000071197 001__ 71197
000071197 005__ 20200217133051.0
000071197 0247_ $$2doi$$a10.1021/acs.jctc.8b00511
000071197 0248_ $$2sideral$$a106773
000071197 037__ $$aART-2018-106773
000071197 041__ $$aeng
000071197 100__ $$0(orcid)0000-0003-0694-155X$$aAlonso, J.L.$$uUniversidad de Zaragoza
000071197 245__ $$aEhrenfest Statistical Dynamics in Chemistry: Study of Decoherence Effects
000071197 260__ $$c2018
000071197 5060_ $$aAccess copy available to the general public$$fUnrestricted
000071197 5203_ $$aIn previous works, we introduced a geometric route to define our Ehrenfest statistical dynamics (ESD) and we proved that, for a simple toy model, the resulting ESD does not preserve purity. We now take a step further: we investigate decoherence and pointer basis in the ESD model by considering some uncertainty in the degrees of freedom of a simple but realistic molecular model, consisting of two classical cores and one quantum electron. The Ehrenfest model is sometimes discarded as a valid approximation to nonadiabatic coupled quantum-classical dynamics because it does not describe the decoherence in the quantum subsystem. However, any rigorous statistical analysis of the Ehrenfest dynamics, such as the described ESD formalism, proves that decoherence exists. In this article, decoherence in ESD is studied by measuring the change in the quantum subsystem purity and by analyzing the appearance of the pointer basis to which the system decoheres, which for our example is composed of the eigenstates of the electronic Hamiltonian.
000071197 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B100-13$$9info:eu-repo/grantAgreement/ES/DGA/E24-3$$9info:eu-repo/grantAgreement/ES/MEC/FPU13-01587$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-2-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2014-55867-P$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2015-64166-C2-1-P
000071197 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000071197 590__ $$a5.313$$b2018
000071197 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b6 / 36 = 0.167$$c2018$$dQ1$$eT1
000071197 591__ $$aCHEMISTRY, PHYSICAL$$b33 / 148 = 0.223$$c2018$$dQ1$$eT1
000071197 592__ $$a2.236$$b2018
000071197 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ1
000071197 593__ $$aComputer Science Applications$$c2018$$dQ1
000071197 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000071197 700__ $$0(orcid)0000-0002-5833-8798$$aBruscolini, P$$uUniversidad de Zaragoza
000071197 700__ $$0(orcid)0000-0002-9253-7926$$aCastro, A$$uUniversidad de Zaragoza
000071197 700__ $$0(orcid)0000-0003-4721-7381$$aClemente-Gallardo, J.$$uUniversidad de Zaragoza
000071197 700__ $$aCuchí, J. C.
000071197 700__ $$0(orcid)0000-0001-9868-9368$$aJover-Galtier, J.A.$$uUniversidad de Zaragoza
000071197 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000071197 773__ $$g14, 8 (2018), 3975–3985$$pJ. Chem. Theory Comput.$$tJournal of Chemical Theory and Computation$$x1549-9618
000071197 8564_ $$s1315704$$uhttps://zaguan.unizar.es/record/71197/files/texto_completo.pdf$$yPostprint
000071197 8564_ $$s74059$$uhttps://zaguan.unizar.es/record/71197/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000071197 909CO $$ooai:zaguan.unizar.es:71197$$particulos$$pdriver
000071197 951__ $$a2020-02-17-12:42:49
000071197 980__ $$aARTICLE