000071210 001__ 71210
000071210 005__ 20190709135547.0
000071210 0247_ $$2doi$$a10.1016/j.nima.2016.04.011
000071210 0248_ $$2sideral$$a106788
000071210 037__ $$aART-2017-106788
000071210 041__ $$aeng
000071210 100__ $$aCardani, L.
000071210 245__ $$aNew application of superconductors: High sensitivity cryogenic light detectors
000071210 260__ $$c2017
000071210 5060_ $$aAccess copy available to the general public$$fUnrestricted
000071210 5203_ $$aIn this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement
000071210 536__ $$9info:eu-repo/grantAgreement/EC/FP7/335359/EU/Cryogenic wide-Area Light Detectors with Excellent Resolution/CALDER
000071210 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000071210 590__ $$a1.336$$b2017
000071210 591__ $$aNUCLEAR SCIENCE & TECHNOLOGY$$b10 / 33 = 0.303$$c2017$$dQ2$$eT1
000071210 591__ $$aPHYSICS, NUCLEAR$$b14 / 20 = 0.7$$c2017$$dQ3$$eT3
000071210 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b41 / 61 = 0.672$$c2017$$dQ3$$eT3
000071210 591__ $$aPHYSICS, PARTICLES & FIELDS$$b24 / 29 = 0.828$$c2017$$dQ4$$eT3
000071210 592__ $$a0.814$$b2017
000071210 593__ $$aInstrumentation$$c2017$$dQ1
000071210 593__ $$aNuclear and High Energy Physics$$c2017$$dQ2
000071210 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000071210 700__ $$aBellini, F.
000071210 700__ $$aCasali, N.
000071210 700__ $$aCastellano, M. G.
000071210 700__ $$aColantoni, I.
000071210 700__ $$aCoppolecchia, A.
000071210 700__ $$aCosmelli, C.
000071210 700__ $$aCruciani, A.
000071210 700__ $$aD'Addabbo, A.
000071210 700__ $$aDi Domizio, S.
000071210 700__ $$0(orcid)0000-0002-9043-4691$$aMartinez, M.
000071210 700__ $$aTomei, C.
000071210 700__ $$aVignati, M.
000071210 773__ $$g845 (2017), 338-341$$pNucl. instrum. methods phys. res., Sect. A$$tNUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT$$x0168-9002
000071210 8564_ $$s6280719$$uhttps://zaguan.unizar.es/record/71210/files/texto_completo.pdf$$yPostprint
000071210 8564_ $$s130453$$uhttps://zaguan.unizar.es/record/71210/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000071210 909CO $$ooai:zaguan.unizar.es:71210$$particulos$$pdriver
000071210 951__ $$a2019-07-09-12:10:11
000071210 980__ $$aARTICLE