

Información del Plan Docente

Año académico 2017/18

Centro académico 175 - Escuela Universitaria Politécnica de La Almunia

Titulación 424 - Graduado en Ingeniería Mecatrónica

Créditos 6.0

Curso 4

Periodo de impartición Primer Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1.Introducción

Se trata de una asignatura de grupo de asignaturas que conforman el módulo denominado Proyectos. Basada en la resolución de problemas y proyectos prácticos, permite al alumno afianzar y demostrar los conocimientos adquiridos en las distintas disciplinas del grado. Pudiendo considerarse una asignatura finalista en la formación del casi inminente Ingeniero Mecatrónico.

1.2. Recomendaciones para cursar la asignatura

La asignatura Proyecto Integrado, no tiene requisitos previos obligatorios, pero se aconseja a los alumnos del Grado en Mecatrónica de haber aprobado, o por lo menos cursado, las asignaturas Ingeniería de Fluidos. Fundamentos de Física I y II, Informática, Ingeniería Eléctrica y Mecánica, Tecnología Electrónica I y II, Ingeniería de materiales, Regulación y control automático, Cálculo y diseño de máquinas, Procesos de Fabricación I y II, Sistemas electrónicos programables e Instrumentación Electrónica.

1.3. Contexto y sentido de la asignatura en la titulación

La asignatura Proyecto Integrado, centrada en el contenido práctico y basada en la resolución de problemas y proyectos aplicando técnicas interdisciplinarias para la realización de sistemas mecatrónicos aporta una visión global que permite estudiar, desarrollar, innovar e implementar soluciones integrales complejas.

1.4. Actividades y fechas clave de la asignatura

Las fechas y horario de impartición de clases se encontrarán en la página web de EUPLA http://www.eupla.unizar.es/

Además, los alumnos dispondrán, al principio del curso, de las fechas y lugares de los exámenes necesarios para superar esta materia.

2. Resultados de aprendizaje

2.1. Resultados de aprendizaje que definen la asignatura

Comprensión de conceptos relacionados con las áreas de conocimiento de la titulación.

Comprender, ordenar y transmitir la información obtenida de diferentes fuentes.

Exponer de modo coherente, forma oral y escrita el trabajo realizado.

Motivación y capacidad de autoaprendizaje.

Realización e interpretación de planos y esquemas en función de la normativa y simbología apropiada.

2.2.Importancia de los resultados de aprendizaje

Se trata de una asignatura del módulo denominado Proyectos. Basada en la resolución de problemas y proyectos prácticos representativos de numerosos sectores industriales, permite al alumno afianzar y demostrar los conocimientos adquiridos en las distintas disciplinas del grado, pudiendo considerarse una asignatura finalista en la formación del casi inminente Ingeniero Mecatrónico.

3. Objetivos y competencias

3.1.Objetivos

El objetivo de la asignatura es formar al estudiante en la realización de proyectos mecatrónicos aplicando los conocimientos multidisciplinares para la realización del análisis, diseño, desarrollo, fabricación de prototipos y documentación. No sólo se estudiarán los fundamentos, sino que se pretende conseguir capacidad de análisis, y de diseño. El estudiante deberá ser capaz de construir en el laboratorio y poner en marcha un prototipo funcional, de la solución mecatrónica propuesta durante la realización de la asignatura.

3.2.Competencias

GI03: Conocimientos en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.

GI04: Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial

GC01: Capacidad para integrar y aplicar conocimientos mecánicos, electrónicos y de control en el diseño, desarrollo y mantenimiento de productos, equipos o instalaciones industriales.

GC02: Interpretar datos experimentales, contrastarlos con los teóricos y extraer conclusiones.

GC04 : Capacidad para aprender de forma continuada, autodirigida y autónoma.

GC05: Capacidad para evaluar alternativas.

GC08: Capacidad para localizar información técnica, así como su comprensión y valoración.

GC09: Actitud positiva frente a las innovaciones tecnológicas.

GC10 : Capacidad para redactar documentación técnica y para presentarla con ayuda de herramientas informáticas adecuadas.

GC13: Capacidad para evaluar la viabilidad técnica y económica de proyectos complejos.

GC14 : Capacidad para comprender el funcionamiento y desarrollar el mantenimiento de equipos e instalaciones mecánicas, eléctricas y electrónicas.

GC15 : Capacidad para analizar y aplicar modelos simplificados a los equipos y aplicaciones tecnológicas que permitan hacer previsiones sobre su comportamiento.

GC17: Capacidad para la interpretación correcta de planos y documentación técnica.

GC18: Demostrar el dominio del conjunto de conocimiento y habilidades multidisciplinares adquiridas mediante la realización individualmente o en grupo, presentación y defensa de un proyecto en el ámbito de las tecnologías específicas de la Mecatrónica, en el que se sinteticen e integren dichos conocimientos y habilidades.

El12: Conocimientos y capacidades para organizar y gestionar proyectos. Conocer la estructura organizativa y las funciones de una oficina de proyectos.

4. Evaluación

4.1. Tipo de pruebas, criterios de evaluación y niveles de exigencia

Evaluación continua.

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante:

— Prácticas de laboratorio y actividades evaluables: En cada una de las prácticas y actividades propuestas se valorarán los resultados obtenidos y el proceso seguido. Una vez realizada la actividad se entrega una memoria de la misma que se valora de 0 a 10 puntos. Se debe alcanzar una puntuación mínima de 5 puntos para promediar. Esta actividad se realizará de forma individual.

—Proyecto de la asignatura: Se propondrá un trabajo de asignatura a lo largo de todo el curso. Se trata de un documento de especificaciones iníciales que plantea el diseño y la fabricación de una solución mecatrónica. El proyecto se definirá al principio del curso y se comunicará en clase y en http://moodle.unizar.es/, y se guiará al alumno para su realización durante el desarrollo del curso.

Actividad de evaluación	Ponderación
Prácticas de laboratorio	25%

Pruebas evaluatorias escritas y trabajos propuestos	75%
---	-----

Para optar al sistema de Evaluación Continua se deberá asistir al menos al 80% de las clases presenciales (prácticas, visitas técnicas, clases, etc.)

Prueba global de evaluación.

Siguiendo la normativa de la Universidad de Zaragoza al respecto, en las asignaturas que disponen de sistemas de evaluación continua o gradual, se programará una prueba de evaluación global para aquellos estudiantes que decidan optar por este segundo sistema.

5. Metodología, actividades, programa y recursos

5.1. Presentación metodológica general

- 1. Clases magistrales, impartidas al grupo completo, en las que el profesor explicará la teoría de la asignatura y resolverá problemas relevantes para el cálculo, diseño y desarrollo de un sistema mecatrónico
- 2. Prácticas de laboratorio. Estas prácticas son altísimamente recomendables para una mejor comprensión de la asignatura porque se ven en funcionamiento real elementos cuyo cálculo se realiza en clase magistral.
- 3. Tutorías relacionadas con cualquier tema de la asignatura de forma presencial en el horario establecido o a través de la mensajería y foro del aula virtual Moodle.

5.2. Actividades de aprendizaje

Clases magistrales. Se desarrollarán a razón de dos horas semanales, hasta completar las 30 horas necesarias para cubrir el temario.

Prácticas de laboratorio. Se realizarán quince sesiones a razón de dos horas por sesión con subgrupos adaptados a la capacidad del laboratorio.

Estudio y trabajo personal. Esta parte no presencial se valora en unas 90 horas, necesarias para el estudio de teoría, resolución de problemas y revisión de guiones.

Tutorías. Cada profesor publicará un horario de atención a los estudiantes a lo largo del cuatrimestre.

5.3. Programa

Tema 1. Estado del arte y especificación técnica de un proyecto mecatrónico.

Tema 2. Identificación por módulos. Diagramas de bloques y flujos de información.

Tema 3. Modelado y simulación de sistemas mecatrónicos.

Tema 4. Diseño de sistemas mecatrónicos.

Tema 5. Fabricación de prototipos.

Tema 6. Programación, verificación y pruebas funcionales.

Tema 7. Análisis de costes y Documentación.

Tema 8. Trabajo final de asignatura

5.4. Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

Las fechas de los dos exámenes finales serán las publicadas de forma oficial en http://eupla.unizar.es/index.php/secretaria/informacion-academica/distribucion-de-examenes

En la metodología de evaluación continua se establece la entrega de varios trabajos parciales y un trabajo final de asignatura cuyas fechas de entrega se definirán durante el curso:

*las fechas definitivas se publicarán en el anillo digital docente (moodle)

La prueba global de evaluación no continua se realizará al final del semestre y consistirá en una prueba escrita sobre argumentos teóricos y problemas de todos los temas tratados en clase.

5.5.Bibliografía y recursos recomendados

BB

BB

"LA BIBLIOGRAFÍA ACTUALIZADA DE LA ASIGNATURA SE CONSULTA A TRAVÉS DE LA PÁGINA WEB DE LA BIBLIOTECA http://psfunizar7.unizar.es/br13/eBuscar.php?tipo=a

	Bolton, W Mecatrónica : sistemas de
	control electrónico en la ingeniería
BB	mecánica y eléctrica / W. Bolton . 2ª ed.
	México : Alfaomega ; Barcelona :

Marcombo, cop. 2001

Instrumentación electrónica / Miguel A.
Pérez García ... [et al.] . - 2ª ed., 4ª reimp.
Madrid : International Thomson Editores

Spain Paraninfo, 2008

Larburu Arrizabalaga, Nicolás. Maquinas y herramientas prontuario: descripción y clasificación / Nicolás Larburu Arrizabalaga

Madrid: Paraninfo, 1994

Lucian ,Tiuca;Jaria Gazo, Juan Diego; Sánchez Catalán, Juan Carlos.. Catia

V5R20/ Tiuca Lucian, Juan Diego Jaria

ВВ

Gazo, Juan Carlos Sánchez Catalán.. - 1ª edición Zaragoza:mcharly.com,2012. Reyes Cortés,Fernando. Matlab aplicado a robótica y a mecatrónica/ Fernando Reyes Cortés.. - 1ªedición Barcelona: México,Marcombo 2012.