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Estudio comparativo de frameworks de Instrumentación Dinámica de
Ejecutables

RESUMEN

La Instrumentación Dinámica de Ejecutables (Dynamic Binary Instrumentation,
DBI) es una técnica muy potente que permite analizar el comportamiento, en tiem-
po de ejecución, de cualquier aplicación. DBI se puede usar, por ejemplo, para contar
el número de instrucciones que ejecuta o contar todas las transferencias (lectura y/o
escritura) a memoria que realiza un determinado programa.

DBI tiene diferentes usos según sea el perfil de la persona que lo use. Por ejemplo,
para un programador, DBI ayudará a identificar las partes cŕıticas del código; para un
desarrollador de un procesador nuevo, DBI simulará esta nueva arquitectura; y para
un programador de compiladores en una nueva arquitectura, DBI ayudará a la colo-
cación de las instrucciones para mejorar el paralelismo o cómo preparar profile-guided
optimizacions (PGO).

Un framework de DBI es una plataforma software que incluye programas, libreŕıas, do-
cumentación y una API para manipulación de instrucciones en tiempo de ejecución. Exis-
ten diferentes frameworks de DBI (p.e., Pin, Valgrind, DynamoRIO, Paradyn/Dyninst),
que proporcionan APIs muy extensas para que cada ingeniero pueda desarrollar sus pro-
pias herramientas de análisis dinámico, llamadas herramientas DBA (Dynamic Binary
Analysis). Las herramientas DBA permiten analizar, generar optimizaciones y monito-
rizar el comportamiento de programas.

El objetivo de este PFC es realizar un estudio comparativo centrado a nivel de im-
pacto en rendimiento (performance) de diferentes frameworks de DBI. Es decir, se com-
probará el rendimiento de una aplicación ejecutada de forma nativa, sin instrumentar, y
se comparará con esta misma aplicación instrumentada por herramientas programadas
bajo diferentes frameworks de DBI. De esta forma se obtiene el impacto en rendimiento
de cada uno de los frameworks. Para poder llevar a cabo este estudio, se han seleccio-
nado un conjunto de aplicaciones para crear un benchmark, que nos dará información
de rendimiento de cada framework de DBI.

Además, se pretende comparar cada framework de DBI atendiendo a las siguientes
caracteŕısticas: plataformas y tipos de ejecutables que aceptan, necesidad de disponer
del código fuente, API proporcionada, facilidad de programación de herramientas DBA,
licencia/coste y la posibilidad de vincular a un proceso en ejecución.
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Caṕıtulo 1

Introducción

El término de instrumentación se refiere a la inserción de código adicional sobre un de-
terminado software. Principalmente, hay dos tipos de instrumentación: de código fuente,
cuando el programador añade ĺıneas de código antes de la compilación; y de ejecutable,
si hay otra aplicación que modifica el programa una vez compilado. La instrumentación
permite incorporar al programa desarrollado código adicional para recoger información
en tiempo de ejecución, que principalmente tiene dos usos diferentes: para estudio de
arquitecturas, donde se puede hacer modelado de cachés y simulación de instrucciones
nuevas de procesadores; y para análisis de código, donde se puede generar información
para análisis de rendimiento, p.e., para averiguar cuándo, dónde y por qué nuestro código
tarda tanto en ejecutar cierta tarea.

Hay diferentes tipos de instrumentación, como la manual, en la que el programador
añade directamente las ĺıneas de código que le interesan; como por ejemplo, para calcular
tiempos de ejecución, contar eventos o llamadas a una interfaz de programación de
aplicaciones (API). Hay herramientas tipo automated source level que modifican el código
fuente para añadir instrumentación de acuerdo a una determinada configuración. Existen
otros tipos de instrumentación como la asistida por el compilador, que es añadida en
tiempo de compilación, y binary translation, donde se modifica el software con llamadas a
una API de instrumentación para que la propia aplicación genere información en tiempo
de ejecución, siendo esta aplicación la que se instrumenta a śı misma. Finalmente, existe
la instrumentación dinámica de ejecutables (DBI), donde una aplicación externa inserta
código adicional en tiempo de ejecución al ejecutable instrumentado. Este proyecto se
centra en DBI porque es la opción más completa de todas y más moderna, permitiendo
además monitorizar y controlar una aplicación mientras se ejecuta desde su inicio hasta
el final.

Sin embargo, una desventaja que tiene la instrumentación al ser añadida en tiempo de
ejecución es la sobrecarga tan elevada que conlleva su adición. Debido a esto, las aplica-
ciones instrumentadas tienen un rendimiento muy malo comparándolas consigo mismas
ejecutándose de forma nativa, es decir, sin instrumentar. Esto es un factor determinante
a la hora de trabajar con DBI.

Para programar aplicaciones que soporten DBI se puede usar un framework de DBI.

1



Sección 1.1 1. Introducción

Éste facilita una API para que se puedan desarrollar herramientas de análisis dinámico.
Estas herramientas permiten instrumentar un software en el momento que el programa-
dor determine.

En la actualidad existen diferentes frameworks de DBI, como Valgrind [NS07] o
Pin [LCM+05], pero no hay suficiente información comparativa sobre ellos a nivel de
rendimiento, ya que apenas hay trabajos que traten directamente el tema de rendimien-
to, y a nivel de programación no se ha encontrado nada que compare los frameworks de
DBI.

1.1. Objetivo

El objetivo de este PFC es realizar un estudio comparativo a nivel de impacto en
rendimiento de diferentes frameworks de DBI, ya que una aplicación instrumentada
puede tardar en ejecutarse hasta 35 veces más lenta, como se ha comprobado con los
resultados de este PFC. Se ejecutarán diferentes tipos de aplicaciones seleccionadas
para el estudio, mediante un benchmark propio, bajo diferentes instrumentaciones en
diferentes frameworks de DBI. Posteriormente se analizarán los resultados obtenidos.

El procedimiento para obtener esos resultados ha sido el siguiente:

Hacer un estudio de los frameworks disponibles, buscando cuáles son los que se
están usando en la actualidad.

Seleccionar los frameworks interesantes para este estudio, indicando los criterios
de selección que se han utilizado.

Compilación e instalación del framework a partir del código fuente, para comprobar
que se dispone de todo el software necesario para después desarrollar herramientas.

Estudio de manuales, tutoriales y APIs de cada framework, para después poder
desarrollar herramientas DBA.

Búsqueda de aplicaciones estándar para generar un benchmark. Éste reúne un
conjunto de programas en diferentes categoŕıas como: cálculo entero, cálculo real,
E/S de ficheros y acceso a memoria.

Probar herramientas DBA desarrolladas bajo el benchmark, de tal forma que per-
mita obtener información sobre el rendimiento de estas.

Finalmente el benchmark permite obtener los datos de sobrecarga en tiempo de las
aplicaciones por la instrumentación y los requisitos adicionales de memoria.

1.2. Motivación

La principal motivación para la elección de este PFC fue la oportunidad de profundizar
en el aprendizaje y estudio de herramientas DBI actuales, ya que en las asignaturas de la

2



1. Introducción Sección 1.3

carrera no hab́ıa nada relacionado con ello. Entre las aplicaciones innovadoras de estas
herramientas son las relacionadas con la seguridad como la comprobación de fugas de
memoria e ingenieŕıa inversa.

Este Proyecto me ha ofrecido la oportunidad de explorar una interesante aplicación:
la evaluación del rendimiento del los frameworks de DBI basada en la programación de
herramientas DBA y el estudio de sus APIs.

1.3. Organización del documento

El presente documento está dividido en dos partes: la memoria, donde se explica
el desarrollo del Proyecto; y los apéndices, donde se ampĺıa la información de ciertos
puntos relevantes.

El caṕıtulo 2 define algunos conceptos previos que sirven de ayuda para comprender
el resto del documento como qué es DBI, DBA, la granularidad en instrumentación y
cómo fueron los inicios de la instrumentación dinámica. El caṕıtulo 3 introduce los frame-
works de DBI, expone los criterios de selección para la comparación, sus caracteŕısticas,
similitudes y diferencias entre ellos y algunos comentarios sobre sus APIs. El caṕıtulo 4
recoge el trabajo relacionado con este proyecto. El proceso de creación del benchmark y
la selección de software para las pruebas está en el caṕıtulo 5. El caṕıtulo 6 resume los
experimentos realizados con el benchmark definido anteriormente. Además, se muestran
los gráficos más relevantes junto a un análisis cŕıtico de los resultados. Finalmente, el
caṕıtulo 7 presenta las conclusiones de este trabajo y plantea posibles ĺıneas de trabajo
futuro.

Respecto a los apéndices, el apéndice A es donde se hace balance del esfuerzo
temporal empleado en la realización del PFC. El apéndice B reúne los problemas que
han ido apareciendo. El apéndice C describe las aplicaciones usadas en los benchmark
con más detalle. El apéndice D contiene las tablas con los resultados obtenidos de los
experimentos y no incluidas en el caṕıtulo 6 y finalmente, en el apéndice E se presenta
el código fuente de las aplicaciones DBA para el benchmark.

3





Caṕıtulo 2

Conocimientos previos

En este caṕıtulo se definen algunos de los conceptos más importantes en los que se
basa este proyecto y, en general, se explica el funcionamiento y uso de DBI.

El principal uso de DBI es analizar el comportamiento de un ejecutable durante la
ejecución, de tal forma que permita mejorar el funcionamiento de éste. En compara-
ción con el análisis estático, ofrece la ventaja de estudiar qué es lo que está ocurriendo
en vez de lo que podŕıa estar ocurriendo. El único inconveniente es que no se ejecutan
todos los posibles caminos, porque si una instrucción no se ejecuta, no se llega a ins-
trumentar. DBI se puede utilizar de manera diferente dependiendo de quién lo vaya a
utilizar, para un programador, DBI ayudará a identificar las partes cŕıticas del código;
para un desarrollador de un procesador nuevo, DBI simulará esta nueva arquitectura; y
para un programador de compiladores en una nueva arquitectura, DBI ayudará a la co-
locación de las instrucciones para mejorar el paralelismo o cómo preparar profile-guided
optimizacions (PGO).

En un framework de DBI hay dos componentes principales, el núcleo y las herra-
mientas desarrolladas con él. El núcleo se encarga de enviar fragmentos de código a
la herramienta, y ésta se encarga de la inyección de código.

El núcleo es como un compilador just-in-time (JIT), donde la entrada al compilador
es un ejecutable. Se intercepta la ejecución de la primera instrucción del ejecutable y
genera nuevo código, donde se transfiere el control de la secuencia generada. La secuencia
de código generada es prácticamente idéntica a la original, pero el núcleo se asegura que
se retorne el control cuando se salga de la secuencia. El código generado es guardado en
memoria, por lo que puede ser reutilizado sin necesidad de regenerarlo cada vez que se
ejecute. Una vez que se ha generado este código se le da la opción al usuario de inyectar
su propio código, o sea instrumentarlo.

Una herramienta habitualmente tiene la forma plug-in o libreŕıa, y su función es añadir
código al obtenido previamente del núcleo, para ello tiene dos componentes básicos:

Instrumentación, se decide dónde y qué código es insertado.

Análisis, se ejecuta el código añadido en los puntos de inserción.

5



Sección 2.1 2. Conocimientos previos

Cuando se desarrollan herramientas, es más importante afinar el código de análisis
que el de instrumentación. Esto es aśı debido a que la parte de instrumentación en una
ĺınea del código se ejecuta una única vez; sin embargo, el análisis, que es el código que
se ha inyectado, se puede llegar a ejecutar múltiples veces. Todo el código inyectado al
ejecutable original se ejecuta de forma transparente [BZA12] con los frameworks de DBI
actuales, de tal forma que este código añadido no pueda interferir en el comportamiento
del ejecutable y se modifique el comportamiento original.

El núcleo y la herramienta habitualmente controlan el programa desde el inicio, es
decir, desde la primera instrucción a ejecutar. Para los ejecutables enlazados con libreŕıas
dinámicas esto implica que la ejecución del cargador dinámico y de las libreŕıas es visible
y controlada. También son visibles y controlados el código generado dinámicamente, pero
el que se automodifica puede llegar a dar problemas en función del framework de DBI,
como en el caso del framework Valgrind [NS07].

Para que el funcionamiento sea correcto, tanto el núcleo como la herramienta tienen
que estar trabajando en el mismo espacio de direcciones que el ejecutable. Es decir,
tienen que estar todos en espacio de usuario, donde residen las aplicaciones; o bien en
espacio del kernel, donde residen los módulos o drivers.

2.1. Granularidad en DBI

Un ejecutable instrumentado por un framework de DBI se suele instrumentar ins-
trucción a instrucción, pero en función de la instrumentación que se desee realizar y del
framework se puede utilizar una granularidad diferente. Las posibles granularidades son:

Instrucción, es la unidad mı́nima que se puede instrumentar. Son instrucciones en
ensamblador de la arquitectura en la que se trabaje.

Bloque básico, es una secuencia de instrucciones que finalizan con una instrucción
de control de transferencia como un salto condicional (p.e., en ensamblador x86,
JZ, salto si flag Z=1 )[Int86], incondicional (p.e., JMP, salto a una dirección), repeti-
ciones (p.e., instrucciones que tengan el prefijo REP, repite la instrucción posterior
varias veces), llamada o retorno a procedimiento (p.e., RET, retorno de procedi-
miento) entre otros.

Aqúı se muestra un ejemplo de bloque básico consistente en tres instrucciones x86:
una suma entre dos registros del procesador dejando el resultado en el primero
de ellos (ADD), una comparación entre un número y un registro (CMP) y un salto
condicional que comprueba si el resultado de la operación previa es menor o igual
(JLE). Como la última instrucción es de control de transferencia, tras la instrucción
del salto, finaliza el bloque básico.

comparac: add %ebx,%eax

cpm $0x7f,%ebx

jle comparac
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Superbloque, es también una secuencia de instrucciones que tiene un punto de
entrada, pero al contrario que los bloques básicos puede tener múltiples puntos de
salida.

Traza, es la unión de bloques básicos que se ejecutan uno detrás de otro en secuen-
cia, aunque en el ejecutable no estén consecutivos.

Rutina, corresponde a las funciones y procedimientos t́ıpicamente producidos por
un compilador de un lenguaje de programación por procedimientos como C.

Imagen, que representa a todas las secciones de un ejecutable, que son las partes
en las que se divide, como p.e., .init, .text o .fini para el formato de fichero
ejecutable para windows. Hay que tener en cuenta que durante la ejecución de un
proceso puede haber más de un objeto imagen en función de las libreŕıas dinámicas
a las que acceda.

2.2. Origen de DBI

Las primeras herramientas de instrumentación haćıan dos tareas básicas: contar blo-
ques básicos y la generación de trazas de direcciones para modelado de cachés. Entre
otras, estaban las herramientas Pixie [SG92], Epoxie [Wal91] y QPT [LB94] que utiliza-
ban el ejecutable ya compilado. Presentaban diferentes problemas, como que no se pod́ıa
hacer otro tipo de instrumentación y además generaban trazas de datos y direcciones
de manera ineficiente, ya que no se pod́ıa seleccionar entre qué puntos se queŕıa generar
información.

Otro tipo de herramientas eran los simuladores, como Tango Lite [GH93], Pro-
teus [BDCW91] o g88 [Bed90]. Proteus permit́ıa estudiar el comportamiento de un pro-
grama con diferentes arquitecturas de cachés y un número simulado de procesadores para
poder comprobar la escalabilidad de un programa o algoritmo. El principal problema de
los simuladores es la sobrecarga en tiempo que generan, esto es algo que se ha mantenido
hasta las herramientas actuales. Además, no eran completamente transparentes para el
programa y modificaban el comportamiento del ejecutable.

El primer framework de DBI, ATOM [SE94], apareció en 1993 y funcionaba única-
mente para Tru64 Unix en procesadores Alpha. Provéıa una API mediante la cual se
pod́ıan programar herramientas para analizar un ejecutable. Ofrećıa la instrumentación
de instrucciones, bloques básicos y rutinas; y se pod́ıan construir simuladores a nivel de
caché e instrucciones. Sin embargo, la mayor desventaja es que se teńıa que modificar el
código fuente y recompilarlo. El nuevo programa utilizaba las libreŕıas de ATOM y las
instrucciones eran directamente ejecutadas bajo el procesador real, sin ningún tipo de
simulación.

7





Caṕıtulo 3

Frameworks de DBI

Este caṕıtulo muestra una introducción a los frameworks de DBI. Se resumen los que
se pueden encontrar, después se analizan los criterios de selección y cuáles han sido los
seleccionados para hacer el estudio de rendimiento.

Un framework de DBI ofrece un conjunto de APIs de manipulación de instrucciones
en tiempo de ejecución para que se puedan hacer, de manera fácil y rápida, herramientas
de instrumentación. Los principales frameworks de DBI que se pueden encontrar son:

Pin [LCM+05] (http://pintool.org) es un sistema de instrumentación desarro-
llado para proveer facilidad de uso, portabilidad, transparencia e instrumentación
eficiente. Se programa en C/C++ y se creó a partir de ATOM [SE94]. Se crean he-
rramientas DBA ligeras, esto significa que se añade la instrumentación y se ejecuta
directamente en el procesador de la arquitectura.

DynamoRIO [Bru04] (http://dynamorio.org), es un sistema de manipulación
de código en tiempo de ejecución que soporta transformaciones de código en cual-
quier parte de un programa mientras se está ejecutando. Con su API se pueden
programar herramientas para análisis de programas, profiling, instrumentación,
optimización y binary translation entre otros. Provee manipulación de código efi-
ciente, transparente y extensa en aplicaciones sin necesidad de recompilarlas. Las
herramientas creadas son ligeras.

Valgrind [NS07], (http://valgrind.org), es un framework de DBI desarrollado
para crear herramientas DBA pesadas, esto es, convierte el binario a un lenguaje
intermedio, y guarda el estado de todos los registros y memoria accedidos, aśı co-
mo todas las operaciones de lectura y escritura, asignaciones y liberaciones de
memoria. Para todo esto, usa una técnica llamada shadow values. Es por eso que
herramientas DBA ligeras programadas con Pin y DynamoRIO son más rápidas,
pero sin embargo, las pesadas son más dif́ıciles de hacer o imposibles con esos
frameworks.

DynInst (http://dyninst.org), ofrece un API para modificar aplicaciones en
tiempo de ejecución, con la capacidad de crear herramientas portables proporcio-
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nando abstracciones independientes de la arquitectura. Crea herramientas DBA
ligeras.

Dtrace (http://opensolaris.org/os/community/dtrace) es un framework de
rastreo y monitoreo abarcativo y dinámico. Se programa en lenguaje D y fue creado
para diagnosticar problemas en el kernel y en aplicaciones en tiempo real. Es para
Sistema Operativo Solaris.

Systemtap (http://sourceware.org/systemtap), provee una infraestructura
para simplificar la recogida de información en sistemas GNU/Linux. Ofrece instru-
mentación v́ıa ĺınea de comando y mediante un lenguaje script propio para acceder
al kernel y a las aplicaciones de usuario.

HDTrans [SSNB06] (http://srl.cs.jhu.edu/projects), es un sistema de ins-
trumentación dinámica ligera para la arquitectura x86 open-source y debido a esto
se ha optimizado para la simplicidad y modificabilidad. Permite instrumentar con
las granularidades de instrucción, bloque básico y traza.

A continuación se definen las caracteŕısticas para elegir los frameworks presentados.
Para esta selección se ha buscado que cumplan determinados criterios. Uno de las más
importantes es que fuera software que actualmente se mantenga en desarrollo y no fue-
ran proyectos iniciados y olvidados, por lo que se han buscado frameworks cuyas últimas
versiones fueran de 2011 ó 2012. La más reciente que se ha encontrado es DynamoRIO
de enero de 2012. Otra caracteŕıstica es que tengan un tipo de licencia que permite
acceder a su código fuente, siendo además su obtención de manera gratuita. Además,
que posean una amplia API que permita el desarrollo de herramientas/clientes.

Aunque la mayoŕıa de los frameworks son multiplataforma y soportan una amplia
variedad de sistemas operativos, como Windows, GNU/Linux, Mac OS X, FreeBSD,
Meego o Android; y están soportados para diferentes arquitecturas como x86, x64, Ita-
nium, ARM, PowerPC o S/390 se buscaba que tuvieran un Sistema Operativo y
arquitectura común.

En base a los criterios planteados, los frameworks que se van a estudiar para evaluar
su rendimiento en este PFC son Pin, Valgrind y DynamoRIO. A continuación se
describen más ampliamente los detalles.

3.1. Pin

Pin fue diseñado para proveer una funcionalidad similar a la herramienta ATOM de
Tru64 para Alpha (visto en la sección 2.2) pero sin necesidad de recompilar la aplicación
y soportando los sistemas operativos Linux y Windows. Puede inyectar código escrito
en C o C++ en lugares arbitrarios del ejecutable. Además, provee una API muy poten-
te que añade una capa de abstracción permitiendo al programador trabajar de forma
transparente sin que le afecte el código original que se esté ejecutando. Su API está muy
bien documentada y ofrece una gran amplitud de ejemplos para el programador. Una
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opción muy interesante es que se puede vincular a un proceso en ejecución para que sólo
instrumente la parte de código que interese.

Es desarrollado por Intel, y aunque lleva una licencia propietaria el coste es gratuito
para uso no comercial. Un inconveniente que tiene es que sólo funciona correctamente
con procesadores Intel. Puede funcionar con procesadores de las arquitecturas x86 y x64
de otras marcas (p.e., AMD, Cyrix), pero advierten que puede haber incompatibilidades
con instrucciones propietarias o incompatibles de estos procesadores.

Es un software que se actualiza mucho, ya que en 2011 liberó las últimas revisiones
de las versiones 2.8, 2.9 y 2.10, la última en noviembre de 2011.

3.2. Valgrind

Valgrind es multiplataforma, ya que soporta cinco arquitecturas diferentes bajo Li-
nux, Android y OS X. La caracteŕıstica principal de Valgrind es que cada vez que lee una
instrucción, antes de instrumentarla la convierte a un lenguaje intermedio tipo RISC,
independiente de la arquitectura, denominado VEX IR. Es en el proceso de transforma-
ción entre VEX IR y el ensamblador de la arquitectura donde se produce la mayoŕıa
de la sobrecarga generada por Valgrind. Debido a este proceso de transformación a un
lenguaje intermedio no es posible la vinculación a un proceso ya iniciado, siendo obli-
gatorio que se tome el control desde el principio de la ejecución. Además, esto implica
otros problemas, como se recoge en el apéndice B.2.

Utiliza la técnica de shadow values, que para cada registro o dirección de memoria
anota un valor que lo identifica (p.e., inicializado o sin inicializar). Almacena y propaga
estos valores en paralelo junto con el valor real del programa. De esta forma se pueden
encontrar muchos tipos de bugs o problemas de seguridad. Con esta técnica se pueden
desarrollar herramientas pesadas, que son más lentas durante la ejecución que otras
desarrolladas con otros frameworks como Pin y DynamoRIO, pero que con éstos o no se
pueden o son más dif́ıciles de hacer.

Valgrind incorpora numerosas herramientas DBA, como: memcheck un comprobador
de fallo en asignaciones de memoria; cachegrind un profiler de cachés y de predicciones
de saltos; y helgrind comprobador de errores en threads.

El programador dispone de la información básica para comenzar con Valgrind, pero
con muy pocos ejemplos de cómo manejar la API, que no está prácticamente explicada.
Su licencia de uso es GNU GPL v2.

A lo largo de 2011 se liberaron las versiones 3.6.1 y 3.7.0, la última en noviembre de
2011.

3.3. DynamoRIO

DynamoRIO proviene de la unión de Dynamo, un optimizador de código en ejecución
(desarrollado por HP Labs) junto con The RIO Project, otro optimizador e instrospec-
cionador en tiempo de ejecución (desarrollado por el MIT). Después fue adquirido por
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VmWare y desde 2010 tiene el patrocinio de Google. Está completamente orientado al
desarrollo de aplicaciones usando su API, en comparación con Valgrind que está orienta-
do al uso de sus herramientas. Aunque en la versión actual todav́ıa no se puede vincular
a un proceso en ejecución, se quiere hacer posible para versiones posteriores.

La mayor ventaja que tiene DynamoRIO para los programadores es la facilidad de
uso de su API. Explica claramente cómo hacer una aplicación desde cero, hay muchos
tutoriales, hay una gran multitud de ejemplos de uso y su API está muy bien explicada.
La licencia de uso es BSD-2.

En 2011 se liberaron las versiones 2.1 y 2.2, y la última versión, la 3.1, ha sido
liberada en enero de 2012.

3.4. Similitudes y diferencias entre estos frameworks

Para poder trabajar con todos los frameworks en el mismo entorno de sistema
operativo y arquitectura se ha buscado un punto en común. La Tabla 3.1 resume todas
las opciones con las que se puede trabajar. Las opciones que tienen en común y se
han remarcado en la tabla, son: Linux/x86 y Linux/x64. Entre estas dos opciones, se
continúa el estudio con sistema operativo GNU/Linux funcionando en un procesador
Intel x86.

Pin Valgrind DynamoRIO

Linux/x86 X X X

Linux/x64 X X X

Linux/Itanium X

Linux/PowerPC X

Linux/s390 X

Linux/ARM X X

FreeBSD/x64 X

OS X/x86 X X

OS X/x64 X

Windows/x86 X X

Windows/x64 X X

Android/ARM X

Tabla 3.1: S.O./Arquitecturas soportadas por framework.

A continuación se muestran las similitudes entre ellos. Todos estos frameworks no
necesitan recompilar el ejecutable, o re-enlazarlo, ya que directamente trabajan con el
binario. Hacen la instrumentación en el momento antes de ejecutar una parte, y son
capaces de descubrir código en tiempo de ejecución. Aunque no necesiten el código
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fuente de una aplicación, está recomendado compilar con la opción para que se genere
la información de depuración y sea más sencillo analizar el correcto funcionamiento de
la instrumentación. También recomiendan todos no utilizar en el compilado las opciones
de optimización, ya que en ocasiones se puede observar un comportamiento diferente al
esperado.

Para crear la herramienta/cliente se suele programar en C/C++, con llamadas a la
API del framework y genera o bien una libreŕıa o bien un ejecutable. La forma habitual
de utilizar una herramienta creada con estos frameworks, también es muy similar, suele
ser como sigue:

$ <nucleo de Framework> <herramienta/cliente> <ejecutable a instrumentar>

Esta herramienta/cliente es la que se encargará de la parte de instrumentación donde
puede introducir el código que queramos, o bien sustituir una parte de él. Este código
puede ser en C, C++ o en ensamblador de la arquitectura.

Pin y DynamoRIO trabajan con instrucciones en código máquina de la arquitectu-
ra, pero no como Valgrind, ya que éste traduce de ensamblador a una representación
intermedia independiente de la arquitectura, como se ha comentado en la sección 3.2.

Pin es el único framework que soporta que se pueda vincular a un proceso que ya
esté en ejecución. Esta es una opción muy conveniente porque se puede lanzar la aplica-
ción de forma nativa, sin sobrecargas, y cuando llegue el momento que interese, se lanza
la herramienta de instrumentación. Pin también permite la desvinculación del proceso.

Llegados a este punto se van a mostrar las diferencias entre los frameworks. En ins-
trumentación hay dos modos de uso diferentes: modo just-in-time (JIT) y modo Probe.
La forma más común de modo de ejecución es usar un compilador en modo JIT, que
regenera una copia modificada de un pequeño trozo de instrucciones inmediatamente
antes de ejecutar esas instrucciones. Las instrucciones modificadas son cacheadas desde
donde podrán ser reutilizadas para el resto del tiempo de ejecución. El modo JIT es el
modelo de ejecución más robusto y es con el que se obtiene un mayor rendimiento en las
aplicaciones que reutilizan código (como el basado en bucles) ya que la sobrecarga de
regenerar la copia cacheada puede ser amortizada a través del tiempo de ejecución del
programa. Para programas muy cortos o con pocas iteraciones es más dif́ıcil amortizar
la sobrecarga de la regeneración del código JIT.

En el modo Probe el ejecutable es parcheado en memoria y esta versión modificada
será usada durante el tiempo de ejecución, en vez de una copia cacheada. La sobrecarga
de esta técnica es mucho menor ya que se está ejecutando todo el tiempo código nativo.
Los tres frameworks soportan el modo JIT, pero el modo Probe sólo está soportado por
Pin y DynamoRIO.

Sobre las granularidades comentadas en la seccion 2.1, no todos los frameworks so-
portan las mismas. La Tabla 3.2 resume las granularidades de cada framework de DBI.

Finalmente, en la Tabla 3.3 se resumen las similitudes y diferencias nombradas entre
los tres frameworks de DBI considerados en el estudio.
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Pin Valgrind DynamoRIO

instrucción X X X

bloque básico X X

superbloque X

traza X X

rutina X

imagen X

Tabla 3.2: Granularidades soportadas por framework.

Pin Valgrind DynamoRIO

Fecha última release 11/2011 11/2011 01/2012

Licencia Tipo BSD GNU GPL v2 BSD-2

Código fuente libre X X X

Tipo de herramientas DBA Ligera Pesada Ligera

Lenguaje de programación herramientas C/C++ C/C++ C/C++

Se ejecuta en arquitectura local VEX IR local

Vinculación a procesos en ejecución X

Modo de ejecución JIT/Probe JIT JIT/Probe

Granularidades diferentes 5 2 3

Tabla 3.3: Similitudes y diferencias entre frameworks.
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Caṕıtulo 4

Trabajo relacionado

Este caṕıtulo reúne los trabajos previos en los que se evalúa el rendimiento de
frameworks de DBI.

Uh et al. en [PA06] describen un método para analizar el rendimiento en herramientas
desarrolladas con frameworks de DBI. El método que define hace que sea más fácil
identificar el origen de la sobrecarga para encontrar su causa principal. Se prueban
dos instrumentaciones: cuenta de bloques básicos y adición de instrucciones con acceso
a memoria. Este método se prueba únicamente con Pin. El benchmark que se usa es
SPEC CINT 2000 [Cor06] y la máquina para realizar las pruebas es una máquina IA32,
con un procesador Intel Xeon 2.8Ghz, bajo GNU/Linux 2.4.21, y compilado con gcc
3.3.2. Como resultados, obtienen un método para poder identificar de dónde viene la
sobrecarga durante instrumentación, poder identificar las causas e intentar solucionarlo.

En [Sof07], Guah et al. realizan varios experimentos de rendimiento en instrumenta-
ción con Strata, que es un entorno de ejecución virtual que soporta software dynamic
translation (SDT), esto es, conversión de un juego de instrucciones a otro en tiempo de
ejecución donde posteriormente se pueden instrumentar. En uno de los experimentos se
comprueba el rendimiento de Strata contra Pin, Valgrind y DynamoRIO. Utilizan como
benchmark para medir el rendimiento SPEC CINT 2000. La métrica que utilizan es el
slowdown, que se define como el tiempo de ejecución con instrumentación comparado
con la ejecución nativa. Para esta prueba usan una instrumentación de contar bloques
básicos. Obtienen que el framework más eficientes es Pin con un slowdown de 2,3x, es
decir 2,3 veces más lento que la aplicación sin instrumentar; mientras que DynamoRIO
y Valgrind tiene un slowdown de 4,9x y 7,5x respectivamente.

Fabrice Bellard en [Bel05] hace un experimento para ver el slowdown entre Qemu,
Valgrind y Bochs. El benchmark que se usa es BYTEmark. En los experimentos que
realiza Qemu tiene un slowdown de 4x en operaciones de cálculo entero y de 10x en cálculo
real, comparado con la ejecución nativa. Y comparando Qemu con Bochs y Valgrind es
siempre la opción más rápida, teniendo Bochs un slowdown de 30x y Valgrind de 1,2x.

Ruiz-Alvarez et al. en [RAH08] entre varios experimentos que realizan, hacen pruebas
de rendimiento entre Pin y DynamoRIO. Las pruebas las realizan en dos entornos dife-
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rentes, un Pentium 4 para 32 bit con una caché de trazas, y un Intel Xeon Core 2 para
64 bit con una caché de instrucciones. Ambos con GNU/Linux kernel 2.6.9 (i686 para 32
bit, y x86 64 para 64 bit). El benchmark utilizado es SPEC CINT 2006. Aqúı obtienen
que el slowdown de media de DynamoRIO es 1,22x y el de Pin es 1,45x. Para realizar
las mediciones utilizan los contadores de rendimiento hardware con PAPI y perfex. Lo
que se pretende analizar es el rendimiento de la caché de instrucciones o trazas y otras
estructuras de la microarquitectura.

En [WM08], Weaver et al. describen el uso de herramientas creadas por ellos con
Valgrind, Qemu y la comparan con otra de Pin. Éstas son ejecutadas en 9 máquinas
diferentes con arquitectura IA-32 con Linux. Se usan dos benchmark SPEC CINT 2000
y SPEC CINT 2006. Utilizan los contadores hardware de la CPU para obtener resulta-
dos mediante el interfaz perfmon2. Para la instrumentación usan la cuenta de bloques
básicos. Como conclusiones obtienen que el rendimiento de sus herramientas es similar
a otras ya existentes.

Siempre que se instrumenta existe una sobrecarga que hace que se ejecute más
lento que de forma nativa, en [CKS+08], Chen et al. buscan métodos para hacer que
se ejecute más rápido en instrumentación de grano fino, a nivel de instrucciones. Para
esto se usa el benchmark CPU SPEC INT 2000, y las herramientas DBA Addrcheck,
Memcheck, TaintCheck y Lockset. Primero son instrumentados con Pin para obtener
los accesos a memoria y eventos relacionados con las direcciones. Después, se ejecuta el
benchmark instrumentado con las cuatro herramientas y obtiene un slowdown medio de
3,2x para Addrcheck, 3,3x para TaintCheck, 4,2x para Lockset y finalmente 7,8x para
Memcheck que ha sido programado con Valgrind.

Contribución. Con mi trabajo aporto un benchmark espećıfico para la evaluación
de frameworks de DBI, ya que lo realmente importante en rendimiento es poder compro-
bar cuánto tiempo más tarda una aplicación en ser ejecutada cuando es instrumentada.
Además, se ofrecen dos métodos de instrumentación: por instrucciones, donde se instru-
menta el 100% de las instrucciones ejecutadas; y por bloques básicos, de forma que se
consiga una sobrecarga media. Además muestra la cuenta tanto de bloques básicos como
de instrucciones, que es un dato muy importante en la instrumentación. Como dato final
también se muestra el consumo de memoria, que no es proporcionado por ningún otro
benchmark.
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Caṕıtulo 5

Creación de benchmark

Este caṕıtulo resume las alternativas estudiadas para confeccionar un benchmark
adecuado para la evaluación de rendimiento entre los diferentes frameworks. Finalmente,
se presentan las caracteŕısticas y métodos usados en el benchmark creado.

5.1. Alternativas estudiadas

La primera alternativa era utilizar un benchmark ya existente, por lo que se em-
pezó estudiando benchmarks comerciales. Los primeros estudiados fueron los de Fu-
turemark [Fut10], como 3DMark y PCMark, y aunque éstos son de uso libre, teńıan el
problema de ser únicamente para Windows. Otro benchmark que se estudió fue SysMark
2012, que también es sólo para Windows, de pago y sus aplicaciones entre otras son de
Adobe, Microsoft y Google. Para otros sistemas operativos también estaba TPC, pero
sus benchmarks son de Procesamiento de Transacciones En Ĺınea (OnLine Transaction
Processing, OLTP) en los que principalmente se evalúa una base de datos. PARSEC
[Bie11], era una muy buena opción porque es de uso libre y ofrece el código fuente de sus
aplicaciones, pero es un benchmark centrado en paralelización pensado especialmente
para máquinas multiprocesadoras.

Finalmente, el que mejor se acercaba para comprobar el rendimiento de las herra-
mientas programadas era CPU2006 v1.2 de SPEC [Cor06], con versiones para Windows
y Linux. En este benchmark tienen una máquina de referencia, una Sun Ultra Enterprise
2 de 1997, y el resultado obtenido en el benchmark es normalizado con respecto a esta
máquina. Éste se podŕıa definir como el primero de los problemas, ya que lo que se quiere
comparar es un ejecutable consigo mismo instrumentado. El segundo problema es que
este benchmark no es un producto gratuito. Estos dos problemas motivaron la creación
de un benchmark propio que se presenta a continuación.

5.2. Definición de benchmark

Una definición de benchmark tiene que cumplir una serie de detalles [Cor06]. Habi-
tualmente, los benchmarks realizan un conjunto de operaciones estrictamente definidas:
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una carga de trabajo, y devuelve algún tipo de resultados.

una métrica, describiendo cómo tienen que ser realizadas las pruebas.

La carga de trabajo en este benchmark será siempre la misma por cada ejecutable, y
está preparado para que devuelva siempre el mismo resultado. Lo único importante es
que debe realizar uso intensivo de CPU.

Las métricas de los benchmarks normalmente miden:

velocidad: cómo de rápido se ha realizado la carga de trabajo.

throughput/rendimiento: cuántas unidades de carga de trabajo por unidad de tiem-
po se han completado.

En este benchmark, para generar información interesante, los datos que se esperan
obtener están relacionados con la velocidad y no con el throughput. Lo importante es el
tiempo que le cuesta de más ejecutar una aplicación. Además se estudiarán los requeri-
mientos de memoria de ejecutar aplicaciones instrumentadas.

Para la base de este benchmark se utilizarán bastantes programas usados por
CPU2006. Esto es posible ya que todo el código fuente de estas aplicaciones está disponi-
ble libremente. Además, se aprovechará una parte de la metodoloǵıa, como repeticiones,
intercalado y optimizaciones. En CPU2006, cada aplicación usada se ejecuta con dife-
rentes argumentos y optimizaciones. Al igual que en ese benchmark, cada aplicación
se ejecutará varias veces para obtener una media del tiempo de ejecución. Aunque en
CPU2000 se ejecutaba de forma consecutiva cada prueba, a partir de CPU2006 se ejecu-
tan las pruebas intercaladas, de una forma más real, que es otra parte de la metodoloǵıa
que se usará en este benchmark. Otras opciones más tomadas de CPU2006 son compilar
con diferentes niveles de optimización los ejecutables.

Los resultados de la comparativa se centran en tiempo de ejecución, instrucciones
ejecutadas y el uso de memoria. La medición se realizará varias veces por ejecutable,
y con diferentes niveles de optimización. Primero se ejecutarán sin instrumentar para
conocer el tiempo que le cuesta realizar una tarea. Después se instrumentará para conocer
el tiempo de ejecución, uso de memoria y datos relacionados con la instrumentación.

Además, las instrumentaciones serán realizadas por diferentes frameworks, por lo
que se podrá observar cuál realiza mejor la tarea de instrumentación, el rendimiento en
función de las instrucciones o tiempo de ejecución y qué niveles de optimización pueden
ser mejores para instrumentar.

Las aplicaciones seleccionadas para el benchmark son todas de uso intensivo de CPU,
y se han dividido en cuatro grupos: cálculo entero, cálculo real, gran demanda de E/S y
software de acceso a memoria. Las tablas 5.1-5.4 muestran un resumen de las aplicaciones
seleccionadas. La primera columna indica el nombre más descriptivo de la aplicación,
después la versión utilizada para el benchmark, el lenguaje de programación en el que
están desarrolladas, y el tipo de categoŕıa en que se engloban las aplicaciones. Finalmente,
se indica si esa aplicación ha sido utilizada en algún otro benchmark.

En la Tabla 5.1 hay software en las que las opciones de cálculo son de números
enteros. Se utilizan ficheros de entrada diferentes a los de SPEC para reducir el tiempo
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Nombre Versión Lenguaje Tipo Origen

bzip2 1.0.6 C Compresión SPEC CINT 2006

GNU go 3.8 C IA - Juegos SPEC CINT 2006

hmmer 3.0 C Genética SPEC CINT 2006

h264ref 18.2 C Compresión video SPEC CINT 2006

libquantum 1.0.0 C F́ısica, computación cuántica SPEC CINT 2006

Tabla 5.1: Aplicaciones de cálculo entero.

de ejecución, p.e., una ejecución de bzip2 en este benchmark sin instrumentar dura 20
segundos, y en SPEC CINT 2006 son 848 segundos [NEC08] (42 veces menos).

Nombre Versión Lenguaje Tipo Origen

namd 2.8 C++ Bioloǵıa, simulación de
moléculas

SPEC CFP 2006

povray 3.0 C Renderización SPEC CFP 2006

milc v6 C F́ısica, Cromodinámica
cuántica

SPEC CFP 2006

mlucas 2.8x C Numérica, cálculo de números
primos

SPEC CFP 2000

linpack 29.5.04 Fortran Numérica, multiplicación de
matrices

Linpack benchmark

Tabla 5.2: Aplicaciones de cálculo real.

Para la categoŕıa de software de cálculo real se ha seleccionado software que se puede
ver en la Tabla 5.2. Una parte del software es usado en SPEC CFP 2006 y CFP 2000,
pero se usan ficheros de entrada diferentes para reducir el tiempo de ejecución. También
se utiliza linpack, una libreŕıa de resolución de ecuaciones lineales.

Nombre Versión Lenguaje Tipo Origen

whirlpool 2a Rev C Criptograf́ıa, Hash Propio

ripemd 160 C Criptograf́ıa, Hash Propio

aes 1 C Criptograf́ıa, cifrado Propio

ffmpeg 0.10 C Conversión de formatos vi-
deo/audio

Phoronix Test Suite

Tabla 5.3: Aplicaciones con gran demanda de entrada/salida.

Para este benchmark se han añadido más categoŕıas de las que aparecen en otros
benchmarks, como p.e., aplicaciones que también tuvieran uso intensivo de CPU, pero
no sólo que trabaje en memoria, sino accediendo a disco leyendo un fichero de entrada
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y obteniendo uno de salida de igual tamaño o superior. Este software se puede ver en la
Tabla 5.3. Estas aplicaciones realizan cálculo sobre enteros.

Nombre Versión Lenguaje Tipo Origen

memtester 4.0.5 C Comprobación de memoria
defectuosa

Propio

Tabla 5.4: Aplicaciones de acceso a memoria.

Finalmente, se ha añadido otra categoŕıa más donde el software accediera al subsis-
tema de memoria, se ve en la Tabla 5.4. memtester es una aplicación de uso intensivo
de CPU en cálculo entero.

5.3. Descripción del benchmark

Por cada aplicación que ha sido seleccionada para el benchmark se van a ejecutar un
grupo de pruebas. Este grupo de pruebas se forma con el ejecutable de la aplicación, pero
con diferentes niveles de optimización (-O0, -O3), que después será ejecutado sin instru-
mentar e instrumentado con los diferentes frameworks de DBI. Además se ejecutará 3
veces cada prueba, pero no seguidas, sino alternadas. Esto se hace de forma similar a
SPEC CPU 2006, como se ha comentado en la sección 5.2 no ejecuta consecutivamente
la misma aplicación con las mismas opciones, sino que hay alternancia de ejecución. Otra
diferencia que hay con SPEC CPU 2006 es el fichero de entrada que se utiliza por cada
aplicación, debido al slowdown que aparece en la instrumentación, se usan ficheros que
ofrezcan menos carga de proceso. Esta diferencia puede observarse en el apéndice D.16.

Primero serán ejecutados sin instrumentación y después instrumentados. Se esperan
obtener los siguientes datos:

tiempo de ejecución real y total en segundos

tiempo de ejecución en modo kernel en segundos

tiempo de ejecución en modo de usuario en segundos

número de veces que el proceso ha sido paginado a disco de memoria

porcentaje de uso de la cpu

uso de memoria durante la ejecución

número de instrucciones/bloques básicos ejecutados

Puede haber pruebas que serán repetidas o descartadas, en función de si ha sido uti-
lizado un tiempo de ejecución excesivo o ha sido paginado muchas veces en comparación
con las otras pruebas. Esto es aśı porque las aplicaciones están preparadas para que el
resultado obtenido de ellas sea siempre el mismo, por lo que se espera que su ejecución
dure aproximadamente lo mismo. Para esto se utilizarán intervalos de confianza.
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5.4. Herramientas para el benchmark

En el benchmark se van a realizar dos herramientas con diferentes tipos de instru-
mentación:

A nivel de instrucción

A nivel de bloque básico

Con la primera herramienta, instrumentación a nivel de instrucción, se quiere conse-
guir el máximo slowdown. Esto es aśı porque en la parte de la instrumentación, donde
se decide en qué punto se inserta la instrumentación, se instrumentan todas las instruc-
ciones. De esta forma, por cada instrucción ejecutada, también se ejecutará el código
añadido, que es incrementar un contador. Al finalizar la ejecución se devuelve el resul-
tado del contador total de instrucciones ejecutadas. Esta herramienta se ha desarrollado
con los tres frameworks de DBI: Pin, Valgrind y DynamoRIO.

Con la segunda herramienta, instrumentación a nivel de bloque básico, se quiere con-
seguir una sobrecarga media. En la mayoŕıa de art́ıculos que evalúan frameworks de
DBI como [PA06], [Sof07] y [WM08] utilizan este método. En la parte de instrumenta-
ción, se instrumentan todos los bloques básicos. Por cada bloque básico ejecutado, se
ejecutará el código añadido, que es incrementar un contador. Al finalizar la ejecución se
muestra la suma del número total de bloques básicos ejecutados. Esta herramienta se ha
desarrollado también con los tres frameworks de DBI: Pin, Valgrind y DynamoRIO.

5.5. Mediciones en el benchmark

En esta sección se van a describir los métodos que utiliza el benchmark para medir
el tiempo de ejecución y el consumo de memoria de una aplicación instrumentada y sin
instrumentar.

5.5.1. Tiempo

Todas las pruebas se hacen con el comando /usr/bin/time, diferente de la variante
integrada en la shell time, parte del intérprete de comandos. Esta es una forma básica
de medir el tiempo que tarda en ejecutarse un programa. Ofrece el tiempo real desde
que inicia hasta que acaba y además el tiempo que realmente se está ejecutando en la
CPU, distinguiendo entre el código de usuario y sus llamadas al sistema.

La mayoŕıa de la información ofrecida por /usr/bin/time está derivada de la llamada
al sistema wait3 o wait4, con lo que los datos obtenidos serán tan buenos como los que
pueda ofrecer esta llamada. En los sistemas que no esté disponible se usa la llamada times
que ofrece mucha menos información. En el sistema donde se ejecutará el benchmark la
llamada al sistema usada es wait4.
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5.5.2. Memoria

Para medir el consumo de memoria, el benchmark ejecuta un proceso en back-
ground después de lanzar la aplicación a evaluar. Este proceso se encarga de revisar
en /proc/<pid de la aplicación>/status el consumo en el campo VmPeak que con-
tiene el pico de memoria utilizada.

Para definir el intervalo en el que se consulta el consumo se usaron valores inferiores a
1 segundo, y se fue aumentando una vez que se pudo comprobar que en las aplicaciones
no se incrementaba el consumo de memoria en el último intervalo por encima del valor
de pico.
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Caṕıtulo 6

Experimentos

En este caṕıtulo se resumen los experimentos realizados con el benchmark, comenzan-
do por la definición del entorno de pruebas y mostrando los resultados con un análisis
cŕıtico.

Se ha utilizado un equipo con procesador Intel Core 2 Duo T7300 a 2 Ghz, 2 GiB
de memoria RAM, S.O. Fedora Core 14 con kernel 2.6.35.14-106.fc14.i686.PAE. Se le
ha deshabilitado al equipo uno de los cores para evitar que ciertas aplicaciones lanzaran
más de un proceso a la vez, y que el tiempo de CPU se encontrara en valores cercanos
al 190%. En las Tablas 6.1 y 6.2 se resume el hardware y software, respectivamente,
utilizado para la realización del experimento.

Nombre CPU Intel R©CoreTM2 Duo CPU T7300

Caracteŕısticas 2.00 GHz, 667 MHz bus

CPU(s) 2 cores, 1 desactivado.

Caché primer nivel 32 KiB I + 32 KiB D por core

Caché segundo nivel 4 MiB I+D

Memoria RAM 2 GiB (2x1 GiB DDR2 SODIMM 667 Mhz)

Disco Duro 120 GB HITACHI HTS54161

Tabla 6.1: Hardware utilizado en las pruebas.

Sistema Operativo Fedora Core 14 32bit

Compilador C gcc (GCC) 4.5.1 20100924 (Red Hat 4.5.1-4)

Compilador Fortran GNU Fortran 4.5.1

Sistema de ficheros ext4

Nivel sistema Run level 3 (multiusuario)

Tabla 6.2: Software utilizado en las pruebas.

Las versiones de los frameworks de DBI que se han utilizado han sido Pin v.2.10,
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Valgrind v.3.7.0 y DynamoRIO v.2.2.0-2.

6.1. Entorno de pruebas

En los experimentos se quiere que el resto de procesos que están funcionando en la
máquina afecten lo mı́nimo posible, por lo que para que se tengan los mı́nimos procesos
funcionando se iniciará la máquina en nivel 3 (multiusuario con red).

Una vez reiniciada la máquina en ese nivel no se tendrá ningún proceso relacionado
con el gestor de escritorio o salvapantallas que pueda influir durante la ejecución del
benchmark. En este momento y conectado remotamente por ssh se inicia el benchmark.

Mientras se ejecuta, se puede ver por el terminal el programa del benchmark que se
está ejecutando, si lo hace sin instrumentar o con cúal está instrumentado, el número
de repetición de la prueba y si es el benchmark de instrucciones o de bloques básicos. El
benchmark genera un fichero de log y un fichero de valores delimitados por comas (csv)
en el que se puede encontrar el tiempo real de ejecución, el tiempo en modo kernel, el
tiempo en modo de usuario, los fallos de página, el porcentaje de CPU usado y la ĺınea de
comando. Como datos adicionales se encuentran el consumo de memoria por proceso y
el número de instrucciones o de bloques básicos ejecutados por aplicación instrumentada
en el log.

6.2. Resultados

Se ha visto previamente en [LCM+05] y [NS07] que la instrumentación provoca una
ralentización de la ejecución del programa instrumentado. Aqúı, se va a observar la
eficiencia de cada framework de DBI intentando inferir cuál es el más adecuado según
sea el tipo de aplicación que se va a instrumentar.

La Figura 6.1 muestra los resultados de tiempo de ejecución para la aplicación
h264ref, una aplicación de conversión de audio y v́ıdeo. Como se ha dicho previamente,
una de las caracteŕısticas de la instrumentación es que provoca una ralentización de la
ejecución, y aqúı se comprueba. Es la prueba más lenta de todas una vez instrumentada.
Bajo Valgrind llega a durar 2615 segundos en la versión sin optimizar del ejecutable, y
918 segundos en la optimizada, cuando sin instrumentar son 175 segundos sin optimizar
y 52 segundos optimizada. Aunque en relación al slowdown (la relación entre el tiempo
de ejecución instrumentado y sin instrumentar), ésta no es la peor aplicación de todas:
bajo Valgrind se obtiene 11,2x sin optimizar, y 17,43x optimizada.

En la Figura 6.2 se muestra el slowdown de la aplicación ffmpeg instrumentada por
los tres frameworks en ambas optimizaciones en la instrumentación por instrucciones.
Esta es la aplicación que mayor slowdown presenta. Como en la aplicación anterior,
h264ref, el mayor slowdown se tiene bajo la instrumentación de Valgrind, que en sus
versiones sin optimizar y optimizada tiene una ratio de 34,6x y 35,38x respectivamente.

No sólo lo más importante es que tarde más tiempo, sino el número de veces que se
puede llegar a ejecutar más lenta una aplicación. Revisando el slowdown de todas las
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Figura 6.1: Tiempo de ejecución de la aplicación h264ref con instrumentación por ins-
trucciones y optimizaciones.
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Figura 6.2: Slowdown en el benchmark de ffmpeg con instrumentación por instrucciones
y optimizaciones.
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aplicaciones individualmente, y el tiempo de ejecución de ellas (p.e., Figura 6.1) se puede
comprobar que la opción más lenta es Valgrind.
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Figura 6.3: Slowdown medio en el benchmark usando instrumentación por instrucciones.

En la Figura 6.3 se puede ver el slowdown medio por framework de DBI, dividido
entre las aplicaciones de cálculo entero y las de cálculo real. Individualmente Valgrind
es siempre la opción más lenta y como se puede comprobar en esta figura también lo
es en las medias. Otra conclusión que podemos obtener es que, independientemente del
framework que se use, todos son más eficientes que Valgrind en cálculo real. También se
comprueba en la misma tabla que las aplicaciones serán más rápidamente instrumentadas
con DynamoRIO, tanto en cálculo entero, como real y con ambas optimizaciones usadas
en la compilación. Además, se observa que la optimización no mejora el slowdown en
general, salvo en Valgrind y DynamoRIO en cálculo real.

El consumo medio de memoria de las aplicaciones instrumentadas separadas por fra-
mework se puede ver en la Figura 6.4, donde se puede comprobar que el framework que
menor consumo ofrece es Pin, tanto en cálculo real como en entero. Prácticamente no
hay diferencia entre el tipo de cálculo que se haga ni en si se ha optimizado el ejecutable
o no.

Otro dato importante de la Figura 6.4 es que el consumo de memoria de la aplicación
instrumentada no es proporcional a la memoria consumida sin instrumentar, sino que
parece un incremento lineal. En la Tabla 6.3 se puede ver la media del consumo de la
herramienta DBA restándole el consumo de la aplicación instrumentada y la desviación
media. No deja lugar a dudas que el consumo de DynamoRIO, aunque sea el más elevado
de todos, es prácticamente fijo independientemente de la aplicación instrumentada por
lo que será un dato muy importante a tener en cuenta para casos en los que se puedan
tener restricciones de memoria, como p.e., un sistema empotrado. Sin embargo la opción
de Pin será la más eficiente respecto al consumo de memoria y Valgrind, aunque no sea
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Figura 6.4: Consumo medio de memoria de las aplicaciones.

Framework Media consumo (kiB) Desviación media (kiB)

Pin -O0 39885 3113

Valgrind -O0 53033 3736

DynamoRIO -O0 132478 73

Pin -O3 40871 4006

Valgrind -O3 52789 3535

DynamoRIO -O3 132475 72

Tabla 6.3: Consumo medio de memoria por Framework.
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la mejor también será una buena opción debido a que el consumo es inferior a la mitad
de DynamoRIO.
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Figura 6.5: Slowdown en instrumentación por instrucciones y por bloques básicos por
frameworks y optimizaciones.

En la Figura 6.5 se comparan los slowdown que aparecen en los tres frameworks de
DBI, para todas las optimizaciones y para las instrumentaciones de instrucciones y de
bloques básicos. Se puede comprobar que una instrumentación más ligera produce menos
slowdown en cualquier tipo de aplicación.

A partir de lo visto en la Figura 6.5 se ha decidido hacer la Tabla 6.4 con los slowdowns
relativos entre instrumentación por instrucciones y bloques básicos. Se muestra que el
menor slowdown aparece en Valgrind en ambas optimizaciones, y los peores resultados
se obtienen en Pin con optimización -O0 y en DynamoRIO con optimización -O3.

Pin Valgrind DynamoRIO Pin Valgrind DynamoRIO
-O0 -O0 -O0 -O3 -O3 -O3

Slowdown 4.29 2.81 3.76 3.54 2.29 4.03

Tabla 6.4: Slowdown relativo entre instrucciones y bloques básicos.

Y lo más importante respecto a rendimiento que también se puede comprobar en la
Figura 6.5 es que la opción más eficiente al instrumentar siempre es DynamoRIO.
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Caṕıtulo 7

Conclusiones y trabajo futuro

Este caṕıtulo presenta algunas conclusiones obtenidas de la elaboración de este PFC.
Además, plantea el trabajo futuro.

La instrumentación dinámica de ejecutables ofrece soluciones necesarias y muy intere-
santes pero ofrece un rendimiento muy bajo, en comparación con la ejecución nativa.
Cada framework intenta resolver este problema para venderse a śı mismo como la mejor
opción de todas.

Este proyecto ha buscado unos criterios para la selección de diferentes frameworks de
DBI y ha hecho una comparativa a nivel de impacto en rendimiento. Los tres frameworks
que se han seleccionado han sido Pin, Valgrind y DynamoRIO. Para evaluar el rendi-
miento, se han seleccionado un conjunto de 15 aplicaciones, 10 de cálculo entero y 5 de
cálculo real, para la creación de un benchmark. Para este benchmark se han programado
dos herramientas con diferente granularidad de instrumentación: a nivel de instrucción y
a nivel de bloque básico. Se han hecho tres versiones de cada herramienta programadas
con cada uno de los frameworks de DBI.

Entre los datos más importantes, se ha evaluado el tiempo de ejecución de la apli-
cación en dos versiones diferentes (sin optimizar, -O0, y optimizada, -O3), y para cada
una de estas dos versiones ejecutándose de forma nativa e instrumentada bajo los tres
frameworks con las herramientas programadas.

Según los resultados obtenidos, la peor opción en rendimiento en todos los casos es
Valgrind, y además con un slowdown, la relación entre el tiempo de ejecución instrumen-
tado y sin instrumentar, muy superior a los otros dos frameworks de DBI. Según se ha
podido comprobar en el trabajo relacionado desde las primeras versiones de Valgrind,
su rendimiento es bastante malo y no lo están mejorando.

Sobre las optimizaciones, se ha comprobado que sin optimizar el que mejor rendi-
miento tiene es DynamoRIO, y una vez que se optimiza sigue siendo la mejor opción.
También independientemente del tipo de cálculo principal realizado por el ejecutable, el
que mejor rendimiento ofrece es DynamoRIO.

Sin embargo, un dato importante que no aparece en los trabajos relacionados es el
consumo de memoria de la aplicación una vez instrumentada. Indirectamente está relacio-
nado con el rendimiento, porque la falta de memoria f́ısica e incremento de la paginación
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a disco puede suponer un detrimento del rendimiento. En la plataforma en la que se
realiza el estudio, x86 bajo GNU/Linux, no es únicamente de servidores, ni equipos de
escritorio, sino que engloba a multitud de equipos empotrados, que suelen incorporar
una cantidad de memoria pequeña. En los resultados se ha visto que el framework de
DBI más eficiente, DynamoRIO, también es el que más memoria consume, pero según
la desviación media vista en la Tabla 6.3, la memoria que consume de más se podŕıa
llegar a estimar. El framework de DBI que menos memoria consume y es la opción más
recomendada para un equipo con poca memoria es Pin.

Otra de las conclusiones es que no se instrumentan la misma cantidad de instruc-
ciones en los tres frameworks de DBI seleccionados. Se ha estudiado el funcionamiento
paso a paso de la carga de un ejecutable por los frameworks de DBI en los problemas
encontrados. Es importante conocerlo para comprobar la correcta funcionalidad de las
herramientas programadas.

A continuación se exponen algunos trabajos futuros que completaŕıan o ampliaŕıan
el trabajo desarrollado en este PFC:

Uso de Linux Performance-Monitoring Driver para la monitorización de los
ejecutables del benchmark, como en [RAH08] y [WM08]. Utilizando este driver del
kernel se podŕıa obtener información del número de instrucciones ejecutadas por
aplicación sin necesidad de instrumentarlas. De esta forma se podŕıa comparar el
número de instrucciones ejecutadas por framework de DBI con las de una aplicación
ejecutada de forma nativa.

Uso de Intel R© VTuneTM Amplifier XE [Int12] para la medida de tiempo e
instrucciones. Utilizando esta aplicación, que también modifica el kernel, se ob-
tendŕıa de manera fácil el tiempo de ejecución de cada aplicación, las instrucciones
ejecutadas y el consumo de memoria, tanto para aplicaciones nativas como instru-
mentadas.

Ampliar el estudio a más frameworks de DBI. Una vez que se ha definido
un método para comparar el rendimiento de frameworks de DBI, se puede ampliar
a otros para tener un estudio más completo.

Comparar en más detalle las APIs y las herramientas que llevan los
frameworks de DBI. Como dicen Nethercote et al. en [NS07] sobre Valgrind, a
pesar de que es el framework con menos rendimiento, no sólo hay que fijarse en el
rendimiento sino en las capacidades de la instrumentación y las herramientas que
han sido programadas con ellos.

Ampliar las aplicaciones del benchmark. Para comprobar el rendimiento de
los frameworks de DBI en un mayor número de aplicaciones.

En un ámbito más personal, mi valoración de este PFC es muy positiva, puesto que
además de alcanzarse con éxito los objetivos del proyecto, me ha permitido conseguir
una enriquecedora experiencia sobre la instrumentación y frameworks de DBI, además
de mejorar mi conocimiento sobre la depuración y el formato de los ficheros ejecutables.
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[WM08] Vincent M. Weaver and Sally A. McKee. Using dynamic binary instrumen-
tation to generate multi-platform simpoints: methodology and accuracy. In
Proceedings of the 3rd international conference on High performance embed-
ded architectures and compilers, HiPEAC’08, pages 305–319, Berlin, Heidel-
berg, 2008. Springer-Verlag.

33
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Apéndice A

Fases de Desarrollo

A.1. Diagrama de Gantt

En este apéndice se describe la distribución temporal de cada una de las etapas de este
proyecto. La figura A.1 muestra el Diagrama de Gantt donde se reflejan las diferentes
tareas realizadas y la figura A.2 el tiempo dedicado a su desarrollo, que ha sido de 410
horas y se puede ver detallado en la Tabla A.1.

Figura A.1: Diagrama de gantt.

Primero se realizó una búsqueda de información sobre DBI, ya que no se poséıan cono-
cimientos previos. Se buscó información sobre la instrumentación y sus diferentes tipos,
análisis estático, dinámico, DBI, frameworks de DBI y trabajos previos relacionados con
rendimiento para frameworks de DBI.

Una vez que se encontró información suficiente, se procedió a la selección de frame-
works de DBI, donde el procedimiento que se realizaba para cada uno era: descarga del
código fuente del framework, compilación, instalación y prueba de funcionamiento. Una
vez que se llegaba a este punto, se estudiaba el API y se proced́ıa a programar una
herramienta básica.

Se hizo un estudio sobre los benchmarks existentes y de cómo se pod́ıan llegar a usar
en el desarrollo de este PFC. Se comprobó que no hab́ıa ninguno que encajara y se
desarrolló uno nuevo.
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Sección A.1 A. Fases de Desarrollo

Para la creación de este benchmark primero se buscaron aplicaciones y se desarrollaron
metodoloǵıas para la ejecución de las aplicaciones de prueba. Se buscaron diferentes
métodos para medir el tiempo de ejecución de las aplicaciones y el consumo de memoria
de estas. Una vez finalizado este proceso se realizaron las pruebas con el benchmark para
obtener los resultados para este PFC.

La memoria del proyecto se ha ido realizando poco a poco, desde el principio del pro-
yecto. Se fue completando al final con los resultados y conclusiones de los experimientos
realizados.

Benchmarks

Problema instrucciones

Documentación memoria

Trabajo con Frameworks

Reuniones

Busqueda información

Reuniones

Busqueda información

Trabajo con Frameworks

Problema instrucciones

Benchmarks

Documentación memoria

Figura A.2: Horas dedicadas.

Tareas Horas

Reuniones 20
Búsqueda de información 75
Trabajo con frameworks 95

Problema contado de instrucciones 55
Estudio y creación de benchmark 60

Documentación memoria 105

Total 410

Tabla A.1: Horas dedicadas.
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Apéndice B

Problemas encontrados

En este caṕıtulo se resumen las dificultades más destacables que han ido apareciendo
durante la realización de este proyecto.

B.1. Cuenta de instrucciones

Al principio del estudio se hicieron pruebas para verificar el funcionamiento de los fra-
meworks de DBI. La primera herramienta se dedicaba a contar instrucciones ejecutadas
en Pin, Valgrind y DinamoRIO. Se esperaba que el resultado de las tres instrumentacio-
nes fuera exactamente el mismo número de instrucciones. Para esto se creó un programa
en C que calculaba el factorial de un número. Los resultados fueron que, para instru-
mentar el comando $ factorial >/dev/null, se obteńıan 99094 instrucciones en Pin,
120014 en Valgrind y 10150 en DynamoRIO.

Debido a esto, se hicieron pruebas con más ejecutables para ver si exist́ıa algún tipo
de correlación y los resultados son los que aparecen en la Tabla B.1. Son datos que no
tienen ninguna relación entre ellos, por lo que se procedió a estudiar paso a paso el
funcionamiento de las herramientas programadas.

Pin Valgrind DynamoRIO

xfsinfo 269699 298295 25581

ls 443104 474249 103596

xeyes 875730 920633 223912

cat 219189 242386 63354

Tabla B.1: Instrucciones contadas por framework de DBI.

El primer paso fue sacar las primeras instrucciones de la aplicación instrumentada,
junto con su traza, para ver que instrumenta y cuenta la herramienta, para después
compararlas con las que aparecen en un debugger. Para esto, primero se desensambló el
ejecutable con $ objdump -d ./factorial y aśı ver cuáles son las instrucciones en
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ensamblador y sus direcciones. Aunque en Pin y Valgrind las primeras instrucciones
coincid́ıan, en DynamoRIO no era aśı.

Buscando más información, se obtuvo que DynamoRIO no soporta early injection
(no instrumenta desde la primera instrucción). Además DynamoRIO necesita que el
ejecutable esté enlazado dinámicamente, y cambia el proceso de carga de la aplicación:
en vez de utilizar el loader del sistema utiliza uno privado y carga sus libreŕıas después de
las de la aplicación. En Linux comienza la instrumentación cuando DynamoRIO vuelve
de la inicialización de las libreŕıas dinámicas (exactamente cuando deja la dirección de
retorno en la pila). Si el ejecutable no está enlazado dinámicamente, no puede cargar sus
libreŕıas y no puede instrumentar. Debido a esta limitación, en aplicaciones pequeñas,
el número de instrucciones que instrumenta es de un orden de magnitud menor. En la
versión para Windows śı soporta early injection.

El segundo problema que apareció fue que en la traza de direcciones las instrucciones
eran las mismas, pero cada vez que se ejecutaba, las direcciones eran diferentes. Esto
es debido a que a partir de la versión 2.6 del kernel de Linux tiene activado por de-
fecto y por motivos de seguridad Virtual Address Space Randomization. Se soluciona
deshabilitándolo con el siguiente comando:

# echo 0 > /proc/sys/kernel/randomize_va_space

En el momento que las direcciones eran las mismas, se estudió el proceso de carga de
un ejecutable bajo GNU/Linux. Cuando se invoca un ejecutable, el kernel lo carga en
memoria virtual del espacio de usuario, después en la sección .interp busca cúal es el
cargador dinámico a utilizar (p.e., /lib/ld-linux.so.2) y lo inicializa, cargando des-
pués todas las bibliotecas dependientes (p.e., libc), resuelve los śımbolos, y finalmente
transfiere la ejecución al ejecutable original para comenzar su ejecución [Jon08]. Debido
a esto, cada vez se instrumenta un ejecutable con la opción para dar la traza de las
instrucciones, en vez de comenzar la ejecución en la dirección de inicio (start address)
que se obtiene con objdump comienza en otra previa.

$ objdump -f factorial

prx2: file format elf32-i386

architecture: i386, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x08048310

Para poder hacer una comparación más sencilla, se decide compilar el programa de
prueba sin enlazar dinámicamente. Además, para tener más información de lo que se
está ejecutando antes del inicio se compila con las libreŕıas estándar de C estáticas
con información de depuración (paquete glibc-debuginfo-2.13-2). Los parámetros a
utilizar en la compilación son:

Con información de depuración del programa (-g)

Uso de glibc con información de depuración(-L/usr/lib/debug/usr/lib)
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En estático (-static) para que no incluya libreŕıas externas.

Una vez realizada esta operación sobre el ejecutable, cuando se instrumenta, las ins-
trucciones ejecutadas bajo Pin son 14223 y bajo Valgrind 14572. Hay 349 instrucciones
de diferencia que se va a averiguar qué hacen y por qué se ejecutan en uno y no en el
otro.

Siguiendo la traza de instrucciones, se comprueba que la diferencia de éstas corres-
ponde a que el valor de los vectores de entorno (envp) y de los vectores auxiliares (auxv)
son diferentes en ambas ejecuciones. En envp aparecen variables de entorno diferentes
que son añadidas por los scripts de inicio de Pin y Valgrind, cada variable de entorno es
evaluada individualmente en el proceso de carga del ejecutable, por lo que afecta el tener
más o menos variables de entorno a las instrucciones ejecutadas. En auxv se encuentra
la diferencia: en Pin se pasan valores para AT SYSINFO y AT SYSINFO EHDR, pero para
Valgrind no, por lo que primeramente afecta al procesamiento del vector ya que son
de tamaño diferentes y después en esos valores está el puntero al Virtual Dynamically-
linked Shared Objects (VDSO), que es la forma actual de hacer llamadas al sistema. En
este método de llamadas al sistema se utilizan las instrucciones sysenter/sysexit y
previamente se utilizaban interrupciones software con int 0x80.

La primera conclusión que se obtiene es que con un ejecutable enlazado dinámi-
camente, el proceso que realiza el cargador dinámico, incluyendo la carga de libreŕıas,
se realiza de forma diferente entre Pin y Valgrind. La segunda conclusión es que las
variables de entorno afectan directamente al número de instrucciones ejecutadas. Y la
tercera conclusión y más importante de todas es que las llamadas al sistema son rea-
lizadas de forma diferente entre Pin y Valgrind. Por este motivo, nunca se ejecutará el
mismo número de instrucciones para el mismo programa instrumentado por diferentes
frameworks.

La única forma que se ha encontrado para que se cuenten el mismo número de instruc-
ciones entre distintos frameworks ha sido programándolo directamente en ensamblador.
Compilando un programa que sólo teńıa 12 instrucciones, el funcionamiento en Pin y
Valgrind era correcto y contaban sin ningún problema. Sin embargo, DynamoRIO no
pod́ıa instrumentar este ejecutable en ensamblador porque no era un ejecutable enlaza-
do dinámicamente.

En aplicaciones con un número alto de instrucciones puede llegar a haber muy po-
ca diferencia, como se ha comprobado en este PFC y se puede ver en la Tabla B.2,
que muestra el número de instrucciones ejecutadas para las aplicaciones whirlpool y
memtester optimizadas.

Pin Valgrind DynamoRIO

whirlpool -O3 74222379297 74222385145 74222287028

memtester -O3 241201530296 241201536828 241201371000

Tabla B.2: Instrucciones contadas para las aplicaciones whirlpool y memtester
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B.2. Fallo en ejecución

Durante la ejecución del benchmark ha aparecido un fallo con la aplicación mlucas.
Como de todas las aplicaciones que hay en el benchmark se dispone del código fuente,
a partir de los mensajes de salida del fallo y de todo el código que se encontraba a su
alrededor, se ha podido hacer un pequeño programa de prueba capaz de repetir el fallo.

#include <stdio.h>

int main(int argc, char **argv)

{

double RND_A,RND_B,prueba;

prueba= 5.4321;

RND_A = 3.0*0x4000000*0x2000000*0x800;

RND_B =12.0*0x2000000*0x1000000*0x800;

printf("INFO: using 80-bit-double form of rounding constant\n");

printf("prueba: %20.15f RND_A: %20.15f RND_B: %20.15f\n",prueba,

RND_A, RND_B);

if( ((prueba+RND_A)-RND_B) != 5.0 )

{

printf("INFO:prueba=%20.15f, rnd(prueba)=%20.15f\n",prueba,

(prueba+RND_A)-RND_B);

printf("ERROR 30 in util.c\n"); return(1);

}

return 0;

}

Según el programa original para hacer el redondeo de una variable usa la función
rnd(). Lo que hace esta función es, a partir de un número real sumar y restar dos
constantes de redondeo, suma el valor RND A y resta el valor RND B, ambos valores son
iguales pero calculados de forma diferente. Y el comportamiento esperado es que el
resultado final sea la parte entera del número real a redondear. El número que se va a
redondear es 5.4321. El programa se comporta de esta manera sin instrumentar y bajo
la instrumentación de Pin y DynamoRIO.

$ pruebafallo

INFO: using 80-bit-double form of rounding constant

prueba: 5.432100000000000 RND_A: 13835058055282163712.000000000000000

RND_B: 13835058055282163712.000000000000000

Sin embargo, bajo la ejecución en Valgrind el resultado no es el esperado:

$ valgrind pruebafallo

==2503== Memcheck, a memory error detector

==2503== Copyright (C) 2002-2011, and GNU GPL’d, by Julian Seward et al.
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==2503== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info

==2503== Command: ./pruebafallo

==2503==

INFO: using 80-bit-double form of rounding constant

prueba: 5.432100000000000 RND_A: 13835058055282163712.000000000000000

RND_B: 13835058055282163712.000000000000000

INFO: prueba = 5.432100000000000, rnd(prueba) = 0.000000000000000

ERROR 30 in util.c

La condición del IF ya no falla, no se ha hecho bien el redondeo. Por este motivo
falla mlucas en la prueba inicial de comprobación de funcionamiento y ya no sigue
ejecutándose. En el programa original los dos valores reales con los que se haćıa esta
comprobación eran 1

√

2
y 2× π , cuyas partes enteras son 1 y 6 respectivamente.

Al ir a abrir un bug sobre este fallo, éste ya estaba abierto, y reportado múltiples veces
por diferentes usuarios. El problema es que Valgrind no puede trabajar con números de
80 bits en las arquitecturas x32 y x64.

El bug se puede ver en https://bugs.kde.org/show_bug.cgi?id=197915
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Apéndice C

Aplicaciones usadas en el

benchmark

En este apéndice se muestra todo el software que ha sido utilizado para la creación del
benchmark, junto con detalles de cada uno, los ficheros de entrada y de salida generados.

C.1. bzip2

Versión: 1.0.6
Categoŕıa: Compresión de datos
Tipo de cálculo realizado: Entero
Descripción: Es un compresor de datos de alta calidad, libre de patentes y libremente
disponible. Tı́picamente comprime ficheros entre un 10% y un 15% más que con otros
tipos de compresores, y es alrededor de dos veces más rápido en compresión y seis veces
más rápido descomprimiendo.
Entrada: Se comprimirán de una única ejecución los siguientes ficheros: texto.txt, con
texto en plano; libre1.odt y libre2.ods, ficheros de libreoffice; audio1.mp3 y audio1.wav,
ficheros de audio; video1.mpg y video1.mkv, ficheros de video en SD y HD; comprimi-
do1.gz y comprimido1bz2, ficheros comprimidos con gzip y bzip2.
Salida: Como resultado en vez de guardarse en uno o varios ficheros se ha redirigido a
la salida estándar stdout y esta a \dev\null para que no escribiera en disco y obtener
mayor eficiencia.
Página web: bzip.org
Autor: Julian Seward
Usada en: SPEC CINT 2006
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C.2. GNU go

Versión: 3.8
Categoŕıa: Inteligencia Artificial - Juegos
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Programa que analiza jugadas del juego Go.
Entrada: Fichero de jugadas del tipo “SmartGo Format” (.sgf) con el fichero
game001.sgf que contiene una partida jugada en un tablero de 9x9, por Miyamoto
Naoki y Go Seigen en 1968 .
Salida: Descripción en texto plano de las jugadas realizadas y el porcentaje con que la
aplicación hubiera realizado esa jugada.
Página web: http://www.gnu.org/software/gnugo/gnugo.html
Autor: Man Lung Li et Al.
Usada en: SPEC CINT 2006

C.3. hmmer

Versión: 3.0
Categoŕıa: Genética
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Busca una protéına en una base de datos. Usa el modelo de perfiles
de Markov ocultos (HMMs) como modelos estad́ısticos, que es usado en bioloǵıa
computacional para buscar patrones en secuencias de ADN.
Entrada: Se indica la protéına a buscar, goblins50 de 143 moléculas en el fichero
globin.hmm y la base de datos donde tiene que hacerlo sprot41.dat

Salida: Genera cuatro ficheros donde se indican las coincidencias encontradas.
Página web: http://hmmer.janelia.org/
Autor: Sean Eddy et Al.
Usada en: SPEC CINT 2006

C.4. libquantum

Versión: 1.0.0
Categoŕıa: F́ısica, computación cuántica
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Es una libreŕıa en C para simulación de mecánica cuántica, especializada
en computación cuántica. Comenzó por ser un simulador de un computador cuántico
puro, y se le ha añadido recientemente simulación cuántica genérica. Basado en los
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principios de la mecánica cuántica, ofrece una implementación de un registro cuántico.
Están disponibles las operaciones básicas para manipulación de registros como la puerta
Hadamard o la puerta Controlled-NOT mediante un sencillo interfaz. Las medidas se
pueden realizar en qubits sencillos o en un registro cuántico completo. Se ejecutará una
aplicación que desarrolla el algoritmo de grover.
Entrada: Se le indica un número a buscar y el número de qubits a utilizar
Salida: Después de un número de iteraciones, devuelve la probabilidad con la que ha
encontrado el número.
Página web: http://www.libquantum.de/
Autor: Björn Butscher y Hendrik Weimer.
Usada en: SPEC CINT 2006

C.5. h264ref

Versión: 18.2
Categoŕıa: Compresión y conversión de video y audio.
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Software de conversión de formatos de video y audio. Utiliza los codecs
H.264/AVC.
Entrada: Se codifica el fichero foreman cif.yuv, una secuencia de imágenes en formato
YUV420, a una resolución de 352x288.
Salida: Se genera el fichero foreman cif.264 en formato H.264.
Página web: http://iphome.hhi.de/suehring/tml/
Autor: Karsten Sühring et Al.
Usada en: SPEC CINT 2006

C.6. ripemd

Versión: 160
Categoŕıa: Criptograf́ıa, Hash
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: RACE Integrity Primitives Evaluation Message Digest (RIPEMD-160)
es un algoritmo de hash o resumen de mensaje desarrollado en la Universidad Católica
de Lovaina (Bélgica).
Entrada: Se usa el fichero sprot.rmd que contiene la suma de los ficheros sprot41.dat
usado para la aplicación hmmer de 419MB y sprot.whi usado para la aplicación
whirlpool de 209MB.
Salida: Se obtienen 40 d́ıgitos en hexadecimal correspondientes al resumen del mensaje.
Página web: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
Autor: Hans Dobbertin, Antoon Bosselaers y Bart Preneel
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Usada en: Origen propio, no es usado en benchmarks conocidos.

C.7. aes

Versión: 1
Categoŕıa: Criptograf́ıa, cifrado.
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Advanced Encryption Standard AES es un algoritmo de cifrado simétrico.
Fue adoptado por el gobierno de los Estados Unidos de América en 2001, después de un
proceso en el que se evaluaron diferentes algoritmos de cifrado que duró 5 años. Esta
evaluación se hizo para sustituir al algoritmo Data Encryption Standard DES.
Entrada: Se indica la contraseña para cifrar y el fichero a utilizar es sprot41.dat, que
tiene un tamaño de 419MB, usado para la aplicación hmmer
Salida: Se obtiene el fichero cifrado, pero es redirigido a la salida estándar stdout y
esta a \dev\null para que no escribiera en disco y obtener mayor eficiencia.
Página web: http://csrc.nist.gov/archive/aes/index.html
Autor: Vincent Rijmen, Joan Daemen
Usada en: Origen propio, no es usado en benchmarks conocidos.

C.8. whirlpool

Versión: 2a Revisión
Categoŕıa: Criptograf́ıa, hash
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: es un algoritmo de hash o resumen de mensaje desarrollado por uno de
los autores de AES, y de este algoritmo toma ciertos detalles para su funcionamiento.
Entrada: Se usa el fichero sprot.whi que contiene los primeros 209MB del fichero
sprot41.dat usado para la aplicación hmmer
Salida: Proporciona un hash de 512-bit y se representa con 128 d́ıgitos hexadecimales.
Página web: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
Autor: Vincent Rijmen y Paulo S. L. M. Barreto,
Usada en: Origen propio, no es usado en benchmarks conocidos.

C.9. memtester

Versión: 4.0.5
Categoŕıa: Comprobación de memoria
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Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Realiza operaciones en memoria como XOR, AND, SUB y MUL para
encontrar fallos en el subsistema de memoria.
Entrada: Se le indica la cantidad de memoria a comprobar y el número de repeticiones
que se tienen que hacer las pruebas.
Salida: Visualiza por pantalla las operaciones que realiza, la parte de memoria donde se
está realizando la prueba e indica si ha habido cualquier problema durante la ejecución.
Página web: http://pyropus.ca/software/memtester/
Autor: Charles Cazabon
Usada en: Origen propio, no es usado en benchmarks conocidos.

C.10. ffmpeg

Versión: 0.10
Categoŕıa: Conversión de formatos de video/audio.
Tipo de cálculo realizado: Entero
Lenguaje de programación: C
Descripción: Es un framework multimedia que permite codificar, decodificar, transco-
dificar, multiplexar, demultiplexar, filtrar y reproducir la mayoŕıa de los formatos de
audio y video. Genera una libreŕıa para poder ser utilizada por cualquier software para
reproducción o conversión de formatos.
Entrada: Se usa el fichero parapara.mpg de formato YUV420, a una resolución de
352x240, con el codec de audio mp3 a 48Khz.
Salida: Se genera el ficher parapara.avi con el formato MPEG-4, a una resolución de
640x480 con el codec de audio Dolby AC3 en stereo a 48Khz.
Página web: http://ffmpeg.org
Autor: Fabrice Bellard et al.
Usada en: Phoronix Test Suite (PTS)

C.11. milc

Versión: v6
Categoŕıa: F́ısica, cromodinámica cuántica
Tipo de cálculo realizado: Real
Lenguaje de programación: C
Descripción: MILC es un conjunto de aplicaciones desarrolladas por ”MIMD Lattice
Computation“, donde lo utilizan para hacer grandes simulaciones numéricas para
estudiar la cromodinámica cuántica (QCD), que es, la teoŕıa de la interacción fuerte en
la f́ısica subatómica. Se usará el ejecutable su3 rmd.
Entrada: Se usa el fichero sm2 que contiene parámetros de configuración de gauge para
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Sección C.12 C. Aplicaciones usadas en el benchmark

la simulación a realizar a su3 rmd

Salida: Muestra por la salida estándar el resultado de la simulación.
Página web: http://physics.indiana.edu/~sg/milc.html
Autor: Steven Gottlieb et al.
Usada en: SPEC CFP 2006

C.12. povray

Versión: 3.0
Categoŕıa: Renderización
Tipo de cálculo realizado: Real
Lenguaje de programación: C
Descripción: Es una herramienta que produce gráficos por ordenador de muy alta
calidad. Utiliza el algoritmo de trazado de rayos para generar imágenes tridimensionales.
Entrada: Se usa uno de los ficheros de ejemplo que incluye povray: radio-patio.pov
Salida: Se obtiene el fichero patio-radio.png con la imagen
Página web: http://www.povray.org/
Autor: David Buck et al.
Usada en: SPEC CFP 2006

C.13. mlucas

Versión: 2.8x
Categoŕıa: Numérica, búsqueda de números primos
Tipo de cálculo realizado: Real
Lenguaje de programación: C
Descripción: Realiza la búsqueda de números primos de Mersenne, que tienen la forma
de Mp = 2p − 1 utilizando el algoritmo de Lucas-Lehmer.
Entrada: Se le indica el rango de exponentes para buscar números primos de Mersenne
Salida: Muestra los números primos que se hayan encontrado.
Página web: http://hogranch.com/mayer/README.html
Autor: Ernst Mayer et al.
Usada en: SPEC CFP 2000

C.14. namd

Versión: 2.8
Categoŕıa: Bioloǵıa, simulación de moléculas
Tipo de cálculo realizado: Real
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C. Aplicaciones usadas en el benchmark Sección C.15

Lenguaje de programación: C++
Descripción: Es un software de dinámica molecular paralela diseñado para simulación
de alto rendimiento de grandes sistemas biomoleculares.
Entrada: Se utiliza un fichero de prueba, que ofrecen los autores de namd, que se llama
tiny.namd preparado para un benchmark, ya que es la carga significativa para un único
procesador en una gran simulación.
Salida: Genera 3 ficheros tiny.coor, tiny.vel y tiny.xsc con los resultados de la
simulación.
Página web: http://www.ks.uiuc.edu/Research/namd/
Autor: Jim Phillips et al.
Usada en: SPEC CFP 2006

C.15. linpack

Versión: 25.5.04
Categoŕıa: Numérica, multiplicación de matrices.
Tipo de cálculo realizado: Real
Lenguaje de programación: Fortran
Descripción: Es una libreŕıa software que se usa para resolver sistemas de ecuaciones.
A partir de aqúı nació el benchmark linpack, que resuelve sistemas de ecuaciones
haciendo uso intensivo de operaciones en cálculo real.
Entrada: Se le indica el tamaño de la matriz, 1500x1500.
Salida: Ofrece información del tiempo que le ha costado realizar las operaciones.
Página web: http://www.netlib.org/linpack/
Autor: Jack Dongarra et al.
Usada en: Linpack benchmark
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Apéndice D

Resultados del benchmark

En este apéndice se muestran los resultados de la ejecución del benchmark en todas
las aplicaciones.

Por cada aplicación se presenta una tabla dividida en tres partes:

Ejecuciones nativas, sin instrumentar.

Ejecuciones instrumentadas por instrucciones.

Ejecuciones instrumentadas por bloques básicos.

Por cada parte se presentan tres ejecuciones sin optimizar (-O0) y tres optimizadas
(-O3), además, en las instrumentadas se muestran para los tres frameworks. En todas las
tablas se presenta el consumo de memoria de las aplicaciones y para las instrumentadas
también se presenta el número de instrucciones o bloques básicos ejecutados.

Finalmente, en la sección D.16 se mostrará el tiempo total de ejecución del benchmark
y la comparación en tiempo con SPEC.
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Sección D.1 D. Resultados del benchmark

D.1. bzip2

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 20.6 20.51 20.58 15.03 15.06 15.03

Mem. (kiB) 9440 9440 9440 9432 9432 9432

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 277.58 273.7 273.67 185.71 185.36 185.58

Mem. (kiB) 45816 45816 45816 46524 46524 46524

Slowdown 13,45 13,33 13,27 12,32 12,29 12,32

Instrucc. 73656398144 73656398144 73656398144 48475694952 48475694952 48475694952

Valgrind

Tiempo (s) 414.49 412.92 414.91 278.01 276.94 277.34

Mem. (kiB) 58328 58328 58328 58320 58320 58320

Slowdown 20,09 20,11 20,13 18,45 18,36 18,41

Instrucc. 73656441642 73656441646 73656441638 48475738454 48475738460 48475738454

DynamoRIO

Tiempo (s) 174.64 174.7 174.7 153.26 153.44 153.22

Mem. (kiB) 142036 142036 142036 142028 142028 142028

Slowdown 8,46 8,50 8,47 10,15 10,16 10,16

Instrucc. 73637943900 73637943900 73637943900 48457240420 48457240420 48457240420

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 72,31 72,49 72,94 66,47 66,98 66,91

Mem. (kiB) 45952 45952 45952 46564 46564 46564

Slowdown 3,88 3,91 3,93 4,86 4,90 5,38

Bloques 7063386170 7063386170 7063386170 6488305984 6488305984 6488305984

Valgrind

Tiempo (s) 109,47 110,02 109,99 104,88 104,57 104,55

Mem. (kiB) 54996 54996 54996 54988 54988 54988

Slowdown 5,88 5,94 5,93 7,67 7,65 8,40

Bloques 4472395968 4472395967 4472395967 3998502071 3998502072 3998502072

DynamoRIO

Tiempo (s) 29,18 29,09 29,09 21,93 21,87 21,73

Mem. (kiB) 142036 142036 142036 142028 142028 142028

Slowdown 1,56 1,57 1,57 1,60 1,60 1,74

Bloques 2139535991 2139535991 2139535991 2609502570 2609502570 2382277616
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D. Resultados del benchmark Sección D.2

D.2. GNU go

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 133,3 133,3 133,42 82,98 82,97 82,96

Mem. (kiB) 24120 24120 24116 24328 24332 24332

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 1118,01 1117,59 1116 732,8 732,44 729,12

Mem. (kiB) 69340 69356 69352 75380 75392 75380

Slowdown 8,39 8,39 8,37 8,85 8,84 8,80

Instrucc. 247750494248 247750666655 247750666655 153754482838 153754535528 153754683960

Valgrind

Tiempo (s) 2168,5 2165,89 2162,98 1542,52 1544,43 1546,33

Mem. (kiB) 71288 71288 71288 71496 71496 71496

Slowdown 16,29 16,27 16,23 18,62 18,64 18,66

Instrucc. 247750711832 247752391901 247785718265 153746809732 153746892452 153770256115

DynamoRIO

Tiempo (s) 1028,65 1027,37 1032,39 789,55 790,33 789

Mem. (kiB) 156544 156548 156544 156756 156756 156756

Slowdown 7,72 7,71 7,74 9,51 9,52 9,51

Instrucc. 247745640933 247782861334 247748101772 150904441919 150904369639 150904369639

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 419,82 419,94 419,79 337,57 337,19 337,56

Mem. (kiB) 66880 66900 66900 73112 73108 73108

Slowdown 3,48 3,48 3,48 4,49 4,49 4,49

Bloques 36090511045 36095502484 36095454987 32464100442 32464133005 32464163434

Valgrind

Tiempo (s) 847,94 849,49 847,13 765,86 760,61 767,98

Mem. (kiB) 67956 67956 67956 68164 68164 68164

Slowdown 7,02 7,04 7,02 10,19 10,12 10,22

Bloques 31790795376 31790783660 31795085040 27064807604 27064795737 27064795727

DynamoRIO

Tiempo (s) 199,54 200,21 199,81 144,59 144,66 144,46

Mem. (kiB) 156544 156548 156544 156752 156756 156752

Slowdown 1,65 1,65 1,65 1,92 1,92 1,92

Bloques 1655477351 1655477351 1650396069 3809286521 3805093463 3805095450
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Sección D.3 D. Resultados del benchmark

D.3. hmmer

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 20,33 20,34 20,34 4,47 4,47 4,52

Mem. (kiB) 20892 20912 20892 20912 20832 20780

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 202,42 202,28 202,58 70,54 70,68 70,61

Mem. (kiB) 63660 63624 63660 63696 63688 63684

Slowdown 9,71 9,88 9,90 15,24 15,24 15,15

Instrucc. 54297654013 54297720973 54297720440 16649566301 16649736886 16649643995

Valgrind

Tiempo (s) 376,88 375,67 375,65 120,75 121,4 121,51

Mem. (kiB) 69892 70020 69896 69880 69960 69884

Slowdown 18,06 18,33 18,34 26,03 26,10 26,02

Instrucc. 54298001231 54297950064 54297734601 16649955696 16649786684 16649862949

DynamoRIO

Tiempo (s) 72,47 72,53 72,51 51 50,91 51,07

Mem. (kiB) 153392 153260 153392 153252 153208 153248

Slowdown 3,48 3,55 3,54 10,98 10,93 10,92

Instrucc. 53478979044 49205120807 53353754824 15030755553 15131107542 15001172531

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 45,69 45,74 45,71 27,87 28,03 27,9

Mem. (kiB) 63064 63020 63020 63380 63348 63440

Slowdown 2,22 2,26 2,26 6,12 6,14 6,07

Bloques 2563838468 2563770093 2563756783 2167186708 2167136122 2167187211

Valgrind

Tiempo (s) 160,47 159,82 159,71 63,5 63,65 63,7

Mem. (kiB) 66596 66608 66632 66548 66548 66640

Slowdown 7,71 7,82 7,81 13,75 13,79 13,70

Bloques 2398092822 2398029615 2398077405 1766363309 1766390390 1766397846

DynamoRIO

Tiempo (s) 25,26 25,09 25,14 9,19 9,23 9,14

Mem. (kiB) 153312 153316 153304 153216 153204 153188

Slowdown 1,22 1,23 1,23 2,02 2,03 2,00

Bloques 2382277616 2382274878 2382282498 2144631367 2144645182 2144660538
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D. Resultados del benchmark Sección D.4

D.4. libquantum

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 2,97 2,97 2,97 1,14 1,17 1,14

Mem. (kiB) 2712 2712 2712 2716 2716 2716

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 41,32 42,5 41,3 18,56 18,9 18,44

Mem. (kiB) 38964 38964 38964 39068 39068 39068

Slowdown 13,85 14,24 13,84 16,05 15,94 15,95

Instrucc. 9486298035 9486298035 9486298035 4172204824 4172204824 4172204824

Valgrind

Tiempo (s) 52,24 52,29 52,56 25,82 25,8 25,21

Mem. (kiB) 59456 59456 59456 59460 59460 59460

Slowdown 17,46 17,48 17,57 22,16 21,60 21,64

Instrucc. 9486307171 9486307163 9486307159 4172213780 4172213780 4172213784

DynamoRIO

Tiempo (s) 23,89 23,72 23,81 14,3 14,25 14,21

Mem. (kiB) 135136 135136 135136 135140 135140 135140

Slowdown 7,98 7,92 7,95 12,26 11,92 12,19

Instrucc. 9483103387 9483103387 9483103387 4169009342 4169009342 4169009342

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 45,69 45,74 45,71 27,87 28,03 27,9

Mem. (kiB) 63064 63020 63020 63380 63348 63440

Slowdown 2,22 2,26 2,26 6,12 6,14 6,07

Bloques 2563838468 2563770093 2563756783 2167186708 2167136122 2167187211

Valgrind

Tiempo (s) 160,47 159,82 159,71 63,5 63,65 63,7

Mem. (kiB) 66596 66608 66632 66548 66548 66640

Slowdown 7,71 7,82 7,81 13,75 13,79 13,70

Bloques 2398092822 2398029615 2398077405 1766363309 1766390390 1766397846

DynamoRIO

Tiempo (s) 25,26 25,09 25,14 9,19 9,23 9,14

Mem. (kiB) 153312 153316 153304 153216 153204 153188

Slowdown 1,22 1,23 1,23 2,02 2,03 2,00

Bloques 2382277616 2382274878 2382282498 2144631367 2144645182 2144660538
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Sección D.5 D. Resultados del benchmark

D.5. h264ref

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 175,56 175,51 175,52 52,2 52,23 52,23

Mem. (kiB) 22800 22800 22800 22924 22924 22924

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 1969,15 1976,8 1979,48 731,61 731,16 730,83

Mem. (kiB) 63640 63624 63640 66536 66368 66368

Slowdown 11,20 11,25 11,27 13,96 13,96 13,95

Instrucc. 468222306245 468222571081 468222609480 151093059135 151094273120 151092430740

Valgrind

Tiempo (s) 2615,92 2613,49 2610,26 913,42 913,12 918,55

Mem. (kiB) 71628 71628 71628 71752 71752 71752

Slowdown 14,89 14,89 14,87 17,43 17,42 17,52

Instrucc. 468602886301 468602886398 468602886324 151469116709 151469116744 151469117073

DynamoRIO

Tiempo (s) 1384,98 1379,37 1391,31 263,49 258,38 258,62

Mem. (kiB) 155224 155224 155224 155348 155348 155348

Slowdown 7,88 7,85 7,92 5,03 4,93 4,93

Instrucc. 468099926570 468100703832 468100510812 150796835198 150798200840 150798661928

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 399,97 399,48 397,53 142,96 142,73 143,14

Mem. (kiB) 62044 62076 62068 64324 64324 64324

Slowdown 2,50 2,51 2,49 3,02 3,02 3,03

Bloques 41664395913 41664395918 41664395932 10246885976 10246885990 10246885958

Valgrind

Tiempo (s) 842,34 849,58 847,54 317,07 316,91 317,07

Mem. (kiB) 68296 68296 68296 68420 68420 68420

Slowdown 5,28 5,34 5,31 6,68 6,68 6,68

Bloques 31254620209 31254620206 31254620232 9761665724 9761665724 9761665716

DynamoRIO

Tiempo (s) 321,68 315,51 319,49 59,37 59,33 58,61

Mem. (kiB) 155224 155224 155224 155348 155348 155348

Slowdown 2,01 1,98 2,00 1,25 1,25 1,24

Bloques 2590913223 2590913138 2590913183 760355482 760355502 760355525
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D. Resultados del benchmark Sección D.6

D.6. ripemd

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 15,92 15,92 15,95 5,79 5,81 5,88

Mem. (kiB) 2012 2012 2012 2016 2016 2016

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 154,98 155,11 154,59 93,59 93,53 93,97

Mem. (kiB) 38608 38608 38608 38612 38612 38612

Slowdown 9,64 9,63 9,61 15,37 15,33 15,45

Instrucc. 41946768879 41946768879 41946768879 22330342413 22330342413 22330342413

Valgrind

Tiempo (s) 393,34 392,59 388,46 209,88 210,94 211,39

Mem. (kiB) 58244 58244 58244 58248 58248 58248

Slowdown 24,43 24,35 24,10 34,42 34,50 34,73

Instrucc. 41947389200 41947389190 41947389190 22330962488 22330962492 22330962488

DynamoRIO

Tiempo (s) 21,89 21,83 21,86 7,8 7,82 7,8

Mem. (kiB) 134604 134604 134604 134608 134608 134608

Slowdown 1,38 1,37 1,37 1,33 1,33 1,34

Instrucc. 41789987035 41789987035 41789987035 22173559980 22173559980 22173559980

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 19,73 19,75 19,8 10,14 10,15 11,12

Mem. (kiB) 38440 38440 38440 38444 38444 38444

Slowdown 1,33 1,39 1,39 1,92 1,92 2,10

Bloques 873132829 873132829 873132829 518737174 518737174 518737174

Valgrind

Tiempo (s) 38,91 38,81 40,75 23,09 23,22 22,9

Mem. (kiB) 54912 54912 54912 54916 54916 54916

Slowdown 2,60 2,70 2,83 4,27 4,31 4,27

Bloques 810173395 810173395 810173396 446564696 446564696 446564697

DynamoRIO

Tiempo (s) 14,85 14,85 15,83 5,72 5,61 5,68

Mem. (kiB) 134604 134604 134604 134608 134608 134608

Slowdown 0,99 1,03 1,10 1,06 1,06 1,07

Bloques 263197444 263197444 263197444 75864982 75864982 75864982
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Sección D.7 D. Resultados del benchmark

D.7. aes

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 18,54 18,61 18,46 14,36 14,32 14,24

Mem. (kiB) 2024 2024 2024 2024 2024 2024

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 284,16 283,98 283,77 215,66 216,17 216,01

Mem. (kiB) 38620 38620 38620 38620 38620 38620

Slowdown 15,14 15,09 15,20 14,57 14,92 14,97

Instrucc. 74291586364 74291586364 74291586364 57453607695 57453607695 57453607695

Valgrind

Tiempo (s) 535,29 540,04 539,4 396,95 399,45 399,78

Mem. (kiB) 58256 58256 58256 58256 58256 58256

Slowdown 28,58 28,74 28,93 26,85 27,60 27,76

Instrucc. 74291592035 74291592031 74291592035 57453613370 57453613366 57453613366

DynamoRIO

Tiempo (s) 233,55 233,04 233,14 217,62 217,72 217,8

Mem. (kiB) 134616 134616 134616 134616 134616 134616

Slowdown 12,44 12,37 12,47 14,67 14,99 15,07

Instrucc. 74291424373 74291424373 74291424373 57453445704 57453445704 57453445704

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 68,34 68,27 68,02 64,82 64,45 64,87

Mem. (kiB) 38452 38452 38452 38452 38452 38452

Slowdown 3,96 4,03 4,03 4,97 4,90 4,94

Bloques 8821962398 8821962398 8821962398 8113823083 8113823083 8113823083

Valgrind

Tiempo (s) 144,64 145,58 148,45 144,47 147,57 142,88

Mem. (kiB) 54924 54924 54924 54924 54924 54924

Slowdown 8,42 8,63 8,81 11,09 11,24 10,90

Bloques 7771123026 7771123026 7771123026 7089211083 7089211083 7089211083

DynamoRIO

Tiempo (s) 32,92 32,91 32,83 33,31 34,03 33,35

Mem. (kiB) 134616 134616 134616 134616 134616 134616

Slowdown 1,91 1,94 1,94 2,55 2,58 2,53

Bloques 4002415509 4002415509 4002415509 3451640469 3451640469 3451640469
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D. Resultados del benchmark Sección D.8

D.8. whirlpool

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 21,64 21,64 21,68 15,87 15,87 15,85

Mem. (kiB) 1988 1988 1988 1984 1984 1984

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 275,87 276,52 276,62 140,94 137,48 136,36

Mem. (kiB) 38636 38636 38636 38632 38632 38632

Slowdown 12,69 12,73 12,72 8,85 8,63 8,56

Instrucc. 74222379295 74222379297 74222379295 37982311186 37982311186 37982311186

Valgrind

Tiempo (s) 498,15 485,03 490,35 229,05 233,33 229,3

Mem. (kiB) 58256 58256 58256 58252 58252 58252

Slowdown 22,93 22,33 22,55 14,38 14,66 14,40

Instrucc. 74222385145 74222385145 74222385149 37982316916 37982316920 37982316920

DynamoRIO

Tiempo (s) 33,78 33,54 33,7 26,81 26,66 26,7

Mem. (kiB) 134612 134612 134612 134608 134608 134608

Slowdown 1,56 1,55 1,55 1,69 1,68 1,68

Instrucc. 74222287028 74222287028 74222287028 37982218617 37982218617 37982218617

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 26,05 25,86 25,91 19,48 19,62 19,62

Mem. (kiB) 38436 38436 38436 38432 38432 38432

Slowdown 1,32 1,32 1,32 1,36 1,37 1,37

Bloques 1358316929 1358316929 1358316929 906899343 906899343 906899343

Valgrind

Tiempo (s) 62,77 61,8 62,95 48,26 48,92 48,92

Mem. (kiB) 54924 54924 54924 54920 54920 54920

Slowdown 3,17 3,14 3,21 3,35 3,40 3,40

Bloques 1485706427 1485706428 1485706427 962288944 962288944 962288944

DynamoRIO

Tiempo (s) 20,03 20,05 20,03 14,77 14,81 14,83

Mem. (kiB) 134612 134612 134612 134608 134608 134608

Slowdown 1,01 1,02 1,02 1,02 1,03 1,03

Bloques 530888668 530888668 530888668 465378216 465378216 465378216
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Sección D.9 D. Resultados del benchmark

D.9. memtester

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 96,37 96,67 96,23 45,89 46,21 46,39

Mem. (kiB) 67408 67408 67408 67408 67408 67408

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 853,55 868,61 854,01 509,59 509,63 509,22

Mem. (kiB) 103176 103176 103176 103244 103244 103244

Slowdown 8,85 8,98 8,87 11,09 11,01 10,96

Instrucc. 241201530296 241201530296 241201530296 138709496251 138709496251 138709496251

Valgrind

Tiempo (s) 1394,89 1387,66 1386,66 746,37 745,31 746,73

Mem. (kiB) 114396 114396 114396 114396 114396 114396

Slowdown 14,48 14,36 14,42 16,26 16,12 16,10

Instrucc. 241201536832 241201536828 241201536828 138709502897 138709502901 138709502905

DynamoRIO

Tiempo (s) 810,44 813,83 811,57 491 491,13 491,03

Mem. (kiB) 200132 200132 200132 200132 200132 200132

Slowdown 8,40 8,41 8,42 10,68 10,60 10,56

Instrucc. 241201371000 241201371000 241201371000 138709337257 138709337257 138709337257

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 262,92 257,74 257,73 180,18 180,21 180,15

Mem. (kiB) 103076 103076 103076 103172 103172 103172

Slowdown 3,03 3,01 3,00 3,96 3,95 3,95

Bloques 31173422341 31173422341 31173422341 22306660323 22306660323 22306660323

Valgrind

Tiempo (s) 412,74 411,55 407,47 288,89 288,91 289,47

Mem. (kiB) 111064 111064 111064 111064 111064 111064

Slowdown 4,78 4,82 4,76 6,38 6,36 6,36

Bloques 29075595091 29075595091 29075595091 18573054766 18573054765 18573054765

DynamoRIO

Tiempo (s) 109,11 104,79 105,83 74,67 74,48 74,6

Mem. (kiB) 200132 200132 200132 200132 200132 200132

Slowdown 1,26 1,22 1,23 1,64 1,63 1,63

Bloques 1108619690 1108619690 1108619690 831792336 831792336 831792336
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D. Resultados del benchmark Sección D.10

D.10. ffmpeg

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 4,56 4,56 4,52 4,44 4,41 4,42

Mem. (kiB) 22956 22956 22956 24360 24360 24360

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 61,53 61,59 62,16 59,01 59,01 58,99

Mem. (kiB) 65184 65184 65184 66996 66996 66996

Slowdown 13,55 13,59 13,76 13,35 13,43 13,44

Instrucc. 14181309912 14181311778 14181329060 13651672255 13651668591 13651685335

Valgrind

Tiempo (s) 158,34 158,17 158,01 157,18 157,67 157,27

Mem. (kiB) 75996 75996 75996 77400 77400 77400

Slowdown 34,49 34,52 34,62 35,13 35,47 35,38

Instrucc. 14184459886 14184458954 14184460118 13654922353 13654922421 13654922244

DynamoRIO

Tiempo (s) 32,77 32,78 32,83 30,77 30,73 30,73

Mem. (kiB) 155360 155360 155360 156764 156764 156764

Slowdown 7,14 7,16 7,20 6,89 6,92 6,92

Instrucc. 14166867955 14166867702 14166867805 13637273113 13637274631 13637272906

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 20,11 20,07 20 19,47 19,38 19,5

Mem. (kiB) 63860 63860 63860 65768 65784 65768

Slowdown 4,51 4,50 4,53 4,51 4,50 4,52

Bloques 1231713961 1231710900 1231711011 1156607294 1156607439 1156607440

Valgrind

Tiempo (s) 93,4 93 93,04 91,77 91,87 91,62

Mem. (kiB) 72664 72664 72664 74068 74068 74068

Slowdown 20,26 20,18 20,36 20,52 20,50 20,50

Bloques 1078267036 1078264642 1078267216 1010901183 1010901248 1010898795

DynamoRIO

Tiempo (s) 7,56 7,55 7,57 7,3 7,32 7,33

Mem. (kiB) 155360 155360 155360 156764 156764 156764

Slowdown 1,65 1,65 1,66 1,64 1,64 1,65

Bloques 1198264965 1198264859 1198261935 1120973424 1120973305 1120973266
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D.11. milc

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 13,07 13,1 13,11 12,57 12,56 12,55

Mem. (kiB) 20688 20688 20688 20716 20716 20716

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 98,63 98,63 98,59 90,25 89,83 89,84

Mem. (kiB) 59016 59016 59008 59232 59240 59240

Slowdown 7,57 7,54 7,53 7,20 7,17 7,17

Instrucc. 25332642996 25332642951 25332642997 23054066769 23054066698 23054066650

Valgrind

Tiempo (s) 186,44 185,7 185,08 179,4 179,62 179,13

Mem. (kiB) 67672 67672 67672 67700 67700 67700

Slowdown 14,27 14,17 14,11 14,27 14,30 14,26

Instrucc. 25332664956 25332664946 25332665003 23054088185 23054088433 23054088218

DynamoRIO

Tiempo (s) 23,12 23,05 23,03 20,92 20,95 20,96

Mem. (kiB) 153112 153112 153112 153140 153140 153140

Slowdown 1,77 1,76 1,76 1,66 1,67 1,67

Instrucc. 25332217058 25332217130 25332217063 23053639394 23053639519 23053639522

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 16,95 16,84 16,84 15,55 15,61 15,58

Mem. (kiB) 58684 58676 58668 58864 58864 58864

Slowdown 1,37 1,36 1,36 1,31 1,32 1,31

Bloques 642302583 642302584 642302542 562161334 562161276 562161300

Valgrind

Tiempo (s) 67,58 67,82 67,77 67,71 67,8 67,58

Mem. (kiB) 64340 64340 64340 64368 64368 64368

Slowdown 5,40 5,43 5,42 5,64 5,63 5,60

Bloques 618954025 618954016 618953981 533178012 533177998 533177989

DynamoRIO

Tiempo (s) 13,44 13,41 13,46 12,91 12,93 12,96

Mem. (kiB) 153112 153112 153112 153140 153140 153140

Slowdown 1,07 1,07 1,07 1,07 1,07 1,07

Bloques 365223774 365223790 365223740 296635117 296635077 296635074
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D. Resultados del benchmark Sección D.12

D.12. povray

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 20,67 20,59 20,59 11,42 11,36 11,36

Mem. (kiB) 9672 9672 9672 9708 9708 9708

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 171,1 171,3 171,4 86,05 86,17 85,88

Mem. (kiB) 52544 52576 52592 53516 53516 53524

Slowdown 8,31 8,35 8,35 7,60 7,64 7,62

Instrucc. 40880091223 40880040916 40879930936 19478328487 19478328874 19478329037

Valgrind

Tiempo (s) 354,7 353,49 356,36 182,58 182,58 181,37

Mem. (kiB) 63524 63524 63524 63560 63560 63560

Slowdown 17,18 17,18 17,32 16,01 16,09 15,98

Instrucc. 40890689362 40890689308 40890689996 19490557438 19490557442 19490554679

DynamoRIO

Tiempo (s) 148,48 148,66 148,36 79,15 79,14 79,08

Mem. (kiB) 142108 142108 142108 142128 142128 142128

Slowdown 7,18 7,22 7,20 6,93 6,96 6,96

Instrucc. 40437582205 40437582770 40437582385 19035068653 19035068123 19035068105

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 49,3 49,27 48,98 33,18 33,03 33,03

Mem. (kiB) 51152 51124 51136 52340 52340 52340

Slowdown 2,67 2,67 2,65 3,28 3,27 3,27

Bloques 4992500785 4992512652 4992474673 3208282021 3208263741 3208264584

Valgrind

Tiempo (s) 142,08 142,4 142,76 82,08 82,5 81,81

Mem. (kiB) 60192 60192 60192 60228 60228 60228

Slowdown 7,62 7,64 7,65 7,98 8,03 7,97

Bloques 3762148897 3762127642 3762141997 2494999759 2494986930 2494983484

DynamoRIO

Tiempo (s) 33,48 33,02 32,96 15,18 15,13 15,12

Mem. (kiB) 142108 142092 142092 142144 142128 142128

Slowdown 1,79 1,77 1,76 1,47 1,47 1,47

Bloques 244200167 244167577 244162585 2756061306 2756061265 2756073299
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Sección D.13 D. Resultados del benchmark

D.13. mlucas

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 35,05 34,87 35,03 14,6 14,65 14,62

Mem. (kiB) 10004 10004 10004 9340 9340 9340

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 307,11 309,24 307,2 199,01 199,2 199,01

Mem. (kiB) 49560 49560 49560 49648 49648 49648

Slowdown 8,78 8,88 8,78 13,64 13,61 13,62

Instrucc. 85256941803 85256941829 85256941799 53554796686 53554796681 53554796686

Valgrind

Tiempo (s) ✗ ✗ ✗ ✗ ✗ ✗

Mem. (kiB) ✗ ✗ ✗ ✗ ✗ ✗

Slowdown ✗ ✗ ✗ ✗ ✗ ✗

Instrucc. ✗ ✗ ✗ ✗ ✗ ✗

DynamoRIO

Tiempo (s) 45,12 45,07 45,02 22,5 22,48 22,58

Mem. (kiB) 142428 142428 142428 141764 141764 141764

Slowdown 1,29 1,29 1,29 1,54 1,53 1,54

Instrucc. 85256744807 85256744807 85256744807 53554599416 53554599416 53554599416

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 37,91 37,99 38 21,16 21,15 21,19

Mem. (kiB) 48244 48244 48244 48324 48324 48324

Slowdown 1,21 1,21 1,21 1,62 1,62 1,62

Bloques 1387505307 1387505303 1387505307 909951883 909951875 909951875

Valgrind

Tiempo (s) ✗ ✗ ✗ ✗ ✗ ✗

Mem. (kiB) ✗ ✗ ✗ ✗ ✗ ✗

Slowdown ✗ ✗ ✗ ✗ ✗ ✗

Bloques ✗ ✗ ✗ ✗ ✗ ✗

DynamoRIO

Tiempo (s) 32,48 32,48 32,48 14,39 14,42 14,4

Mem. (kiB) 142428 142428 142428 141764 141764 141764

Slowdown 1,03 1,03 1,03 1,09 1,09 1,09

Bloques 278148461 278148462 278148462 227746162 227746162 227746162
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D. Resultados del benchmark Sección D.14

D.14. namd

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 14,95 15,06 15,04 7,12 7,1 7,11

Mem. (kiB) 19744 19744 19744 19208 19208 19208

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 155,66 156,39 155,38 87,18 87,14 87,21

Mem. (kiB) 66980 66992 66988 69096 69020 68628

Slowdown 10,49 10,47 10,41 12,37 12,34 12,40

Instrucc. 38252761764 38252801255 38252759804 19832746065 19832741407 19832743883

Valgrind

Tiempo (s) 214,64 213,66 213,89 113,25 113,22 114,94

Mem. (kiB) 78660 78660 78660 74860 74860 74860

Slowdown 14,32 14,16 14,20 15,85 15,77 16,10

Instrucc. 38253097254 38253096968 38253096409 19833493146 19833491949 19833488839

DynamoRIO

Tiempo (s) 34,43 34,43 34,51 19,43 19,44 19,44

Mem. (kiB) 152144 152144 152144 151608 151608 151608

Slowdown 2,30 2,29 2,29 2,72 2,71 2,73

Instrucc. 38250283476 38250318179 38250282771 19814092244 19814078844 19814080525

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 26,68 26,49 26,75 18,73 18,68 18,78

Mem. (kiB) 64552 63992 64540 66636 65696 65820

Slowdown 2,04 2,02 2,06 3,08 3,07 3,08

Bloques 971692620 971695374 971691998 549464758 549461424 549464261

Valgrind

Tiempo (s) 65 65 65,15 44,12 44,24 44,12

Mem. (kiB) 75328 75328 75328 71528 71528 71528

Slowdown 4,75 4,73 4,79 6,81 6,84 6,83

Bloques 949810174 949810463 949810293 511693175 511691568 511692316

DynamoRIO

Tiempo (s) 17,09 17,17 17,03 8,55 8,54 8,54

Mem. (kiB) 152144 152144 152144 151608 151608 151608

Slowdown 1,25 1,25 1,25 1,32 1,32 1,32

Bloques 540152965 540159401 540149109 344577457 344575920 344575061
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Sección D.15 D. Resultados del benchmark

D.15. linpack

Sin optimizar Optimizado

Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3

Ejecución nativa

Tiempo (s) 6,95 7,15 6,96 4,33 4,35 4,34

Mem. (kiB) 20692 20692 20692 20692 20692 20692

Instrumentación a nivel de instrucciones

Pin

Tiempo (s) 66,54 66,07 66,28 22,04 22,02 22

Mem. (kiB) 57848 57448 57496 57496 57496 57496

Slowdown 9,59 9,22 9,52 5,13 5,09 5,09

Instrucc. 19647034175 19647034027 19647034197 6246035342 6246035106 6246035254

Valgrind

Tiempo (s) 96,45 96,04 95,93 32,47 32,28 32,36

Mem. (kiB) 77956 77956 77956 77956 77956 77956

Slowdown 13,88 13,39 13,75 7,51 7,41 7,44

Instrucc. 19647045951 19647045432 19647045951 6246046953 6246046921 6246046849

DynamoRIO

Tiempo (s) 19,83 19,8 19,8 8,6 8,6 8,6

Mem. (kiB) 153120 153120 153120 153120 153120 153120

Slowdown 2,85 2,76 2,84 1,99 1,97 1,98

Instrucc. 19646781826 19646781851 19646781804 6245779182 6245778866 6245779042

Instrumentación a nivel de bloques básicos

Pin

Tiempo (s) 9,39 9,35 9,37 5,98 5,86 5,84

Mem. (kiB) 57400 57396 57400 57456 57456 57456

Slowdown 1,38 1,33 1,37 1,40 1,39 1,40

Bloques 615171369 615171418 615171345 330477783 330477785 330477792

Valgrind

Tiempo (s) 28,86 28,26 28,85 18,05 18,03 18,14

Mem. (kiB) 73600 73600 73600 73600 73600 73600

Slowdown 4,15 3,95 4,15 4,11 4,15 4,22

Bloques 608174575 608174559 608174609 316652503 316652492 316652465

DynamoRIO

Tiempo (s) 6,96 6,92 6,92 4,55 4,47 4,5

Mem. (kiB) 153120 153120 153120 153120 153120 153120

Slowdown 1,00 0,97 1,00 1,03 1,03 1,05

Bloques 609917486 609917509 609917517 325785898 325785905 325785922
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D. Resultados del benchmark Sección D.16

D.16. Tiempo de ejecución de los benchmarks

En esta sección se va a hacer una comparación entre el tiempo que hubiera durado
la ejecución del benchmark propio desarrollado para este PFC y el que hubiera durado
SPEC 2006. Se compararán los resultados con un equipo similar [NEC08].

En el equipo similar, a la ejecución de la parte de cálculo entero (CINT) de SPEC le
cuesta 13 horas y 59 minutos. En el benchmark propio la ejecución de cálculo entero sin
instrumentar, dura 38 minutos y 40 segundos. Extrapolando el resultado de SPEC del
equipo similar, con la media de instrumentación en instrucciones (13.97x) por cada uno
de los tres frameworks, la ejecución de este hubiera durado 25 d́ıas.

La duración total del benchmark propio es de 32 horas y 20 minutos.
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Apéndice E

Código fuente aplicaciones usadas

en el benchmark

En el presente caṕıtulo se muestra el código fuente de las herramientas creadas para
instrumentar las aplicaciones en el benchmark. La primera herramienta es la que ins-
trumenta por instrucciones y la segunda herramienta es la que instrumenta por bloques
básicos.

E.1. Instrumentación por instrucciones

E.1.1. Pin

#include <stdio.h>

#include "pin.H"

#include <iostream>

UINT64 icuenta = 0;

VOID contar() { icuenta++; }

VOID Instruction(INS ins, VOID *v)

{

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)contar, IARG_END);

}

VOID Fini(INT32 code, VOID *v)

{

std::cerr << "Instrucciones: " << icuenta << endl;

}

int main(int argc, char * argv[])
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Sección E.1 E. Código fuente aplicaciones usadas en el benchmark

{

PIN_Init(argc, argv);

INS_AddInstrumentFunction(Instruction, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

E.1.2. DynamoRIO

#include "dr_api.h"

#define DISPLAY_STRING(msg) dr_printf("%s\n", msg);

#define DISPLAY_STRING_ERR(msg) dr_fprintf(STDERR,"%s\n", msg);

#define NULL_TERMINATE(buf) buf[(sizeof(buf)/sizeof(buf[0])) - 1] = ’\0’

static uint64 icuenta=0; //Contador de instrucciones

static void cuenta(void) { icuenta++; } //Código a a~nadir

static void event_exit(void);

static dr_emit_flags_t event_basic_block(void *drcontext,

void *tag, instrlist_t *bb, bool for_trace, bool translating);

DR_EXPORT void

dr_init(client_id_t id)

{

dr_register_exit_event(event_exit);

dr_register_bb_event(event_basic_block);

dr_log(NULL, LOG_ALL, 1, "Inicializando cliente ’icuenta’\n");

}

static void event_exit(void)

{

char msg[512];

int len;

len = dr_snprintf(msg, sizeof(msg)/sizeof(msg[0]),

"Instrucciones: %llu \n", icuenta);

DR_ASSERT(len > 0);

NULL_TERMINATE(msg);

DISPLAY_STRING_ERR(msg);

}

static dr_emit_flags_t
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E. Código fuente aplicaciones usadas en el benchmark Sección E.1

event_basic_block(void *drcontext, void *tag, instrlist_t *bb,

bool for_trace, bool translating)

{

instr_t *instr;

int i;

// Se recorre el bloque básico y se instrumentan todas las instrucciones

for (instr = instrlist_first(bb), num_instrs = 0;

instr != NULL;

instr = instr_get_next(instr)) {

dr_insert_clean_call(drcontext, bb, instr),

(void *)cuenta, false, 0 );

}

return DR_EMIT_DEFAULT;

}

E.1.3. Valgrind

#include "pub_tool_basics.h"

#include "pub_tool_tooliface.h"

#include "pub_tool_options.h"

#include "pub_tool_libcbase.h"

#include "pub_tool_libcassert.h"

#include "pub_tool_machine.h"

#include "pub_tool_libcprint.h"

#include "pub_tool_debuginfo.h"

static ULong icuenta = 0;

static void contar(void) { icuenta++; }

static void ic_post_clo_init(void) { }

static IRSB* ic_instrument ( VgCallbackClosure* closure,

IRSB* sbIn,

VexGuestLayout* layout,

VexGuestExtents* vge,

IRType gWordTy, IRType hWordTy )

{

IRDirty* di;

Int i;

IRSB* sbOut;

sbOut = deepCopyIRSBExceptStmts(sbIn);
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Sección E.1 E. Código fuente aplicaciones usadas en el benchmark

i = 0;

while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {

addStmtToIRSB( sbOut, sbIn->stmts[i] );

i++;

}

for (; i < sbIn->stmts_used; i++) {

IRStmt* st = sbIn->stmts[i];

if (!st || st->tag == Ist_NoOp) continue;

switch (st->tag) {

case Ist_IMark:

di = unsafeIRDirty_0_N( 0, "contar",

VG_(fnptr_to_fnentry)( &contar ),

mkIRExprVec_0() );

addStmtToIRSB( sbOut, IRStmt_Dirty(di) );

break;

default:

tl_assert(0);

}

}

return sbOut;

}

static void ic_fini(Int exitcode)

{

VG_(umsg)("Instrucciones: %’llu\n", icuenta);

VG_(umsg)("Exit code: %d\n", exitcode);

}

static void ic_pre_clo_init(void)

{

VG_(details_name) ("icuenta");

VG_(details_version) (NULL);

VG_(details_description) ("Contador de instrucciones");

VG_(details_avg_translation_sizeB) ( 275 );

VG_(basic_tool_funcs) (ic_post_clo_init,

ic_instrument,

ic_fini);

}
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E. Código fuente aplicaciones usadas en el benchmark Sección E.2

E.2. Instrumentación por bloques básicos

E.2.1. Pin

#include <stdio.h>

#include "pin.H"

#include <iostream>

static UINT64 bcuenta = 0;

VOID contar() { bcuenta++; }

VOID Trace(TRACE trace, VOID *v)

{

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))

{

BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)contar, IARG_END);

}

}

VOID Fini(INT32 code, VOID *v)

{

std::cerr << "Bloques básicos: " << bcuenta << endl;

}

int main(int argc, char * argv[])

{

PIN_Init(argc, argv);

TRACE_AddInstrumentFunction(Trace, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

E.2.2. DynamoRIO

#include "dr_api.h"

#define DISPLAY_STRING(msg) dr_printf("%s\n", msg);

#define DISPLAY_STRING_ERR(msg) dr_fprintf(STDERR,"%s\n", msg);

#define NULL_TERMINATE(buf) buf[(sizeof(buf)/sizeof(buf[0])) - 1] = ’\0’

static uint64 bcuenta=0; //Contador de bloques básicos
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static void contar(void) { bcuenta++; } //Código a a~nadir

static void event_exit(void);

static dr_emit_flags_t event_basic_block(void *drcontext,

void *tag, instrlist_t *bb, bool for_trace, bool translating);

DR_EXPORT void

dr_init(client_id_t id)

{

dr_register_exit_event(event_exit);

dr_register_bb_event(event_basic_block);

dr_log(NULL, LOG_ALL, 1, "Inicializando cliente ’bcuenta’\n");

}

static void event_exit(void)

{

char msg[512];

int len;

len = dr_snprintf(msg, sizeof(msg)/sizeof(msg[0]),

"Bloques básicos: %llu\n", bcuenta);

DR_ASSERT(len > 0);

NULL_TERMINATE(msg);

DISPLAY_STRING_ERR(msg);

}

static dr_emit_flags_t

event_basic_block(void *drcontext, void *tag, instrlist_t *bb,

bool for_trace, bool translating)

{

dr_insert_clean_call(drcontext, bb, instrlist_first(bb) ),

(void *)contar, false, 0 );

return DR_EMIT_DEFAULT;

}

E.2.3. Valgrind

#include "pub_tool_basics.h"

#include "pub_tool_tooliface.h"

#include "pub_tool_libcassert.h"

#include "pub_tool_libcprint.h"

#include "pub_tool_debuginfo.h"
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#include "pub_tool_libcbase.h"

#include "pub_tool_options.h"

#include "pub_tool_machine.h"

static ULong bcuenta = 0;

static void contar(void) { bcuenta++; }

static void lk_post_clo_init(void) { }

static

IRSB* lk_instrument ( VgCallbackClosure* closure,

IRSB* sbIn,

VexGuestLayout* layout,

VexGuestExtents* vge,

IRType gWordTy, IRType hWordTy )

{

IRDirty* di;

Int i;

IRSB* sbOut;

Char fnname[100];

sbOut = deepCopyIRSBExceptStmts(sbIn);

i = 0;

while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {

addStmtToIRSB( sbOut, sbIn->stmts[i] );

i++;

}

di = unsafeIRDirty_0_N( 0, "cuenta",

VG_(fnptr_to_fnentry)(

&cuenta ), mkIRExprVec_0() );

addStmtToIRSB( sbOut, IRStmt_Dirty(di) );

}

for (; i < sbIn->stmts_used; i++) {

IRStmt* st = sbIn->stmts[i];

if (!st || st->tag == Ist_NoOp) continue;

addStmtToIRSB( sbOut, st );

}

return sbOut;

75
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}

static void lk_fini(Int exitcode)

{

VG_(umsg)("Bloques básicos: %’llu\n", bcuenta);

VG_(umsg)("Exit code: %d\n", exitcode);

}

static void lk_pre_clo_init(void)

{

VG_(details_name) ("bcuenta");

VG_(details_version) (NULL);

VG_(details_description) ("Cuenta de bloques basicos");

VG_(details_avg_translation_sizeB) ( 200 );

VG_(basic_tool_funcs) (lk_post_clo_init,

lk_instrument,

lk_fini);

}

VG_DETERMINE_INTERFACE_VERSION(lk_pre_clo_init)
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