000071218 001__ 71218
000071218 005__ 20201130083155.0
000071218 0247_ $$2doi$$a10.1038/s41598-018-26445-x
000071218 0248_ $$2sideral$$a106782
000071218 037__ $$aART-2018-106782
000071218 041__ $$aeng
000071218 100__ $$aCarro, Juan
000071218 245__ $$aMultiple implications of an active site phenylalanine in the catalysis of aryl-alcohol oxidase
000071218 260__ $$c2018
000071218 5060_ $$aAccess copy available to the general public$$fUnrestricted
000071218 5203_ $$aAryl-alcohol oxidase (AAO) has demonstrated to be an enzyme with a bright future ahead due to its biotechnological potential in deracemisation of chiral compounds, production of bioplastic precursors and other reactions of interest. Expanding our understanding on the AAO reaction mechanisms, through the investigation of its structure-function relationships, is crucial for its exploitation as an industrial biocatalyst. In this regard, previous computational studies suggested an active role for AAO Phe397 at the active-site entrance. This residue is located in a loop that partially covers the access to the cofactor forming a bottleneck together with two other aromatic residues. Kinetic and a nity spectroscopic studies, complemented with computational simulations using the recently developed adaptive-PELE technology, reveal that the Phe397 residue is important for product release and to help the substrates attain a catalytically relevant position within the active-site cavity. Moreover, removal of aromaticity at the 397 position impairs the oxygen-reduction activity of the enzyme. Experimental and computational ndings agree very well in the timing of product release from AAO, and the simulations help to understand the experimental results. This highlights the potential of adaptive-PELE to provide answers to the questions raised by the empirical results in the study of enzyme mechanisms.
000071218 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/NOESIS-BIO2014-56388-R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79138-R$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2016-75183-P$$9info:eu-repo/grantAgreement/ES/MEC/FPU-AP2012-2041$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 720297-EnzOx2$$9info:eu-repo/grantAgreement/EC/H2020/720297/EU/New enzymatic oxidation/oxyfunctionalization technologies for added value bio-based products/EnzOx2$$9info:eu-repo/grantAgreement/EC/FP7/613549/EU/Optimized oxidoreductases for medium and large scale industrial biotransformations/INDOX
000071218 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000071218 590__ $$a4.011$$b2018
000071218 591__ $$aMULTIDISCIPLINARY SCIENCES$$b14 / 69 = 0.203$$c2018$$dQ1$$eT1
000071218 592__ $$a1.414$$b2018
000071218 593__ $$aMultidisciplinary$$c2018$$dQ1
000071218 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000071218 700__ $$aAmengual-Rigo, Pep
000071218 700__ $$aFerran, Sancho
000071218 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, Milagros$$uUniversidad de Zaragoza
000071218 700__ $$aGuallar, Victor
000071218 700__ $$0(orcid)0000-0003-4076-6118$$aFerreira, Patricia$$uUniversidad de Zaragoza
000071218 700__ $$aMartínez, T. Angel
000071218 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000071218 773__ $$g8 (2018), 8121 [12 pp.]$$pSci. rep.$$tScientific Reports$$x2045-2322
000071218 8564_ $$s2541375$$uhttps://zaguan.unizar.es/record/71218/files/texto_completo.pdf$$yVersión publicada
000071218 8564_ $$s116311$$uhttps://zaguan.unizar.es/record/71218/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000071218 909CO $$ooai:zaguan.unizar.es:71218$$particulos$$pdriver
000071218 951__ $$a2020-11-30-07:57:32
000071218 980__ $$aARTICLE