

27212 - Analytical Chemistry II

Información del Plan Docente

Academic Year 2017/18

Faculty / School 100 - Facultad de Ciencias

Degree 452 - Degree in Chemistry

ECTS 12.0

Year 3

Semester Annual

Subject Type Compulsory

Module ---

- 1.General information
- 1.1.Introduction
- 1.2. Recommendations to take this course
- 1.3. Context and importance of this course in the degree
- 1.4. Activities and key dates
- 2.Learning goals
- 2.1.Learning goals
- 2.2.Importance of learning goals
- 3. Aims of the course and competences
- 3.1. Aims of the course
- 3.2.Competences
- 4.Assessment (1st and 2nd call)
- 4.1. Assessment tasks (description of tasks, marking system and assessment criteria)
- 5. Methodology, learning tasks, syllabus and resources
- 5.1. Methodological overview

The methodology followed in this course is oriented towards achievement of the learning objectives. It favors the understanding of the different techniques and methods in Analytical Chemistry. A wide range of teaching and learning tasks are implemented, such as theory sessions, laboratory sessions, assignments, and tutorials.

Students are expected to participate actively in the class throughout the semester.

27212 - Analytical Chemistry II

Classroom materials will be available via Moodle. These include a repository of the lecture notes used in class, the course syllabus, as well as other course-specific learning materials.

Further information regarding the course will be provided on the first day of class.

5.2.Learning tasks

The course includes 12 ECTS organized according to:

- Theory sessions (2.4 ECTS): 60 hours.
- Seminars and Problems sessions (0.8 ECTS): 20 hours
- Laboratory sessions (1.6 ECTS): 40 hours.
- Assignments (7.2 ECTS): 180 hours (including 20 hours of mentored work)

Laboratory sessions: 12 sessions of 3-hour and 4 sessions of 1-hour will take place approximately during November-December and March-May . Students are provided with the practical exercises' instructions to be done as well as a theoretical introduction to the session's contents.

5.3. Syllabus

- Lesson 1: Introduction to Instrumental Analysis
- Lesson 2: Basic Concepts of Chromatography
- Lesson 3: Gas Chromatography
- Lesson 4: High Performance Liquid Chromatography
- Lesson 5: Mass Spectrometry as detection technique in Chromatography. HPLC-MS and GC-MS
- Lesson 6: Introduction to spectrometric techniques
- Lesson 7: Introduction to Atomic Spectrometry.
- Lesson 8: Atomic Absorption Spectrometry
- Lesson 9: Atomic Emission Spectrometry: Flame, Arc and Spark, Plasma

27212 - Analytical Chemistry II

Lesson 10: Inductively Coupled Plasma-Mass Spectrometry

Lesson 11: Molecular Absorption Spectrometry: UV-VIS and Infrared

Lesson 12: Molecular Luminiscence: Fluorescence and Chemiluminiscence

5.4. Course planning and calendar

BB

For further details concerning the timetable, classroom and further information regarding this course please refer to the "http://ciencias.unizar.es/web/horarios.do":

5.5.Bibliography and recommended resources

BB See information and resources

incorporated in the ADD

Skoog, Douglas A.. Principios de análisis instrumental / Douglas A. Skoog, F. James Holler, Stanley R. Crouch; traductor, María Bruna Josefina Anzures; revisión

técnica Francisco Rojo Callejas, Juan Alejo Pérez Legorreta . - 6ª ed. México, D.

F.: Cengage Learning, cop. 2008