-
gorithm 1| (Chapter [5)) solves such inconsistency; the result is a subset of the initial
matches Wlth more connected components than before but without any conflict.

More general results about the experiment can be seen in Table Since for this
experiment there is no ground truth available, the number of missing and spurious links
found in the local matching cannot be provided. Some interesting conclusions are ex-
tracted with the obtained results. First of all, the number of association sets and the
number of features involved my,,, are increased with the number of edges in G.,,,. The
more local associations there are, the more matches the algorithm will have available.
With respect to the inconsistencies, they grow with the number of cycles in G, because
each cycle can generate inconsistencies independently of the rest of the communication
network. The size of the cycles also influence on the conflicts, cycles of smaller length
will cause more inconsistencies because the number of local associations required to find a
conflict is also smaller. We define a full match as an association set in which the n cameras

Table 8.3: Initial associations (before propagation)

Formation (a) (b)) (¢) (d)
Association sets 528 590 605 632
Conflictive sets (c) 2 22 31 72
Number of features mgy,, | 1335 1643 1743 2069
Contflictive features 14 144 204 521
Full Matches 5 11 14 11
Partial Matches 214 271 302 391

of the network match the same feature. The optimal solution is found when the network
finds the m full matches. Although ground truth is not available in this examples, by
looking at the correspondences we have counted the amount of full matches. This number
is very small due to missing matches and occlusions caused by the trees. For that reason
we also define a partial match when 3 or more cameras correctly match the same feature,
because in such case the propagation is required for the association.

Cameras execute the resolution algorithm. Table shows the statistics on how are
the solutions to the conflicts provided by our algorithm. After executing the resolution
algorithm, all the inconsistencies have been solved (second and third rows in Table ,
and both the number of full and partial matches are increased (forth and fifth rows). The
spurious and the good links that the algorithm deletes, have been manually counted (last
two rows). It can be seen that in general, the algorithm tends to delete more spurious

8. Real Experiments

185

than good links.

Table 8.4: Management of the inconsistencies

Formation (a) (b) (¢) (d)

Initial conflictive sets 2 22 31 72
Resulting conflictive sets 0 0 0 0
Resulting incons. feats. 0 0 0 0

Full Matches 6 11 14 16

Partial Matches 215 286 326 447

Deleted links 2 26 46 131

Good deleted links (true positives) 1 2 19 43
Spurious deleted links (false positives) | 1 24 27 88

Data Association and Map Merging with RGB-D Data

We have performed a set of experiments using RGB-D cameras (Fig.8.23)), which provides

both regular RGB (Fig. [8.24} first row) and depth image information (Fig. [8.24] second
row). Thus, it is possible to compute the cloud of points in 3D from a single image

(Fig. |8.24] third row).

Figure 8.23: RGB-D camera used.

We consider a scenario with 9 robots. Initially, robots are placed at unknown poses in
the environment. From their initial pose, robots take an image of the scene (Fig. [8.25)).
They extract SIFT or SURF features from their RGB images and they use the depth
information and the camera parameters to compute the 3D position of these features, as
in Fig. third row.

Given the sets of features of two robots, it is possible to establish matches based on the
SIFT/SURF descriptor of the features. Then, robots compute their relative pose (rotation
and translation) using the matches and the 3D position of the features in a robust way
(RANSAC) and discard matches that disagree with the most supported relative pose
candidate (Figs. [8.26).

Typically, the number of matches between overlapping images is high, and the noise
in the image points is small. Therefore, the previous method provides highly accurate

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

186 8. Real Experiments

L NETY TR

O_W o0 o o0 B0 z r -, 0 -1000 50 0 5mx1noo

Figure 8.24: An example of the images obtained by the 9 robots with the RGB-D sensor.

Figure 8.25: Images taken from the first robot poses. We are depicting the matches (red
lines) between some of the images.

results. In Fig. [8.27] we are showing the result of rotating and translating the 3D points
of images in Fig. [8.26| according to the relative pose estimated.

Robots use their initial images to compute the relative poses of their nearby robots
(Fig. and based on this information, they compute their pose in the common refer-
ence frame as explained in Chapter |§| (Fig. . This method to obtain the robot poses
in the common frame is not only restricted to RGB-D images taken from the first robot
poses. It can be equivalently applied to images acquired during the exploration, or to the
local maps of the robots.

Each robot explores a region and builds a map of the environment. We let each robot
execute a SLAM algorithm with SIFT/SURF features parameterized in 3D cartesian coor-
dinates. Robots are represented by their 3D position and orientation, and robot motions
are predicted by computing the relative rotation and translation between successive im-
ages. Fig. [8.29 shows the resulting map (red points and ellipses) obtained by robot 3
(dark gray triangle) along its trajectory (dashed line). We also show the 3D RGB-D

8. Real Experiments 187

Yiiibyh

i‘; 25 Bas

-1000 500 2000

Figure 8.26: Surf / Sift matches (red) that satisfy the relative rotation and translation
restriction. The ones that are rejected are depicted in yellow.

1
-2000 0 2000

Figure 8.27: Points rotated and translated according to the previously computed relative
poses.

points observed from some of the steps of the robot trajectory (light gray points) to give
an idea of the scene.

After exploring, nearby robots compute the local data association between their maps
based on the SIFT/SURF descriptors and the position of their features. Then, they
propagate the local associations and find and solve inconsistencies as explained in Chap-
ter [5 (Fig. [8.30).

Finally, they merge their local maps and build a global map of the environment using
the communication graph in Fig. In Fig. [8.32| we explain how this communication

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

188 8. Real Experiments

300

0

Z
~1000
72000 _2000

X

Figure 8.28: Initial robot poses in the global frame (red triangles). The RBG-D points
observed from these initial poses are displayed to give an idea of the scene and of the
accuracy of the obtained poses.

r4
A000 500 0 1000 2000 3000
X

Figure 8.29: Robot 3 (dark gray triangle) explores the environment and builds a map (red
points and ellipses). The RBG-D points observed from some steps of the robot trajectory
displayed (light gray points) to give an idea of the scene.

R3 ’)31
Figure 8.30: Robots (dark triangles) compute the data association (light lines) between

their local maps (dark dots). Here we display the associations between robots R2, R3, R6,
and R9.

L

LX)
A

R2

8. Real Experiments 189

graph affect the information exchange. We are displaying a link (blue line) between pairs
of robots that have received information from each other during the any previous iteration.
Initially (Fig. (a)), each robot only has its local information and thus there are no
lines in the graph. During the first iteration (Fig.|8.32| (b)), robots exchange information
with their one-hop neighbors (blue lines in Fig. [8.31). At iteration 2 robots exchange
data with their neighbors again according to the graph in Fig. [8.31] and thus they have
access to two-hop neighbors data (lines in Fig. (c)). The process is repeated during
the next iteration, having access to three-hop neighbors data (Fig. (d)), and so on.
After iteration 4 (Fig. (e)-(f)), each robot has received information from all the
other robots. Additional iterations allow the robots to obtain a more accurate estimate
of the global map.

0500

400

Figure 8.31: Robots (circles) exchange data with their neighbors in the communication
graph (linked trough lines).

R9

R1

R7
R6

-4
9200 0 200 -1000
400

(a) Iteration 0

(b) Iteration 1

R8
R2

RS

0200
200 400

(d) Iteration 3 (e) Iteration 4 (f) Iteration 5

Figure 8.32: Initially, robots only know their local information (a). At iteration 1, robots
(circles) exchange data with their neighbors in the communication graph (linked trough
lines) depicted in (b). Robots keep on exchanging data using the communication graph
in (b) during several iterations. Blue lines in figures (c)-(f) indicate that the two robots
have received information from each other during the previous iterations. Red circles are
robots that have received data from R1; equivalently, R1 has received data of these robots
as well.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

190

8. Real Experiments

Robots fuse their maps as explained in Chapter 3] Fig. shows the global map
estimated by robot R1 along iterations 0 to 4, with contains features observed exclusively
by a single robot (exclusive), as well as features observed by several robots (common).
After 4 iterations, robot R1 has received information from all the other robots and thus
its map already contains estimates for all the features observed by the team. Successive
iterations of the map merging algorithm produce more accurate estimates of the features

(Fig. [8.34).

3000 -1000

(a) Iteration 0

s COmmon
= Exclusive (R1)
= Exclusive (R2)
=== Exclusive (R3)
— Exclusive (R5)
Exclusive (R6)

| e Exclusive (R7)
=== Exclusive (R9)

4000

0
3000 -1000

(d) Iteration 3

2000 . 45-'(. Exclusive (R6)
1000 Y .
0 %"c - s - %
L Y
b Y-
-100 e

s Common
= Exclusive (R1)
=== Exclusive (R3)

3000 -1000

(b) Iteration 1

== Common
m—— Exclusive (R1)
= Exclusive (R2)
== Exclusive (R3)
= Exclusive (R4)
m—— Exclusive (R5)

Exclusive (R6)
= Exclusive (R7)
Exclusive (R8)

1000

0
3000 -1000

(e) Iteration 4

=== Common
m—— Exclusive (R1)
== Exclusive (R3)

!‘ = Exclusive (R5)
o+ Exclusive (R6)
N '+ §8 = Exclusive (R7)

3000 —1000

(c) Iteration 2

= Common
—— Exclusive (R1)
—— Exclusive (R2)
fes| — Exclusive (R3)
ey | = Exclusive (R4)
" .| == Exclusive (R5)
Exclusive (R6)
= Exclusive (R7)
Exclusive (R8)

2000

1000 '#,a
0 0

-100

-1000

1000

—— Exclusive (R9)
000
2000 1000

3000 -1000

(e) Iteration 5

Figure 8.33: Global map estimated by robot R1 at iterations 0 — 5. Common features
observed by several robots and exclusive areas observed by a single robot are depicted in

different colors.

8. Real Experiments 191

m— COMMonN
m—— Exclusive (R1)
m—— Exclusive (R2)
== ExClusive (R3)
= Exclusive (R4)
3 m—— Exclusive (R5)
-1000 e Exclusive (R6)
! 5 m— Exclusive (R7)
Exclusive (R8)

=== Exclusive (R9)
2000

1000

3000 -1000

Figure 8.34: Global map estimated by robot R1 after 20 iterations of the map merging
algorithm.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Chapter 9
Conclusions

Along this document, the problem of perception in robotic networks has been investigated.
We have presented a new method for merging stochastic feature-based maps acquired by
a team of robots for scenarios with limited communication. The robots explore an envi-
ronment and build their local maps. When they finish the exploration, they fuse their
information and build a global map. The whole method is fully decentralized, relying
exclusively on local interactions between neighboring robots. Under fixed connected com-
munication graphs, or time-varying jointly connected topologies, the estimates at each
robot asymptotically converge to the global map. Moreover, the intermediate estimates
at each robot present interesting properties that allow their use at any time: (i) the
mean of the global map estimated by each robot is unbiased at each iteration; (ii) the
numerical covariance of the global map estimated by each robot, which cannot be locally
computed, is bounded by the locally computed covariance. Experimental results have
shown the performance of the method for robots equipped with omnidirectional and con-
ventional cameras. The robustness of the map fusion algorithm under link failures and
changes in the communication topology has been demonstrated theoretically and tested
experimentally.

We have investigated the dynamic map merging case. Along its operation, each robot
observes the environment and builds and maintains its local map. Simultaneously, the
robots communicate and build a global map of the environment. We have presented an
algorithm for dynamically merging visual maps in a robot network with limited com-
munication. This algorithm allows the robots to have a better map of the environment
containing the features observed by any other robot in the team. Thus, it helps the co-
ordination of the team in several multi-robot tasks such as exploration or rescue. The
algorithm correctly propagates the new information added by the robots to their local
maps. We have shown that, with the proposed strategy, the robots correctly track the
global map. At the final step, they obtain the last global map, which contains the last
updated information at all the robots. In addition, we have formally characterized the
convergence speed of this algorithm and given proofs of its convergence.

We have addressed two additional issues that appear in multi-robot perception scenar-
ios: the establishment of a common reference frame, and the association of the features
observed by the different robots. We have presented a new technique to match several
sets of features observed by a team of robots in a consistent way under limited com-
munications. Local associations are found only within robots that are neighbors in the

193

194 9. Conclusions

communication graph. After that a fully decentralized method to compute all the paths
between local associations is carried out, allowing the robots to detect all the inconsis-
tencies related with their observations. For every conflictive set detected, in a second
step the method is able to delete local associations to break the conflict using only local
communications. The whole method is proved to finish in a finite amount of time finding
and solving all the inconsistent associations. Experimental results show the performance
of the method in map merging scenarios, and also show its applicability for multiple view
problems.

One important problem in this context is the establishment of a common reference
frame in the robot network, which has been deeply investigated as well. Usually, robots
start at unknown poses and do not share any reference frame. The localization problem
consists of establishing this common frame and computing the robots’ poses relative to
this frame. Each robot is capable of measuring the relative pose of its neighboring robots.
However, it does not know the poses of far robots, and it can only exchange data using the
range-limited communication network. The network localization problem has been ad-
dressed for three different scenarios: the pose network localization from noise-free relative
measurements, the pose network localization from noisy relative measurements, and the
position network computation from noisy measurements. We have proposed distributed
strategies that allow the robots to agree on a common global frame, and to compute their
poses or positions relative to the global frame. The presented algorithms exclusively rely
on local computations and data exchange with direct neighbors and have been proved to
converge under mild conditions on the communication graph. Besides, they only require
each robot to maintain an estimate of its own position or pose. Thus, the memory load
of the algorithm is low compared to methods where each robot must also estimate the
positions or poses of any other robot

In addition, we have investigated strategies for driving the robots to positions where
the global map of the environment is more precise, and for speeding up the information
fusion algorithms. First, we have proposed a motion control strategy for improving the
precision of the local feature-based maps, and as a result, of the global merged map. The
described strategy selects a finite set of candidate motions to the robots, and computes
its associated cost in the form of the individual contributions of every feature. Therefore,
this cost presents a space complexity linear on the map size. This information is used by
the team members to negotiate their next motions, presenting the benefit that robots do
not need to wait for having a good global map estimate when they coordinate. Second, we
have presented a distributed method to compute the algebraic connectivity for networked
robot systems with limited communication. The algebraic connectivity establishes the
convergence speed of the map merging algorithm. At each iteration, the algorithm pro-
duces both an upper and a lower bound estimates of the algebraic connectivity. We have
proved theoretically and experimentally that both estimates asymptotically converge to
the true algebraic connectivity. We have shown that our method outperforms the clas-
sical distributed power iteration, providing more accurate estimates, and improving the
network communication usage. The ability to give upper and lower bounds of the al-
gebraic connectivity has been demonstrated to have a great importance for combining
this method with higher level algorithms for adaptive consensus in a parallel fashion, i.e.,

9. Conclusions 195

where both processes are executed simultaneously.

For all the previous described problems, we have proposed novel solutions which go
beyond the current state of the art. We have given theoretical proofs of correctness
and tests of performance. Several of the results presented in this thesis have already
been published in international journals and conferences with high impact in the robotics
community, whereas the most recent results have been submitted and are currently under
review.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Bibliography

[1] ALRIKSSON, P., AND RANTZER, A. Distributed Kalman filtering using weighted
averaging. In Int. Symposium on Mathematical Theory of Networks and Systems
(Kyoto, Japan, July 2006).

[2] ANDERSON, B. D. O., SHAMES, 1., Mao, G., AND FIDAN, B. Formal theory of

noisy sensor network localization. SIAM Journal on Discrete Mathematics 24, 2
(2010), 684-698.

[3] ARAGUES, R., CARLONE, L., CALAFIORE, G., AND SAGUES, C. Multi agent

localization from noisy relative pose measurements. In IEEFE Int. Conf. on Robotics
and Automation (Shanghai, China, May 2011), pp. 364-369.

[4] ARAGUES, R., CARLONE, L., SAGUES, C., AND CALAFIORE, G. Distributed
centroid estimation from noisy relative measurements. Systems & Control Letters

(2011). Submitted.

[5] ARAGUES, R., CORTES, J., AND SAGUEs, C. Distributed map merging in a
robotic network. In Workshop on Network Robot Systems, IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems (Nice, France, Sept. 2008).

[6] ARAGUES, R., CORTES, J., AND SAGUES, C. Motion control strategies for im-
proved multi robot perception. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (St. Louis, USA, Oct. 2009), pp. 1065 —~1070.

[7] ARAGUES, R., CORTES, J., AND SAGUES, C. Dynamic consensus for merging
visual maps under limited communications. In IEEE Int. Conf. on Robotics and

Automation (Anchorage, AK, May 2010), pp. 3032-3037.

[8] ARAGUES, R., CORTES, J., AND SAGUES, C. Distributed consensus algorithms for
merging feature-based maps with limited communication. Robotics and Autonomous
Systems 59, 3-4 (2011), 163 — 180.

[9] ARAGUES, R., CORTES, J., AND SAGUES, C. Distributed consensus on robot net-

works for dynamically merging feature-based maps. IEEFE Transactions on Robotics
(2011). Submitted.

[10] ARAGUES, R., MONTIJANO, E., AND SAGUES, C. Consistent data association in
multi-robot systems with limited communications. In Robotics: Science and Systems
(Zaragoza, Spain, June 2010).

197

198 BIBLIOGRAPHY

[11] ARAGUES, R., AND SAGUES, C. Parameterization and initialization of bearing-

only information: a discussion. In Int. Conf. on Informatics in Control, Automation
and Robotics (Funchal, Portugal, May 2008), vol. RA-1, pp. 252-261.

[12] ARAGUES, R., SHI, G., DIMAROGONAS, D. V., SAGUES, C., AND JOHANSSON,
K. H. Distributed algebraic connectivity estimation for adaptive event-triggered
consensus. In American Control Conference (2012). Submitted.

[13] AVIDAN, S., MOSES, Y., AND MOSES, Y. Centralized and distributed multi-view
correspondence. International Journal of Computer Vision 71, 1 (2007), 49-69.

[14] BAILEY, T. Constrained initialisation for bearing-only SLAM. In IEEE Int. Conf.
on Robotics and Automation (Taipei, Taiwan, Sept. 2003), pp. 1996-1971.

[15] BAILEY, T., AND DURRANT-WHYTE, H. Simultaneous localization and mapping:
part II. IEEE Robotics & Automation Magazine 13, 3 (2006), 108-117.

[16] BaiLEYy, T., NEBOT, E. M., ROSENBLATT, J. K., AND DURRANT-WHYTE, H.
Data association for mobile robot navigation: a graph theoretic approach. In IFEE
Int. Conf. on Robotics and Automation (San Francisco, USA, Apr. 2000), pp. 2512—
2517.

[17] BAROOAH, P., DA SILVA, N., AND HESPANHA, J. Distributed optimal estimation
from relative measurements: Applications to localization and time synchronization.
Tech. rep., University of California, Santa Barbara, 2006.

[18] BAROOAH, P., AND HESPANHA, J. Distributed estimation from relative measure-
ments in sensor networks. In Int. Conf. on Intelligent Sensing and Information
Processing (Chennai, India, Jan. 2005), pp. 88-93.

[19] BAROOAH, P., AND HESPANHA, J. Estimation on graphs from relative measure-
ments. IEEE Control Systems Magazine 27, 4 (2007), 57-74.

[20] BAROOAH, P., AND HESPANHA, J. Error scaling laws for linear optimal estimation
from relative measurements. [IEEE Transactions on Information Theory 55, 12

(2009), 5661-5673.

|21] BAy, H., TUYTELAARS, T., AND GooL, L. V. SURF: Speeded up robust features.
In Furopean Conference on Computer Vision (2006), pp. 404-417.

[22] BENNET, D. J., AND McINNES, C. R. Distributed control of multi-robot systems

using bifurcating potential fields. Robotics and Autonomous Systems 58, 3 (2010),
256-264.

[23] BERTSEKAS, D. P. Auction algorithms for network flow problems: A tutorial
introduction. Computational Optimization and Applications 1 (1992), 7-66.

[24] BERTSEKAS, D. P. Nonlinear Programming, 2nd ed. Athena Scientific, Belmont,
MA, 1999.

BIBLIOGRAPHY 199

[25] BERTSEKAS, D. P., AND CASTANON, D. A. Parallel synchronous and asynchronous
implementations of the auction algorithm. Parallel Computing 17 (1991), 707-732.

[26] BERTSEKAS, D. P., AND TsI1TSIKLIS, J. N. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

|27] BuLro, F., CORTES, J., AND MARTINEZ, S. Distributed Control of Robotic Net-
works. Applied Mathematics Series. Princeton University Press, 2009. Electronically
available at http://coordinationbook.info.

[28] BURGARD, W., MOORS, M., STACHNISS, C., AND SCHNEIDER, F. E. Coordinated
multi-robot exploration. IEEE Transactions on Robotics 21, 3 (2005), 376-386.

[29] CADENA, C., RaMos, F., AND NEIRA, J. Efficient large scale SLAM including
data association using the Combined Filter. In European Conference on Mobile
Robotics (Mlini/Dubrovnik, Croatia, Sept. 2009), pp. 217-222.

|30] CALAFIORE, G. Distributed randomized algorithms for probabilistic performance
analysis. Systems € Control Letters 58, 3 (2009), 202-212.

[31] CALAFIORE, G., AND ABRATE, F. Distributed linear estimation over sensor net-
works. International Journal of Control 82, 5 (2009), 868-882.

[32] CALAFIORE, G., CARLONE, L., AND WEI, M. A distributed gauss-newton ap-
proach for range-based localization of multi agent formations. In IEEE Multi- Conf.
on Systems and Control (Yokohama, Japan, Sept. 2010), pp. 1152 — 1157.

|33] CALAFIORE, G., CARLONE, L., AND WEI, M. A distributed gradient method for
localization of formations using relative range measurements. In ITEEE Multi-Conf.
on Systems and Control (Yokohama, Japan, Sept. 2010), pp. 1146 — 1151.

|34] CArLI, R., CHIUSO, A., SCHENATO, L., AND ZAMPIERI, S. Distributed Kalman

filtering based on consensus strategies. IEEFE Journal on Selected Areas in Commu-
nications 26 (2008), 622-633.

[35] CARLONE, L., ARAGUES, R., CASTELLANOS, J. A., AND BoNA, B. A first-order
solution to simultaneous localization and mapping with graphical models. In IEEE
Int. Conf. on Robotics and Automation (Shanghai, China, May 2011), pp. 1764
1771.

[36] CARLONE, L., ARAGUES, R., CASTELLANOS, J. A., AND BONA, B. A linear

approximation for graph-based simultaneous localization and mapping. In Robotics:
Science and Systems (Los Angeles, CA, USA, June 2011).

[37] CARLONE, L., ARAGUES, R., CASTELLANOS, J. A., AND BONA, B. A linear ap-

proximation for nonlinear pose graph optimization. IEEE Transactions on Robotics
(2011). Submitted.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

200 BIBLIOGRAPHY

CARPIN, S. Fast and accurate map merging for multi-robot systems. Autonomous
Robots 25, 3 (2008), 305-316.

CARPIN, S., BIRK, A., AND JucikAs, V. On map merging. Robotics and Au-
tonomous Systems 53, 1 (2005), 1-14.

CASBEER, D. W., AND BEARD, R. Distributed information filtering using consen-
sus filters. In American Control Conference (St. Louis, USA, June 2009), pp. 1882
~1887.

CENSI, A. An accurate closed-form estimate of ICP’s covariance. In IEEE Int.
Conf. on Robotics and Automation (Roma, Italy, Apr. 2007), pp. 3167-3172.

CHANG, H. J., LEE, C. S. G., Hu, Y. C., AND LU, Y.-H. Multi-robot SLAM
with topological /metric maps. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (San Diego, USA, Oct. 2007), pp. 1467-1472.

CORTES, J. Global and robust formation-shape stabilization of relative sensing
networks. Automatica 45, 12 (2009), 2754 — 2762.

CORTES, J., MARTINEZ, S., AND BULLO, F. Robust rendezvous for mobile net-

works via proximity graphs in arbitrary dimensions. IEEE Transactions on Auto-
matic Control 51, 8 (2006), 1289-1298.

CORTES, J., MARTINEZ, S., KARATAS, T., AND BuLLO, F. Coverage control for
mobile sensing networks. In IEEE Int. Conf. on Robotics and Automation (Wash-
ington, USA, 2002), pp. 1327-1332.

CostA, A., KANTOR, G., AND CHOSET, H. Bearing-only landmark initialisation

with unknown data association. In IEEE Int. Conf. on Robotics and Automation
(New Orleans, USA, Apr. 2004), pp. 1164-1770.

DAVISON, A. J. Real-time simultaneous localisation and mapping with a single cam-
era. In IEEE Int. Conf. on Computer Vision (Nice, France, Oct. 2003), pp. 1403
1410.

DEMING, R. W., AND PERLOVSKY, L. I. Concurrent multi-target localization,

data association, and navigation for a swarm of flying sensors. Information Fusion
8, 3 (2007), 316 — 330.

DIMAROGONAS, D. V., AND JOHANSSON, K. H. Event-triggered control for multi-
agent systems. In IEEE Conf. on Decision and Control (Shanghai, China, Dec.
2009), pp. 7131 —7136.

DunNBAR, W. B., AND MURRAY, R. M. Distributed receding horizon control for
multi-vehicle formation stabilization. Automatica 42, 4 (2006), 549-558.

BIBLIOGRAPHY 201

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

ELSNER, L., AND MEHRMANN, V. Convergence of block iterative methods for
linear systems arising in the numerical solution of Euler equations. Numerische

Mathematik 59, 1 (1991), 541-559.

Fax, J. A., AND MURRAY, R. M. Information flow and cooperative control of
vehicle formations. IEEE Transactions on Automatic Control 49, 9 (2004), 1465
1476.

FERRARI, V., TUYTELAARS, T., AND GooL, L. V. Wide-baseline multiple-view

correspondences. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (Madison, USA, June 2003), pp. 718-725.

FERRARI, V., TUYTELAARS, T., AND GooL, L. V. Wide-baseline multiple-view
correspondences. In IEEFE International Conference on Computer Vision and Pat-
tern Recognition (2003), pp. 718-725.

FiscHLER, M. A., AND BOLLES, R. C. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.

Communications of the ACM 24, 6 (1981), 381-395.

Fox, D., Ko, J., KONOLIGE, K., LIMKETKAI, B., SCHULZ, D.;, AND STEWART,
B. Distributed multirobot exploration and mapping. IEEE Proceedings 94, 7 (2006),
1325-1339.

FRANCESCHELLI, M., AND GASPARRI, A. On agreement problems with gossip
algorithms in absence of common reference frames. In IEEE Int. Conf. on Robotics

and Automation (Anchorage, USA, May 2010), pp. 4481-4486.

FRANCESCHELLI, M., GASPARRI, A., GIUA, A., AND SEATZU, C. Decentralized
Laplacian eigenvalues estimation for networked multi-agent systems. In IEEFE Conf.

on Decision and Control (Shanghai, P. R. China, Dec. 2009), pp. 2717 —2722.

FrREEMAN, R. A., YANG, P., AND LyNcH, K. M. Stability and convergence

properties of dynamic average consensus estimators. In IEEE Conf. on Decision
and Control (San Diego, CA, Dec. 2006), pp. 398—403.

Frese, U., AND KURLBAUM, J. A data set for data association, June 2008.
Electronically available at http://www.sfbtr8.spatial-cognition.de/ insidedataasso-
ciation/.

GANaGuLL, A., CORTES, J., AND BuLLO, F. Multirobot rendezvous with visibility
sensors in nonconvex environments. IEEE Transactions on Robotics 25, 2 (2009),
340-352.

Gava, C. C., VassarLo, R. F., RoBERTI, F., CARELLI, R., AND FiLHO, T.
F. B. Nonlinear control techniques and omnidirectional vision for team formation

on cooperative robotics. In IEEE Int. Conf. on Robotics and Automation (Roma,
Italy, Apr. 2007), pp. 2409-2414.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

202 BIBLIOGRAPHY

[63] GENNARO, M. C. D., AND JADBABAIE, A. Decentralized control of connectivity

for multi-agent systems. In IEEE Conf. on Decision and Control (San Diego, CA,
Dec. 2006), pp. 3628 —3633.

[64] GIL, A., REINOSO, O., BALLESTA, M., AND JULIA, M. Multi-robot visual SLAM
using a rao-blackwellized particle filter. Robotics and Autonomous Systems 58, 1
(2009), 68-80.

[65] GRIME, S., AND DURRANT-WHYTE, H. Data fusion in decentralized sensor net-
works. Control Engineering Practice 2, 5 (1994), 849 — 863.

|66] HARTLEY, R., AND ZISSERMAN, A. Multiple View Geometry in Computer Vision.
Cambridge University Press, Cambridge, UK, 2000.

[67] HORN, R. A., AND JOHNSON, C. R. Matriz Analysis. Cambridge University Press,
Cambridge, UK, 1985.

|68] HOUSEHOLDER, A. The Theory of Matrices in Numerical Analysis. Dover Publi-
cations, New York, 1964.

[69] HOWARD, A. Multi-robot simultaneous localization and mapping using particle
filters. International Journal of Robotics Research 25, 12 (2006), 1243-1256.

[70] J1, M., AND EGERSTEDT, M. Distributed coordination control of multiagent sys-
tems while preserving connectedness. IEEE Transactions on Robotics 23, 4 (2007),
693-703.

[71] JULIER, S., AND UHLMANN, J. K. General decentralised data fusion with covari-
ance intersection (CI). In Handbook of Multisensor Data Fusion, D. L. Hall and
J. Llinas, Eds. CRC Press, 2001.

[72] KAEss, M., AND DELLAERT, F. Covariance recovery from a square root informa-
tion matrix for data association. Robotics and Autonomous Systems 57, 12 (2009),
1198 — 1210.

[73] KEMPE, D., DOBRA, A., AND GEHRKE, J. Gossip-based computation of aggregate

information. In IEEE Symposium on Foundations of Computer Science (Cambridge,
MA, USA, Oct. 2003), pp. 482-491.

|74] KEMPE, D., AND MCSHERRY, F. A decentralized algorithm for spectral analysis.
Journal of Computer and System Sciences 74, 1 (2008), 70 — 83.

[75] KLIPPENSTEIN, J., ZHANG, H., AND WANG, X. Feature initialization for bearing-
only visual SLAM using triangulation and the unscented transform. In IEEFE Int.
Conf. on Mechatronics and Automation (Harbin, China, Aug. 2007), pp. 1599-1604.

[76] KNUTH, J., AND BAROOAH, P. Distributed collaborative localization of multiple
vehicles from relative pose measurements. In Allerton Conference on Communica-
tions, Control and Computing (Urbana-Champaign, USA, Oct. 2009), pp. 314-321.

BIBLIOGRAPHY 203

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

KoLOTILINA, L. Bounds for eigenvalues of symmetric block jacobi scaled matrices.
Journal of Mathematical Sciences 79, 3 (1996), 1043-1047.

KoNOLIGE, K., GUTMANN, J., AND LIMKETKAI, B. Distributed map-making. In
Workshop on Reasoning with Uncertainty in Robotics, Int. Joint Conf. on Artificial
Intelligence (Acapulco, Mexico, Aug. 2003).

Krick, L. Application of graph rigidity in formation control of multi-robot net-
works. Master’s thesis, University of Toronto, Canada, 2007.

Kwok, N. M., AND DISSANAYAKE, GG. An efficient multiple hypothesis filter for
bearing-only SLAM. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(Sendai, Japan, Sept. 2004), pp. 736-741.

Kwok, N. M., HA, Q. P., HUANG, S., DISSANAYAKE, G., AND FANG, GG. Mobile
robot localization and mapping using a gaussian sum filter. International Journal
of Control, Automation, and Systems 5, 3 (2007), 251-268.

LAFFERRIERE, G., WILLIAMS, A., CAUGHMAN, J., AND VEERMAN, J. J. P.
Decentralized control of vehicle formations. Systems & Control Letters 54,9 (2005),
899-910.

LEE, H. S., AND LEE, K. M. Multi-robot SLAM using ceiling vision. In IEFE/RSJ
Int. Conf. on Intelligent Robots and Systems (St. Louis, USA, Oct. 2009), pp. 912
917.

LEUNG, C., SHOUDONG, H., AND DISSANAYAKE, G. Active SLAM using model
predictive control and attractor based exploration. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (Beijing, China, Oct. 2006), pp. 5026-5031.

LEUNG, C., SHOUDONG, H., AND DISSANAYAKE, G. Active SLAM in structured
environments. In IEEE Int. Conf. on Robotics and Automation (Pasadena, CA,
USA, May 2008), pp. 1898-1903.

LeungG, K. Y. K., BARroOOT, T. D., AND Liu, H. Decentralized localization of

sparsely-communicating robot networks: A centralized-equivalent approach. IFEE
Transactions on Robotics 26, 1 (2010), 62-77.

LEUNG, K. Y. K., BARFOOT, T. D., AND L1u, H. H. T. Decentralized cooperative
simultaneous localization and mapping for dynamic and sparse robot networks.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (Taipei, Taiwan, Oct.
2010), pp. 3554 —3561.

LyNCH, K. M., SCHWARTZ, I. B., YANG, P., AND FREEMAN, R. A. Decentralized

environmental modeling by mobile sensor networks. IEEE Transactions on Robotics
24, 3 (2008), 710-724.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

[39]

[90]

[91]

[92]

93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

204 BIBLIOGRAPHY

MARTINEZ, S., BuLro, F., CoRrTES, J., AND FrAazzoLl, E. On synchronous

robotic networks — Part II: Time complexity of rendezvous and deployment al-
gorithms. In IEEE Conf. on Decision and Control (Seville, Spain, Dec. 2005),
pp- 8313-8318.

MICHAEL, N., ZAvLANOS, M. M., KUMAR, V., AND PAPPAS, G. J. Distributed
multi-robot task assignment and formation control. In IEEE Int. Conf. on Robotics
and Automation (Pasadena, CA, May 2008), pp. 128-133.

MOAKHER, M. Means and averaging in the group of rotations. SIAM Journal on
Matriz Analysis and Applications 24, 1 (2002), 1-16.

MoNTIEL, J. M. M., CivERA, J., AND DAVISON, J. Unified inverse depth

parametrization for monocular SLAM. In Robotics: Science and Systems (Philadel-
phia, USA, Aug. 2006).

MONTIJANO, E.; ARAGUES, R., AND SAGUES, C. Distributed multi-view matching
in networks with limited communications. IEEE Transactions on Pattern Analysis
& Machine Intelligence (2011). Submitted.

MONTIJANO, E., MARTINEZ, S., AND SAGUES, C. De-RANSAC: Robust dis-
tributed consensus in sensor networks. Submitted, May 2010.

MOSTAGH, N., AND JADBABAIE, A. Distributed geodesic control laws for flocking

of nonholonomic agents. IEEE Transactions on Automatic Control 52, 4 (2007),
681 — 686.

NEBOT, E. M., BOZORG, M., AND DURRANT-WHYTE, H. F. Decentralized
architecture for asynchronous sensors. Autonomous Robots 6, 2 (1999), 147-164.

NEIRA, J., AND TARDOS, J. D. Data association in stochastic mapping using
the joint compatibility test. IEEE Transactions on Robotics and Automation 17, 6
(2001), 890-897.

OKABE, A., BooTs, B., AND SUGIHARA, K. Nearest neighbourhood operations

with generalized Voronoi diagrams: A review. International Journal of Geographical
Information Systems 8, 1 (1994), 43-71.

OKABE, A., AND SUZUKI, A. Locational optimization problems solved through
Voronoi diagrams. Furopean Journal of Operational Research 98, 3 (1997), 445-56.

OLFATI-SABER, R. Distributed Kalman filter with embedded consensus filters. In
IEEE Conf. on Decision and Control (Seville, Spain, 2005), pp. 8179-8184.

OLFATI-SABER, R. Distributed Kalman filtering for sensor networks. In [IEEE
Conf. on Decision and Control (New Orleans, LA, Dec. 2007), pp. 5492-5498.

OLFATI-SABER, R., FAX, J. A., AND MURRAY, R. M. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE 95, 1 (2007), 215-233.

BIBLIOGRAPHY 205

[103] OLFATI-SABER, R., AND MURRAY, R. M. Consensus problems in networks of

agents with switching topology and time-delays. IEEE Transactions on Automatic
Control 49, 9 (2004), 1520-1533.

[104] OuvAaNG, W., TOMBARI, F., MATTOCCIA, S., STEFANO, L. D., AND CHAM,
W. Performance evaluation of full search equivalent pattern matching algorithms.
To appear.

[105] PaApADIMITRIOU, C. H., AND STEIGLITZ, K. Combinatorial Optimization: Algo-
rithms and Complexity. Dover Publications, 1998, ch. 6.1 The Max-Flow, Min-Cut
Theorem, pp. 120-128.

[106] PARKER, L. Distributed intelligence: Overview of the field and its application in
multi-robot systems. Journal of Physical Agents 2, 1 (2008), 5-14.

[107] PARKER, L. E. Current state of the art in distributed robotic systems. In Dis-
tributed Autonomous Robotic Systems 4, L. E. Parker, G. Bekey, and J. Barhen,
Eds. Springer Verlag, 2000, pp. 3-12.

[108] PAz, L. M., TARDOS, J. D., AND NEIRA, J. Divide and conquer: EKF SLAM in
O(n). IEEFE Transactions on Robotics 24, 5 (2008), 1107-1120.

[109] PELEG, D. Distributed Computing. A Locality-Sensitive Approach. Monographs on
Discrete Mathematics and Applications. STAM, Philadelphia, PA, 2000.

[110] PFINGSTHORN, M., SLAMET, B., AND VISSER, A. A scalable hybrid multi-robot
SLAM method for highly detailed maps. In Lecture Notes in Artificial Intelligence,
U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, Eds., vol. 5001. 2008, pp. 457-464.

[111] PRECIADO, V. M., ZAVLANOS, M. M., JADBABAIE, A., AND PAppAs, G. J.
Distributed control of the laplacian spectral moments of a network. In American
Control Conference (Baltimore, Maryland, USA, July 2010), pp. 4462 —4467.

[112] Qu, Z., L1, C., AND LEWIS, F. Cooperative control based on distributed estimation

of network connectivity. In American Control Conference (San Francisco, CA, USA,
July 2011), pp. 3441 — 2446.

[113] REN, W., AND BEARD, R. W. Distributed Consensus in Multi-vehicle Cooperative
Control. Communications and Control Engineering. Springer Verlag, London, 2008.

[114] RizziNi, D. L., AND CASELLI, S. Metric-topological maps from laser scans adjusted

with incremental tree network optimizer. Robotics and Autonomous Systems 57, 10
(2009), 1036-1041.

[115] RocHA, R., Dias, J., AND CARVALHO, A. Cooperative multi-robot systems:

: A study of vision-based 3-D mapping using information theory. Robotics and
Autonomous Systems 53, 3-4 (2005), 282-311.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

|116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

124]

|125]

[126]

[127]

[128]

206 BIBLIOGRAPHY

RocHA, R., DiAs, J., AND CARVALHO, A. Cooperative multi-robot systems a
study of vision-based 3-D mapping using information theory. In IEEE Int. Conf.
on Robotics and Automation (Barcelona, Spain, Apr. 2005), pp. 384-389.

RODRIGUEZ-LOSADA, D., MATIA, F., AND JIMENEZ, A. Local maps fusion for
real time multirobot indoor simultaneous localization and mapping. In IEFEE Int.
Conf. on Robotics and Automation (New Orleans, USA, Apr. 2004), pp. 1308-1313.

ROUMELIOTIS, S., AND BEKEY, G. Distributed multirobot localization. IEFE
Transactions on Robotics and Automation 18, 5 (2002), 781-795.

RusseLrn, W. J., KLEIN, D., AND HESPANHA, J. P. Optimal estimation on the

graph cycle space. In American Control Conference (Baltimore, USA, June 2010),
pp. 1918-1924.

SAGUES, C., MURILLO, A. C., GUERRERO, J. J., GOEDEME, T., TUYTELAARS,
T., AND GooL, L. V. Localization with omnidirectional images using the 1D radial
trifocal tensor. In IEFE Int. Conf. on Robotics and Automation (Orlando, USA,
May 2006), pp. 551-556.

SARLETTE, A., SEPULCHRE, R., AND LEONARD, N. E. Autonomous rigid body
attitude synchronization. Automatica 45, 2 (2008), 572-577.

SAVVIDES, A., GARBER, W. L., MOSES, R., AND SRIVASTAVA, M. B. An analysis
of error inducing parameters in multihop sensor node localization. IEEE Transac-
tions on Mobile Computing 4, 6 (2005), 567-577.

Scuurrz, A. C., AND PARKER, L. E., Eds. Multi-Robot Systems: From Swarms
to Intelligent Automata. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

SEYBOTH, G. S., DIMAROGONAS, D. V., AND JOHANSSON, K. H. Control of
multi-agent systems via event-based communication. In IFAC World Congress (Mi-
lano, Ttaly, Aug. 2011). Accepted.

SiM, R. Stable exploration for bearings-only SLAM. In IEEFE Int. Conf. on Robotics
and Automation (Barcelona, Spain, Apr. 2005), pp. 2411-2416.

SIMONETTO, A., KEVICZKY, T., AND BABUSKA, R. On distributed maximization

of algebraic connectivity in robotic networks. In American Control Conference (San
Francisco, CA, USA, July 2011), pp. 2180 — 2185.

SKRJANC, I., AND KLANCAR, G. Optimal cooperative collision avoidance between

multiple robots based on bernstein-bézier curves. Robotics and Autonomous Systems
58,1 (2010), 1-9.

SoLA, J., MONIN, A., DEVY, M., AND LEMAIRE, T. Undelayed initialization in
bearing only SLAM. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(Edmonton, Canada, Aug. 2005), pp. 2499-2504.

BIBLIOGRAPHY 207

[129] SpaNoOs, D. P., OLFATI-SABER, R., AND MURRAY, R. M. Approximate dis-
tributed Kalman filtering in sensor networks with quantifiable performance. In
Symposium on Information Processing of Sensor Networks (IPSN) (Los Angeles,
CA, Apr. 2005), pp. 133-139.

[130] SpANOS, D. P., OLFATI-SABER, R., AND MURRAY, R. M. Distributed sensor
fusion using dynamic consensus. In IFAC World Congress (Prague, CZ, July 2005).

[131] STAcHNISS, C., AND BURGARD, W. Mapping and exploration with mobile robots
using coverage maps. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(Las Vegas, USA, Oct. 2003), pp. 27-31.

[132] Suzuki, A., AND DREZNER, Z. The p-center location problem in an area. Location
Science 4, 1/2 (1996), 69-82.

[133] TABUADA, P. Event-triggered real-time scheduling of stabilizing control tasks.
IEEE Transactions on Automatic Control 52, 9 (2007), 1680 —1685.

[134] TAHBAZ-SALEHI, A., AND JADBABAIE, A. A one-parameter family of distributed
consensus algorithms with boundary: From shortest paths to mean hitting times. In
IEEE Conf. on Decision and Control (San Diego, CA, USA, Dec. 2006), pp. 4664—
4669.

[135] TANNER, H. G., PAPPAs, G. J., AND KUMAR, V. Leader-to-formation stability.
IEEE Transactions on Robotics and Automation 20, 3 (2004), 443-455.

[136] TAo, T., HUANG, Y., SuN, F., AND WANG, T. Motion planning for SLAM
based on frontier exploration. In IEEE Int. Conf. on Mechatronics and Automation
(Harbin, China, Aug. 2007), pp. 2120-2125.

[137] THRUN, S., AND Liu, Y. Multi-robot SLAM with sparse extended information
filters. In Int. Symposium of Robotics Research (Sienna, Italy, Oct. 2003), pp. 254—
266.

[138] THRUN, S., Liu, Y., KOLLER, D., NG, A., AND DURRANT-WHYTE, H. Simulta-
neous localisation and mapping with sparse extended information filters. Interna-
tional Journal of Robotics Research 23, 7-8 (2004), 693-716.

[139] TRAWNY, N., AND ROUMELIOTIS, S. A unified framework for nearby and distant
landmarks in bearing-only SLAM. In IEEFE Int. Conf. on Robotics and Automation
(Orlando, USA, May 2006), pp. 1923-1929.

[140] TRAWNY, N., ROUMELIOTIS, S. I., AND GIANNAKIS, G. B. Cooperative multi-

robot localization under communication constraints. In IEEFE Int. Conf. on Robotics
and Automation (Kobe, Japan, May 2009), pp. 4394-4400.

[141] TrRAWNY, N., ZHOU, X. S., ZHOU, K. X., AND ROUMELIOTIS, S. I. Inter-robot
transformations in 3-d. IEEE Transactions on Robotics 26, 2 (2010), 226-243.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

150

[151]

[152]

[153]

208 BIBLIOGRAPHY

TrRON, R., VIDAL, R., AND TERZIS, A. Distributed pose averaging in camera
networks via consensus on SE(3). In ACM/IEEE International Conference on Dis-
tributed Smart Cameras (Stanford University, USA, Sept. 2008).

UTETE, S., AND DURRANT-WHYTE, H. F. Routing for reliability in decentralised

sensing networks. In American Control Conference (June 1994), vol. 2, pp. 2268 —
2272.

VARGHESE, B., AND McCKEE, G. A mathematical model, implementation and
study of a swarm system. Robotics and Autonomous Systems 58, 3 (2010), 287-294.

VIDAL, R., SHAKERNIA, O., AND SASTRY, S. Omnidirectional vision-based forma-

tion control. In Allerton Conference on Communications, Control and Computing
(Oct. 2002), pp. 1625-1634.

VINCENT, R., Fox, D., Ko, J., KONOLIGE, K., LIMKETKAI, B., MORISSET, B.,
ORrTIZ, C., SCHULZ, D., AND STEWART, B. Distributed multirobot exploration,
mapping, and task allocation. Annals of Mathematics and Artificial Intelligence 52,
1 (2008), 229-255.

WEIL, M., ARAGUES, R., SAGUES, C., AND CALAFIORE, G. Distributed noisy
range network localization. In American Control Conference (2012). Submitted.

WENHARDT, S., DEUTSCH, B., ANGELOPOULOU, E., AND NIEMANN, H. Ac-
tive visual object reconstruction using d-, e-, and t-optimal next best views. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(Minnesota, USA, June 2007), pp. 1-7.

WiLLiaMs, S. B., AND DURRANT-WHYTE, H. Towards multi-vehicle simultane-

ous localisation and mapping. In IEEFE Int. Conf. on Robotics and Automation
(Washington, DC, USA, May 2002), pp. 2743-2748.

X1, B., Guo, R., SuN, F., AND HUANG, Y. Simulation research for active simul-
taneous localization and mapping based on Extended Kalman Filter. In IEFE Int.
Conf. on Automation and Logistics (Qingdao, China, Sept. 2008), pp. 2443-2448.

X1A0, L., AND BoyD, S. Fast linear iterations for distributed averaging. Systems
& Control Letters 53 (2004), 65-78.

X1A0, L., BoyD, S., AND LALL, S. A scheme for robust distributed sensor fusion
based on average consensus. In Symposium on Information Processing of Sensor

Networks (IPSN) (Los Angeles, CA, Apr. 2005), pp. 63-70.

XI1A0, L., BoyD, S., AND LALL, S. A space-time diffusion scheme for peer-to-

peer least-square estimation. In Symposium on Information Processing of Sensor
Networks (IPSN) (Nashville, TN, Apr. 2006), pp. 168-176.

BIBLIOGRAPHY 209

[154] YANG, P., FREEMAN, R., GORDON, G., LYNCH, K., SRINIVASA, S., AND SUK-

THANKAR, R. Decentralized estimation and control of graph connectivity for mobile
sensor networks. Automatica 46, 2 (2010), 390 — 396.

[155] YANG, P., FREEMAN, R. A., AND LyNcH, K. M. Distributed cooperative active

sensing using consensus filters. In IEEE Int. Conf. on Robotics and Automation
(Roma, Italy, Apr. 2007), pp. 405-410.

[156] ZAvLANOS, M. M., AND PAppPAs, G. J. Controlling connectivity of dynamic
graphs. In IEEE Conf. on Decision and Control (Seville, Spain, Dec. 2005), pp. 6388
—6393.

[157] ZavLaNos, M. M., AND PAPPAS, G. J. Distributed connectivity control of mobile
networks. IEEE Transactions on Robotics 24, 6 (Dec. 2008), 1416 —1428.

[158] ZHOU, X., AND ROUMELIOTIS, S. Robot-to-robot relative pose estimation from
range measurements. IEEE Transactions on Robotics 24, 6 (2008), 1379-1393.

[159] Zuou, X. S., AND ROUMELIOTIS, S. I. Multi-robot SLAM with unknown initial
correspondence: The robot rendezvous case. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (Beijing, China, Oct. 2006), pp. 1785-1792.

Distributed Alg. on Robotic Networks for Coordination in Perception Tasks

Appendix A
Averaging Algorithms and Metropolis
Weights

Throughout this document, we frequently refer to averaging algorithms. They have be-
come very popular in sensor networks due to their capability to reach agreement in a dis-
tributed way. Let us assume that each robot ¢ € V has initially a scalar value z;(0) € R.
Let W € RY;" be a doubly stochastic matrix such that W; ; > 01if (i,j) € Eand W;; =0
when j ¢ N;. This matrix is such that W;; € [a, 1], W;; € {0} U [, 1] for all 4,5 € V, for
some « € (0,1]. Assume the communication graph G is connected. If each robot i € V
updates z;(t) at each time step ¢t > 0 with the following averaging algorithm,

Zz(t + 1) = i Wi,j Zj(f), (Al)

then, as t — oo, the variables z;(t) reach the same value for all i € V), i.e., they reach a
consensus. Moreover, the consensus value is the average of the initial values,

. N
tliglo 2i(t) = 2z = - Zl 2;(0), (A.2)
]:

for all i € V [27,]113]. Observe that each robot i updates its variables z;(¢) using local
information since the weight matrix has zero entries for non-neighboring robots, W; ; = 0
when j ¢ N;. Let e(t) = (z1(t), ..., 2a(t))" — (24, ..., 2.)" be the error vector at iteration
t. The number of iterations ¢ necessary for reaching ||e()||2/||e(0)||2 < € ranges between
a single iteration for complete graphs, and order n?log(e™!) iterations for networks with
lower connectivity like string and circular graphs |27, Theorems 1.79 and 1.80].

A common choice for the matrix W € R™"™ is given by the Metropolis weights given
by [152),

m if €N, #1,
Wij=4q0 if §ENLI# (A.3)
- Zje,/\/’i Wz}j? ij = ia
for i,j € V, j # i, where |N;|, |Nj| are the number of neighbors of robots 7, j. Note that
each robot can compute the weights that affect its evolution using only local information.
The algorithm using the Metropolis weights W converges to the average of the
inputs.

211

Appendix B
Dataset Visual Data

Throughout this document, we have analyzed the performance of several of our algorithms
under real data. Often, we use a data set from with bearing information obtained with
vision in an environment of 60 x 45m performing 3297 steps. It is an indoor scenario where
the robot moves along corridors and rooms. The data set contains real odometry data
and images captured at every step (Figs. and . The images are processed and
measurements to natural landmarks are provided. The natural landmarks are vertical
lines extracted from the images and processed in the form of bearing-only data. The
observations in the dataset are labeled so that we have the ground-truth data association.
This dataset is very challenging for a conventional visual map building algorithm due
to the limited field of view of the camera (Sony EVI-371DG). Furthermore, the camera
is pointing forward in the same direction of robot motion and the robot traverses rooms
(Fig. and corridors (Fig. with few features in common. Notice that this situation
is much more complex than situations where the camera can achieve big parallax, or
systems with ominidirectional cameras, where features within 360 degrees around the
robot are observed.

Figure B.1: An example of the images used by the robot team during the navigation to
test the proposed algorithms . Although the data set also provides artificial landmarks
(white circles on the floor), we test the algorithm using the lines extracted from natural
landmarks (in yellow). In the dataset, robots traverse long corridors.

We usually select a section of this dataset and let operate a team of robots in this
region. As an example, in Fig. We display the trajectories followed by 9 robots (colored

213

214 B. Dataset Visual Data

Figure B.2: An example of the images used by the robot team during the navigation to
test the proposed algorithms . We test the algorithm using the lines extracted from
natural landmarks (in yellow). Part of the robots trajectories consists of entering into
rooms.

lines). In order to give an idea of the scene structure, we display in black the path in the
dataset and a set of artificial landmarks (black dots) placed on both sides of the trajectory,
which are not used in the experiment.

201

10

—10}

L L ! L L
-20 -10 0 10 20

Figure B.3: Example of trajectories followed by 9 robots. They cover a region of 30m x
30m of the whole dataset map. In order to give an idea of the scene structure, we display
in black the path in the dataset and a set of artificial landmarks (black dots) placed on
both sides of the trajectory, which are not used in the experiment. Here, the rooms can
be identified since robots enter and leave them describing short trajectories. The long,
straight motions correspond to corridors.

	Introduction
	Motivation
	Classical Approaches
	Objectives
	Document Organization
	Contributions

	Visual Information Management
	Introduction
	Problem Description
	Feature Parameterization
	Depth Computation and Feature Initialization
	Undelayed Initialization
	Delayed with Two Observations
	Delayed until Condition

	Studied Methods
	Inverse-Depth Undelayed
	Inverse-Depth Delayed with Two Observations
	Cartesian Delayed with Two Observations
	Cartesian/Inverse-Depth Delayed until Finite Depth
	Cartesian/Inverse-Depth Delayed until Feature Not Aligned

	Discussion
	Conclusions

	Static Map Merging
	Introduction
	Problem Description
	Distributed Averaging
	Consensus on the Global Map
	Partially Distributed Approach
	Fully Distributed Approach
	Properties
	Discussion
	Conclusions

	Dynamic Map Merging
	Introduction
	Problem Description
	Proportional Integral (PI) Averaging Algorithm

	Consensus on Constant Scalar Inputs
	Dynamic Averaging Strategy
	Dynamic Map Merging Algorithm
	Convergence for Fixed Networks
	Convergence Speed for Fixed Networks
	Properties of the Partial Estimates
	Discussion
	Conclusions

	Distributed Data Association
	Introduction
	Problem Description
	Matching between two cameras
	Centralized matching between n cameras
	Matching between n cameras with limited communications

	Propagation of Local Associations and Detection of Inconsistencies
	Improved Detection Algorithm
	Example of execution

	Resolution Algorithm based on Trees
	Feature Labeling
	Resolution Algorithm based on the Maximum Error Cut
	Example of execution

	Discussion
	Conclusions

	Distributed Localization
	Introduction
	Problem Description
	Noise-free Pose Localization
	Noisy Pose Localization
	Centralized algorithm
	Distributed algorithm

	Centroid-based Noisy Position Localization
	Distributed estimation relative to an anchor
	Centroid estimation
	Distributed centroid estimation algorithm
	Zpn and Mpn matrices defined by blocks

	Discussion
	Conclusions

	Strategies for Improved Multi Robot Perception
	Introduction
	Improving the Map Precision with Motion Control
	Vantage locations
	Expected maps for the vantage locations
	Cost minimization approach
	Strategy for improved perception

	Improving the Convergence Speed
	Consensus protocol and event-based control
	Distributed computation of the algebraic connectivity
	Distributed adaptive triggered average consensus

	Discussion
	Conclusions

	Real Experiments
	Conclusions
	Bibliography
	Averaging Algorithms and Metropolis Weights
	Dataset Visual Data

