1542

Universidad

aAe Escuela de
Za ragoza 11 Ingenieriay Arquitectura
1542 Universidad Zaragoza

Proyecto Fin de Carrera de Ingenieria en Informatica

Estudio Comparativo de

Frameworks de Instrumentacion Dinamica de Ejecutables

Juan Antonio Artal Lozano

Director: Ricardo J. Rodriguez Fernandez

Ponente: José Javier Merseguer Herndiz

Departamento de Informatica e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Abril de 2012
Curso 2011/2012

A mi mujer, Conchita.

Those types are not ’abstract’;
they are as real as int and float.
Doug Mcllroy

Agradecimientos

A mis padres, hermanos y abuela.

A todos mis comparieros de promocion.
A Ricardo y su paciencia conmigo.

A José Merseguer.

A mis companeros de trabajo.
GRACIAS.

Estudio comparativo de frameworks de Instrumentacién Dinamica de
Ejecutables

RESUMEN

La Instrumentacién Dindmica de Ejecutables (Dynamic Binary Instrumentation,
DBI) es una técnica muy potente que permite analizar el comportamiento, en tiem-
po de ejecucion, de cualquier aplicacion. DBI se puede usar, por ejemplo, para contar
el ndmero de instrucciones que ejecuta o contar todas las transferencias (lectura y/o
escritura) a memoria que realiza un determinado programa.

DBI tiene diferentes usos segun sea el perfil de la persona que lo use. Por ejemplo,
para un programador, DBI ayudard a identificar las partes criticas del cédigo; para un
desarrollador de un procesador nuevo, DBI simulard esta nueva arquitectura; y para
un programador de compiladores en una nueva arquitectura, DBI ayudara a la colo-
cacién de las instrucciones para mejorar el paralelismo o como preparar profile-guided
optimizacions (PGO).

Un framework de DBI es una plataforma software que incluye programas, librerias, do-
cumentacion y una API para manipulacion de instrucciones en tiempo de ejecucion. Exis-
ten diferentes frameworks de DBI (p.e., Pin, Valgrind, DynamoRIO, Paradyn/Dyninst),
que proporcionan APIs muy extensas para que cada ingeniero pueda desarrollar sus pro-
pias herramientas de andlisis dindmico, llamadas herramientas DBA (Dynamic Binary
Analysis). Las herramientas DBA permiten analizar, generar optimizaciones y monito-
rizar el comportamiento de programas.

El objetivo de este PFC es realizar un estudio comparativo centrado a nivel de im-
pacto en rendimiento (performance) de diferentes frameworks de DBI. Es decir, se com-
probara el rendimiento de una aplicacién ejecutada de forma nativa, sin instrumentar, y
se comparard con esta misma aplicacién instrumentada por herramientas programadas
bajo diferentes frameworks de DBI. De esta forma se obtiene el impacto en rendimiento
de cada uno de los frameworks. Para poder llevar a cabo este estudio, se han seleccio-
nado un conjunto de aplicaciones para crear un benchmark, que nos dara informacién
de rendimiento de cada framework de DBI.

Ademds, se pretende comparar cada framework de DBI atendiendo a las siguientes
caracteristicas: plataformas y tipos de ejecutables que aceptan, necesidad de disponer
del coédigo fuente, API proporcionada, facilidad de programaciéon de herramientas DBA,
licencia/coste y la posibilidad de vincular a un proceso en ejecucion.

II

Indice

1. Introduccién
1.1. Objetivo o
1.2. Motivacidn e e
1.3. Organizacion del documento oL

2. Conocimientos previos
2.1. Granularidaden DBI
2.2. Origende DBI

3. Frameworks de DBI

3.2, Valgrind L
3.3. DynamoRIO
3.4. Similitudes y diferencias entre estos frameworks

4. Trabajo relacionado

5. Creacién de benchmark

5.1.
5.2.
5.3.
5.4.
5.5.

Alternativas estudiadas
Definicién de benchmark
Descripcién del benchmark
Herramientas para el benchmark
Mediciones en el benchmark
5.5.1. Tiempo
5.5.2. Memoria.

6. Experimentos

6.1.
6.2.

Entornode pruebas.
Resultadoso

7. Conclusiones y trabajo futuro

A. Fases de Desarrollo

Al

Diagrama de Gantt

II1

15

17
17
17
20
21
21
21
22

23
24
24

29

35

INDICE

INDICE

B. Problemas encontrados

B.1. Cuenta de instrucciones
B.2. Falloen ejecuciono

C. Aplicaciones usadas en el benchmark

C.l. bzip2 e
C2. GNUgo o e
C3. hmmer e
CA4. libquantum L
C.h. h26dref e
C6. ripemd
C7. 68 . . . o o e
C.8. whirlpool
C.9. memtester
Cl0ffmpeg o
Cllmile e
Cl2.povray oo
Cl3mlucas e
Cldnamd e
Cabdinpack oL Lo

D. Resultados del benchmark

D.1. bzip2
D2. GNUgo o
D.3. hmmer
D.4. libquantum
D.5. h264dref L
D6, ripemd
D7 aes . . . e
D.8. whirlpool
D.9. memtester o
D.A0ffmpeg
Dillmile
D.d2povray
Da3mlucas
Dldmamd
D.bdinpack
D.16.Tiempo de ejecucién de los benchmarks

E. Cédigo fuente aplicaciones usadas en el benchmark

E.1. Instrumentacién por instrucciones
E1L Pin. ...
E.1.2. DynamoRIO
E.13. Valgrindo oo

v

INDICE INDICE

E.2. Instrumentaciéon por bloques béasicos 73
E2.1. Pin. 73
E.2.2. DynamoRIO 73
E23. Valgrind oL Lo 74

Indice de figuras

6.1. Tiempo de ejecucién de la aplicacién h264ref con instrumentaciéon por
instrucciones y optimizaciones. 25
6.2. Slowdown en el benchmark de ffmpeg con instrumentacién por instruc-
clones y optimizaciones. Lo s 25
6.3. Slowdown medio en el benchmark usando instrumentacién por instrucciones. 26
6.4. Consumo medio de memoria de las aplicaciones. 27
6.5. Slowdown en instrumentacion por instrucciones y por bloques béasicos por
frameworks y optimizaciones. 28
A.l. Diagrama de gantt. 35
A.2. Horas dedicadas. 36

VII

Indice de tablas

3.1. S.0./Arquitecturas soportadas por framework. 12
3.2. Granularidades soportadas por framework. 14
3.3. Similitudes y diferencias entre frameworks. 14
5.1. Aplicaciones de cdlculo entero. 19
5.2. Aplicaciones de calculoreal. 19
5.3. Aplicaciones con gran demanda de entrada/salida. 19
5.4. Aplicaciones de acceso a memoria. 20
6.1. Hardware utilizado en las pruebas. 23
6.2. Software utilizado en las pruebas. 23
6.3. Consumo medio de memoria por Framework. 27
6.4. Slowdown relativo entre instrucciones y bloques basicos. 28
A.l. Horas dedicadas. e 36
B.1. Instrucciones contadas por framework de DBL. 37
B.2. Instrucciones contadas para las aplicaciones whirlpool y memtester 39

IX

Capitulo 1

Introduccion

El término de instrumentacién se refiere a la insercién de cédigo adicional sobre un de-
terminado software. Principalmente, hay dos tipos de instrumentacion: de cédigo fuente,
cuando el programador anade lineas de cédigo antes de la compilacién; y de ejecutable,
si hay otra aplicacién que modifica el programa una vez compilado. La instrumentacion
permite incorporar al programa desarrollado cédigo adicional para recoger informacién
en tiempo de ejecucion, que principalmente tiene dos usos diferentes: para estudio de
arquitecturas, donde se puede hacer modelado de cachés y simulacion de instrucciones
nuevas de procesadores; y para andlisis de cédigo, donde se puede generar informacion
para analisis de rendimiento, p.e., para averiguar cuando, dénde y por qué nuestro codigo
tarda tanto en ejecutar cierta tarea.

Hay diferentes tipos de instrumentacién, como la manual, en la que el programador
anade directamente las lineas de cédigo que le interesan; como por ejemplo, para calcular
tiempos de ejecucién, contar eventos o llamadas a una interfaz de programacion de
aplicaciones (API). Hay herramientas tipo automated source level que modifican el c6digo
fuente para anadir instrumentacion de acuerdo a una determinada configuracion. Existen
otros tipos de instrumentacién como la asistida por el compilador, que es anadida en
tiempo de compilacion, y binary translation, donde se modifica el software con llamadas a
una API de instrumentacién para que la propia aplicacién genere informacién en tiempo
de ejecucién, siendo esta aplicacién la que se instrumenta a si misma. Finalmente, existe
la instrumentacién dindmica de ejecutables (DBI), donde una aplicacién externa inserta
codigo adicional en tiempo de ejecucién al ejecutable instrumentado. Este proyecto se
centra en DBI porque es la opcién mas completa de todas y méas moderna, permitiendo
ademds monitorizar y controlar una aplicacién mientras se ejecuta desde su inicio hasta
el final.

Sin embargo, una desventaja que tiene la instrumentacién al ser anadida en tiempo de
ejecucion es la sobrecarga tan elevada que conlleva su adicién. Debido a esto, las aplica-
ciones instrumentadas tienen un rendimiento muy malo comparéndolas consigo mismas
ejecutandose de forma nativa, es decir, sin instrumentar. Esto es un factor determinante
a la hora de trabajar con DBI.

Para programar aplicaciones que soporten DBI se puede usar un framework de DBI.

Seccion 1.1 1. Introduccién

Este facilita una API para que se puedan desarrollar herramientas de andlisis dindmico.
Estas herramientas permiten instrumentar un software en el momento que el programa-
dor determine.

En la actualidad existen diferentes frameworks de DBI, como Valgrind [NS07] o
Pin [LCM™05], pero no hay suficiente informacién comparativa sobre ellos a nivel de
rendimiento, ya que apenas hay trabajos que traten directamente el tema de rendimien-
to, y a nivel de programacién no se ha encontrado nada que compare los frameworks de
DBI.

1.1. Objetivo

El objetivo de este PFC es realizar un estudio comparativo a nivel de impacto en
rendimiento de diferentes frameworks de DBI, ya que una aplicacién instrumentada
puede tardar en ejecutarse hasta 35 veces més lenta, como se ha comprobado con los
resultados de este PFC. Se ejecutaran diferentes tipos de aplicaciones seleccionadas
para el estudio, mediante un benchmark propio, bajo diferentes instrumentaciones en
diferentes frameworks de DBI. Posteriormente se analizaran los resultados obtenidos.

El procedimiento para obtener esos resultados ha sido el siguiente:

= Hacer un estudio de los frameworks disponibles, buscando cuéles son los que se
estan usando en la actualidad.

= Seleccionar los frameworks interesantes para este estudio, indicando los criterios
de seleccién que se han utilizado.

= Compilacion e instalacion del framework a partir del cédigo fuente, para comprobar
que se dispone de todo el software necesario para después desarrollar herramientas.

= Estudio de manuales, tutoriales y APIs de cada framework, para después poder
desarrollar herramientas DBA.

» Busqueda de aplicaciones estandar para generar un benchmark. Este reine un
conjunto de programas en diferentes categorias como: cdlculo entero, cdlculo real,
E/S de ficheros y acceso a memoria.

= Probar herramientas DBA desarrolladas bajo el benchmark, de tal forma que per-
mita obtener informacién sobre el rendimiento de estas.

Finalmente el benchmark permite obtener los datos de sobrecarga en tiempo de las
aplicaciones por la instrumentacion y los requisitos adicionales de memoria.

1.2. Motivacion

La principal motivacion para la eleccion de este PFC fue la oportunidad de profundizar
en el aprendizaje y estudio de herramientas DBI actuales, ya que en las asignaturas de la

1. Introduccién Seccion 1.3

carrera no habia nada relacionado con ello. Entre las aplicaciones innovadoras de estas
herramientas son las relacionadas con la seguridad como la comprobacién de fugas de
memoria e ingenieria inversa.

Este Proyecto me ha ofrecido la oportunidad de explorar una interesante aplicacion:
la evaluacion del rendimiento del los frameworks de DBI basada en la programacién de
herramientas DBA y el estudio de sus APIs.

1.3. Organizacién del documento

El presente documento estd dividido en dos partes: la memoria, donde se explica
el desarrollo del Proyecto; y los apéndices, donde se amplia la informacién de ciertos
puntos relevantes.

El capitulo 2 define algunos conceptos previos que sirven de ayuda para comprender
el resto del documento como qué es DBI, DBA, la granularidad en instrumentacién y
cémo fueron los inicios de la instrumentacion dinamica. El capitulo 3 introduce los frame-
works de DBI, expone los criterios de seleccion para la comparacion, sus caracteristicas,
similitudes y diferencias entre ellos y algunos comentarios sobre sus APIs. El capitulo 4
recoge el trabajo relacionado con este proyecto. El proceso de creacién del benchmark y
la seleccion de software para las pruebas estd en el capitulo 5. El capitulo 6 resume los
experimentos realizados con el benchmark definido anteriormente. Ademds, se muestran
los graficos mas relevantes junto a un andlisis critico de los resultados. Finalmente, el
capitulo 7 presenta las conclusiones de este trabajo y plantea posibles lineas de trabajo
futuro.

Respecto a los apéndices, el apéndice A es donde se hace balance del esfuerzo
temporal empleado en la realizacién del PFC. El apéndice B retne los problemas que
han ido apareciendo. El apéndice C describe las aplicaciones usadas en los benchmark
con mas detalle. El apéndice D contiene las tablas con los resultados obtenidos de los
experimentos y no incluidas en el capitulo 6 y finalmente, en el apéndice E se presenta
el cédigo fuente de las aplicaciones DBA para el benchmark.

Capitulo 2

Conocimientos previos

En este capitulo se definen algunos de los conceptos méas importantes en los que se
basa este proyecto y, en general, se explica el funcionamiento y uso de DBI.

El principal uso de DBI es analizar el comportamiento de un ejecutable durante la
ejecucién, de tal forma que permita mejorar el funcionamiento de éste. En compara-
cién con el analisis estatico, ofrece la ventaja de estudiar qué es lo que estd ocurriendo
en vez de lo que podria estar ocurriendo. El tnico inconveniente es que no se ejecutan
todos los posibles caminos, porque si una instruccién no se ejecuta, no se llega a ins-
trumentar. DBI se puede utilizar de manera diferente dependiendo de quién lo vaya a
utilizar, para un programador, DBI ayudara a identificar las partes criticas del codigo;
para un desarrollador de un procesador nuevo, DBI simulara esta nueva arquitectura; y
para un programador de compiladores en una nueva arquitectura, DBI ayudard a la co-
locacién de las instrucciones para mejorar el paralelismo o cémo preparar profile-guided
optimizacions (PGO).

En un framework de DBI hay dos componentes principales, el niicleo y las herra-
mientas desarrolladas con él. El nicleo se encarga de enviar fragmentos de cédigo a
la herramienta, y ésta se encarga de la inyeccién de cédigo.

El nicleo es como un compilador just-in-time (JIT), donde la entrada al compilador
es un ejecutable. Se intercepta la ejecucién de la primera instruccion del ejecutable y
genera nuevo cédigo, donde se transfiere el control de la secuencia generada. La secuencia
de cédigo generada es practicamente idéntica a la original, pero el nicleo se asegura que
se retorne el control cuando se salga de la secuencia. El cédigo generado es guardado en
memoria, por lo que puede ser reutilizado sin necesidad de regenerarlo cada vez que se
ejecute. Una vez que se ha generado este cddigo se le da la opcién al usuario de inyectar
su propio cddigo, o sea instrumentarlo.

Una herramienta habitualmente tiene la forma plug-in o librerfa, y su funcién es anadir
codigo al obtenido previamente del nicleo, para ello tiene dos componentes béasicos:

» Instrumentacion, se decide dénde y qué cédigo es insertado.

= Andlisis, se ejecuta el cddigo afiadido en los puntos de insercién.

Seccion 2.1 2. Conocimientos previos

Cuando se desarrollan herramientas, es mas importante afinar el cédigo de andlisis
que el de instrumentacién. Esto es asi debido a que la parte de instrumentacién en una
linea del codigo se ejecuta una uinica vez; sin embargo, el andlisis, que es el codigo que
se ha inyectado, se puede llegar a ejecutar multiples veces. Todo el cédigo inyectado al
ejecutable original se ejecuta de forma transparente [BZA12] con los frameworks de DBI
actuales, de tal forma que este cédigo aniadido no pueda interferir en el comportamiento
del ejecutable y se modifique el comportamiento original.

El nucleo y la herramienta habitualmente controlan el programa desde el inicio, es
decir, desde la primera instruccién a ejecutar. Para los ejecutables enlazados con librerias
dindmicas esto implica que la ejecucion del cargador dindamico y de las librerias es visible
y controlada. También son visibles y controlados el cédigo generado dindAmicamente, pero
el que se automodifica puede llegar a dar problemas en funcién del framework de DBI,
como en el caso del framework Valgrind [NSO7].

Para que el funcionamiento sea correcto, tanto el nicleo como la herramienta tienen
que estar trabajando en el mismo espacio de direcciones que el ejecutable. Es decir,
tienen que estar todos en espacio de usuario, donde residen las aplicaciones; o bien en
espacio del kernel, donde residen los moédulos o drivers.

2.1. Granularidad en DBI

Un ejecutable instrumentado por un framework de DBI se suele instrumentar ins-
truccion a instruccion, pero en funcion de la instrumentacién que se desee realizar y del
framework se puede utilizar una granularidad diferente. Las posibles granularidades son:

» Instruccion, es la unidad minima que se puede instrumentar. Son instrucciones en
ensamblador de la arquitectura en la que se trabaje.

= Blogue bdsico, es una secuencia de instrucciones que finalizan con una instruccion
de control de transferencia como un salto condicional (p.e., en ensamblador x86,
JZ, salto si flag Z=1)[Int86], incondicional (p.e., JMP, salto a una direccién), repeti-
ciones (p.e., instrucciones que tengan el prefijo REP, repite la instruccién posterior
varias veces), llamada o retorno a procedimiento (p.e., RET, retorno de procedi-
miento) entre otros.

Aqui se muestra un ejemplo de bloque bésico consistente en tres instrucciones x86:
una suma entre dos registros del procesador dejando el resultado en el primero
de ellos (ADD), una comparacién entre un nimero y un registro (CMP) y un salto
condicional que comprueba si el resultado de la operacién previa es menor o igual
(JLE). Como la tltima instruccion es de control de transferencia, tras la instruccién
del salto, finaliza el bloque bésico.

comparac: add %ebx,’%eax
cpm $0x7f,%ebx
jle comparac

2. Conocimientos previos Seccion 2.2

= Superbloque, es también una secuencia de instrucciones que tiene un punto de
entrada, pero al contrario que los bloques bésicos puede tener miiltiples puntos de
salida.

s Traza, es la unién de bloques bésicos que se ejecutan uno detras de otro en secuen-
cia, aunque en el ejecutable no estén consecutivos.

= Rutina, corresponde a las funciones y procedimientos tipicamente producidos por
un compilador de un lenguaje de programacién por procedimientos como C.

= Imagen, que representa a todas las secciones de un ejecutable, que son las partes
en las que se divide, como p.e., .init, .text o .fini para el formato de fichero
ejecutable para windows. Hay que tener en cuenta que durante la ejecucién de un
proceso puede haber mas de un objeto imagen en funcion de las librerias dindmicas
a las que acceda.

2.2. Origen de DBI

Las primeras herramientas de instrumentacion hacian dos tareas bésicas: contar blo-
ques basicos y la generacién de trazas de direcciones para modelado de cachés. Entre
otras, estaban las herramientas Pixie [SG92], Epoxie [Wal91] y QPT [LB94] que utiliza-
ban el ejecutable ya compilado. Presentaban diferentes problemas, como que no se podia
hacer otro tipo de instrumentacion y ademas generaban trazas de datos y direcciones
de manera ineficiente, ya que no se podia seleccionar entre qué puntos se queria generar
informacién.

Otro tipo de herramientas eran los simuladores, como Tango Lite [GH93], Pro-
teus [BDCW91] o g88 [Bed90]. Proteus permitia estudiar el comportamiento de un pro-
grama con diferentes arquitecturas de cachés y un ntimero simulado de procesadores para
poder comprobar la escalabilidad de un programa o algoritmo. El principal problema de
los simuladores es la sobrecarga en tiempo que generan, esto es algo que se ha mantenido
hasta las herramientas actuales. Ademés, no eran completamente transparentes para el
programa y modificaban el comportamiento del ejecutable.

El primer framework de DBI, ATOM [SE94], aparecié en 1993 y funcionaba tnica-
mente para Tru64 Unix en procesadores Alpha. Proveia una API mediante la cual se
podian programar herramientas para analizar un ejecutable. Ofrecia la instrumentacién
de instrucciones, bloques basicos y rutinas; y se podian construir simuladores a nivel de
caché e instrucciones. Sin embargo, la mayor desventaja es que se tenia que modificar el
c6digo fuente y recompilarlo. El nuevo programa utilizaba las librerias de ATOM y las
instrucciones eran directamente ejecutadas bajo el procesador real, sin ningun tipo de
simulacion.

Capitulo 3

Frameworks de DBI

Este capitulo muestra una introduccién a los frameworks de DBI. Se resumen los que
se pueden encontrar, después se analizan los criterios de seleccién y cudles han sido los
seleccionados para hacer el estudio de rendimiento.

Un framework de DBI ofrece un conjunto de APIs de manipulacién de instrucciones
en tiempo de ejecucién para que se puedan hacer, de manera facil y rdpida, herramientas
de instrumentacién. Los principales frameworks de DBI que se pueden encontrar son:

» Pin [LCM™'05] (http://pintool.org) es un sistema de instrumentacién desarro-
llado para proveer facilidad de uso, portabilidad, transparencia e instrumentacién
eficiente. Se programa en C/C++ y se cre6 a partir de ATOM [SE94]. Se crean he-
rramientas DBA ligeras, esto significa que se anade la instrumentacion y se ejecuta
directamente en el procesador de la arquitectura.

» DynamoRIO [Bru04] (http://dynamorio.org), es un sistema de manipulacién
de cddigo en tiempo de ejecucién que soporta transformaciones de cédigo en cual-
quier parte de un programa mientras se estd ejecutando. Con su API se pueden
programar herramientas para analisis de programas, profiling, instrumentacién,
optimizacién y binary translation entre otros. Provee manipulacién de cédigo efi-
ciente, transparente y extensa en aplicaciones sin necesidad de recompilarlas. Las
herramientas creadas son ligeras.

» Valgrind [NS07], (http://valgrind.org), es un framework de DBI desarrollado
para crear herramientas DBA pesadas, esto es, convierte el binario a un lenguaje
intermedio, y guarda el estado de todos los registros y memoria accedidos, asi co-
mo todas las operaciones de lectura y escritura, asignaciones y liberaciones de
memoria. Para todo esto, usa una técnica llamada shadow values. Es por eso que
herramientas DBA ligeras programadas con Pin y DynamoRIO son més répidas,
pero sin embargo, las pesadas son més dificiles de hacer o imposibles con esos
frameworks.

» DynlInst (http://dyninst.org), ofrece un API para modificar aplicaciones en
tiempo de ejecucion, con la capacidad de crear herramientas portables proporcio-

Seccion 3.1 3. Frameworks de DBI

nando abstracciones independientes de la arquitectura. Crea herramientas DBA
ligeras.

» Dtrace (http://opensolaris.org/os/community/dtrace) es un framework de
rastreo y monitoreo abarcativo y dindmico. Se programa en lenguaje D y fue creado
para diagnosticar problemas en el kernel y en aplicaciones en tiempo real. Es para
Sistema Operativo Solaris.

» Systemtap (http://sourceware.org/systemtap), provee una infraestructura
para simplificar la recogida de informacién en sistemas GNU/Linux. Ofrece instru-
mentacion via linea de comando y mediante un lenguaje script propio para acceder
al kernel y a las aplicaciones de usuario.

» HDTrans [SSNBO06] (http://srl.cs.jhu.edu/projects), es un sistema de ins-
trumentacién dinamica ligera para la arquitectura x86 open-source y debido a esto
se ha optimizado para la simplicidad y modificabilidad. Permite instrumentar con
las granularidades de instruccién, bloque bésico y traza.

A continuacién se definen las caracteristicas para elegir los frameworks presentados.
Para esta seleccion se ha buscado que cumplan determinados criterios. Uno de las més
importantes es que fuera software que actualmente se mantenga en desarrollo y no fue-
ran proyectos iniciados y olvidados, por lo que se han buscado frameworks cuyas tltimas
versiones fueran de 2011 6 2012. La mas reciente que se ha encontrado es DynamoRIO
de enero de 2012. Otra caracteristica es que tengan un tipo de licencia que permite
acceder a su cédigo fuente, siendo ademads su obtenciéon de manera gratuita. Ademas,
que posean una amplia API que permita el desarrollo de herramientas/clientes.

Aunque la mayoria de los frameworks son multiplataforma y soportan una amplia
variedad de sistemas operativos, como Windows, GNU/Linux, Mac OS X, FreeBSD,
Meego o Android; y estdn soportados para diferentes arquitecturas como x86, x64, Ita-
nium, ARM, PowerPC o S/390 se buscaba que tuvieran un Sistema Operativo y
arquitectura comun.

En base a los criterios planteados, los frameworks que se van a estudiar para evaluar
su rendimiento en este PFC son Pin, Valgrind y DynamoRIO. A continuacién se
describen mas ampliamente los detalles.

3.1. Pin

Pin fue disefiado para proveer una funcionalidad similar a la herramienta ATOM de
Tru64 para Alpha (visto en la seccién 2.2) pero sin necesidad de recompilar la aplicacién
y soportando los sistemas operativos Linux y Windows. Puede inyectar cédigo escrito
en C o C++ en lugares arbitrarios del ejecutable. Ademds, provee una API muy poten-
te que anade una capa de abstraccion permitiendo al programador trabajar de forma
transparente sin que le afecte el cédigo original que se esté ejecutando. Su API estd muy
bien documentada y ofrece una gran amplitud de ejemplos para el programador. Una

10

3. Frameworks de DBI Seccion 3.2

opciéon muy interesante es que se puede vincular a un proceso en ejecucion para que sélo
instrumente la parte de cédigo que interese.

Es desarrollado por Intel, y aunque lleva una licencia propietaria el coste es gratuito
para uso no comercial. Un inconveniente que tiene es que sélo funciona correctamente
con procesadores Intel. Puede funcionar con procesadores de las arquitecturas x86 y x64
de otras marcas (p.e., AMD, Cyrix), pero advierten que puede haber incompatibilidades
con instrucciones propietarias o incompatibles de estos procesadores.

Es un software que se actualiza mucho, ya que en 2011 liber6 las tltimas revisiones
de las versiones 2.8, 2.9 y 2.10, la iltima en noviembre de 2011.

3.2. Valgrind

Valgrind es multiplataforma, ya que soporta cinco arquitecturas diferentes bajo Li-
nux, Android y OS X. La caracteristica principal de Valgrind es que cada vez que lee una
instruccién, antes de instrumentarla la convierte a un lenguaje intermedio tipo RISC,
independiente de la arquitectura, denominado VEX IR. Es en el proceso de transforma-
cién entre VEX IR y el ensamblador de la arquitectura donde se produce la mayoria
de la sobrecarga generada por Valgrind. Debido a este proceso de transformacién a un
lenguaje intermedio no es posible la vinculacién a un proceso ya iniciado, siendo obli-
gatorio que se tome el control desde el principio de la ejecucién. Ademads, esto implica
otros problemas, como se recoge en el apéndice B.2.

Utiliza la técnica de shadow walues, que para cada registro o direccion de memoria
anota un valor que lo identifica (p.e., inicializado o sin inicializar). Almacena y propaga
estos valores en paralelo junto con el valor real del programa. De esta forma se pueden
encontrar muchos tipos de bugs o problemas de seguridad. Con esta técnica se pueden
desarrollar herramientas pesadas, que son mas lentas durante la ejecucién que otras
desarrolladas con otros frameworks como Pin y DynamoRIO, pero que con éstos o no se
pueden o son mas dificiles de hacer.

Valgrind incorpora numerosas herramientas DBA, como: memcheck un comprobador
de fallo en asignaciones de memoria; cachegrind un profiler de cachés y de predicciones
de saltos; y helgrind comprobador de errores en threads.

El programador dispone de la informacion basica para comenzar con Valgrind, pero
con muy pocos ejemplos de cémo manejar la API, que no esta practicamente explicada.
Su licencia de uso es GNU GPL v2.

A lo largo de 2011 se liberaron las versiones 3.6.1 y 3.7.0, la tltima en noviembre de
2011.

3.3. DynamoRIO

DynamoRIO proviene de la unién de Dynamo, un optimizador de cédigo en ejecucion
(desarrollado por HP Labs) junto con The RIO Project, otro optimizador e instrospec-
cionador en tiempo de ejecucién (desarrollado por el MIT). Después fue adquirido por

11

Seccion 3.4 3. Frameworks de DBI

VmWare y desde 2010 tiene el patrocinio de Google. Estd completamente orientado al
desarrollo de aplicaciones usando su API, en comparacién con Valgrind que estd orienta-
do al uso de sus herramientas. Aunque en la versién actual todavia no se puede vincular
a un proceso en ejecucién, se quiere hacer posible para versiones posteriores.

La mayor ventaja que tiene DynamoRIO para los programadores es la facilidad de
uso de su API. Explica claramente cémo hacer una aplicacién desde cero, hay muchos
tutoriales, hay una gran multitud de ejemplos de uso y su API estd muy bien explicada.
La licencia de uso es BSD-2.

En 2011 se liberaron las versiones 2.1 y 2.2, y la ultima versién, la 3.1, ha sido
liberada en enero de 2012.

3.4. Similitudes y diferencias entre estos frameworks

Para poder trabajar con todos los frameworks en el mismo entorno de sistema
operativo y arquitectura se ha buscado un punto en comun. La Tabla 3.1 resume todas
las opciones con las que se puede trabajar. Las opciones que tienen en comun y se
han remarcado en la tabla, son: Linux/x86 y Linux/x64. Entre estas dos opciones, se
continta el estudio con sistema operativo GNU/Linux funcionando en un procesador
Intel x86.

Pin | Valgrind | DynamoRIO
Linux/x86 v v v
Linux/x64 v v v
Linux/Itanium | v
Linux/PowerPC v
Linux/s390 v
Linux/ARM v v
FreeBSD /x64 v
OS X/x86 v v
OS X/x64 v
Windows/x86 v v
Windows/x64 v v
Android/ARM v

Tabla 3.1: S.O./Arquitecturas soportadas por framework.

A continuacién se muestran las similitudes entre ellos. Todos estos frameworks no
necesitan recompilar el ejecutable, o re-enlazarlo, ya que directamente trabajan con el
binario. Hacen la instrumentaciéon en el momento antes de ejecutar una parte, y son
capaces de descubrir cédigo en tiempo de ejecucién. Aunque no necesiten el cédigo

12

3. Frameworks de DBI Seccion 3.4

fuente de una aplicacién, estd recomendado compilar con la opcidén para que se genere
la informacién de depuracién y sea mas sencillo analizar el correcto funcionamiento de
la instrumentacién. También recomiendan todos no utilizar en el compilado las opciones
de optimizacién, ya que en ocasiones se puede observar un comportamiento diferente al
esperado.

Para crear la herramienta/cliente se suele programar en C/C++, con llamadas a la
API del framework y genera o bien una libreria o bien un ejecutable. La forma habitual
de utilizar una herramienta creada con estos frameworks, también es muy similar, suele
ser como sigue:

$ <nucleo de Framework> <herramienta/cliente> <ejecutable a instrumentar>

Esta herramienta/cliente es la que se encargard de la parte de instrumentacién donde
puede introducir el cédigo que queramos, o bien sustituir una parte de él. Este codigo
puede ser en C, C++ o en ensamblador de la arquitectura.

Pin y DynamoRIO trabajan con instrucciones en cédigo maquina de la arquitectu-
ra, pero no como Valgrind, ya que éste traduce de ensamblador a una representacién
intermedia independiente de la arquitectura, como se ha comentado en la seccién 3.2.

Pin es el unico framework que soporta que se pueda vincular a un proceso que ya
esté en ejecucion. Esta es una opcién muy conveniente porque se puede lanzar la aplica-
cion de forma nativa, sin sobrecargas, y cuando llegue el momento que interese, se lanza
la herramienta de instrumentacién. Pin también permite la desvinculacién del proceso.

Llegados a este punto se van a mostrar las diferencias entre los frameworks. En ins-
trumentacién hay dos modos de uso diferentes: modo just-in-time (JIT) y modo Probe.
La forma mas comin de modo de ejecucién es usar un compilador en modo JIT, que
regenera una copia modificada de un pequeno trozo de instrucciones inmediatamente
antes de ejecutar esas instrucciones. Las instrucciones modificadas son cacheadas desde
donde podran ser reutilizadas para el resto del tiempo de ejecucién. El modo JIT es el
modelo de ejecucion mas robusto y es con el que se obtiene un mayor rendimiento en las
aplicaciones que reutilizan cédigo (como el basado en bucles) ya que la sobrecarga de
regenerar la copia cacheada puede ser amortizada a través del tiempo de ejecucion del
programa. Para programas muy cortos o con pocas iteraciones es mas dificil amortizar
la sobrecarga de la regeneracién del cédigo JIT.

En el modo Probe el ejecutable es parcheado en memoria y esta versiéon modificada
serd usada durante el tiempo de ejecuciéon, en vez de una copia cacheada. La sobrecarga
de esta técnica es mucho menor ya que se estd ejecutando todo el tiempo cédigo nativo.
Los tres frameworks soportan el modo JIT, pero el modo Probe sélo estd soportado por
Pin y DynamoRIO.

Sobre las granularidades comentadas en la seccion 2.1, no todos los frameworks so-
portan las mismas. La Tabla 3.2 resume las granularidades de cada framework de DBI.

Finalmente, en la Tabla 3.3 se resumen las similitudes y diferencias nombradas entre
los tres frameworks de DBI considerados en el estudio.

13

Seccion 3.4

3. Frameworks de DBI

Pin | Valgrind | DynamoRIO
instruccion v v v
bloque basico | v v
superbloque v
traza v v
rutina v
imagen v

Tabla 3.2: Granularidades soportadas por framework.

Pin Valgrind DynamoRIO
Fecha 1ltima release 11/2011 11/2011 01/2012
Licencia Tipo BSD | GNU GPL v2 BSD-2
Cddigo fuente libre v v v
Tipo de herramientas DBA Ligera Pesada Ligera
Lenguaje de programacién herramientas | C/C++ C/C++ C/C++
Se ejecuta en arquitectura local VEX IR local
Vinculacién a procesos en ejecucién v
Modo de ejecucién JIT/Probe JIT JIT/Probe
Granularidades diferentes 5 2 3

Tabla 3.3: Similitudes y diferencias entre frameworks.

14

Capitulo 4

Trabajo relacionado

Este capitulo reune los trabajos previos en los que se evalia el rendimiento de
frameworks de DBI.

Uh et al. en [PA06] describen un método para analizar el rendimiento en herramientas
desarrolladas con frameworks de DBI. El método que define hace que sea mas facil
identificar el origen de la sobrecarga para encontrar su causa principal. Se prueban
dos instrumentaciones: cuenta de bloques basicos y adicién de instrucciones con acceso
a memoria. Este método se prueba tnicamente con Pin. El benchmark que se usa es
SPEC CINT 2000 [Cor06] y la maquina para realizar las pruebas es una méquina TA32,
con un procesador Intel Xeon 2.8Ghz, bajo GNU/Linux 2.4.21, y compilado con gcc
3.3.2. Como resultados, obtienen un método para poder identificar de dénde viene la
sobrecarga durante instrumentacién, poder identificar las causas e intentar solucionarlo.

En [Sof07], Guah et al. realizan varios experimentos de rendimiento en instrumenta-
cién con Strata, que es un entorno de ejecucion virtual que soporta software dynamic
translation (SDT), esto es, conversién de un juego de instrucciones a otro en tiempo de
ejecuciéon donde posteriormente se pueden instrumentar. En uno de los experimentos se
comprueba el rendimiento de Strata contra Pin, Valgrind y DynamoRIO. Utilizan como
benchmark para medir el rendimiento SPEC CINT 2000. La métrica que utilizan es el
slowdown, que se define como el tiempo de ejecucién con instrumentacion comparado
con la ejecucion nativa. Para esta prueba usan una instrumentacién de contar bloques
bésicos. Obtienen que el framework mas eficientes es Pin con un slowdown de 2,3x, es
decir 2,3 veces mas lento que la aplicacion sin instrumentar; mientras que DynamoRIO
y Valgrind tiene un slowdown de 4,9x y 7,5x respectivamente.

Fabrice Bellard en [Bel05] hace un experimento para ver el slowdown entre Qemu,
Valgrind y Bochs. El benchmark que se usa es BYTEmark. En los experimentos que
realiza Qemu tiene un slowdown de 4x en operaciones de célculo entero y de 10x en célculo
real, comparado con la ejecucién nativa. Y comparando Qemu con Bochs y Valgrind es
siempre la opcién maés rapida, teniendo Bochs un slowdown de 30x y Valgrind de 1,2x.

Ruiz-Alvarez et al. en [RAHO8] entre varios experimentos que realizan, hacen pruebas
de rendimiento entre Pin y DynamoRIO. Las pruebas las realizan en dos entornos dife-

15

4. Trabajo relacionado

rentes, un Pentium 4 para 32 bit con una caché de trazas, y un Intel Xeon Core 2 para
64 bit con una caché de instrucciones. Ambos con GNU /Linux kernel 2.6.9 (1686 para 32
bit, y x86_64 para 64 bit). El benchmark utilizado es SPEC CINT 2006. Aqui obtienen
que el slowdown de media de DynamoRIO es 1,22x y el de Pin es 1,45x. Para realizar
las mediciones utilizan los contadores de rendimiento hardware con PAPI y perfex. Lo
que se pretende analizar es el rendimiento de la caché de instrucciones o trazas y otras
estructuras de la microarquitectura.

En [WMO08], Weaver et al. describen el uso de herramientas creadas por ellos con
Valgrind, Qemu y la comparan con otra de Pin. Estas son ejecutadas en 9 méquinas
diferentes con arquitectura IA-32 con Linux. Se usan dos benchmark SPEC CINT 2000
y SPEC CINT 2006. Utilizan los contadores hardware de la CPU para obtener resulta-
dos mediante el interfaz perfmon2. Para la instrumentacién usan la cuenta de bloques
bésicos. Como conclusiones obtienen que el rendimiento de sus herramientas es similar
a otras ya existentes.

Siempre que se instrumenta existe una sobrecarga que hace que se ejecute mas
lento que de forma nativa, en [CKST08], Chen et al. buscan métodos para hacer que
se ejecute mas rapido en instrumentacion de grano fino, a nivel de instrucciones. Para
esto se usa el benchmark CPU SPEC INT 2000, y las herramientas DBA Addrcheck,
Memcheck, TaintCheck y Lockset. Primero son instrumentados con Pin para obtener
los accesos a memoria y eventos relacionados con las direcciones. Después, se ejecuta el
benchmark instrumentado con las cuatro herramientas y obtiene un slowdown medio de
3,2x para Addrcheck, 3,3x para TaintCheck, 4,2x para Lockset y finalmente 7,8x para
Memcheck que ha sido programado con Valgrind.

Contribucién. Con mi trabajo aporto un benchmark especifico para la evaluacién
de frameworks de DBI, ya que lo realmente importante en rendimiento es poder compro-
bar cuanto tiempo mas tarda una aplicacién en ser ejecutada cuando es instrumentada.
Ademas, se ofrecen dos métodos de instrumentacién: por instrucciones, donde se instru-
menta el 100 % de las instrucciones ejecutadas; y por bloques bésicos, de forma que se
consiga una sobrecarga media. Ademés muestra la cuenta tanto de bloques bésicos como
de instrucciones, que es un dato muy importante en la instrumentaciéon. Como dato final
también se muestra el consumo de memoria, que no es proporcionado por ningin otro
benchmark.

16

Capitulo 5

Creacion de benchmark

Este capitulo resume las alternativas estudiadas para confeccionar un benchmark
adecuado para la evaluacion de rendimiento entre los diferentes frameworks. Finalmente,
se presentan las caracteristicas y métodos usados en el benchmark creado.

5.1. Alternativas estudiadas

La primera alternativa era utilizar un benchmark ya existente, por lo que se em-
pezé estudiando benchmarks comerciales. Los primeros estudiados fueron los de Fu-
turemark [Futl0], como 3DMark y PCMark, y aunque éstos son de uso libre, tenfan el
problema de ser tinicamente para Windows. Otro benchmark que se estudié fue SysMark
2012, que también es sélo para Windows, de pago y sus aplicaciones entre otras son de
Adobe, Microsoft y Google. Para otros sistemas operativos también estaba TPC, pero
sus benchmarks son de Procesamiento de Transacciones En Linea (OnLine Transaction
Processing, OLTP) en los que principalmente se evalia una base de datos. PARSEC
[Biell], era una muy buena opcién porque es de uso libre y ofrece el cédigo fuente de sus
aplicaciones, pero es un benchmark centrado en paralelizacién pensado especialmente
para maquinas multiprocesadoras.

Finalmente, el que mejor se acercaba para comprobar el rendimiento de las herra-
mientas programadas era CPU2006 v1.2 de SPEC [Cor06], con versiones para Windows
y Linux. En este benchmark tienen una maquina de referencia, una Sun Ultra Enterprise
2 de 1997, y el resultado obtenido en el benchmark es normalizado con respecto a esta
maquina. Este se podria definir como el primero de los problemas, ya que lo que se quiere
comparar es un ejecutable consigo mismo instrumentado. El segundo problema es que
este benchmark no es un producto gratuito. Estos dos problemas motivaron la creacion
de un benchmark propio que se presenta a continuacién.

5.2. Definiciéon de benchmark

Una definicién de benchmark tiene que cumplir una serie de detalles [Cor06]. Habi-
tualmente, los benchmarks realizan un conjunto de operaciones estrictamente definidas:

17

Seccion 5.2 5. Creacién de benchmark

= una carga de trabajo, y devuelve algin tipo de resultados.
= una métrica, describiendo como tienen que ser realizadas las pruebas.

La carga de trabajo en este benchmark serd siempre la misma por cada ejecutable, y
estd preparado para que devuelva siempre el mismo resultado. Lo inico importante es
que debe realizar uso intensivo de CPU.

Las métricas de los benchmarks normalmente miden:

= velocidad: cémo de réapido se ha realizado la carga de trabajo.

» throughput /rendimiento: cudntas unidades de carga de trabajo por unidad de tiem-
po se han completado.

En este benchmark, para generar informacién interesante, los datos que se esperan
obtener estan relacionados con la velocidad y no con el throughput. Lo importante es el
tiempo que le cuesta de més ejecutar una aplicacién. Ademds se estudiaran los requeri-
mientos de memoria de ejecutar aplicaciones instrumentadas.

Para la base de este benchmark se utilizaran bastantes programas usados por
CPU2006. Esto es posible ya que todo el codigo fuente de estas aplicaciones estd disponi-
ble libremente. Ademads, se aprovechard una parte de la metodologia, como repeticiones,
intercalado y optimizaciones. En CPU2006, cada aplicaciéon usada se ejecuta con dife-
rentes argumentos y optimizaciones. Al igual que en ese benchmark, cada aplicacion
se ejecutard varias veces para obtener una media del tiempo de ejecucién. Aunque en
CPU2000 se ejecutaba de forma consecutiva cada prueba, a partir de CPU2006 se ejecu-
tan las pruebas intercaladas, de una forma mas real, que es otra parte de la metodologia
que se usard en este benchmark. Otras opciones mas tomadas de CPU2006 son compilar
con diferentes niveles de optimizacion los ejecutables.

Los resultados de la comparativa se centran en tiempo de ejecucién, instrucciones
ejecutadas y el uso de memoria. La medicién se realizard varias veces por ejecutable,
y con diferentes niveles de optimizacién. Primero se ejecutaran sin instrumentar para
conocer el tiempo que le cuesta realizar una tarea. Después se instrumentara para conocer
el tiempo de ejecucién, uso de memoria y datos relacionados con la instrumentacion.

Ademsds, las instrumentaciones serdn realizadas por diferentes frameworks, por lo
que se podra observar cudl realiza mejor la tarea de instrumentacion, el rendimiento en
funcién de las instrucciones o tiempo de ejecucién y qué niveles de optimizacién pueden
ser mejores para instrumentar.

Las aplicaciones seleccionadas para el benchmark son todas de uso intensivo de CPU,
y se han dividido en cuatro grupos: célculo entero, célculo real, gran demanda de E/S y
software de acceso a memoria. Las tablas 5.1-5.4 muestran un resumen de las aplicaciones
seleccionadas. La primera columna indica el nombre més descriptivo de la aplicacion,
después la versién utilizada para el benchmark, el lenguaje de programacién en el que
estan desarrolladas, y el tipo de categoria en que se engloban las aplicaciones. Finalmente,
se indica si esa aplicacion ha sido utilizada en algin otro benchmark.

En la Tabla 5.1 hay software en las que las opciones de cédlculo son de numeros
enteros. Se utilizan ficheros de entrada diferentes a los de SPEC para reducir el tiempo

18

5. Creacion de benchmark

Seccion 5.2

Nombre Versiéon | Lenguaje | Tipo Origen

bzip2 1.0.6 C Compresién SPEC CINT 2006
GNU go 3.8 C IA - Juegos SPEC CINT 2006
hmmer 3.0 C Genética SPEC CINT 2006
h264ref 18.2 C Compresién video SPEC CINT 2006
libquantum | 1.0.0 C Fisica, computacion cuantica | SPEC CINT 2006

Tabla 5.1: Aplicaciones de calculo entero.

de ejecucién, p.e., una ejecuciéon de bzip2 en este benchmark sin instrumentar dura 20
segundos, y en SPEC CINT 2006 son 848 segundos [NECO08] (42 veces menos).

Nombre Version | Lenguaje | Tipo Origen

namd 2.8 C++ Biologia, simulacién de | SPEC CFP 2006
moléculas

povray 3.0 C Renderizacion SPEC CFP 2006

milc v6 C Fisica, Cromodinamica | SPEC CFP 2006
cuantica

mlucas 2.8x C Numérica, calculo de niimeros | SPEC CFP 2000
primos

linpack 29.5.04 Fortran Numérica, multiplicacién de | Linpack benchmark
matrices

Tabla 5.2: Aplicaciones de célculo real.

Para la categoria de software de calculo real se ha seleccionado software que se puede
ver en la Tabla 5.2. Una parte del software es usado en SPEC CFP 2006 y CFP 2000,
pero se usan ficheros de entrada diferentes para reducir el tiempo de ejecuciéon. También
se utiliza linpack, una libreria de resolucién de ecuaciones lineales.

Nombre Version | Lenguaje | Tipo Origen

whirlpool | 2% Rev C Criptografia, Hash Propio

ripemd 160 C Criptografia, Hash Propio

aes 1 C Criptografia, cifrado Propio

ffmpeg 0.10 C Conversiéon de formatos vi- | Phoronix Test Suite
deo/audio

Tabla 5.3: Aplicaciones con gran demanda de entrada/salida.

Para este benchmark se han anadido mas categorias de las que aparecen en otros
benchmarks, como p.e., aplicaciones que también tuvieran uso intensivo de CPU, pero
no solo que trabaje en memoria, sino accediendo a disco leyendo un fichero de entrada

19

Seccion 5.3 5. Creacién de benchmark

y obteniendo uno de salida de igual tamano o superior. Este software se puede ver en la
Tabla 5.3. Estas aplicaciones realizan cédlculo sobre enteros.

Nombre Version | Lenguaje | Tipo Origen
memtester | 4.0.5 C Comprobacién de memoria | Propio
defectuosa

Tabla 5.4: Aplicaciones de acceso a memoria.

Finalmente, se ha anadido otra categoria méas donde el software accediera al subsis-
tema de memoria, se ve en la Tabla 5.4. memtester es una aplicacién de uso intensivo
de CPU en célculo entero.

5.3. Descripcion del benchmark

Por cada aplicacién que ha sido seleccionada para el benchmark se van a ejecutar un
grupo de pruebas. Este grupo de pruebas se forma con el ejecutable de la aplicacion, pero
con diferentes niveles de optimizacién (-O0, -O3), que después serd ejecutado sin instru-
mentar e instrumentado con los diferentes frameworks de DBI. Ademads se ejecutara 3
veces cada prueba, pero no seguidas, sino alternadas. Esto se hace de forma similar a
SPEC CPU 2006, como se ha comentado en la seccién 5.2 no ejecuta consecutivamente
la misma aplicacién con las mismas opciones, sino que hay alternancia de ejecucién. Otra
diferencia que hay con SPEC CPU 2006 es el fichero de entrada que se utiliza por cada
aplicacion, debido al slowdown que aparece en la instrumentacién, se usan ficheros que
ofrezcan menos carga de proceso. Esta diferencia puede observarse en el apéndice D.16.

Primero seran ejecutados sin instrumentacién y después instrumentados. Se esperan
obtener los siguientes datos:

= tiempo de ejecucion real y total en segundos

= tiempo de ejecucion en modo kernel en segundos

= tiempo de ejecucion en modo de usuario en segundos

= numero de veces que el proceso ha sido paginado a disco de memoria
= porcentaje de uso de la cpu

= uso de memoria durante la ejecucion

» nimero de instrucciones/bloques bésicos ejecutados

Puede haber pruebas que seran repetidas o descartadas, en funcién de si ha sido uti-
lizado un tiempo de ejecucion excesivo o ha sido paginado muchas veces en comparacion
con las otras pruebas. Esto es asi porque las aplicaciones estan preparadas para que el
resultado obtenido de ellas sea siempre el mismo, por lo que se espera que su ejecucion
dure aproximadamente lo mismo. Para esto se utilizaran intervalos de confianza.

20

5. Creacion de benchmark Seccion 5.4

5.4. Herramientas para el benchmark

En el benchmark se van a realizar dos herramientas con diferentes tipos de instru-
mentacion:

= A nivel de instruccién
= A nivel de bloque bésico

Con la primera herramienta, instrumentacién a nivel de instruccién, se quiere conse-
guir el maximo slowdown. Esto es asi porque en la parte de la instrumentacion, donde
se decide en qué punto se inserta la instrumentacion, se instrumentan todas las instruc-
ciones. De esta forma, por cada instruccién ejecutada, también se ejecutara el codigo
anadido, que es incrementar un contador. Al finalizar la ejecucién se devuelve el resul-
tado del contador total de instrucciones ejecutadas. Esta herramienta se ha desarrollado
con los tres frameworks de DBI: Pin, Valgrind y DynamoRIO.

Con la segunda herramienta, instrumentacién a nivel de bloque bésico, se quiere con-
seguir una sobrecarga media. En la mayoria de articulos que evalian frameworks de
DBI como [PA06], [Sof07] y [WMO8] utilizan este método. En la parte de instrumenta-
cién, se instrumentan todos los bloques béasicos. Por cada bloque bésico ejecutado, se
ejecutara el codigo anadido, que es incrementar un contador. Al finalizar la ejecucién se
muestra la suma del niamero total de bloques bésicos ejecutados. Esta herramienta se ha
desarrollado también con los tres frameworks de DBI: Pin, Valgrind y DynamoRIO.

5.5. Mediciones en el benchmark

En esta seccién se van a describir los métodos que utiliza el benchmark para medir
el tiempo de ejecucién y el consumo de memoria de una aplicacién instrumentada y sin
instrumentar.

5.5.1. Tiempo

Todas las pruebas se hacen con el comando /usr/bin/time, diferente de la variante
integrada en la shell time, parte del intérprete de comandos. Esta es una forma bésica
de medir el tiempo que tarda en ejecutarse un programa. Ofrece el tiempo real desde
que inicia hasta que acaba y ademas el tiempo que realmente se estd ejecutando en la
CPU, distinguiendo entre el cédigo de usuario y sus llamadas al sistema.

La mayoria de la informacién ofrecida por /usr/bin/time estd derivada de la llamada
al sistema wait3 o wait4, con lo que los datos obtenidos seran tan buenos como los que
pueda ofrecer esta llamada. En los sistemas que no esté disponible se usa la llamada times
que ofrece mucha menos informacién. En el sistema donde se ejecutard el benchmark la
llamada al sistema usada es wait4.

21

Seccion 5.5 5. Creacién de benchmark

5.5.2. Memoria

Para medir el consumo de memoria, el benchmark ejecuta un proceso en back-
ground después de lanzar la aplicacién a evaluar. Este proceso se encarga de revisar
en /proc/<pid de la aplicacién>/status el consumo en el campo VmPeak que con-
tiene el pico de memoria utilizada.

Para definir el intervalo en el que se consulta el consumo se usaron valores inferiores a
1 segundo, y se fue aumentando una vez que se pudo comprobar que en las aplicaciones
no se incrementaba el consumo de memoria en el ultimo intervalo por encima del valor
de pico.

22

Capitulo 6

Experimentos

En este capitulo se resumen los experimentos realizados con el benchmark, comenzan-
do por la definicién del entorno de pruebas y mostrando los resultados con un analisis
critico.

Se ha utilizado un equipo con procesador Intel Core 2 Duo T7300 a 2 Ghz, 2 GiB
de memoria RAM, S.O. Fedora Core 14 con kernel 2.6.35.14-106.fc14.1686.PAE. Se le
ha deshabilitado al equipo uno de los cores para evitar que ciertas aplicaciones lanzaran
mé&s de un proceso a la vez, y que el tiempo de CPU se encontrara en valores cercanos
al 190 %. En las Tablas 6.1 y 6.2 se resume el hardware y software, respectivamente,
utilizado para la realizacién del experimento.

Nombre CPU Intel®Core™2 Duo CPU T7300
Caracteristicas 2.00 GHz, 667 MHz bus
CPU(s) 2 cores, 1 desactivado.
Caché primer nivel 32 KiB I + 32 KiB D por core
Caché segundo nivel 4 MiB I+D
Memoria RAM 2 GiB (2x1 GiB DDR2 SODIMM 667 Mhz)
Disco Duro 120 GB HITACHI HTS54161

Tabla 6.1: Hardware utilizado en las pruebas.

Sistema Operativo Fedora Core 14 32bit
Compilador C gee (GCC) 4.5.1 20100924 (Red Hat 4.5.1-4)
Compilador Fortran GNU Fortran 4.5.1
Sistema de ficheros ext4
Nivel sistema Run level 3 (multiusuario)

Tabla 6.2: Software utilizado en las pruebas.

Las versiones de los frameworks de DBI que se han utilizado han sido Pin v.2.10,

23

Seccion 6.1 6. Experimentos

Valgrind v.3.7.0 y DynamoRIO v.2.2.0-2.

6.1. Entorno de pruebas

En los experimentos se quiere que el resto de procesos que estan funcionando en la
maquina afecten lo minimo posible, por lo que para que se tengan los minimos procesos
funcionando se iniciard la maquina en nivel 3 (multiusuario con red).

Una vez reiniciada la maquina en ese nivel no se tendra ningtn proceso relacionado
con el gestor de escritorio o salvapantallas que pueda influir durante la ejecuciéon del
benchmark. En este momento y conectado remotamente por ssh se inicia el benchmark.

Mientras se ejecuta, se puede ver por el terminal el programa del benchmark que se
estd ejecutando, si lo hace sin instrumentar o con cial esta instrumentado, el nimero
de repeticién de la prueba y si es el benchmark de instrucciones o de bloques basicos. El
benchmark genera un fichero de log y un fichero de valores delimitados por comas (csv)
en el que se puede encontrar el tiempo real de ejecucion, el tiempo en modo kernel, el
tiempo en modo de usuario, los fallos de pagina, el porcentaje de CPU usado y la linea de
comando. Como datos adicionales se encuentran el consumo de memoria por proceso y
el nimero de instrucciones o de bloques basicos ejecutados por aplicacién instrumentada
en el log.

6.2. Resultados

Se ha visto previamente en [LCM™05] y [NS07] que la instrumentacién provoca una
ralentizacién de la ejecucion del programa instrumentado. Aqui, se va a observar la
eficiencia de cada framework de DBI intentando inferir cudl es el mas adecuado segin
sea el tipo de aplicaciéon que se va a instrumentar.

La Figura 6.1 muestra los resultados de tiempo de ejecucién para la aplicacion
h264ref, una aplicaciéon de conversion de audio y video. Como se ha dicho previamente,
una de las caracteristicas de la instrumentaciéon es que provoca una ralentizacién de la
ejecucion, y aqui se comprueba. Es la prueba mas lenta de todas una vez instrumentada.
Bajo Valgrind llega a durar 2615 segundos en la versién sin optimizar del ejecutable, y
918 segundos en la optimizada, cuando sin instrumentar son 175 segundos sin optimizar
y 52 segundos optimizada. Aunque en relacién al slowdown (la relacién entre el tiempo
de ejecucién instrumentado y sin instrumentar), ésta no es la peor aplicacién de todas:
bajo Valgrind se obtiene 11,2x sin optimizar, y 17,43x optimizada.

En la Figura 6.2 se muestra el slowdown de la aplicaciéon ffmpeg instrumentada por
los tres frameworks en ambas optimizaciones en la instrumentacién por instrucciones.
Esta es la aplicaciéon que mayor slowdown presenta. Como en la aplicacién anterior,
h264ref, el mayor slowdown se tiene bajo la instrumentaciéon de Valgrind, que en sus
versiones sin optimizar y optimizada tiene una ratio de 34,6x y 35,38x respectivamente.

No sélo lo mas importante es que tarde mas tiempo, sino el nimero de veces que se
puede llegar a ejecutar més lenta una aplicacién. Revisando el slowdown de todas las

24

6. Experimentos Seccion 6.2

3000 x x x :
I 00
C__1-03

2500

2000 b

Tiempo (s)
@
o
o

1000 1

500 b

ol Nl

Sin instrumentar PIN Valgrind DynamoRIO

Figura 6.1: Tiempo de ejecucién de la aplicaciéon h264ref con instrumentacién por ins-
trucciones y optimizaciones.

20 T - .
I -O0
— |[C_1-03
15
c
2
(o]
E
3 10
%)
5
0 -
PIN Valgrind DynamoRIO

Figura 6.2: Slowdown en el benchmark de ffmpeg con instrumentacién por instrucciones
y optimizaciones.

25

Seccion 6.2 6. Experimentos

aplicaciones individualmente, y el tiempo de ejecucién de ellas (p.e., Figura 6.1) se puede
comprobar que la opcién méas lenta es Valgrind.

25 T T T 25 - - -
- I 00 I 00
[1-03 []-03
201 1 201 1
g 157 g 15¢ 1
o o
° S —
5 [] =
o o
%) n
101 1 101 1
5r 5t 1
0 - 0 - lﬂ
PIN Valgrind DynamoRIO PIN Valgrind DynamoRIO
Caélculo entero Calculo real

Figura 6.3: Slowdown medio en el benchmark usando instrumentacién por instrucciones.

En la Figura 6.3 se puede ver el slowdown medio por framework de DBI, dividido
entre las aplicaciones de cdlculo entero y las de calculo real. Individualmente Valgrind
es siempre la opciéon més lenta y como se puede comprobar en esta figura también lo
es en las medias. Otra conclusion que podemos obtener es que, independientemente del
framework que se use, todos son més eficientes que Valgrind en célculo real. También se
comprueba en la misma tabla que las aplicaciones serdan més rapidamente instrumentadas
con DynamoRIO, tanto en cédlculo entero, como real y con ambas optimizaciones usadas
en la compilaciéon. Ademads, se observa que la optimizacién no mejora el slowdown en
general, salvo en Valgrind y DynamoRIO en céalculo real.

El consumo medio de memoria de las aplicaciones instrumentadas separadas por fra-
mework se puede ver en la Figura 6.4, donde se puede comprobar que el framework que
menor consumo ofrece es Pin, tanto en cédlculo real como en entero. Practicamente no
hay diferencia entre el tipo de calculo que se haga ni en si se ha optimizado el ejecutable
0 no.

Otro dato importante de la Figura 6.4 es que el consumo de memoria de la aplicacién
instrumentada no es proporcional a la memoria consumida sin instrumentar, sino que
parece un incremento lineal. En la Tabla 6.3 se puede ver la media del consumo de la
herramienta DBA restdndole el consumo de la aplicacién instrumentada y la desviacién
media. No deja lugar a dudas que el consumo de DynamoRIO, aunque sea el més elevado
de todos, es practicamente fijo independientemente de la aplicacién instrumentada por
lo que serd un dato muy importante a tener en cuenta para casos en los que se puedan
tener restricciones de memoria, como p.e., un sistema empotrado. Sin embargo la opcién
de Pin sera la mas eficiente respecto al consumo de memoria y Valgrind, aunque no sea

26

6. Experimentos

Seccion 6.2

160
i T T T T T T T 0 T T T
o o o il
1401 8] o i
= a) m] o
—<— Sininstrumentar
120 — % —PIN N
* - Valgrind
- DynamoRIO
100 -
a
=3
S 8o |
Q
g : - . * *
= X X ~ o R
60 N ~ N\ / T ox * - ~
* ~ - -
N * s \ * * * / -~
N - \ /
\ e < N /
40 x Mo — X — — =X N
201
0 | | | | | | |
go h264ref libquantum bzip2 ~ hmmer ripemd aes whirlpool ffmpeg milc povray namd linpack

Figura 6.4: Consumo medio de memoria de las aplicaciones.

Framework Media consumo (kiB) | Desviacién media (kiB)
Pin -O0 39885 3113
Valgrind -O0 53033 3736
DynamoRIO -O0 132478 73
Pin -O3 40871 4006
Valgrind -O3 52789 3535
DynamoRIO -O3 132475 72

Tabla 6.3: Consumo medio de memoria por Framework.

27

Seccion 6.2 6. Experimentos

la mejor también serd una buena opcién debido a que el consumo es inferior a la mitad
de DynamoRIO.

20 T T T T T

T
I Instrucciones
18 [IBloques Basicos [

16 -

14 -

12 -

Slowdown

PIN-O0 Valgrind -O0 DRIO -0O0 PIN -O3 Valgrind -O3 DRIO -0O3

Figura 6.5: Slowdown en instrumentaciéon por instrucciones y por bloques basicos por
frameworks y optimizaciones.

En la Figura 6.5 se comparan los slowdown que aparecen en los tres frameworks de
DBI, para todas las optimizaciones y para las instrumentaciones de instrucciones y de
bloques béasicos. Se puede comprobar que una instrumentacion mas ligera produce menos
slowdown en cualquier tipo de aplicacién.

A partir de lo visto en la Figura 6.5 se ha decidido hacer la Tabla 6.4 con los slowdowns
relativos entre instrumentacién por instrucciones y bloques bésicos. Se muestra que el
menor slowdown aparece en Valgrind en ambas optimizaciones, y los peores resultados
se obtienen en Pin con optimizaciéon -O0 y en DynamoRIO con optimizacién -O3.

Pin | Valgrind | DynamoRIO | Pin | Valgrind | DynamoRIO
-00 -00 -00 -03 -03 -03
Slowdown | 4.29 2.81 3.76 3.54 2.29 4.03

Tabla 6.4: Slowdown relativo entre instrucciones y bloques bésicos.

Y lo mas importante respecto a rendimiento que también se puede comprobar en la
Figura 6.5 es que la opcién maés eficiente al instrumentar siempre es DynamoRIO.

28

Capitulo 7

Conclusiones y trabajo futuro

Este capitulo presenta algunas conclusiones obtenidas de la elaboracién de este PFC.
Ademss, plantea el trabajo futuro.

La instrumentacién dindmica de ejecutables ofrece soluciones necesarias y muy intere-
santes pero ofrece un rendimiento muy bajo, en comparaciéon con la ejecucién nativa.
Cada framework intenta resolver este problema para venderse a si mismo como la mejor
opcion de todas.

Este proyecto ha buscado unos criterios para la selecciéon de diferentes frameworks de
DBI y ha hecho una comparativa a nivel de impacto en rendimiento. Los tres frameworks
que se han seleccionado han sido Pin, Valgrind y DynamoRIO. Para evaluar el rendi-
miento, se han seleccionado un conjunto de 15 aplicaciones, 10 de célculo entero y 5 de
célculo real, para la creaciéon de un benchmark. Para este benchmark se han programado
dos herramientas con diferente granularidad de instrumentaciéon: a nivel de instruccién y
a nivel de bloque basico. Se han hecho tres versiones de cada herramienta programadas
con cada uno de los frameworks de DBI.

Entre los datos mas importantes, se ha evaluado el tiempo de ejecucion de la apli-
cacién en dos versiones diferentes (sin optimizar, -O0, y optimizada, -O3), y para cada
una de estas dos versiones ejecutandose de forma nativa e instrumentada bajo los tres
frameworks con las herramientas programadas.

Segun los resultados obtenidos, la peor opciéon en rendimiento en todos los casos es
Valgrind, y ademés con un slowdown, la relacién entre el tiempo de ejecucién instrumen-
tado y sin instrumentar, muy superior a los otros dos frameworks de DBI. Segiin se ha
podido comprobar en el trabajo relacionado desde las primeras versiones de Valgrind,
su rendimiento es bastante malo y no lo estdn mejorando.

Sobre las optimizaciones, se ha comprobado que sin optimizar el que mejor rendi-
miento tiene es DynamoRIO, y una vez que se optimiza sigue siendo la mejor opcion.
También independientemente del tipo de calculo principal realizado por el ejecutable, el
que mejor rendimiento ofrece es DynamoRIO.

Sin embargo, un dato importante que no aparece en los trabajos relacionados es el
consumo de memoria de la aplicacién una vez instrumentada. Indirectamente esté relacio-
nado con el rendimiento, porque la falta de memoria fisica e incremento de la paginacion

29

7. Conclusiones y trabajo futuro

a disco puede suponer un detrimento del rendimiento. En la plataforma en la que se
realiza el estudio, x86 bajo GNU/Linux, no es inicamente de servidores, ni equipos de
escritorio, sino que engloba a multitud de equipos empotrados, que suelen incorporar
una cantidad de memoria pequefia. En los resultados se ha visto que el framework de
DBI mas eficiente, DynamoRIO, también es el que mas memoria consume, pero segin
la desviacién media vista en la Tabla 6.3, la memoria que consume de mas se podria
llegar a estimar. El framework de DBI que menos memoria consume y es la opcién mas
recomendada para un equipo con poca memoria es Pin.

Otra de las conclusiones es que no se instrumentan la misma cantidad de instruc-
ciones en los tres frameworks de DBI seleccionados. Se ha estudiado el funcionamiento
paso a paso de la carga de un ejecutable por los frameworks de DBI en los problemas
encontrados. Es importante conocerlo para comprobar la correcta funcionalidad de las
herramientas programadas.

A continuacién se exponen algunos trabajos futuros que completarian o ampliarian
el trabajo desarrollado en este PFC:

= Uso de Linux Performance-Monitoring Driver para la monitorizacion de los
ejecutables del benchmark, como en [RAHO08] y [WMO08|. Utilizando este driver del
kernel se podria obtener informacion del niimero de instrucciones ejecutadas por
aplicacién sin necesidad de instrumentarlas. De esta forma se podria comparar el
numero de instrucciones ejecutadas por framework de DBI con las de una aplicacién
ejecutada de forma nativa.

» Uso de Intel® VTune™ Amplifier XE [Int12] para la medida de tiempo e
instrucciones. Utilizando esta aplicaciéon, que también modifica el kernel, se ob-
tendria de manera facil el tiempo de ejecucién de cada aplicacion, las instrucciones
ejecutadas y el consumo de memoria, tanto para aplicaciones nativas como instru-
mentadas.

= Ampliar el estudio a mas frameworks de DBI. Una vez que se ha definido
un método para comparar el rendimiento de frameworks de DBI, se puede ampliar
a otros para tener un estudio méas completo.

= Comparar en mas detalle las APIs y las herramientas que llevan los
frameworks de DBI. Como dicen Nethercote et al. en [NSO7] sobre Valgrind, a
pesar de que es el framework con menos rendimiento, no sélo hay que fijarse en el
rendimiento sino en las capacidades de la instrumentacién y las herramientas que
han sido programadas con ellos.

= Ampliar las aplicaciones del benchmark. Para comprobar el rendimiento de
los frameworks de DBI en un mayor nimero de aplicaciones.

En un ambito més personal, mi valoraciéon de este PFC es muy positiva, puesto que
ademds de alcanzarse con éxito los objetivos del proyecto, me ha permitido conseguir
una enriquecedora experiencia sobre la instrumentacién y frameworks de DBI, ademas
de mejorar mi conocimiento sobre la depuracién y el formato de los ficheros ejecutables.

Bibliografia

[BDCWO1] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and Wi-

[Bed90]

[Bel05]

Biel1]
[Bru04]

[BZA12]

[CKS*08]

[Cor06]
[Fut10]

[GHO3]

lliam E. Weihl. PROTEUS: A High-Performance Parallel-Architecture Si-
mulator. Technical report, 1991.

Robert Bedichek. Some efficient architectures simulation techniques. In
Winter 1990 USENIX Conference, 1990.

Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Procee-
dings of the annual conference on USENIX Annual Technical Conference,
ATEC 05, pages 41-41, Berkeley, CA, USA, 2005. USENIX Association.

Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prin-
ceton University, January 2011.

Derek Bruening. Efficient, transparent, and comprehensive runtime code
manipulation. PhD thesis, Cambridge, MA, USA, 2004. AAI0807735.

Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent dynamic
instrumentation. In Proceedings of the 8th ACM SIGPLAN/SIGOPS con-
ference on Virtual Execution Environments, VEE ’12, pages 133-144, New
York, NY, USA, 2012. ACM.

Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B.
Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael
Ryan, and Evangelos Vlachos. Flexible hardware acceleration for instruction-
grain program monitoring. SIGARCH Comput. Archit. News, 36(3):377-388,
jun 2008.

Standard Performance Evaluation Corporation. SPECCPU 2006 bench-
marks. http://www.spec.org, 2006.

Futuremark Corporation Benchmarks. PCMark 7, 3DMark 11.
http://www.futuremark.com/benchmarks/, 2010.

Stephen R. Goldschmidt and John L. Hennessy. The accuracy of trace-driven
simulations of multiprocessors. In Proceedings of the 1993 ACM SIGME-
TRICS conference on Measurement and modeling of computer systems, SIG-
METRICS 93, pages 146-157, New York, NY, USA, 1993. ACM.

31

BIBLIOGRAFIA BIBLIOGRAFIA

[Int86]
[Int12]
[Jon0g]
[LBY4]

[LCM*05]

[NECO8]

[NS07]

[PAOG]

[RAHO8]

[SE94]

[SG92]

[Sof07]

[SSNBO6]

[Wal91]

Intel. 80386 programmer’s reference manual. Intel Corporation, 1986.
Intel. Intel® VTune™ Amplifier XE , 2012.
M. Tim Jones. Anatomy of linux dynamic libraries. 2008.

James R. Larus and Thomas Ball. Rewriting executable files to measure
program behavior. Softw. Pract. Ezxper., 24(2):197-218, February 1994.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.

Pin: building customized program analysis tools with dynamic instrumenta-
tion. SIGPLAN Not., 40(6):190-200, June 2005.

NEC Corporation. SPEC® CINT2006 Result - Intel Core 2
Duo T7400. http://www.spec.org/cpu2006/results/res2008q2/cpu2006-
20080316-03692.html, 2008.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. SIGPLAN Not., 42(6):89-100, June
2007.

G.-R. Uh; R. Cohn; B. Yadavalli; R. Peri and R. Ayyagari. Analyzing dyna-
mic binary instrumentation overhead. In Workshop on Binary Instrumen-
tation and Applications, WBIA, 2006.

Arkaitz Ruiz-Alvarez and Kim M. Hazelwood. Evaluating the impact of
dynamic binary translation systems on hardware cache performance. In
1ISWC, pages 131-140, 2008.

Amitabh Srivastava and Alan Eustace. ATOM: a system for building cus-
tomized program analysis tools. SIGPLAN Not., 29(6):196-205, June 1994.

Inc. Silicon Graphics. MIPS Assembly Language Programmer’s Guide. Sili-
con Graphics, Inc., 1992.

A. Guha; J.D. Hiser; Naveen Kumar; J. Yang; M. Zhao; S. Zhou; B.R. Chil-
ders; J.W. Davidson; K. Hazelwood; M.L. Soffa. Virtual execution environ-
ments: Support and tools. In International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2007), Dept. of Comput. Sci., Virginia Univ.,
Charlottesville, VA, March 2007.

Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, and Prashanth P.
Bungale. HDTrans: an open source, low-level dynamic instrumentation sys-
tem. In Proceedings of the 2nd international conference on Virtual execution
environments, VEE 06, pages 175-185, New York, NY, USA, 2006. ACM.

David W. Wall. Systems for late code modification. In WRL Research Report
91/5, pages 275-293. Springer-Verlag, 1991.

32

BIBLIOGRAFIA BIBLIOGRAFIA

[WMO08] Vincent M. Weaver and Sally A. McKee. Using dynamic binary instrumen-
tation to generate multi-platform simpoints: methodology and accuracy. In
Proceedings of the 3rd international conference on High performance embed-
ded architectures and compilers, HIPEAC’08, pages 305-319, Berlin, Heidel-
berg, 2008. Springer-Verlag.

33

BIBLIOGRAFIA BIBLIOGRAFIA

34

Apéndice A

Fases de Desarrollo

A.1. Diagrama de Gantt

En este apéndice se describe la distribucién temporal de cada una de las etapas de este
proyecto. La figura A.1 muestra el Diagrama de Gantt donde se reflejan las diferentes
tareas realizadas y la figura A.2 el tiempo dedicado a su desarrollo, que ha sido de 410
horas y se puede ver detallado en la Tabla A.1.

221 2012

NOVIEMBRE | DICIEMBRE ENERO FEBRERO MARZO ABRIL

Busqueda de informacion
Trabajo con frameworks

Problemas contado instrucciones G

Estudio de benchmarks
Creacion de benchmarks
Documentacion memoria

Figura A.1: Diagrama de gantt.

Primero se realizé una busqueda de informacién sobre DBI, ya que no se poseian cono-
cimientos previos. Se buscé informacién sobre la instrumentacién y sus diferentes tipos,
analisis estatico, dinamico, DBI, frameworks de DBI y trabajos previos relacionados con
rendimiento para frameworks de DBI.

Una vez que se encontré informacién suficiente, se procedié a la seleccion de frame-
works de DBI, donde el procedimiento que se realizaba para cada uno era: descarga del
codigo fuente del framework, compilacion, instalacién y prueba de funcionamiento. Una
vez que se llegaba a este punto, se estudiaba el API y se procedia a programar una
herramienta bésica.

Se hizo un estudio sobre los benchmarks existentes y de cémo se podian llegar a usar
en el desarrollo de este PFC. Se comprobd que no habia ninguno que encajara y se
desarrollé uno nuevo.

35

Seccion A.1 A. Fases de Desarrollo

Para la creacién de este benchmark primero se buscaron aplicaciones y se desarrollaron
metodologias para la ejecucién de las aplicaciones de prueba. Se buscaron diferentes
métodos para medir el tiempo de ejecucién de las aplicaciones y el consumo de memoria
de estas. Una vez finalizado este proceso se realizaron las pruebas con el benchmark para
obtener los resultados para este PFC.

La memoria del proyecto se ha ido realizando poco a poco, desde el principio del pro-
yecto. Se fue completando al final con los resultados y conclusiones de los experimientos
realizados.

I Reuniones

I Busqueda informacion
[Trabajo con Frameworks
Documentacion memoria [Problema instrucciones
I Benchmarks

Reuniones I Documentacién memoria

Busqueda informacion,
Benchmarks

Problema instrucciones

Trabajo con Frameworks

Figura A.2: Horas dedicadas.

Tareas Horas

Reuniones 20

Busqueda de informacion 75

Trabajo con frameworks 95

Problema contado de instrucciones 55

Estudio y creacién de benchmark 60
Documentaciéon memoria 105

Total 410

Tabla A.1: Horas dedicadas.

36

Apéndice B
Problemas encontrados

En este capitulo se resumen las dificultades més destacables que han ido apareciendo
durante la realizacién de este proyecto.

B.1. Cuenta de instrucciones

Al principio del estudio se hicieron pruebas para verificar el funcionamiento de los fra-
meworks de DBI. La primera herramienta se dedicaba a contar instrucciones ejecutadas
en Pin, Valgrind y DinamoRIO. Se esperaba que el resultado de las tres instrumentacio-
nes fuera exactamente el mismo nimero de instrucciones. Para esto se cred un programa
en C que calculaba el factorial de un ntimero. Los resultados fueron que, para instru-
mentar el comando $ factorial >/dev/null, se obtenian 99094 instrucciones en Pin,
120014 en Valgrind y 10150 en DynamoRIO.

Debido a esto, se hicieron pruebas con més ejecutables para ver si existia algin tipo
de correlacién y los resultados son los que aparecen en la Tabla B.1. Son datos que no
tienen ninguna relaciéon entre ellos, por lo que se procedié a estudiar paso a paso el
funcionamiento de las herramientas programadas.

Pin | Valgrind | DynamoRIO
xfsinfo | 269699 | 298295 25581
1s 443104 | 474249 103596
xeyes | 875730 | 920633 223912
cat 219189 | 242386 63354

Tabla B.1: Instrucciones contadas por framework de DBI.

El primer paso fue sacar las primeras instrucciones de la aplicaciéon instrumentada,
junto con su traza, para ver que instrumenta y cuenta la herramienta, para después
compararlas con las que aparecen en un debugger. Para esto, primero se desensamblé el
ejecutable con $§ objdump -d ./factorial y asi ver cudles son las instrucciones en

37

Seccion B.1 B. Problemas encontrados

ensamblador y sus direcciones. Aunque en Pin y Valgrind las primeras instrucciones
coincidian, en DynamoRIO no era asi.

Buscando mas informacion, se obtuvo que DynamoRIO no soporta early injection
(no instrumenta desde la primera instrucciéon). Ademds DynamoRIO necesita que el
ejecutable esté enlazado dindmicamente, y cambia el proceso de carga de la aplicacion:
en vez de utilizar el loader del sistema utiliza uno privado y carga sus librerias después de
las de la aplicacién. En Linux comienza la instrumentacién cuando DynamoRIO vuelve
de la inicializacién de las librerias dindmicas (exactamente cuando deja la direccién de
retorno en la pila). Si el ejecutable no esta enlazado dindmicamente, no puede cargar sus
librerias y no puede instrumentar. Debido a esta limitacién, en aplicaciones pequenas,
el nimero de instrucciones que instrumenta es de un orden de magnitud menor. En la
version para Windows si soporta early injection.

El segundo problema que aparecié fue que en la traza de direcciones las instrucciones
eran las mismas, pero cada vez que se ejecutaba, las direcciones eran diferentes. Esto
es debido a que a partir de la versién 2.6 del kernel de Linux tiene activado por de-
fecto y por motivos de seguridad Virtual Address Space Randomization. Se soluciona
deshabilitdndolo con el siguiente comando:

echo 0 > /proc/sys/kernel/randomize_va_space

En el momento que las direcciones eran las mismas, se estudié el proceso de carga de
un ejecutable bajo GNU/Linux. Cuando se invoca un ejecutable, el kernel lo carga en
memoria virtual del espacio de usuario, después en la secciéon .interp busca ctial es el
cargador dindmico a utilizar (p.e., /1ib/1d-1linux.so0.2) y lo inicializa, cargando des-
pués todas las bibliotecas dependientes (p.e., 1ibc), resuelve los simbolos, y finalmente
transfiere la ejecucién al ejecutable original para comenzar su ejecucién [Jon08]. Debido
a esto, cada vez se instrumenta un ejecutable con la opcién para dar la traza de las
instrucciones, en vez de comenzar la ejecucién en la direccién de inicio (start address)
que se obtiene con objdump comienza en otra previa.

$ objdump -f factorial

prx2: file format elf32-i386
architecture: 1386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x08048310

Para poder hacer una comparacién més sencilla, se decide compilar el programa de
prueba sin enlazar dindmicamente. Ademads, para tener més informacién de lo que se
estd ejecutando antes del inicio se compila con las librerias estandar de C estéticas
con informacién de depuracién (paquete glibc-debuginfo-2.13-2). Los pardmetros a
utilizar en la compilaciéon son:

» Con informacién de depuracién del programa (-g)

» Uso de glibc con informacién de depuracién(-L/usr/1ib/debug/usr/1lib)

38

B. Problemas encontrados Seccion B.1

» En estatico (-static) para que no incluya librerias externas.

Una vez realizada esta operacion sobre el ejecutable, cuando se instrumenta, las ins-
trucciones ejecutadas bajo Pin son 14223 y bajo Valgrind 14572. Hay 349 instrucciones
de diferencia que se va a averiguar qué hacen y por qué se ejecutan en uno y no en el
otro.

Siguiendo la traza de instrucciones, se comprueba que la diferencia de éstas corres-
ponde a que el valor de los vectores de entorno (envp) y de los vectores auxiliares (auxv)
son diferentes en ambas ejecuciones. En envp aparecen variables de entorno diferentes
que son anadidas por los scripts de inicio de Pin y Valgrind, cada variable de entorno es
evaluada individualmente en el proceso de carga del ejecutable, por lo que afecta el tener
mas o menos variables de entorno a las instrucciones ejecutadas. En auxv se encuentra
la diferencia: en Pin se pasan valores para AT_SYSINFO y AT_SYSINFO_EHDR, pero para
Valgrind no, por lo que primeramente afecta al procesamiento del vector ya que son
de tamano diferentes y después en esos valores estd el puntero al Virtual Dynamically-
linked Shared Objects (VDSO), que es la forma actual de hacer llamadas al sistema. En
este método de llamadas al sistema se utilizan las instrucciones sysenter/sysexit y
previamente se utilizaban interrupciones software con int 0x80.

La primera conclusion que se obtiene es que con un ejecutable enlazado dindmi-
camente, el proceso que realiza el cargador dindmico, incluyendo la carga de librerias,
se realiza de forma diferente entre Pin y Valgrind. La segunda conclusién es que las
variables de entorno afectan directamente al niimero de instrucciones ejecutadas. Y la
tercera conclusion y mas importante de todas es que las llamadas al sistema son rea-
lizadas de forma diferente entre Pin y Valgrind. Por este motivo, nunca se ejecutard el
mismo nimero de instrucciones para el mismo programa instrumentado por diferentes
frameworks.

La tnica forma que se ha encontrado para que se cuenten el mismo numero de instruc-
ciones entre distintos frameworks ha sido programéndolo directamente en ensamblador.
Compilando un programa que sélo tenia 12 instrucciones, el funcionamiento en Pin y
Valgrind era correcto y contaban sin ningin problema. Sin embargo, DynamoRIO no
podia instrumentar este ejecutable en ensamblador porque no era un ejecutable enlaza-
do dindmicamente.

En aplicaciones con un nimero alto de instrucciones puede llegar a haber muy po-
ca diferencia, como se ha comprobado en este PFC y se puede ver en la Tabla B.2,
que muestra el nimero de instrucciones ejecutadas para las aplicaciones whirlpool y
memtester optimizadas.

Pin Valgrind DynamoRIO
whirlpool -03 | 74222379297 | 74222385145 74222287028
memtester -03 | 241201530296 | 241201536828 | 241201371000

Tabla B.2: Instrucciones contadas para las aplicaciones whirlpool y memtester

39

Seccion B.2 B. Problemas encontrados

B.2. Fallo en ejecucion

Durante la ejecucién del benchmark ha aparecido un fallo con la aplicacién mlucas.
Como de todas las aplicaciones que hay en el benchmark se dispone del cédigo fuente,
a partir de los mensajes de salida del fallo y de todo el cédigo que se encontraba a su
alrededor, se ha podido hacer un pequeno programa de prueba capaz de repetir el fallo.

#include <stdio.h>

int main(int argc, char *xargv)
{
double RND_A,RND_B,prueba;
prueba= 5.4321;
RND_A = 3.0%0x4000000*0x2000000%0x800;
RND_B =12.0%*0x2000000*0x1000000%0x800;
printf ("INFO: using 80-bit-double form of rounding constant\n");
printf ("prueba: %20.15f RND_A: %20.15f RND_B: %20.15f\n",prueba,
RND_A, RND_B);
if (((prueba+RND_A)-RND_B) != 5.0)
{
printf ("INFO:prueba=%20.15f, rnd(prueba)=%20.15f\n",prueba,
(prueba+RND_A)-RND_B) ;
printf ("ERROR 30 in util.c\n"); return(l);
}
return O;

}

Segun el programa original para hacer el redondeo de una variable usa la funcién
rnd(). Lo que hace esta funcién es, a partir de un nimero real sumar y restar dos
constantes de redondeo, suma el valor RND_A y resta el valor RND_B, ambos valores son
iguales pero calculados de forma diferente. Y el comportamiento esperado es que el
resultado final sea la parte entera del nimero real a redondear. El nimero que se va a
redondear es 5.4321. El programa se comporta de esta manera sin instrumentar y bajo
la instrumentacién de Pin y DynamoRIO.

$ pruebafallo

INFO: using 80-bit-double form of rounding constant

prueba: 5.432100000000000 RND_A: 13835058055282163712.000000000000000
RND_B: 13835058055282163712.000000000000000

Sin embargo, bajo la ejecucion en Valgrind el resultado no es el esperado:

$ valgrind pruebafallo
==2503== Memcheck, a memory error detector
==2503== Copyright (C) 2002-2011, and GNU GPL’d, by Julian Seward et al.

40

B. Problemas encontrados Seccion B.2

==2503== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==2503== Command: ./pruebafallo

==2503==

INFO: using 80-bit-double form of rounding constant

prueba: 5.432100000000000 RND_A: 13835058055282163712.000000000000000
RND_B: 13835058055282163712.000000000000000

INFO: prueba = 5.432100000000000, rnd(prueba) = 0.000000000000000

ERROR 30 in util.c

La condicién del IF ya no falla, no se ha hecho bien el redondeo. Por este motivo
falla mlucas en la prueba inicial de comprobacién de funcionamiento y ya no sigue
ejecutdndose. En el programa original los dos valores reales con los que se hacia esta
comprobacién eran % y 2 X 7, cuyas partes enteras son 1 y 6 respectivamente.

Al ir a abrir un bug sobre este fallo, éste ya estaba abierto, y reportado miltiples veces
por diferentes usuarios. El problema es que Valgrind no puede trabajar con nimeros de
80 bits en las arquitecturas x32 y x64.

El bug se puede ver en https://bugs.kde.org/show_bug.cgi?id=197915

41

Apéndice C

Aplicaciones usadas en el
benchmark

En este apéndice se muestra todo el software que ha sido utilizado para la creacién del
benchmark, junto con detalles de cada uno, los ficheros de entrada y de salida generados.

C.1. bzip2

Version: 1.0.6

Categoria: Compresion de datos

Tipo de céalculo realizado: Entero

Descripcion: Es un compresor de datos de alta calidad, libre de patentes y libremente
disponible. Tipicamente comprime ficheros entre un 10 % y un 15% maés que con otros
tipos de compresores, y es alrededor de dos veces mas rapido en compresién y seis veces
mas rapido descomprimiendo.

Entrada: Se comprimirdan de una nica ejecucién los siguientes ficheros: texto.txt, con
texto en plano; librel.odt y libre2.0ds, ficheros de libreoffice; audiol.mp3 y audiol.wav,
ficheros de audio; videol.mpg y videol.mkv, ficheros de video en SD y HD; comprimi-
dol.gz y comprimidolbz2, ficheros comprimidos con gzip y bzip2.

Salida: Como resultado en vez de guardarse en uno o varios ficheros se ha redirigido a
la salida estdndar stdout y esta a \dev\null para que no escribiera en disco y obtener
mayor eficiencia.

Pagina web: bzip.org

Autor: Julian Seward

Usada en: SPEC CINT 2006

43

Seccion C.2 C. Aplicaciones usadas en el benchmark

C.2. GNU go

Version: 3.8

Categoria: Inteligencia Artificial - Juegos

Tipo de calculo realizado: Entero

Lenguaje de programacion: C

Descripcion: Programa que analiza jugadas del juego Go.

Entrada: Fichero de jugadas del tipo “SmartGo Format” (.sgf) con el fichero
game001.sgf que contiene una partida jugada en un tablero de 9x9, por Miyamoto
Naoki y Go Seigen en 1968 .

Salida: Descripcién en texto plano de las jugadas realizadas y el porcentaje con que la
aplicacion hubiera realizado esa jugada.

Pagina web: http://wuw.gnu.org/software/gnugo/gnugo.html

Autor: Man Lung Li et Al

Usada en: SPEC CINT 2006

C.3. hmmer

Versién: 3.0

Categoria: Genética

Tipo de calculo realizado: Entero

Lenguaje de programacion: C

Descripcion: Busca una proteina en una base de datos. Usa el modelo de perfiles
de Markov ocultos (HMMs) como modelos estadisticos, que es usado en biologia
computacional para buscar patrones en secuencias de ADN.

Entrada: Se indica la proteina a buscar, goblins50 de 143 moléculas en el fichero
globin.hmm y la base de datos donde tiene que hacerlo sprot41.dat

Salida: Genera cuatro ficheros donde se indican las coincidencias encontradas.

Pagina web: http://hmmer. janelia.org/

Autor: Sean Eddy et Al.

Usada en: SPEC CINT 2006

C.4. libquantum

Version: 1.0.0

Categoria: Fisica, computacion cuantica

Tipo de céalculo realizado: Entero

Lenguaje de programacién: C

Descripcion: Es una libreria en C para simulacién de mecéanica cudntica, especializada
en computacién cuantica. Comenzé por ser un simulador de un computador cuintico
puro, y se le ha anadido recientemente simulaciéon cuantica genérica. Basado en los

44

C. Aplicaciones usadas en el benchmark Seccion C.5

principios de la mecéanica cuantica, ofrece una implementacién de un registro cuantico.
Estan disponibles las operaciones bésicas para manipulacién de registros como la puerta
Hadamard o la puerta Controlled-NOT mediante un sencillo interfaz. Las medidas se
pueden realizar en qubits sencillos o en un registro cuantico completo. Se ejecutard una
aplicacion que desarrolla el algoritmo de grover.

Entrada: Se le indica un nimero a buscar y el namero de qubits a utilizar

Salida: Después de un nimero de iteraciones, devuelve la probabilidad con la que ha
encontrado el nimero.

Pagina web: http://www.libquantum.de/

Autor: Bjorn Butscher y Hendrik Weimer.

Usada en: SPEC CINT 2006

C.5. h264ref

Version: 18.2

Categoria: Compresion y conversion de video y audio.

Tipo de calculo realizado: Entero

Lenguaje de programacion: C

Descripcion: Software de conversion de formatos de video y audio. Utiliza los codecs
H.264/AVC.

Entrada: Se codifica el fichero foreman cif.yuv, una secuencia de imagenes en formato
YUV420, a una resolucion de 352x288.

Salida: Se genera el fichero foreman_cif.264 en formato H.264.

Pagina web: http://iphome.hhi.de/suehring/tml/

Autor: Karsten Siihring et Al

Usada en: SPEC CINT 2006

C.6. ripemd

Versién: 160

Categoria: Criptografia, Hash

Tipo de calculo realizado: Entero

Lenguaje de programacién: C

Descripcion: RACE Integrity Primitives Evaluation Message Digest (RIPEMD-160)
es un algoritmo de hash o resumen de mensaje desarrollado en la Universidad Catoélica
de Lovaina (Bélgica).

Entrada: Se usa el fichero sprot.rmd que contiene la suma de los ficheros sprot41.dat
usado para la aplicaciéon hmmer de 419MB y sprot.whi usado para la aplicacion
whirlpool de 209MB.

Salida: Se obtienen 40 digitos en hexadecimal correspondientes al resumen del mensaje.
Pagina web: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
Autor: Hans Dobbertin, Antoon Bosselaers y Bart Preneel

45

Secciéon C.7 C. Aplicaciones usadas en el benchmark

Usada en: Origen propio, no es usado en benchmarks conocidos.

C.7. aes

Versién: 1

Categoria: Criptografia, cifrado.

Tipo de calculo realizado: Entero

Lenguaje de programacion: C

Descripcion: Advanced Encryption Standard AES es un algoritmo de cifrado simétrico.
Fue adoptado por el gobierno de los Estados Unidos de América en 2001, después de un
proceso en el que se evaluaron diferentes algoritmos de cifrado que duré 5 anos. Esta
evaluacién se hizo para sustituir al algoritmo Data Encryption Standard DES.
Entrada: Se indica la contrasenia para cifrar y el fichero a utilizar es sprot41.dat, que
tiene un tamano de 419MB, usado para la aplicacién hmmer

Salida: Se obtiene el fichero cifrado, pero es redirigido a la salida estdndar stdout y
esta a \dev\null para que no escribiera en disco y obtener mayor eficiencia.

Pagina web: http://csrc.nist.gov/archive/aes/index.html

Autor: Vincent Rijmen, Joan Daemen

Usada en: Origen propio, no es usado en benchmarks conocidos.

C.8. whirlpool

Version: 2% Revision

Categoria: Criptografia, hash

Tipo de céalculo realizado: Entero

Lenguaje de programacién: C

Descripcion: es un algoritmo de hash o resumen de mensaje desarrollado por uno de
los autores de AES, y de este algoritmo toma ciertos detalles para su funcionamiento.
Entrada: Se usa el fichero sprot.whi que contiene los primeros 209MB del fichero
sprot41.dat usado para la aplicacién hmmer

Salida: Proporciona un hash de 512-bit y se representa con 128 digitos hexadecimales.
Pagina web: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

Autor: Vincent Rijmen y Paulo S. L. M. Barreto,

Usada en: Origen propio, no es usado en benchmarks conocidos.

C.9. memtester

Versién: 4.0.5
Categoria: Comprobacién de memoria

46

C. Aplicaciones usadas en el benchmark Seccion C.10

Tipo de calculo realizado: Entero

Lenguaje de programacion: C

Descripcion: Realiza operaciones en memoria como XOR, AND, SUB y MUL para
encontrar fallos en el subsistema de memoria.

Entrada: Se le indica la cantidad de memoria a comprobar y el nimero de repeticiones
que se tienen que hacer las pruebas.

Salida: Visualiza por pantalla las operaciones que realiza, la parte de memoria donde se
estd realizando la prueba e indica si ha habido cualquier problema durante la ejecucion.
Pagina web: http://pyropus.ca/software/memtester/

Autor: Charles Cazabon

Usada en: Origen propio, no es usado en benchmarks conocidos.

C.10. ffmpeg

Versién: 0.10

Categoria: Conversion de formatos de video/audio.

Tipo de céalculo realizado: Entero

Lenguaje de programacién: C

Descripcion: Es un framework multimedia que permite codificar, decodificar, transco-
dificar, multiplexar, demultiplexar, filtrar y reproducir la mayoria de los formatos de
audio y video. Genera una libreria para poder ser utilizada por cualquier software para
reproduccién o conversién de formatos.

Entrada: Se usa el fichero parapara.mpg de formato YUV420, a una resolucién de
352x240, con el codec de audio mp3 a 48Khz.

Salida: Se genera el ficher parapara.avi con el formato MPEG-4, a una resolucién de
640x480 con el codec de audio Dolby AC3 en stereo a 48Khz.

Pagina web: http://ffmpeg.org

Autor: Fabrice Bellard et al.

Usada en: Phoronix Test Suite (PTS)

C.11. milc

Versioén: v6

Categoria: Fisica, cromodinamica cuédntica

Tipo de célculo realizado: Real

Lenguaje de programacién: C

Descripcion: MILC es un conjunto de aplicaciones desarrolladas por ”MIMD Lattice
Computation®, donde lo utilizan para hacer grandes simulaciones numéricas para
estudiar la cromodindmica cudntica (QCD), que es, la teorfa de la interaccién fuerte en
la fisica subatémica. Se usara el ejecutable su3_rmd.

Entrada: Se usa el fichero sm2 que contiene parametros de configuracién de gauge para

47

Seccion C.12 C. Aplicaciones usadas en el benchmark

la simulacién a realizar a su3_rmd

Salida: Muestra por la salida estandar el resultado de la simulacion.
Pagina web: http://physics.indiana.edu/~sg/milc.html
Autor: Steven Gottlieb et al.

Usada en: SPEC CFP 2006

C.12. povray

Version: 3.0

Categoria: Renderizacion

Tipo de calculo realizado: Real

Lenguaje de programacion: C

Descripcion: Es una herramienta que produce graficos por ordenador de muy alta
calidad. Utiliza el algoritmo de trazado de rayos para generar imagenes tridimensionales.
Entrada: Se usa uno de los ficheros de ejemplo que incluye povray: radio-patio.pov
Salida: Se obtiene el fichero patio-radio.png con la imagen

Pagina web: http://www.povray.org/

Autor: David Buck et al.

Usada en: SPEC CFP 2006

C.13. mlucas

Version: 2.8x

Categoria: Numérica, bisqueda de nimeros primos

Tipo de célculo realizado: Real

Lenguaje de programacién: C

Descripcion: Realiza la bisqueda de nimeros primos de Mersenne, que tienen la forma
de M, = 2P — 1 utilizando el algoritmo de Lucas-Lehmer.

Entrada: Se le indica el rango de exponentes para buscar nimeros primos de Mersenne
Salida: Muestra los niimeros primos que se hayan encontrado.

Pagina web: http://hogranch.com/mayer/README. html

Autor: Ernst Mayer et al.

Usada en: SPEC CFP 2000

C.14. namd

Version: 2.8
Categoria: Biologia, simulacién de moléculas
Tipo de calculo realizado: Real

48

C. Aplicaciones usadas en el benchmark Seccion C.15

Lenguaje de programacion: C++

Descripcion: Es un software de dindamica molecular paralela disenado para simulacién
de alto rendimiento de grandes sistemas biomoleculares.

Entrada: Se utiliza un fichero de prueba, que ofrecen los autores de namd, que se llama
tiny.namd preparado para un benchmark, ya que es la carga significativa para un tinico
procesador en una gran simulacion.

Salida: Genera 3 ficheros tiny.coor, tiny.vel y tiny.xsc con los resultados de la
simulacion.

Pagina web: http://www.ks.uiuc.edu/Research/namd/

Autor: Jim Phillips et al.

Usada en: SPEC CFP 2006

C.15. linpack

Version: 25.5.04

Categoria: Numérica, multiplicacién de matrices.

Tipo de calculo realizado: Real

Lenguaje de programacién: Fortran

Descripcion: Es una libreria software que se usa para resolver sistemas de ecuaciones.
A partir de aqui nacié el benchmark linpack, que resuelve sistemas de ecuaciones
haciendo uso intensivo de operaciones en calculo real.

Entrada: Se le indica el tamano de la matriz, 1500x1500.

Salida: Ofrece informacién del tiempo que le ha costado realizar las operaciones.
Pagina web: http://www.netlib.org/linpack/

Autor: Jack Dongarra et al.

Usada en: Linpack benchmark

49

Apéndice D

Resultados del benchmark

En este apéndice se muestran los resultados de la ejecucion del benchmark en todas
las aplicaciones.

Por cada aplicacion se presenta una tabla dividida en tres partes:
= Ejecuciones nativas, sin instrumentar.

» Ejecuciones instrumentadas por instrucciones.

= Ejecuciones instrumentadas por bloques basicos.

Por cada parte se presentan tres ejecuciones sin optimizar (-O0) y tres optimizadas
(-03), ademas, en las instrumentadas se muestran para los tres frameworks. En todas las
tablas se presenta el consumo de memoria de las aplicaciones y para las instrumentadas
también se presenta el niimero de instrucciones o bloques béasicos ejecutados.

Finalmente, en la seccién D.16 se mostrara el tiempo total de ejecucion del benchmark
y la comparacion en tiempo con SPEC.

51

Seccion D.1

D. Resultados del benchmark

D.1. bzip2
Sin optimizar Optimizado
Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 20.6 20.51 20.58 15.03 15.06 15.03
Mem. (kiB) 9440 9440 9440 9432 9432 9432
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 277.58 273.7 273.67 185.71 185.36 185.58
Mem. (kiB) 45816 45816 45816 46524 46524 46524
Slowdown 13,45 13,33 13,27 12,32 12,29 12,32
Instrucc. 73656398144 | 73656398144 | 73656398144 | 48475694952 | 48475694952 | 48475694952
Valgrind
Tiempo (s) 414.49 412.92 414.91 278.01 276.94 277.34
Mem. (kiB) 58328 58328 58328 58320 58320 58320
Slowdown 20,09 20,11 20,13 18,45 18,36 18,41
Instrucc. 73656441642 | 73656441646 | 73656441638 | 48475738454 | 48475738460 | 48475738454
DynamoRIO
Tiempo (s) 174.64 174.7 174.7 153.26 153.44 153.22
Mem. (kiB) 142036 142036 142036 142028 142028 142028
Slowdown 8,46 8,50 8,47 10,15 10,16 10,16
Instrucc. 73637943900 | 73637943900 | 73637943900 | 48457240420 | 48457240420 | 48457240420
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 72,31 72,49 72,94 66,47 66,98 66,91
Mem. (kiB) 45952 45952 45952 46564 46564 46564
Slowdown 3,88 3,91 3,93 4,86 4,90 5,38
Bloques 7063386170 7063386170 7063386170 6488305984 6488305984 6488305984
Valgrind
Tiempo (s) 109,47 110,02 109,99 104,88 104,57 104,55
Mem. (kiB) 54996 54996 54996 54988 54988 54988
Slowdown 5,88 5,94 5,93 7,67 7,65 8,40
Bloques 4472395968 4472395967 4472395967 3998502071 3998502072 3998502072
DynamoRIO
Tiempo (s) 29,18 29,09 29,09 21,93 21,87 21,73
Mem. (kiB) 142036 142036 142036 142028 142028 142028
Slowdown 1,56 1,57 1,57 1,60 1,60 1,74
Bloques 2139535991 2139535991 2139535991 2609502570 | 2609502570 | 2382277616

52

D. Resultados del benchmark

Seccion D.2

D.2. GNU go
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 133,3 133,3 133,42 82,98 82,97 82,96
Mem. (kiB) 24120 24120 24116 24328 24332 24332
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 1118,01 1117,59 1116 7328 732,44 729,12
Mem. (kiB) 69340 69356 69352 75380 75392 75380
Slowdown 8,39 8,39 8,37 8,85 8,84 8,80
Instrucc. 247750494248 | 247750666655 | 247750666655 | 153754482838 | 153754535528 | 153754683960
Valgrind
Tiempo (s) 2168,5 2165,89 2162,98 1542,52 1544.,43 1546,33
Mem. (kiB) 71288 71288 71288 71496 71496 71496
Slowdown 16,29 16,27 16,23 18,62 18,64 18,66
Instrucc. 247750711832 | 247752391901 | 247785718265 | 153746809732 | 153746892452 | 153770256115
DynamoRIO
Tiempo (s) 1028,65 1027,37 1032,39 789,55 790,33 789
Mem. (kiB) 156544 156548 156544 156756 156756 156756
Slowdown 7,72 7,71 7,74 9,51 9,52 9,51
Instrucc. 247745640933 | 247782861334 | 247748101772 | 150904441919 | 150904369639 | 150904369639
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 419,82 419,94 419,79 337,57 337,19 337,56
Mem. (kiB) 66880 66900 66900 73112 73108 73108
Slowdown 3,48 3,48 3,48 4,49 4,49 4,49
Bloques 36090511045 36095502484 36095454987 32464100442 32464133005 32464163434
Valgrind
Tiempo (s) 847,94 849,49 847,13 765,86 760,61 767,98
Mem. (kiB) 67956 67956 67956 68164 68164 68164
Slowdown 7,02 7,04 7,02 10,19 10,12 10,22
Bloques 31790795376 31790783660 31795085040 27064807604 27064795737 27064795727
DynamoRIO
Tiempo (s) 199,54 200,21 199,81 144,59 144,66 144,46
Mem. (kiB) 156544 156548 156544 156752 156756 156752
Slowdown 1,65 1,65 1,65 1,92 1,92 1,92
Bloques 1655477351 1655477351 1650396069 3809286521 3805093463 3805095450

53

Seccion D.3

D. Resultados del benchmark

D.3. hmmer
Sin optimizar Optimizado
Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 20,33 20,34 20,34 4,47 4,47 4,52
Mem. (kiB) 20892 20912 20892 20912 20832 20780
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 202,42 202,28 202,58 70,54 70,68 70,61
Mem. (kiB) 63660 63624 63660 63696 63688 63684
Slowdown 9,71 9,88 9,90 15,24 15,24 15,15
Instrucc. 54297654013 | 54297720973 | 54297720440 | 16649566301 | 16649736886 | 16649643995
Valgrind
Tiempo (s) 376,88 375,67 375,65 120,75 121,4 121,51
Mem. (kiB) 69892 70020 69896 69880 69960 69884
Slowdown 18,06 18,33 18,34 26,03 26,10 26,02
Instrucc. 54298001231 | 54297950064 | 54297734601 | 16649955696 | 16649786684 | 16649862949
DynamoRIO
Tiempo (s) 72,47 72,53 72,51 51 50,91 51,07
Mem. (kiB) 153392 153260 153392 153252 153208 153248
Slowdown 3,48 3,55 3,54 10,98 10,93 10,92
Instrucc. 53478979044 | 49205120807 | 53353754824 | 15030755553 | 15131107542 | 15001172531
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 45,69 45,74 45,71 27,87 28,03 27,9
Mem. (kiB) 63064 63020 63020 63380 63348 63440
Slowdown 2,22 2,26 2,26 6,12 6,14 6,07
Bloques 2563838468 2563770093 2563756783 2167186708 2167136122 2167187211
Valgrind
Tiempo (s) 160,47 159,82 159,71 63,5 63,65 63,7
Mem. (kiB) 66596 66608 66632 66548 66548 66640
Slowdown 7,71 7,82 7,81 13,75 13,79 13,70
Bloques 2398092822 2398029615 2398077405 1766363309 1766390390 1766397846
DynamoRIO
Tiempo (s) 25,26 25,09 25,14 9,19 9,23 9,14
Mem. (kiB) 153312 153316 153304 153216 153204 153188
Slowdown 1,22 1,23 1,23 2,02 2,03 2,00
Bloques 2382277616 2382274878 2382282498 2144631367 2144645182 2144660538

54

D. Resultados del benchmark

Seccion D.4

D.4. libquantum
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 2,97 2,97 2,97 1,14 1,17 1,14
Mem. (kiB) 2712 2712 2712 2716 2716 2716
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 41,32 425 41,3 18,56 18,9 18,44
Mem. (kiB) 38964 38964 38964 39068 39068 39068
Slowdown 13,85 14,24 13,84 16,05 15,94 15,95
Instrucc. 9486298035 | 9486298035 | 9486298035 | 4172204824 | 4172204824 | 4172204824
Valgrind
Tiempo (s) 52,24 52,29 52,56 25,82 25,8 25,21
Mem. (kiB) 59456 59456 59456 59460 59460 59460
Slowdown 17,46 17,48 17,57 22,16 21,60 21,64
Instrucc. 9486307171 | 9486307163 | 9486307159 | 4172213780 | 4172213780 | 4172213784
DynamoRIO
Tiempo (s) 23,89 23,72 23,81 14,3 14,25 14,21
Mem. (kiB) 135136 135136 135136 135140 135140 135140
Slowdown 7,98 7,92 7,95 12,26 11,92 12,19
Instrucc. 9483103387 | 9483103387 | 9483103387 | 4169009342 | 4169009342 | 4169009342
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 45,69 45,74 45,71 27,87 28,03 27,9
Mem. (kiB) 63064 63020 63020 63380 63348 63440
Slowdown 2,22 2,26 2,26 6,12 6,14 6,07
Bloques 2563838468 | 2563770093 | 2563756783 | 2167186708 | 2167136122 | 2167187211
Valgrind
Tiempo (s) 160,47 159,82 159,71 63,5 63,65 63,7
Mem. (kiB) 66596 66608 66632 66548 66548 66640
Slowdown 7,71 7,82 7,81 13,75 13,79 13,70
Bloques 2398092822 | 2398029615 | 2398077405 | 1766363309 | 1766390390 | 1766397846
DynamoRIO
Tiempo (s) 25,26 25,09 25,14 9,19 9,23 9,14
Mem. (kiB) 153312 153316 153304 153216 153204 153188
Slowdown 1,22 1,23 1,23 2,02 2,03 2,00
Bloques 2382277616 | 2382274878 | 2382282498 | 2144631367 | 2144645182 | 2144660538

55

Seccion D.5

D. Resultados del benchmark

D.5. h264ref
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 175,56 175,51 175,52 52,2 52,23 52,23
Mem. (kiB) 22800 22800 22800 22924 22924 22924
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 1969,15 1976,8 1979,48 731,61 731,16 730,83
Mem. (kiB) 63640 63624 63640 66536 66368 66368
Slowdown 11,20 11,25 11,27 13,96 13,96 13,95
Instrucc. 468222306245 | 468222571081 | 468222609480 | 151093059135 | 151094273120 | 151092430740
Valgrind
Tiempo (s) 2615,92 2613,49 2610,26 913,42 913,12 918,55
Mem. (kiB) 71628 71628 71628 71752 71752 71752
Slowdown 14,89 14,89 14,87 17,43 17,42 17,52
Instrucc. 468602886301 | 468602886398 | 468602886324 | 151469116709 | 151469116744 | 151469117073
DynamoRIO
Tiempo (s) 1384,98 1379,37 1391,31 263,49 258,38 258,62
Mem. (kiB) 155224 155224 155224 155348 155348 155348
Slowdown 7,88 7,85 7,92 5,03 4,93 4,93
Instrucc. 468099926570 | 468100703832 | 468100510812 | 150796835198 | 150798200840 | 150798661928
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 399,97 399,48 397,53 142,96 142,73 143,14
Mem. (kiB) 62044 62076 62068 64324 64324 64324
Slowdown 2,50 2,51 2,49 3,02 3,02 3,03
Bloques 41664395913 41664395918 41664395932 10246885976 10246885990 10246885958
Valgrind
Tiempo (s) 842,34 849,58 847,54 317,07 316,91 317,07
Mem. (kiB) 68296 68296 68296 68420 68420 68420
Slowdown 5,28 5,34 5,31 6,68 6,68 6,68
Bloques 31254620209 31254620206 31254620232 9761665724 9761665724 9761665716
DynamoRIO
Tiempo (s) 321,68 315,51 319,49 59,37 59,33 58,61
Mem. (kiB) 155224 155224 155224 155348 155348 155348
Slowdown 2,01 1,98 2,00 1,25 1,25 1,24
Bloques 2590913223 2590913138 2590913183 760355482 760355502 760355525

o6

D. Resultados del benchmark

Seccion D.6

D.6. ripemd
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 15,92 15,92 15,95 5,79 5,81 5,88
Mem. (kiB) 2012 2012 2012 2016 2016 2016
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 154,98 155,11 154,59 93,59 93,53 93,97
Mem. (kiB) 38608 38608 38608 38612 38612 38612
Slowdown 9,64 9,63 9,61 15,37 15,33 15,45
Instrucc. 41946768879 | 41946768879 | 41946768879 | 22330342413 | 22330342413 | 22330342413
Valgrind
Tiempo (s) 393,34 392,59 388,46 209,88 210,94 211,39
Mem. (kiB) 58244 58244 58244 58248 58248 58248
Slowdown 24,43 24,35 24,10 34,42 34,50 34,73
Instrucc. 41947389200 | 41947389190 | 41947389190 | 22330962488 | 22330962492 | 22330962488
DynamoRIO
Tiempo (s) 21,89 21,83 21,86 7,8 7,82 7,8
Mem. (kiB) 134604 134604 134604 134608 134608 134608
Slowdown 1,38 1,37 1,37 1,33 1,33 1,34
Instrucc. 41789987035 | 41789987035 | 41789987035 | 22173559980 | 22173559980 | 22173559980
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 19,73 19,75 19,8 10,14 10,15 11,12
Mem. (kiB) 38440 38440 38440 38444 38444 38444
Slowdown 1,33 1,39 1,39 1,92 1,92 2,10
Bloques 873132829 873132829 873132829 518737174 518737174 518737174
Valgrind
Tiempo (s) 38,91 38,81 40,75 23,09 23,22 22,9
Mem. (kiB) 54912 54912 54912 54916 54916 54916
Slowdown 2,60 2,70 2,83 4,27 4,31 4,27
Bloques 810173395 810173395 810173396 446564696 446564696 446564697
DynamoRIO
Tiempo (s) 14,85 14,85 15,83 5,72 5,61 5,68
Mem. (kiB) 134604 134604 134604 134608 134608 134608
Slowdown 0,99 1,03 1,10 1,06 1,06 1,07
Bloques 263197444 263197444 263197444 75864982 75864982 75864982

o7

Seccion D.7

D. Resultados del benchmark

D.7. aes
Sin optimizar Optimizado
Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 18,54 18,61 18,46 14,36 14,32 14,24
Mem. (kiB) 2024 2024 2024 2024 2024 2024
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 284,16 283,98 283,77 215,66 216,17 216,01
Mem. (kiB) 38620 38620 38620 38620 38620 38620
Slowdown 15,14 15,09 15,20 14,57 14,92 14,97
Instrucc. 74291586364 | 74291586364 | 74291586364 | 57453607695 | 57453607695 | 57453607695
Valgrind
Tiempo (s) 535,29 540,04 539.,4 396,95 399,45 399,78
Mem. (kiB) 58256 58256 58256 58256 58256 58256
Slowdown 28,58 28,74 28,93 26,85 27,60 27,76
Instrucc. 74291592035 | 74291592031 | 74291592035 | 57453613370 | 57453613366 | 57453613366
DynamoRIO
Tiempo (s) 233,55 233,04 233,14 217,62 217,72 217,8
Mem. (kiB) 134616 134616 134616 134616 134616 134616
Slowdown 12,44 12,37 12,47 14,67 14,99 15,07
Instrucc. 74291424373 | 74291424373 | 74291424373 | 57453445704 | 57453445704 | 57453445704
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 68,34 68,27 68,02 64,82 64,45 64,87
Mem. (kiB) 38452 38452 38452 38452 38452 38452
Slowdown 3,96 4,03 4,03 4,97 4,90 4,94
Bloques 8821962398 8821962398 8821962398 8113823083 8113823083 8113823083
Valgrind
Tiempo (s) 144,64 145,58 148,45 144,47 147,57 142,88
Mem. (kiB) 54924 54924 54924 54924 54924 54924
Slowdown 8,42 8,63 8,81 11,09 11,24 10,90
Bloques 7771123026 7771123026 7771123026 7089211083 7089211083 7089211083
DynamoRIO
Tiempo (s) 32,92 32,91 32,83 33,31 34,03 33,35
Mem. (kiB) 134616 134616 134616 134616 134616 134616
Slowdown 1,91 1,94 1,94 2,55 2,58 2,53
Bloques 4002415509 4002415509 4002415509 3451640469 3451640469 3451640469

o8

D. Resultados del benchmark

Seccion D.8

D.8. whirlpool
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 21,64 21,64 21,68 15,87 15,87 15,85
Mem. (kiB) 1988 1988 1988 1984 1984 1984
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 275,87 276,52 276,62 140,94 137,48 136,36
Mem. (kiB) 38636 38636 38636 38632 38632 38632
Slowdown 12,69 12,73 12,72 8,85 8,63 8,56
Instrucc. 74222379295 | 74222379297 | 74222379295 | 37982311186 | 37982311186 | 37982311186
Valgrind
Tiempo (s) 498,15 485,03 490,35 229,05 233,33 229,3
Mem. (kiB) 58256 58256 58256 58252 58252 58252
Slowdown 2293 22,33 22,55 14,38 14,66 14,40
Instrucc. 74222385145 | 74222385145 | 74222385149 | 37982316916 | 37982316920 | 37982316920
DynamoRIO
Tiempo (s) 33,78 33,54 33,7 26,81 26,66 26,7
Mem. (kiB) 134612 134612 134612 134608 134608 134608
Slowdown 1,56 1,55 1,55 1,69 1,68 1,68
Instrucc. 74222287028 | 74222287028 | 74222287028 | 37982218617 | 37982218617 | 37982218617
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 26,05 25,86 25,91 19,48 19,62 19,62
Mem. (kiB) 38436 38436 38436 38432 38432 38432
Slowdown 1,32 1,32 1,32 1,36 1,37 1,37
Bloques 1358316929 1358316929 1358316929 906899343 906899343 906899343
Valgrind
Tiempo (s) 62,77 61,8 62,95 48,26 48,92 48,92
Mem. (kiB) 54924 54924 54924 54920 54920 54920
Slowdown 3,17 3,14 3,21 3,35 3,40 3,40
Bloques 1485706427 1485706428 1485706427 962288944 962288944 962288944
DynamoRIO
Tiempo (s) 20,03 20,05 20,03 14,77 14,81 14,83
Mem. (kiB) 134612 134612 134612 134608 134608 134608
Slowdown 1,01 1,02 1,02 1,02 1,03 1,03
Bloques 530888668 530888668 530888668 465378216 465378216 465378216

59

Seccion D.9

D. Resultados del benchmark

D.9. memtester
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 96,37 96,67 96,23 45,89 46,21 46,39
Mem. (kiB) 67408 67408 67408 67408 67408 67408
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 853,55 868,61 854,01 509,59 509,63 509,22
Mem. (kiB) 103176 103176 103176 103244 103244 103244
Slowdown 8,85 8,98 8,87 11,09 11,01 10,96
Instrucc. 241201530296 | 241201530296 | 241201530296 | 138709496251 | 138709496251 | 138709496251
Valgrind
Tiempo (s) 1394,89 1387,66 1386,66 746,37 745,31 746,73
Mem. (kiB) 114396 114396 114396 114396 114396 114396
Slowdown 14,48 14,36 14,42 16,26 16,12 16,10
Instrucc. 241201536832 | 241201536828 | 241201536828 | 138709502897 | 138709502901 | 138709502905
DynamoRIO
Tiempo (s) 810,44 813,83 811,57 491 491,13 491,03
Mem. (kiB) 200132 200132 200132 200132 200132 200132
Slowdown 8,40 8,41 8,42 10,68 10,60 10,56
Instrucc. 241201371000 | 241201371000 | 241201371000 | 138709337257 | 138709337257 | 138709337257
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 262,92 257,74 257,73 180,18 180,21 180,15
Mem. (kiB) 103076 103076 103076 103172 103172 103172
Slowdown 3,03 3,01 3,00 3,96 3,95 3,95
Bloques 31173422341 31173422341 31173422341 22306660323 22306660323 22306660323
Valgrind
Tiempo (s) 412,74 411,55 407,47 288,89 288,91 289,47
Mem. (kiB) 111064 111064 111064 111064 111064 111064
Slowdown 4,78 4,82 4,76 6,38 6,36 6,36
Bloques 29075595091 29075595091 29075595091 18573054766 18573054765 18573054765
DynamoRIO
Tiempo (s) 109,11 104,79 105,83 74,67 74,48 74,6
Mem. (kiB) 200132 200132 200132 200132 200132 200132
Slowdown 1,26 1,22 1,23 1,64 1,63 1,63
Bloques 1108619690 1108619690 1108619690 831792336 831792336 831792336

60

D. Resultados del benchmark

Seccién D.10

D.10. ffmpeg
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 4,56 4,56 4,52 4,44 4,41 4,42
Mem. (kiB) 22956 22956 22956 24360 24360 24360
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 61,53 61,59 62,16 59,01 59,01 58,99
Mem. (kiB) 65184 65184 65184 66996 66996 66996
Slowdown 13,55 13,59 13,76 13,35 13,43 13,44
Instrucc. 14181309912 | 14181311778 | 14181329060 | 13651672255 | 13651668591 | 13651685335
Valgrind
Tiempo (s) 158,34 158,17 158,01 157,18 157,67 157,27
Mem. (kiB) 75996 75996 75996 77400 77400 77400
Slowdown 34,49 34,52 34,62 35,13 35,47 35,38
Instrucc. 14184459886 | 14184458954 | 14184460118 | 13654922353 | 13654922421 | 13654922244
DynamoRIO
Tiempo (s) 32,77 32,78 32,83 30,77 30,73 30,73
Mem. (kiB) 155360 155360 155360 156764 156764 156764
Slowdown 7,14 7,16 7,20 6,89 6,92 6,92
Instrucc. 14166867955 | 14166867702 | 14166867805 | 13637273113 | 13637274631 | 13637272906
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 20,11 20,07 20 19,47 19,38 19,5
Mem. (kiB) 63860 63860 63860 65768 65784 65768
Slowdown 4,51 4,50 4,53 4,51 4,50 4,52
Bloques 1231713961 1231710900 1231711011 1156607294 1156607439 1156607440
Valgrind
Tiempo (s) 93,4 93 93,04 91,77 91,87 91,62
Mem. (kiB) 72664 72664 72664 74068 74068 74068
Slowdown 20,26 20,18 20,36 20,52 20,50 20,50
Bloques 1078267036 1078264642 1078267216 1010901183 1010901248 1010898795
DynamoRIO
Tiempo (s) 7,56 7,55 7,57 7.3 7,32 7,33
Mem. (kiB) 155360 155360 155360 156764 156764 156764
Slowdown 1,65 1,65 1,66 1,64 1,64 1,65
Bloques 1198264965 1198264859 1198261935 1120973424 1120973305 1120973266

61

Seccion D.11

D. Resultados del benchmark

D.11. milc
Sin optimizar Optimizado
Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 13,07 13,1 13,11 12,57 12,56 12,55
Mem. (kiB) 20688 20688 20688 20716 20716 20716
‘ Instrumentacién a nivel de instrucciones
Pin
Tiempo (s) 98,63 98,63 98,59 90,25 89,83 89,84
Mem. (kiB) 59016 59016 59008 59232 59240 59240
Slowdown 7,57 7,54 7,53 7,20 7,17 7,17
Instrucc. 25332642996 | 25332642951 | 25332642997 | 23054066769 | 23054066698 | 23054066650
Valgrind
Tiempo (s) 186,44 185,7 185,08 1794 179,62 179,13
Mem. (kiB) 67672 67672 67672 67700 67700 67700
Slowdown 14,27 14,17 14,11 14,27 14,30 14,26
Instrucc. 25332664956 | 25332664946 | 25332665003 | 23054088185 | 23054088433 | 23054088218
DynamoRIO
Tiempo (s) 23,12 23,05 23,03 20,92 20,95 20,96
Mem. (kiB) 153112 153112 153112 153140 153140 153140
Slowdown 1,77 1,76 1,76 1,66 1,67 1,67
Instrucc. 25332217058 | 25332217130 | 25332217063 | 23053639394 | 23053639519 | 23053639522
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 16,95 16,84 16,84 15,55 15,61 15,58
Mem. (kiB) 58684 58676 58668 58864 58864 58864
Slowdown 1,37 1,36 1,36 1,31 1,32 1,31
Bloques 642302583 642302584 642302542 562161334 562161276 562161300
Valgrind
Tiempo (s) 67,58 67,82 67,77 67,71 67,8 67,58
Mem. (kiB) 64340 64340 64340 64368 64368 64368
Slowdown 5,40 5,43 5,42 5,64 5,63 5,60
Bloques 618954025 618954016 618953981 533178012 533177998 533177989
DynamoRIO
Tiempo (s) 13,44 13,41 13,46 12,91 12,93 12,96
Mem. (kiB) 153112 153112 153112 153140 153140 153140
Slowdown 1,07 1,07 1,07 1,07 1,07 1,07
Bloques 365223774 365223790 365223740 296635117 296635077 296635074

62

D. Resultados del benchmark

Seccion D.12

D.12. povray
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 20,67 20,59 20,59 11,42 11,36 11,36
Mem. (kiB) 9672 9672 9672 9708 9708 9708
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 171,1 171,3 171,4 86,05 86,17 85,88
Mem. (kiB) 52544 52576 52592 53516 53516 53524
Slowdown 8,31 8,35 8,35 7,60 7,64 7,62
Instrucc. 40880091223 | 40880040916 | 40879930936 | 19478328487 | 19478328874 | 19478329037
Valgrind
Tiempo (s) 354,7 353,49 356,36 182,58 182,58 181,37
Mem. (kiB) 63524 63524 63524 63560 63560 63560
Slowdown 17,18 17,18 17,32 16,01 16,09 15,98
Instrucc. 40890689362 | 40890689308 | 40890689996 | 19490557438 | 19490557442 | 19490554679
DynamoRIO
Tiempo (s) 148,48 148,66 148,36 79,15 79,14 79,08
Mem. (kiB) 142108 142108 142108 142128 142128 142128
Slowdown 7,18 7,22 7,20 6,93 6,96 6,96
Instrucc. 40437582205 | 40437582770 | 40437582385 | 19035068653 | 19035068123 | 19035068105
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 49,3 49,27 48,98 33,18 33,03 33,03
Mem. (kiB) 51152 51124 51136 52340 52340 52340
Slowdown 2,67 2,67 2,65 3,28 3,27 3,27
Bloques 4992500785 4992512652 4992474673 3208282021 3208263741 3208264584
Valgrind
Tiempo (s) 142,08 1424 142,76 82,08 82,5 81,81
Mem. (kiB) 60192 60192 60192 60228 60228 60228
Slowdown 7,62 7,64 7,65 7,98 8,03 7,97
Bloques 3762148897 3762127642 3762141997 2494999759 2494986930 2494983484
DynamoRIO
Tiempo (s) 33,48 33,02 32,96 15,18 15,13 15,12
Mem. (kiB) 142108 142092 142092 142144 142128 142128
Slowdown 1,79 1,77 1,76 1,47 1,47 1,47
Bloques 244200167 244167577 244162585 2756061306 2756061265 2756073299

63

Seccion D.13

D. Resultados del benchmark

D.13. mlucas
Sin optimizar Optimizado
Ejec.1 Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 35,05 34,87 35,03 14,6 14,65 14,62
Mem. (kiB) 10004 10004 10004 9340 9340 9340
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 307,11 309,24 307,2 199,01 199,2 199,01
Mem. (kiB) 49560 49560 49560 49648 49648 49648
Slowdown 8,78 8,88 8,78 13,64 13,61 13,62
Instrucc. 85256941803 | 85256941829 | 85256941799 | 53554796686 | 53554796681 | 53554796686
Valgrind
Tiempo (s) 0 0 0 0 0 0
Mem. (kiB) O O O O O O
Slowdown O O O O O O
Instrucc. O O O O 0 0
DynamoRIO
Tiempo (s) 45,12 45,07 45,02 22,5 22,48 22,58
Mem. (kiB) 142428 142428 142428 141764 141764 141764
Slowdown 1,29 1,29 1,29 1,54 1,53 1,54
Instrucc. 85256744807 | 85256744807 | 85256744807 | 53554599416 | 53554599416 | 53554599416
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 37,91 37,99 38 21,16 21,15 21,19
Mem. (kiB) 48244 48244 48244 48324 48324 48324
Slowdown 1,21 1,21 1,21 1,62 1,62 1,62
Bloques 1387505307 1387505303 1387505307 909951883 909951875 909951875
Valgrind
Tiempo (s) 0 0 0 0 0 0
Mem. (kiB) O O O O O O
Slowdown | 0 | O O O
Bloques 0 O O 0 O O
DynamoRIO
Tiempo (s) 32,48 32,48 32,48 14,39 14,42 14,4
Mem. (kiB) 142428 142428 142428 141764 141764 141764
Slowdown 1,03 1,03 1,03 1,09 1,09 1,09
Bloques 278148461 278148462 278148462 227746162 227746162 227746162

64

D. Resultados del benchmark

Seccién D.14

D.14. namd
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 14,95 15,06 15,04 7,12 7,1 7,11
Mem. (kiB) 19744 19744 19744 19208 19208 19208
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 155,66 156,39 155,38 87,18 87,14 87,21
Mem. (kiB) 66980 66992 66988 69096 69020 68628
Slowdown 10,49 10,47 10,41 12,37 12,34 12,40
Instrucc. 38252761764 | 38252801255 | 38252759804 | 19832746065 | 19832741407 | 19832743883
Valgrind
Tiempo (s) 214,64 213,66 213,89 113,25 113,22 114,94
Mem. (kiB) 78660 78660 78660 74860 74860 74860
Slowdown 14,32 14,16 14,20 15,85 15,77 16,10
Instrucc. 38253097254 | 38253096968 | 38253096409 | 19833493146 | 19833491949 | 19833488839
DynamoRIO
Tiempo (s) 34,43 34,43 34,51 19,43 19,44 19,44
Mem. (kiB) 152144 152144 152144 151608 151608 151608
Slowdown 2,30 2,29 2,29 2,72 2,71 2,73
Instrucc. 38250283476 | 38250318179 | 38250282771 | 19814092244 | 19814078844 | 19814080525
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 26,68 26,49 26,75 18,73 18,68 18,78
Mem. (kiB) 64552 63992 64540 66636 65696 65820
Slowdown 2,04 2,02 2,06 3,08 3,07 3,08
Bloques 971692620 971695374 971691998 549464758 549461424 549464261
Valgrind
Tiempo (s) 65 65 65,15 44,12 44,24 44,12
Mem. (kiB) 75328 75328 75328 71528 71528 71528
Slowdown 4,75 4,73 4,79 6,81 6,84 6,83
Bloques 949810174 949810463 949810293 511693175 511691568 511692316
DynamoRIO
Tiempo (s) 17,09 17,17 17,03 8,55 8,54 8,54
Mem. (kiB) 152144 152144 152144 151608 151608 151608
Slowdown 1,25 1,25 1,25 1,32 1,32 1,32
Bloques 540152965 540159401 540149109 344577457 344575920 344575061

65

Seccion D.15

D. Resultados del benchmark

D.15. linpack
Sin optimizar Optimizado
Ejec.1 ‘ Ejec.2 Ejec.3 Ejec.1 Ejec.2 Ejec.3
Ejecucién nativa
Tiempo (s) 6,95 7,15 6,96 4,33 4,35 4,34
Mem. (kiB) 20692 20692 20692 20692 20692 20692
‘ Instrumentacion a nivel de instrucciones
Pin
Tiempo (s) 66,54 66,07 66,28 22,04 22,02 22
Mem. (kiB) 57848 57448 57496 57496 57496 57496
Slowdown 9,59 9,22 9,52 5,13 5,09 5,09
Instrucc. 19647034175 | 19647034027 | 19647034197 | 6246035342 | 6246035106 | 6246035254
Valgrind
Tiempo (s) 96,45 96,04 95,93 32,47 32,28 32,36
Mem. (kiB) 77956 77956 77956 77956 77956 77956
Slowdown 13,88 13,39 13,75 7,51 7,41 7,44
Instrucc. 19647045951 | 19647045432 | 19647045951 | 6246046953 | 6246046921 | 6246046849
DynamoRIO
Tiempo (s) 19,83 19,8 19,8 8,6 8,6 8,6
Mem. (kiB) 153120 153120 153120 153120 153120 153120
Slowdown 2,85 2,76 2,84 1,99 1,97 1,98
Instrucc. 19646781826 | 19646781851 | 19646781804 | 6245779182 | 6245778866 | 6245779042
‘ Instrumentacién a nivel de bloques basicos
Pin
Tiempo (s) 9,39 9,35 9,37 5,98 5,86 5,84
Mem. (kiB) 57400 57396 57400 57456 57456 57456
Slowdown 1,38 1,33 1,37 1,40 1,39 1,40
Bloques 615171369 615171418 615171345 330477783 330477785 330477792
Valgrind
Tiempo (s) 28,86 28,26 28,85 18,05 18,03 18,14
Mem. (kiB) 73600 73600 73600 73600 73600 73600
Slowdown 4,15 3,95 4,15 4,11 4,15 4,22
Bloques 608174575 608174559 608174609 316652503 316652492 316652465
DynamoRIO
Tiempo (s) 6,96 6,92 6,92 4,55 4,47 4.5
Mem. (kiB) 153120 153120 153120 153120 153120 153120
Slowdown 1,00 0,97 1,00 1,03 1,03 1,05
Bloques 609917486 609917509 609917517 325785898 325785905 325785922

66

D. Resultados del benchmark Seccion D.16

D.16. Tiempo de ejecucién de los benchmarks

En esta seccién se va a hacer una comparacién entre el tiempo que hubiera durado
la ejecucion del benchmark propio desarrollado para este PFC y el que hubiera durado
SPEC 2006. Se compararan los resultados con un equipo similar [NECO08].

En el equipo similar, a la ejecucién de la parte de calculo entero (CINT) de SPEC le
cuesta 13 horas y 59 minutos. En el benchmark propio la ejecucién de célculo entero sin
instrumentar, dura 38 minutos y 40 segundos. Extrapolando el resultado de SPEC del
equipo similar, con la media de instrumentacién en instrucciones (13.97x) por cada uno
de los tres frameworks, la ejecucion de este hubiera durado 25 dias.

La duracién total del benchmark propio es de 32 horas y 20 minutos.

67

Apéndice E

Cddigo fuente aplicaciones usadas
en el benchmark

En el presente capitulo se muestra el codigo fuente de las herramientas creadas para
instrumentar las aplicaciones en el benchmark. La primera herramienta es la que ins-
trumenta por instrucciones y la segunda herramienta es la que instrumenta por bloques
basicos.

E.1. Instrumentacién por instrucciones

E.1.1. Pin
#include <stdio.h>
#include "pin.H"
#include <iostream>
UINT64 icuenta = O;

VOID contar() { icuenta++; }

VOID Instruction(INS ins, VOID *v)

{
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)contar, IARG_END);
}
VOID Fini(INT32 code, VOID *v)
{
std::cerr << "Instrucciones: " << icuenta << endl;
}

int main(int argc, char * argvl[])

69

Seccion E.1 E. Cddigo fuente aplicaciones usadas en el benchmark

{
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return O;

}

E.1.2. DynamoRIO

#include "dr_api.h"

#define DISPLAY_STRING(msg) dr_printf("%s\n", msg);
#define DISPLAY_STRING_ERR(msg) dr_fprintf (STDERR,"%s\n", msg);
#define NULL_TERMINATE(buf) buf [(sizeof (buf)/sizeof (buf [0])) - 1] = ’\0’

static uint64 icuenta=0; //Contador de instrucciones
static void cuenta(void) { icuenta++; } //Cédigo a afiadir

static void event_exit(void);
static dr_emit_flags_t event_basic_block(void *drcontext,
void *tag, instrlist_t *bb, bool for_trace, bool translating);

DR_EXPORT void
dr_init(client_id_t id)

{
dr_register_exit_event (event_exit);
dr_register_bb_event (event_basic_block);
dr_log(NULL, LOG_ALL, 1, "Inicializando cliente ’icuenta’\n");
}
static void event_exit(void)
{
char msg[512];
int len;
len = dr_snprintf(msg, sizeof (msg)/sizeof (msg[0]),
"Instrucciones: ¥%l1lu \n", icuenta);
DR_ASSERT (len > 0);
NULL_TERMINATE (msg) ;
DISPLAY_STRING_ERR (msg) ;
}

static dr_emit_flags_t

70

E. Cddigo fuente aplicaciones usadas en el benchmark Seccién E.1

event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
bool for_trace, bool translating)

{
instr_t *instr;
int i;
// Se recorre el bloque bdsico y se instrumentan todas las instrucciones
for (instr = instrlist_first(bb), num_instrs = 0;
instr != NULL;
instr = instr_get_next(instr)) {
dr_insert_clean_call(drcontext, bb, instr),
(void *)cuenta, false, 0);
}
return DR_EMIT_DEFAULT;
}

E.1.3. Valgrind

#include "pub_tool_basics.h"
#include "pub_tool_tooliface.h"
#include "pub_tool_options.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_machine.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_debuginfo.h"

static ULong icuenta = O;

static void contar(void) { icuenta++; }

static void ic_post_clo_init(void) { }

static IRSB* ic_instrument (VgCallbackClosure* closure,
IRSB* sbln,
VexGuestLayout* layout,

VexGuestExtents* vge,
IRType gWordTy, IRType hWordTy)

{
IRDirty* di;
Int i;
IRSBx* sbOut;

sbOut = deepCopyIRSBExceptStmts(sbIn);

71

Seccion E.1 E. Cddigo fuente aplicaciones usadas en el benchmark

i=0;
while (i < sbIn->stmts_used && sbIn->stmts[i]->tag !'= Ist_IMark) {
addStmtToIRSB(sbOut, sbIn->stmts[i]);
i++;

b

for (; i < sbIn->stmts_used; i++) {
IRStmt* st = sbIn->stmts[i];
if (!st || st->tag == Ist_NoOp) continue;

switch (st->tag) {
case Ist_IMark:
di = unsafeIRDirty_O_N(O, "contar",
VG_(fnptr_to_fnentry) (&contar),
mkIRExprVec_0());
addStmtToIRSB(sbOut, IRStmt_Dirty(di));
break;

default:
tl_assert(0);
}
}

return sbOut;

static void ic_fini(Int exitcode)

{

VG_(umsg) ("Instrucciones: %’1lul\n", icuenta);
VG_(umsg) ("Exit code: %d\n", exitcode);

static void ic_pre_clo_init(void)

{

VG_(details_name) ("icuenta");
VG_(details_version) (NULL) ;
VG_(details_description) ("Contador de instrucciones");

VG_(details_avg_translation_sizeB) (275);

VG_(basic_tool_funcs) (ic_post_clo_init,
ic_instrument,
ic_fini);

72

E. Cddigo fuente aplicaciones usadas en el benchmark Seccién E.2

E.2. Instrumentacién por bloques basicos

E.2.1. Pin

#include <stdio.h>
#include "pin.H"

#include <iostream>
static UINT64 bcuenta = O;

VOID contar() { bcuenta++; }

VOID Trace(TRACE trace, VOID *v)

{
for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next (bbl))
{
BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)contar, IARG_END);
}
}
VOID Fini(INT32 code, VOID *v)
{
std::cerr << "Bloques b&sicos: " << bcuenta << endl;
}
int main(int argc, char * argvl[])
{
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(Trace, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return O;
}

E.2.2. DynamoRIO

#include "dr_api.h"

#define DISPLAY_STRING(msg) dr_printf("%s\n", msg);

#define DISPLAY_STRING_ERR(msg) dr_fprintf (STDERR,"Ys\n", msg);

#define NULL_TERMINATE(buf) buf [(sizeof (buf)/sizeof (buf[0])) - 1] = ’\0’

static uint64 bcuenta=0; //Contador de bloques basicos

73

Seccion E.2 E. Cddigo fuente aplicaciones usadas en el benchmark

static void contar(void) { bcuenta++; } //Cédigo a afiadir

static void event_exit(void);
static dr_emit_flags_t event_basic_block(void *drcontext,
void *tag, instrlist_t *bb, bool for_trace, bool translating);

DR_EXPORT void
dr_init(client_id_t id)

{
dr_register_exit_event (event_exit);
dr_register_bb_event (event_basic_block);
dr_log(NULL, LOG_ALL, 1, "Inicializando cliente ’bcuenta’\n");
}
static void event_exit(void)
{
char msg[512];
int len;
len = dr_snprintf(msg, sizeof (msg)/sizeof (msgl0]),
"Bloques béasicos: %llu\n", bcuenta);
DR_ASSERT(len > 0);
NULL_TERMINATE (msg) ;
DISPLAY_STRING_ERR(msg);
}

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
bool for_trace, bool translating)

{
dr_insert_clean_call(drcontext, bb, instrlist_first(bb)),
(void *)contar, false, 0);
return DR_EMIT_DEFAULT;
}

E.2.3. Valgrind

#include "pub_tool_basics.h"

#include "pub_tool_tooliface.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_debuginfo.h"

74

E. Cddigo fuente aplicaciones usadas en el benchmark Seccién E.2

#include "pub_tool_libcbase.h"
#include "pub_tool_options.h"
#include "pub_tool_machine.h"

static ULong bcuenta = 0;
static void contar(void) { bcuenta++; }
static void 1lk_post_clo_init(void) { }

static

IRSB* lk_instrument (VgCallbackClosure* closure,
IRSB* sbln,
VexGuestLayout* layout,
VexGuestExtents* vge,
IRType gWordTy, IRType hWordTy)

{
IRDirty* di;
Int i;
IRSBx* sbOut;
Char fnname [100] ;

sbOut = deepCopyIRSBExceptStmts(sbIn);

i = 0;
while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {
addStmtToIRSB(sbOut, sbIn->stmts[i]);
P4+

3

di = unsafeIRDirty_O_N(O, "cuenta",
VG_(fnptr_to_fnentry) (
&cuenta), mkIRExprVec_0(Q));
addStmtToIRSB(sbOut, IRStmt_Dirty(di));

for (; i < sbIn->stmts_used; i++) {
IRStmt* st = sbIn->stmts[i];
if (!st || st->tag == Ist_NoOp) continue;
addStmtToIRSB(sbOut, st);

return sbOut;

75

Seccion E.2 E. Cddigo fuente aplicaciones usadas en el benchmark

}
static void 1lk_fini(Int exitcode)
{
VG_(umsg) ("Bloques basicos: %’1lu\n", bcuenta);
VG_(umsg) ("Exit code: %d\n", exitcode);
}
static void lk_pre_clo_init(void)
{
VG_(details_name) ("bcuenta") ;
VG_(details_version) (NULL) ;
VG_(details_description) ("Cuenta de bloques basicos");
VG_(details_avg_translation_sizeB) (200);
VG_(basic_tool_funcs) (1k_post_clo_init,
1k_instrument,
1k_fini);
}

VG_DETERMINE_INTERFACE_VERSION(1k_pre_clo_init)

76

