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Abstract: Given the rise of apoptosis-resistant tumors, exists a growing interest in 

developing new drugs capable of inducing different types of cell death 

to reduce colorectal cancer-related death rates. As apoptosis and necroptosis do not 

share cellular machinery, necroptosis induction may have a great therapeutic potential 

on those apoptosis-resistant cancers, despite the inflammatory effects associated with it. 

We have synthesized an alkynyl gold(I) complex [Au(C≡C-2-NC5H4)(PTA)] whose 

anticancer effect was tested on the colorectal adenocarcinoma Caco-2 cell line. With 

regard to its mechanism of action, this gold complex enters the mitochondria and 

disrupts its normal function, leading to an increase in ROS production, which triggers 

necroptosis. Necroptosis induction has been found dependent of TNF-α and TNFR1 

binding, RIP1 activation and NF-κB signaling. Moreover, the antitumor potential of 

[Au(C≡C-2-NC5H4)(PTA)] has also been confirmed on the 3D cancer model spheroid. 

Overall, the obtained data show firstly that gold complexes might have the ability of 

inducing necroptosis, and secondarily that our compound [Au(C≡C-2-NC5H4)(PTA)] is 

an interesting alternative to current chemotherapy drugs in cases of apoptosis resistance.  

KEYWORDS Gold complex, cancer, necroptosis, ROS, Caco-2 cells 
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INTRODUCTION 

The use of metals with therapeutic purposes dates back to ancient times. Nevertheless 

one of the biggest successes for inorganic chemistry in medicine was the accidental 

discovery of antitumor properties of cisplatin in the 60s. cis-[PtCl2(NH3)2], commonly 

called cisplatin has been used worldwide in chemotherapy against various cancers 

including testicular, ovarian and solid tumors of head and neck [1,2].  However, the use 

of platinum derivatives results in serious side effects related to their nonspecific 

mechanism of action [3]. Thus, in the last decades researchers have focused on finding 

new metal derivatives with anticancer properties that lack the shortcomings of cisplatin 

and its analogues.   

In this context, gold complexes are an interesting alternative to platinum-containing 

drugs [1,2]. Many gold(I) complexes have been tested against various tumor cell lines, 

[4-6] and some of these promising in vitro results have also been confirmed in vivo 

using animal models [4,7,8]. The main advantage of these compounds against platinum 

complexes is that they differ in their mechanism of action. Whereas platinum 

compounds interact with nucleic acids, gold-containing drugs display a higher variety of 

targets, including non-canonical DNA structures [9, 10], zinc finger proteins [11] or the 

redox enzyme thioredoxin reductase (TrxR).  Gold complexes are able to inhibit TrxR 

via interacting with the selenium atom [12]
 
of the selenocysteine moiety. When TrxR is 

inhibited, the regular redox balance becomes disrupted and the abnormally increased 

levels of reactive oxygen species (ROS) trigger cell death [13].
 
Consequently, TrxR 

inhibition does not involve the side effects related to treatment with cisplatin and its 

analogues. In addition, there is not cross-resistance between them [14]. Therefore, gold-

containing drugs are able to induce cell death even in cisplatin-resistant cancer cells.  

Colorectal cancer (CRC) is one of the most prevalent cancers in Western countries and 

one of the main causes of cancer-related death [15]. CRC is a kind of tumors which 

shows a good response to treatment with metallic compounds, since the combination of 

the cisplatin analogue oxaliplatin (cis-[oxalate(trans-l-1,2-

diaminocyclohexane)platinum(II)]) and traditional chemotherapy improves patient 

response versus traditional chemotherapy alone [16,17]. Consequently, it is necessary to 
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find new therapeutic options with fewer side effects than current treatments but 

maintaining their anticancer potential.  

Treatment with metallic compounds usually induces apoptosis, one of the best 

characterized kinds of cell death [18, 19]. As an example, we have recently described in 

detail the apoptotic insights of an alkynyl gold(I) complex [20]. But, given the rise of 

apoptosis-resistant tumors exist a growing interest in developing new drugs capable of 

inducing different types of cell death [21]. 

Necroptosis is a regulated form of necrosis mainly governed by Receptor-Interacting 

Protein 1 (RIP1), RIP3 and Mixed Lineage Kinase Domain-Like (MLKL) protein. A 

wide range of stimuli can start this process, although the best studied pathway is 

triggered by Tumor Necrosis Factor (TNF). TNF-triggered necroptosis requires the 

formation of “necrosome”, a protein complex in which RIP1 and RIP3 are involved and 

responsible for MLKL phosphorylation. The necrosome migrates to plasma membrane 

and induces its rupture, [22, 23] so it is the ultimate responsible for necroptotic 

morphological features, i.e. cellular swelling and loss of intracellular content. Therefore, 

as apoptosis and necroptosis do not share the same molecular pathways, necroptosis-

inducing drugs may induce cell death on apoptosis-resistant tumors.   

2D cell culture provides only a slanted vision of how cells behave inside human body; 

therefore, results in 2D cannot always be translated into in vivo settings. To obtain more 

accurate information about cell response to that observed in vivo, 3D cell cultures have 

proved an useful alternative [24]. 3D cell models provide a more relevant 

microenvironment where cell-cell and cell-matrix interactions are promoted. 

Particularly, cells acquire relevant features observed in tumors in vivo, such as 

distinctive morphological and cellular characteristics, as well as distinctive gene 

expression signature, which could account for the different drug response to that 

observed in 2D [25, 26]. Among the 3D cell culture methods, spheroids are one of the 

best characterized models so far. They closely recapitulate the tumor microenvironment, 

including hypoxia and metabolic gradients. Furthermore, previous studies in spheroids 

have provided insight on drug distribution and penetration. [27, 28]. All in all, cell 

spheroids are a 3D cell culture method usually used in drug-response studies [29, 30]. 

Specifically, Caco-2 spheroids have been previously used in permeability assays as the 

obtained values were quite similar to those found in vivo [31]. 
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Here we describe the preparation and evaluation of the anticancer activity of the 

alkynyl gold(I) derivative [Au(C≡C-2-NC5H4)(PTA)] (Chart Scheme 1) against human 

colon cancer cells (Caco-2). We have established its ability to induce necroptosis by 

increasing ROS levels, which triggers cell death. Due to the spontaneous differentiation 

of Caco-2 cells to normal enterocytes after 15 days growing [32], we were able to 

compare its effect on both CRC and healthy tissue. Additionally, data obtained in 2D 

cell model were expanded by testing the antiproliferative effect of the compound on 3D 

spheroid model.   

N
N

N

P

N

Au

 

Scheme 1. Chemical structure of [Au(C≡C-2-NC5H4)(PTA)]. 

MATERIALS AND METHODS 

Preparation of [Au(C≡C-2-NC5H4)(PTA)]. The alkynyl gold complex was prepared 

as described previously by some of us [33]. Pale yellow solid was isolated in 78% yield. 

1
H NMR (400 MHz, CDCl3, 25 °C): δ = 4.37 and 4.51 (AB system, 6H, NCH2N), 4.33 

(s, 6H, NCH2P), 7.01 (dd, J = 4.8/1.5Hz, 1H, NC5H4 (H
5
)), 7.3 (d J = 7.8, NC5H4 (H

3
)),

7.48 (td, J = 7.6/1.5Hz, 1H, NC5H4 (H
4
)), 8.42 (d, J = 4.8Hz, 1H, NC5H4 (H

6
)) ppm.

 

31
P{

1
H} NMR (162 MHz, CDCl3, 25 °C):  = –51.8 ppm. 

13
C{

1
H} NMR (75.4 MHz,

CDCl3, 25 °C):  = 51.1 (d, J = 16 Hz, NCH2P), 68.4 (s, AuCC), 72.2 (s, NCH2N), 

85.1 (s, AuCC), 121.8 (s, C
5,3

-Py), 130,7 (s, C
4
-Py), 150.3 (s, C

6
-Py). IR (KBr): 2105

cm
-1

 (CC). FAB MS: m/z = 457 [M]
+
. Elemental analysis calcd. (%) for

C13H16AuN4P (456.23): C 34.22, H 3.53, N 12.28; found: C 34.55, H 3.75, N 12.50. 

Chemical stability. The stability of the gold complex was analyzed by absorption UV 

spectroscopy. UV-Vis absorption spectra were recorded on a Thermo Scientific 

spectrophotometer. 10 mM solution of [Au(C≡C-2-NC5H4)(PTA)] in DMSO was 

diluted in 10
-4 

M PBS pH = 7.4 and thereafter monitored by measuring the electronic

spectra over 24 h at 37°C. Additionally, a phosphate-buffered saline solution, pH 7.4 

was added to a d6-DMSO solution of the complex in a proportion 1:1 (due to the low 

solubility in water solution) and studied by NMR over 24h period. 
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Distribution coefficient (logD7.4). The n-octanol-water partition coefficient of 

[Au(C≡C-2-NC5H4)(PTA)] was determined as previously reported using a shake-flask 

method [33]. The concentration of the compound in each phase was determined using 

UV absorbance spectroscopy. LogD7.4 was defined as 

log{[compound(organic)]/[compound(aqueous)]}. 

Interaction with BSA. Interaction of gold complex and bovine serum albumin 

(purchased from Sigma Aldrich) was analyzed as previously described by some of us 

[20]. 

DNA binding studies. Interaction of gold complex with DNA was studied using 3 

nM pIRES2-EGFP plasmid (Clontech). Gold complex was diluted in miliQ water and 

different ratio of gold complex toplasmid were incubated 24 h at 37ºC. Electrophoretic 

mobility shift assays were performed by PAGE electrophoresis (90 min, 50 V) in TBE 

buffer using SYBR Safe as stain.  

Cell culture. Human Caco-2 cell line (TC7 clone) was kindly provided by Dr. Edith 

Brot-Laroche (Université Pierre et Marie Curie-Paris 6, UMR S 872, Les Cordeliers, 

France). Caco-2 cells were maintained in a humidified atmosphere of 5% CO2 at 37ºC. 

Cells (passages 50-80) were grown in Dulbecco’s Modified Eagles medium (DMEM) 

(Gibco Invitrogen, Paisley, UK) supplemented with 20% fetal bovine serum (FBS), 1% 

non-essential amino acids, 1% penicillin (1000 U/mL), 1% streptomycin (1000 μg/mL) 

and 1% amphoterycin (250 U/mL). The cells were passaged enzymatically with 0.25% 

trypsin-1 mM EDTA and sub-cultured on 25 or 75 cm
2
 plastic flasks at a density of

2·10
4
 cells/cm

2
. Culture medium was replaced every 2 days. Cell confluence (80%) -

considered as differentiated cells- was confirmed by microscopic observance. 

Experiments in undifferentiated cells were performed 24 hours post-seeding. 

Human MCF-7 cell line was kindly provided by Dr. Carlos J. Ciudad y Dra. Verònica 

Noé (Departamento de Bioquímica y Fisiología, Facultad de Farmacia, Universidad de 

Barcelona, Spain). MCF-7 cells were maintained in the same conditions as described for 

Caco-2 cell line.  

Cell proliferation assay and IC50 value determination. Cell proliferation inhibition 

was measured using the MTT assay [34]. Caco-2/TC7 cells were plated in 96-well 

plates at a density of 4000 cells/well and incubated for 24 h under standard cell culture 

conditions. For IC50 values determination, a stock solution of the gold complex in 
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dimethyl sulfoxide (DMSO) was added to cells in a concentration range of 0-20 μM (10 

replicates, 100 µL per well); cells treated with the same amount DMSO were used as 

negative control. Cells were exposed to the gold complex for 24 h and then 10 µL of 

MTT (5 mg/ml) was added. Incubation was continued at 37ºC for 3 h. Medium was then 

removed by inversion and 100 µL of DMSO/well were added. Absorbance at 560 nm -

proportional to number of live cells- was measured by spectrophotometry (DTX 800, 

Beckman Coulter) and converted into percentage of growth inhibition.  

Thioredoxin reductase activity assay in cells. Caco-2/TC7 were grown in 96-well 

plate at a density of 4.000 cells/well during 24h, and then treated with [Au(C≡C-2-

NC5H4)(PTA)] for 24 h. After the incubation, cells were lysed with lysis buffer (50 mM 

Tris-HCl pH 7.5, 2 mM EDTA, protease inhibitor cocktail and distilled H2O) for 30 min 

at room temperature. Then, TrxR inhibitor was added to each well and incubated 30 

min. Cell lysates were incubated with reaction buffer (PBS pH 7, 100 mM EDTA, 

0.05% BSA, 20 mM NADPH, distilled H2O) with or without TrxR inhibitor. Reaction 

was started by adding 25 µL of 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB, 20mM in 

pure ethanol). Absorbance at 405nm was recorded every 10s for 6min as a measurement 

of thioredoxin reductase activity. TrxR activity was normalized by the amount of 

protein present in each well, determined by Bradford method. 

Glutathione activity assay in cells. Caco-2/TC7 were grown in 96-well plate at a 

density of 4.000 cells/well during 24h, and then treated with [Au(C≡C-2-NC5H4)(PTA)] 

for 24 h. After the incubation, cells were lysed with modified RIPA buffer (50 mM Tris-

HCl, 50 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% SDS, 1% DOC, 1 mM NaF, in 

miliQ water) with proteases inhibitors. Cell solution was shaken at RT for 20min, 

centrifuged for 5 min at 1200 rpm and resuspended in PBS. Then, reaction solution was 

added (0.1 M Tris-HCl pH 8.1, 0.02 mM NADPH, in PBS). Finally, reaction was 

started by adding 0.52 mM GSSG. Absorbance at 3340 nm was recorded for 6 min. 

Glutathione reductase activity of the cell lysate was measured as a loss in absorbance at 

340 nm. 
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Measurements of apoptosis. Caco-2/TC7 cells were exposed to IC50 of [Au(C≡C-2-

NC5H4)(PTA)] for 24 h, then collected and stained with Annexin V-FITC as described 

by Sánchez-de-Diego et al [20]. Untreated cells were used as negative control, in order 

to define basal levels of apoptosis, necrosis and cell death.  

Propidium iodide staining of DNA content and cell cycle analysis. Caco-2/TC7 

cells were exposed to IC50 of [Au(C≡C-2-NC5H4)(PTA)] for 24 h and then DNA 

content was analyzed as described by Sánchez-de-Diego et al [20].  

Caspase activity studies. Caspase activation was studied using CellEvent
TM 

Caspase-

3/7detection reagent (C10423, ThermoFisher). Caco-2/TC7 cells were plated in 96-well 

plates at a density of 4000 cells per well and incubated for 24 h under standard cell 

culture conditions. For treatment, IC50 of [Au(C≡C-2-NC5H4)(PTA)] was added to cells 

and incubated 24 h; mock-treated cells were incubated with DMSO. Then, medium was 

removed and the reagent, previously diluted in PBS (90 µL /mL), was added to the 

cells. After 10 min of incubation, fluorescence was observed using confocal microscopy 

in a Nikon Eclipse Ti
®
 inverted fluorescence microscope, coupled with a confocal

module. Excitation and emission settings were 488 and 590/50 nm respectively. The 

intensity of fluorescence was analyzed with Fiji software (http://fiji.sc/Fiji).  

Measurement of total cellular oxidative stress. Caco-2/TC7 cells were exposed to 

IC50 of [Au(C≡C-2-NC5H4)(PTA)] for 80 min and then CellROX
®

 Deep Red Reagent

(C10422, ThermoFisher) was added to a final concentration of 5 µM. Cells were 

incubated 30 min at 37ºC. Fluorescence was analyzed using confocal microscopy in a 

Nikon Eclipse Ti® inverted fluorescence microscope, coupled with a confocal module. 

Excitation and emission settings were 644 and 665 nm, respectively. The intensity of 

fluorescence was analyzed with Fiji software (http://fiji.sc/Fiji) and is considered a 

reflection of total intracellular ROS.  

Determination of H2O2 cellular levels. H2O2 production was assessed using the 

dichlorofluorescein (DCF) assay [35]. Caco-2/TC7 cells were plated in 96-well plates at 

a density of 4000 cells per well and incubated for 24 h under standard cell culture 

conditions. For treatment, IC50 of [Au(C≡C-2-NC5H4)(PTA)] was added to cells and 

incubated 80 min; mock-treated cells were incubated with DMSO. Determination of 

H2O2 cellular levels was performed as described by Sánchez-de-Diego et al.  [20]. 
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Flow cytometry mitochondrial membrane potential assay. Caco-2/TC7 cells were 

plated in 75 cm
2
 flasks at a density of 500.000 cells per flask and incubated 24 h under

standard cell culture conditions. For treatment, IC50 of gold complex was added to each 

flask and incubated 24 h; mock-treated cells were incubated with DMSO. After 

treatment, changes in Δψm were analyzed as described by Sánchez-de-Diego et al [20]. 

Determination of RIP1 by flow cytometry. Caco-2/TC7 cells were plated in 75 cm
2

flasks at a density of 500.000 cells per flask and incubated 24 h under standard cell 

culture conditions. For treatment, IC50 of gold complex was added to each flask and 

incubated 24 h; mock-treated cells were incubated with DMSO. After treatment, cells 

were harvested and 100 µL of fixation solution INTRACELL (Intra 100-T, 

Immunostep) were added to each 50 µL of cells. Mix was incubated 5 min at room 

temperature and then was washed with PBS. Cells were resuspended in 50 µL PBS and 

100 µL of permeabilisation solution INTRACELL (Intra 100-T, Immunostep) and 3 µL 

anti-RIP-1 antibody (Abcam ab72139, 1/100 dilution) were added. After 1 h incubation 

at 4ºC, cells were washed with 1 mL PBS and 50 µL of permeabilisation solution 

INTRACELL (Intra 100-T, Immunostep) were added. Finally, secondary antibody goat 

anti-mouse ALEXA 488 was added and samples were incubated 30 min at 4ºC. Cells 

were washed and resuspended in 200 µL PBS and fluorescence was analyzed by flow 

cytometry using a FACSARRAY BD equipped with an argon ion laser. 

Caco-2 spheroids generation. Caco-2 cells (3·10
3
 cells per plate) were mixed with a

high viscosity methylcellulose solution as described by Ayuso et al [36] and 100 µL of 

the final suspension were seeded on a round bottom 96-well plate. Spheroids were 

grown for 72 h and were then incubated with rising concentrations of [Au(C≡C-2-

NC5H4)(PTA)] (3, 4 and 5 μM) for 24 h. For cell viability studies, spheroids were 

stained with Hoechst 33342 (4 mg/mL) and PI (4 mg/mL) for 30 min. Then, confocal 

microscopy images were taken as previously described.  

RESULTS AND DISCUSSION 

Solution chemistry. The alkynyl derivative [Au(C≡C-2-NC5H4)(PTA)] (1) was isolated 

as an stable light yellow solid in high yield. Its behavior in solution was analyzed by 

absorption spectroscopy and NMR. A phosphate-buffered saline (PBS) solution of the 

complex was incubated at 37ºC and studied by UV-visible spectroscopy over 24h. The 
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spectrum displays two intense bands around 215 and 290 nm and another band with 

lower intensity at 250 nm, attributed to electronic transitions from the alkyne ligand to 

the gold(I) center (Figure S2). These bands decrease their intensity over the time and a 

slight blue shift of the band at 290 nm is observed after 5h of incubation. Non-

additional bands were observed during the experiment course and, more importantly, no 

new bands in the region of 500 nm, characteristic of colloidal gold(0) were detected. In 

addition, the NMR spectra in a mixture of PBS and d6-DMSO solution revealed no 

decomposition and no release of the phosphane after 24h period (Figure S3). With these 

results, this complex can be considered sufficiently stable in the solution to be tested on 

cells. 

The lipophilicity of a compound is associated to its diffusion and penetration into the 

cell membrane. Consequently, drug lipophilicity affects its activity, toxicity to healthy 

tissues and is directly related to plasma protein binding and metabolism of the drug 

[37]. Changes in drug lipophilicity by incorporating the suitable functional groups in the 

molecule have shown great impact in anticancer activity and host toxicity [38, 39]. 

However, phosphane gold(I) derivatives with high lipophilicity [39] tend to accumulate 

into mitochondria with the consequent serious effects [40]. Subsequently, a balanced 

relationship between lipophilicity and hydrophilicity would be highly desirable. 

Lipophilicity can be measured by the partition coefficient water/octanol, logD7.4, which 

finally shows the corresponding balance between lipophilicity and hydrophilicity. The 

measurement of logD7.4 of our alkynyl derivative (see experimental for details) gave a 

negative value next to 0 (-0.10). This is in accordance with slight hydrophilic character 

of the complex, albeit with a balanced relationship between both characters. 

Binding to BSA. The distribution, free concentration and metabolism of a drug are 

affected by drug-protein interactions in the bloodstream [41, 42]. Such interaction can 

influence drug stability and toxicity during chemotherapeutic treatment, thereafter 

limiting drug efficacy. Consequently, it is important to understand the potential 

presence and nature of these interactions. One of the blood plasma proteins involved in 

drug transport is serum albumin. Bovine serum albumin (BSA) is frequently used in 

biochemical analysis due to its higher stability and accessibility. BSA contains two 

tryptophan residues (Trp-134 and Trp-212) in the former while HAS (human serum 

albumin) has a unique tryptophan. Hence, we have studied the interaction of [Au(C≡C-
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2-NC5H4)(PTA)] with BSA by means of the measurement of the quenching of the 

intrinsic fluorescence of the amino acid tryptophan, which is sensitive to its local 

environment. Accordingly, any changes in the fluorescence emission spectra can be 

attributable to changes in the conformation, due to the presence of the quencher [43]. 

The fluorescence spectra of BSA were recorded in the presence of increasing amounts 

of the gold complex in the range of 310-450nm upon excitation at 295 nm. Quenching 

of the fluorescence is observed in a concentration dependent manner, without changes 

in the emission maximum and shape of the peaks (Figure 1A). This fact points to an 

interaction of the gold complex with the protein without alteration of the vicinity of the 

tryptophan residues.  

The quenching process can be due to the presence of collisions between a fluorophore 

with the quenching agent ˗dynamic quenching˗ or the formation of a non-fluorescent 

complex with the quenching agent, i.e. static quenching. Fluorescence data were 

analyzed by the Stern-Volmer equation: F0/F = 1+ Ksv[1], where F0 and F are the steady 

sate fluorescence intensities of BSA before and after the addition of the gold complex. 

While a linear Stern-Volmer plot (F0/F vs. [quencher]) is indicative of the occurrence of 

a single quenching mechanism, the plot F0/F vs with a positive deviation (Figure 1B) 

suggests the presence of a combination or static and dynamic quenching. Moreover, the 

upward curvature in the plot indicates that both tryptophan residues in the BSA 

molecule are exposed to the gold complex [44]. 

The modified Stern-Volmer equation:   
      

 
             provides the 

corresponding binding constant Kb, by using the plot of log(F0-F)/F vs log[1],  (Figure 

1C). The binding constant was found to be 2.3·10
8
 M

-1
, which indicates a high affinity

of our complex to the protein, and inversely decreases with the temperature. This high 

value points to a strong interaction between BSA and the gold complex. The value of Kb 

of 2.46·10
8
 increased four orders of magnitude in comparison to the related complex,

with a phenyl ring instead of the pyridine molecule [Au(C≡C-C5H4)(PTA)] (Kb of 

7.2·10
4
 M

-1
)[41]. In order to calculate the nature of the binding sites between [Au(C≡C-

2-NC5H4)(PTA)] and BSA, we have performed the quenching experiment at different 

temperatures (295, 304 and 310K). Values of n next to 2 indicate that there is more than 

one class of binding site in the interaction of the gold complex towards BSA.  
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Considering that we performed the quenching study at three temperatures, we can only 

approximate the corresponding thermodynamic parameters Hº, Sº and Gº, which 

have been calculated from the equation lnK = -Hº/(RT) + Sº/R, where K is the 

equilibrium constant at the three different temperatures, Hº and Sº are the standard 

enthalpy and entropy change for the reaction, respectively and R, the gas constant 8.314 

J·mol
-1

K
-1

. The calculated values for the experiment Hº and Sº provide Gº < 0

(Table 1, Figure S8)). 

The interaction forces of biomolecules and drugs involve hydrophobic forces, 

electrostatic interactions, van der Waals interactions or hydrogen bonds [45]. The 

negative value calculated for Gº is indicative of a spontaneous process and the 

negative values for both enthalpy and entropy of the interaction are consistent with the 

presence of van der Waals interaction and hydrogen bonds [45]. 
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In addition, we have measured the UV-visible absorption spectra of the BSA in 

presence and in absence of the gold complex (figure S13). The absorption spectrum of 

Table 1. Thermodynamic parameters of [Au(C≡C-2-NC5H4)(PTA)]-BSA interaction. 

T (K) Kb (M
-1

) n Hº (kJ·mol
-1

) Sº (J·mol
-1

K
-1

) Gº (kJ·mol
-1

)

295 2.46·10
8 1.70 

-78.78 -105.9 

-47.54 

304 8.98·10
7

1.62 -46.58 

310 5.95·10
7

1.60 -45.95 
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Figure 1. A) Fluorescence quenching of BSA in presence of increasing concentrations of [Au(C≡C-

2-NC5H4)(PTA)] (1) at 295 K. Arrow indicates the increase of the quencher concentration. B) 

Stern-Volmer plot for the quenching of BSA with 1 at 295K. Stern-Volmer equation used: F0/F = 1 

+ Ksv[1]. C) Stern-Volmer equation used: log{(F0-F)/F} = logKb + nlog[1]. The intercept of the best 

fit linear trend provides the Stern-Volmer quenching constant Kb. 
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protein is only influences by complexation with quencher in ground state (static 

process). In our case a hyperchromism is observed after addition of the complex, which 

is in accordance with alteration in the microenvironment around the aromatic acid 

residues, whereas the presence of hypochromism is associated to an induced 

perturbation of -helix of the protein with the quencher [46].   

[Au(C≡C-2-NC5H4)(PTA)] antiproliferative activity. The in vitro effects of 

[Au(C≡C-2-NC5H4)(PTA)] toward human colon (Caco-2/TC7) and breast cancer 

(MCF-7) cell lines were tested using the colorimetric MTT assay. Firstly, we obtained 

the IC50 value after exposing cells to increasing drug amounts for 72 h (Table 2). Caco-

2 cell line typically undergo enterocyte-like differentiation after reaching confluence, 

becoming polarized cell that expresses apical and basolateral surfaces with well-

established tight junctions [30].
 
Consequently, it is possible to test the selectivity of the 

gold complex by testing its effects on differentiated cells (non-carcinogenic) in terms of 

viability. Undifferentiated Caco-2/TC7 cells showed higher sensibility to treatment 

compared with human breast cancer MCF-7 cells, with an IC50 value of 5-fold lower. 

These results suggest that therapeutic effect of [Au(C≡C-2-NC5H4)(PTA)] may be 

selective to colorectal cancer. On the other hand, [Au(C≡C-2-NC5H4)(PTA)] displayed 

a higher IC50 -up to 13-fold- on differentiated Caco-2 cells compared  to the previously 

obtained on  undifferentiated cells. Therefore, our compound might be selective to 

cancer tissue.  

Finally, some of us have previously evaluated the antiproliferative effect of the 

reference drug cisplatin in Caco-2 cell line, obtaining an IC50 value of 45.6 ± 8.08 µM 

[47]. In conclusion, [Au(C≡C-2-NC5H4)(PTA)] shows higher cytotoxicity than 

cisplatin.  
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In addition, further assays revealed that [Au(C≡C-2-NC5H4)(PTA)] antiproliferative 

effects on Caco-2 increased in a dose and time-dependent manner (Figure 2). 

Cell death studies. Previous studies on the alkynyl gold(I) derivative 

[Au(C≡CPh)(PTA)] revealed strong induction of intrinsic apoptosis on undifferentiated 

Caco-2/TC7 cells [20]. In consequence, we firstly assumed related cell death by 

apoptosis and performed flow cytometry analysis of annexin V/propidium iodide-

stained Caco-2/TC7 cells.  

Figure 2. Survival curves of Caco-2 cells treated with increasing concentrations of [Au(C≡C-2-

NC5H4)(PTA)]  (0, 1, 3, 5, 7, 10 and 15 µM) at 24 (squares) or 72 h (circles).  

Table 2. Antiproliferative IC50 values 

of [Au(C≡C-2-NC5H4)(PTA)]. 

Cell line IC50 value 

Differentiated 

Caco-2/TC7 

51.04± 1.28 µM 

Undifferentiated 

Caco-2/TC7 

3.8 ± 1.1 µM 

MCF-7 19.02 ± 0.02 µM 
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After 24 h incubation with [Au(C≡C-2-NC5H4)(PTA)] we only observed a slight 

increase in late apoptotic levels (among 1.7-fold) (Table 3). These analyses also 

revealed a decrease in cell number after treatment with our gold compound (between 

two and three times), confirmed by Trypan blue exclusion test (Supplementary Material, 

Table T1). 

Then we investigated two common apoptotic features: cell cycle arrest [48] (Figure 3.1) 

and caspases 3 and 7 activation [18] (Figure 3.2). No significant differences were 

observed in comparison with mock-treated cells in both cases. Moreover, nuclear 

staining with Hoechst 33342 revealed changes in nuclear morphology after treatment 

with [Au(C≡C-2-NC5H4)(PTA)] (Figure 3.2), showing a clear swelling that is not a 

typical apoptotic feature [18,19]. The absence of apoptotic biomarkers in addition to the 

statements of Pietkiewicz et al [49] ˗it is impossible to distinguish between late 

apoptotic and necroptotic cells by using the classical double staining annexin V-PI˗ 

were evidences of a different type of cell death induction than apoptosis. Thus, we 

investigated necroptosis induction.  

Table 3. Percentages of Caco-2/TC7 cells undergoing cell death analyzed with double stain Annexin 

V and propidium iodide. 

Treatment Total 

events 

Alive 

(%) 

Necrosis 

(%) 

Early apoptosis 

(%) 

Late apoptosis 

(%) 

Mock-treated 2408 75.6 0.9 15.3 8.2 

[Au(C≡C-2-NC5H4)(PTA)] 1456 62.3 0.5 22.9 14.3 
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Figure 3.1 Cell cycle analysis. Percentages of cells undergoing each phase are showed. 

Figure 3.2 Double staining with Hoechst 33342 and CellEvent Caspase-3/7 Green detection reagent after 24 h 

treatment with A) DMSO or B) [Au(C≡C-2-NC5H4)(PTA)], (3.8 µM). Nuclei swelling are also highlighted (white 

arrows). 
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[Au(C≡C-2-NC5H4)(PTA)] does not bind DNA. We evaluated the possible 

interaction of this alkynyl derivative with DNA by monitoring its influence on pIRES2-

EGFP (5308 pb) plasmid DNA by agarose gel electrophoresis in comparison to 

cisplatin. Figure S10 displays that mobility of the plasmid is not affected after 

incubation with increasing amounts of our gold derivative, unlike the variation observed 

with the reference drug. This lack of DNA interaction is shared with auranofin and other 

gold(I) derivatives [20,50]. 

[Au(C≡C-2-NC5H4)(PTA)] triggers necroptosis via ROS generation. The best 

characterized form of necroptosis is the one triggered by the cytokine Tumor Necrosis 

Factor-alpha (TNF-α). In TNF-α-triggered necroptosis, TNF receptor 1 (TNFR1) is 

stimulated by TNF binding and, as a consequence of its activation, recruits different 

proteins including RIP-1 in order to form a transient protein complex. Once in this 

complex, RIP-1 is ubiquitinated, necessary for NF-κB activation and the final 

consecution of necroptosis [51]. Given the importance of these three proteins for 

necroptosis induction, we investigated the effect of their inhibition on [Au(C≡C-2-

NC5H4)(PTA)]-triggered cell death. Co-incubation of Caco-2 cells with our gold 

complex and the RIP-1 inhibitor necrostatin-1 (Nec-1) (50 µM, 1 h pre-incubation; 

Figure 4.A), a TNFR1 analog (2 μM, 1 h pre-incubation; Figure 5A) and the NF-κB 

inhibitor SN50 (1 μM, 1 h pre-incubation; Figure 5B) conducted to an increased 

survival ratio. Moreover, flow cytometry analysis revealed an increase of 8.5-fold in 

RIP-1 expression levels after incubation with [Au(C≡C-2-NC5H4)(PTA)] (Figure 4B), 

which confirms the role of this protein in cell death.  

Further flow cytometry cell death studies revealed that co-incubation of our gold 

complex and Nec-1 resulted in a decrease of cells undergoing late apoptosis in addition 

of an increase in early apoptotic cells (Supplementaty Material Figure S11). This result 

indicates that necroptosis disruption might favor apoptotic cell death.  

Figure 4. Caco-2/TC7 cell death analysis after 24 incubation with A) DMSO (mock-treated

cells) and B) [Au(C≡C-2-NC5H4)(PTA)] (3.8 µM). 
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The balanced character between lipophility and hydrophilicity of our gold complex 

allows its entrance in mitochondria. The luminescent properties of [Au(C≡C-2-

NC5H4)(PTA)] [33] let us to perform co-localization studies using the mitochondrial 

dye Mitotracker® Deep Red. Microscopy fluorescence assay showed a high co-

Figure 5. A) Effect of TNFR1 analog (5 μM, 1 h) against [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). *p<0.05 

respect to mock-treated cells. #p<0.05 respect to treatment with [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). B) 

Effect of SN50 (1 μM, 1 h) against [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). *p<0.05 respect to mock-

treated cells. #p<0.05 respect to treatment with [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). 

Figure 4. A) Effect of Nec-1 (50 μM, 1h) against [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). *p<0.05 respect 

to mock-treated cells. #p<0.05 respect to treatment with [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). B) RIP-1 

expression levels after 24 h treatment with DMSO (panel A) or [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). 

(panel B).  

A B 

A B 
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localization between the gold complex and this organelle via the Van Steensel co-

localization test (Figure 6.1). The accumulation of [Au(C≡C-2-NC5H4)(PTA)] in 

mitochondria disrupts its normal function, inducing a loss of mitochondrial membrane 

potential (Δψm) as can be observed in Figure 6.2 As a result, an imbalance in normal 

ROS generation is produced. Total oxidative stress was investigated using the 

fluorogenic probe CellROX® Deep Red Reagent. The cell-permeant dye is non-

fluorescent while in a reduced state, but exhibits bright fluorescence upon oxidation by 

ROS, so the fluorescence signal correlates with ROS levels. Fluorescence signal was 

significant higher after [Au(C≡C-2-NC5H4)(PTA)] treatment, revealing a great amount 

of oxidative stress induced (Figure 7.1). Since mitochondrial and extramitochondrial 

abnormal ROS generation has been related to necroptotic cell death without caspase 

activation [23] and some authors argue that RIP-1 might directly disrupt normal 

mitochondrial function and therefore contribute to the increase of ROS levels, [52] we 

measured H2O2 levels after [Au(C≡C-2-NC5H4)(PTA)] in presence or absence of Nec-1. 

Pre-incubation with Nec-1 resulted in no changes in H2O2 levels, similar to mock-

treated cells or cells treated with the ROS inhibitor N-acetyl-cysteine (NAC) (Figure 

7.2). Abnormally increased ROS levels are usually involved in apoptosis, high amounts 

of H2O2 have been found able to inhibit caspases and as a result trigger necrotic death 

[53, 54]. Furthermore, MTT assay revealed the protective effect of NAC against 

[Au(C≡C-2-NC5H4)(PTA)] (Figure S12), which finally probed the role of ROS in cell 

death.  
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Figure 6.2 Representative histograms of effects on mitochondrial membrane potential after 24 h 

treatment with DMSO (panel A) or [Au(C≡C-2-NC5H4)(PTA)] (10 µM) (B). 

Figure 6.1 A) Co-localization of [Au(C≡C-2-NC5H4)(PTA)] 3.8 µM and mitochondria after 24 

h incubation. B) Co-localization graph of [Au(C≡C-2-NC5H4)(PTA)] and mitochondria as 

determined via Van Steensel co-localization test of the images show in A.  
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[Au(C≡C-2-NC5H4)(PTA)] shows how small changes in structure lead to different 

properties and behavior against cancerous cells. Thus, this complex links BSA much 

stronger than the related [Au(C≡C-C6H5)(PTA)] (Kb = 2.46·10
8
 vs 7.2·10

4 
M

-1
) [20] and

induces necroptotic cell death in CRC cells with an increase in ROS production and a 

minimal inhibition of TrxR and without effect on glutathione reductase activity 

(Supplementary Material, Table T2 and T3). However, the counterpart [Au(C≡C-

C6H5)(PTA)] triggers mitochondrial apoptotic by inhibiting TrxR and consequently 

increasing ROS levels. The main difference between both derivatives resides on the 

heteroatom N in the alkynyl unit. This pyridyl unit could favor additional interactions 

between neighboring molecules, as has been observed previously in the analogous 4-

pyridylethynyl derivative with PTA [55]. The reported complex, which unlike our 

Figure 7.1 ROS generation after incubation with A) DMSO or B) [Au(C≡C-2-NC5H4)(PTA)] 

(3.8 μM)  for 80 min. 

Figure 7.2 H2O2 generation after incubation with [Au(C≡C-2-NC5H4)(PTA)] (3.8 µM) for 80 

min with or without pre-incubation with Nec-1 (50 µM, 1h) or NAC (3 mM, 1h). *p<0.05 

respect to treatment with [Au(C≡C-2-NC5H4)(PTA)] (3.8 μM). 
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derivative is very soluble in water, shows the formation of gel structure in water 

solution, giving rise to long fibers, thanks to π- π interactions between the pyridyl units. 

The occurrence of similar π- π interactions in our complex between the PTA molecule 

and the pyridyl unit is less probable, since any trace data could be retrieved from the 

corresponding 2D-NOESY spectrum, (Figure S9). Nevertheless, the position of the N 

atom in the pyridyl ring could support additional N-metal interactions between two 

molecules besides metal-triple bond contacts, as occurred in [Au(C≡C-2-NC5H4)(PPh3)] 

[56]. 

Effect of [Au(C≡C-2-NC5H4)(PTA)] on Caco-2 spheroids (3D model). We tested 

increasing concentrations of [Au(C≡C-2-NC5H4)(PTA)] on Caco-2 spheroids. The 

morphology of spheroids may vary attending to different factors which include the 

inherent nature of cells or cell culture conditions. According to Nath et al [28], Caco-2 

spheroids showed a “grape-like” morphology. 

We studied cell viability by means of a double staining Hoechst 33342(blue)-PI(red) 

and fluorescence microscopy. The increase in red fluorescence in response to gold 

complex concentrations (Figure 8) correlated with a gradual decrease in survival ratio, 

since PI only stains dead cells. In addition, nuclei swelling indicated with white arrows 

is consistent with cells undergoing necroptotic cell death, as mentioned in Figure 3.2.   

 Viability studies revealed that our gold compound induced cell death in a tumor-like 

environment (Figure 8), which suggests that its anticancer properties may remain 

unchanged into a living organism. It is remarkable that, although in 3D model the 

decrease in viability observed was lower than the found in 2D for the same gold 

complex concentrations, cell properties differ greatly between each experiment as has 

been widely discussed previously. Consequently, these results support our initial 

hypothesis that this gold(I) complex has a considerable antitumor potential and it is not 

ruled out its chemotherapeutic use in the future.  
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Figure 8. Fluorescence microscopy images of Caco-2 spheroids in response to 24 h incubation [Au(C≡C-2-NC5H4)(PTA)] 

A) 0 µM B) 3 µM C) 4µM and D) 5 µM. Nuclei swelling are also highlighted (white arrows). 
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CONCLUSSIONS 

The antitumor potential of a previously characterized alkynyl gold(I) complex 

([Au(C≡C-2-NC5H4)(PTA)]) has been evaluated on colorectal adenocarcinoma Caco-2 

cell line. A strong interaction between a blood plasma protein (BSA) and the gold 

complex has been calculated, which makes the complex suitable for transportation by 

the protein through blood and release to the target and suitable for chemotherapy 

treatments. Its balanced character between lipophilicity and hydrophilicity allows it 

going across cell membranes. Therefore, ([Au(C≡C-2-NC5H4)(PTA)]) goes through 

mitochondrial membrane and alters its function, inducing an increase in ROS levels. 

The abnormal production of ROS triggers TNF-induced necroptosis dependent of RIP-1 

activation and NF-κB signaling. Furthermore, we have proved that this compound 

maintains its therapeutic properties in a tumor-like environment using 3D model 

spheroids. In addition, we have demonstrated how small changes in the structure, 

namely an additional N atom in the alkyne skeleton, lead to different properties and 

behavior against cancerous cells. The findings of the present work provide a new insight 

into the use of gold as a substitute for platinum in chemotherapy, since [Au(C≡C-

C5H4)(PTA)] has proved its efficacy against tumors at lower concentrations than 

cisplatin. Moreover, since its mechanism of action is via necroptosis, our complex could 

be used in the treatment of tumors resistant to apoptosis. To our knowledge, this is the 

first report of an alkynyl gold(I) complex able to induce necroptosis in cancer cells.  

ABBREVIATIONS 

TrxR: thioredoxin reductase, ROS: Reactive oxygen species, CRC: colorectal cancer, 

RIP-1: receptor-interacting protein 1, MLKL: mixed lineage kinase domain-like, TNF: 

tumor necrosis factor, DMEM: Dulbecco’s modified Eagles medium, FBS: fetal bovine 

serum, MTT: 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium bromide, DMSO: 

dimethyl sulfoxide, PI: propidium iodide, DCF: dichlorofluorescein, DilC1: 1,1’,3,3,3’-
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hexamethylindodicarbo-cyanine iodide, DTNB: 5,5-dithio-bis-(2-nitrobenzoic acid), 

PS: phosphatidylserine, Nec-1: necrostatin-1 

NAC: N-acetyl-cysteine, Δψm: mitochondrial membrane potential 

ASSOCIATED CONTENT 

Supporting Information. Supplementary data to this article can be found online 

Corresponding Author 

Elena Cerrada: ecerrada@unizar.es and Mª Jesús Rodrigez Yoldi: mjrodyol@unizar.es 

Author Contributions 

IM, EC and MJRY were responsible for the overall direction of the research. EC 

performed the synthesis of the gold compound and studied BSA interaction and solution 

chemistry. IM performed cell culture experiments supervised by MJRY. MVM and IM 

performed fluorescence microscopy experiments. IM, JQ and CSdD analyzed the data. 

The manuscript was written through contributions of all authors. All authors have given 

approval to the final version of the manuscript. 

ACKNOWLEDGMENT 

We thank Sonia Gascón for her technical assistance. We thank The Ministerio de 

Economia y Competitividad (CTQ2016-75816-C2-1-P and SAF2016-75441-R) and 

DGA (A-32 and E104) for financial support. MVM acknowledges the Ministerio de 

Educación, Cultura y Deportes of the Spanish Government for financial support. 

REFERENCES 

1. Muhammad, N., and Guo, Z. Metal-based anticancer chemotherapeutic agents, Curr.

Opin. Chem. Biol. 19 (2014) 144-153. 

2. Komeda, S., and Casini, A. Next-generation anticancer metallodrugs, Curr. Top.

Med. Chem. 12 (2012) 219-235. 

3. Karasawa, T., and Steyger, P. S. An integrated view of cisplatin-induced

nephrotoxicity and ototoxicity, Toxicol. Lett. 237 (2015) 219-227. 

4. Garcia-Moreno, E., Tomas, A., Atrian-Blasco, E., Gascon, S., Romanos, E.,

Rodriguez-Yoldi, M. J., Cerrada, E., and Laguna, M. In vitro and in vivo 

evaluation of organometallic gold(I) derivatives as anticancer agents, Dalton 

Trans. 45, (2016) 2462-2475. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

26 

5. Lammer, A. D., Cook, M. E., and Sessler, J. L. Synthesis and anti-cancer activities of

a water soluble gold(III) porphyrin, J. Porphyr. Phthalocyanines 19 (2015) 398-

403. 

6. Yang, M., Pickard, A. J., Qiao, X., Gueble, M. J., Day, C. S., Kucera, G. L., and

Bierbach, U. Synthesis, reactivity, and biological activity of Gold (I) complexes 

modified with thiourea-functionalized tyrosine kinase inhibitors, Inorg. Chem. 

54 (2015) 3316-3324. 

7. Garcia-Moreno, E., Gascon, S., A Garcia de Jalon, J., Romanos, E., Jesus Rodriguez-

Yoldi, M., Cerrada, E., and Laguna, M. In Vivo Anticancer Activity, Toxicology 

and Histopathological Studies of the Thiolate Gold (I) Complex [Au 

(Spyrimidine)(PTA-CH2Ph)] Br, Anticancer Agents Med. Chem. 15 (2015) 

773-782. 

8. Zou, T., Lum, C. T., Lok, C. N., To, W. P., Low, K. H., and Che, C. M. A binuclear

gold(I) complex with mixed bridging diphosphine and bis(N-heterocyclic 

carbene) ligands shows favorable thiol reactivity and inhibits tumor growth and 

angiogenesis in vivo, Angew Chem. Int. Ed. Engl. 53 (2014) 5810-5814. 

9. Bazzicalupi, C., Ferraroni, M., Papi, F., Massai, L., Bertrand, B., Messori, L.,

Gratteri, P., Casini, A. Determinants for tight and selective binding of a 

medicinal dicarbene gold(I) complex to a telomeric DNA g-quadruplex: a joint 

ESI MS and XRD investigation. Angew. Chem. Int. Ed. Engl. 55 (2016) 4256-9 

10. Bertrand, B., Stefan, L., Pirrotta, M., Monchaud, D., Bodio, E., Richard, P., Le

Gendre, P., Warmerdam, E., de Jager, M.H., Groothuis, G.M., Picquet, M., 

Casini, A. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer 

agents: synthesis and biological properties. Inorg. Chem. 53 (2014) 2296-303 

11. Mendes, F., Groessl, M., Nazarov, A.A., Tsybin, Y.O., Sava, G., Santos, I., Dyson,

P.J., Casini, A. Metal-based inhibition of poly(ADP-ribose) polymerase—the 

guardian angel of DNA. J. Med. Chem. 54 (2011) 2196-206 

12. Ortego, L., Cardoso, F., Martins, S., Fillat, M. F., Laguna, A., Meireles, M.,

Villacampa, M. D., and Gimeno, M. C. Strong inhibition of thioredoxin 

reductase by highly cytotoxic gold (I) complexes. DNA binding studies, J. Inorg. 

Biochem. 130 (2014) 32-37. 

13. Mahmood, D. F., Abderrazak, A., El Hadri, K., Simmet, T., and Rouis, M. The

thioredoxin system as a therapeutic target in human health and disease, 

Antioxid. Redox Signal 19 (2013) 1266-1303. 

14. Marzano, C., Gandin, V., Folda, A., Scutari, G., Bindoli, A., and Rigobello, M. P.

Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-

resistant human ovarian cancer cells, Free Radic. Biol. Med. 42 (2007) 872-881. 

15. Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., and Rodriguez

Yoldi, M. J. Colorectal carcinoma: a general overview and future perspectives in 

colorectal cancer, Int. J. Mol. Sci. 18 (2017) 197. 

16. de Gramont, A., Figer, A., Seymour, M., Homerin, M., Hmissi, A., Cassidy, J.,

Boni, C., Cortes-Funes, H., Cervantes, A., Freyer, G., Papamichael, D., Le Bail, 

N., Louvet, C., Hendler, D., de Braud, F., Wilson, C., Morvan, F., and Bonetti, 

A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment 

in advanced colorectal cancer, J. Clin. Oncol. 18 (2000) 2938-2947. 

17. Rothenberg, M. L. Efficacy of oxaliplatin in the treatment of colorectal cancer,

Oncology (Williston Park) 14 (2000) 9-14. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

27 

18. Chaabane, W., User, S. D., El-Gazzah, M., Jaksik, R., Sajjadi, E., Rzeszowska-

Wolny, J., and Łos, M. J. Autophagy, apoptosis, mitoptosis and necrosis: 

interdependence between those pathways and effects on cancer, Arch. Immunol. 

Ther. Exp. (Warsz) 61 (2013) 43-58. 

19. Green, D. R., and Llambi, F. Cell Death Signaling, Cold Spring Harb. Perspect.

Biol. 7 (2015) a006080. 

20. Sanchez-de-Diego, C., Marmol, I., Perez, R., Gascon, S., Rodriguez-Yoldi, M. J.,

and Cerrada, E. The anticancer effect related to disturbances in redox balance on 

Caco-2 cells caused by an alkynyl gold(I) complex, J. Inorg. Biochem. 166 

(2017) 108-121. 

21. Fulda, S. Tumor resistance to apoptosis, Int.  J. Cancer. 124 (2009) 511-5

22. He, S., Huang, S., and Shen, Z. Biomarkers for the detection of necroptosis, Cell.

Mol. Life Sci. 73 (2016) 2177-2181. 

23. Chen, D., Yu, J., and Zhang, L. Necroptosis: an alternative cell death program

defending against cancer, Biochim. Biophys. Acta 1865 (2016) 228-236. 

24. Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., and Solomon, F. D. 3D cell

culture systems: advantages and applications, J. Cell. Physiol. 230 (2015) 16-26. 

25. Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., and Krek, W. 3D cell

culture systems modeling tumor growth determinants in cancer target discovery, 

Adv. Drug Deliv. Rev. 69-70 (2014) 29-41. 

26. Edmondson, R., Broglie, J. J., Adcock, A. F., and Yang, L. Three-Dimensional Cell

Culture Systems and Their Applications in Drug Discovery and Cell-Based 

Biosensors, Assay Drug Dev. Technol. 12 (2014) 207-218. 

27. Xu, X., Farach-Carson, M. C., and Jia, X. Three-Dimensional In Vitro Tumor

Models for Cancer Research and Drug Evaluation, Biotechnol. Adv. 32 (2014) 

1256-1268. 

28. Nath, S., and Devi, G. R. Three-dimensional culture systems in cancer research:

Focus on tumor spheroid model, Pharmacol. Ther. 163 (2016) 94-108. 

29. Theodoraki, M. A., Rezende, C. O., Jr., Chantarasriwong, O., Corben, A. D.,

Theodorakis, E. A., and Alpaugh, M. L. Spontaneously-forming spheroids as an 

in vitro cancer cell model for anticancer drug screening, Oncotarget 6 (2015) 

21255-21267. 

30. Ham, S. L., Joshi, R., Luker, G. D., and Tavana, H. Engineered Breast Cancer Cell

Spheroids Reproduce Biologic Properties of Solid Tumors, Adv. Healthc. Mater 

5 (2016) 2788-2798. 

31. Lee, J. B., Son, S. H., Park, M. C., Kim, T. H., Kim, M. G., Yoo, S. D., and Kim, S.

A novel in vitro permeability assay using three-dimensional cell culture system, 

J. Biotechnol. 205 (2015) 93-100. 

32. Zeller, P., Bricks, T., Vidal, G., Jacques, S., Anton, P. M., and Leclerc, E.

Multiparametric temporal analysis of the Caco-2/TC7 demonstrated functional 

and differentiated monolayers as early as 14 days of culture, Eur. J. Pharm. Sci. 

72 (2015) 1-11. 

33. Vergara, E., Cerrada, E., Casini, A., Zava, O., Laguna, M., and Dyson, P. J.

Antiproliferative activity of gold (I) alkyne complexes containing water-soluble 

phosphane ligands, Organometallics 29 (2010) 2596-2603. 

34. van Meerloo, J., Kaspers, G. J., and Cloos, J. Cell sensitivity assays: the MTT assay,

Methods Mol. Biol.  731 (2011) 237-245. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

28 

35. Ruiz-Leal, M., and George, S. An in vitro procedure for evaluation of early stage

oxidative stress in an established fish cell line applied to investigation of PHAH 

and pesticide toxicity, Mar Environ. Res. 58 (2004) 631-635. 

36. Ayuso, J. M., Basheer, H. A., Monge, R., Sanchez-Alvarez, P., Doblare, M.,

Shnyder, S. D., Vinader, V., Afarinkia, K., Fernandez, L. J., and Ochoa, I. Study 

of the Chemotactic Response of Multicellular Spheroids in a Microfluidic 

Device, PLoS One 10 (2015) e0139515. 

37. Lombardo, F., Obach, R. S., Shalaeva, M. Y., and Gao, F. Prediction of volume of

distribution values in humans for neutral and basic drugs using physicochemical 

measurements and plasma protein binding data, J. Med. Chem. 45 (2002) 2867-

2876. 

38. Fonteh, P., Elkhadir, A., Omondi, B., Guzei, I., Darkwa, J., and Meyer, D.

Impedance technology reveals correlations between cytotoxicity and 

lipophilicity of mono and bimetallic phosphine complexes, Biometals  28 (2015) 

653-667. 

39. Liu, J. J., Galettis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C.,

Baguley, B. C., Bowen, R. J., Berners-Price, S. J., and McKeage, M. J. In vitro 

antitumour and hepatotoxicity profiles of Au(I) and Ag(I) bidentate pyridyl 

phosphine complexes and relationships to cellular uptake, J. Inorg. Biochem. 

102 (2008) 303-310. 

40. Berners-Price, S. J., and Filipovska, A. The design of gold-based, mitochondria-

targeted chemotherapeutics, Australian J Chem. 61 (2008) 661-668. 

41. Finlay, G. J., and Baguley, B. C. Effects of protein binding on the in vitro activity of

antitumour acridine derivatives and related anticancer drugs, Cancer Chemother. 

Pharmacol. 45 (2000) 417-422. 

42. He, X. M., and Carter, D. C. Atomic structure and chemistry of human serum

albumin, Nature 358 (1992) 209-215. 

43. Yamasaki, K., Maruyama, T., Kragh-Hansen, U., and Otagiri, M. Characterization

of site I on human serum albumin: concept about the structure of a drug binding 

site, Biochim. Biophys. Acta 1295 (1996) 147-157. 

44. Eftink, M. R., and Ghiron, C. A. Fluorescence quenching studies with proteins,

Anal. Biochem. 114 (1981) 199-227. 

45. Ross, P. D., and Subramanian, S. Thermodynamics of protein association reactions:

forces contributing to stability, Biochemistry 20 (1981) 3096-3102. 

46. Veeralakshmi, S., Nehru, S., Arunachalam, S., Kumar, P., Govindaraju, M. Study of

single and double chain surfactant-cobalt(III) complexes and their 

hydrophobicity, micelle formation, interaction with serum albumins and 

antibacterial activities. Inorg. Chem. Front. 1 (2014) 393-404  

47. Atrián-Blasco, E., Gascón, S., Rodríguez-Yoldi, M.J., Laguna, M., Cerrada, E.

Synthesis of gold(I) derivatives bearing alkylated 1,3,5,-triaza-7-

phosphaadamantane as selective anticancer metallodrugs. Eur. J. Inorg. Chem. 

17 (2016)  2891-2803 

48. Clarke, P. R., and Allan, L. A. Cell-cycle control in the face of damage--a matter of

life or death, Trends Cell. Biol. 19 (2009) 89-98. 

49. Pietkiewicz, S., Schmidt, J. H., and Lavrik, I. N. Quantification of apoptosis and

necroptosis at the single cell level by a combination of Imaging Flow Cytometry 

ACCEPTED MANUSCRIPT



29 

with classical Annexin V/propidium iodide staining, J. Immunol. Methods 423 

(2015) 99-103. 

50. Mirabelli, C. K., Sung, C. M., Zimmerman, J. P., Hill, D. T., Mong, S., and Crooke,

S. T. Interactions of gold coordination complexes with DNA, Biochem. 

Pharmacol. 35 (1986) 1427-1433. 

51. Liu, X., Shi, F., Li, Y., Yu, X., Peng, S., Li, W., Luo, X., and Cao, Y. Post-

translational modifications as key regulators of TNF-induced necroptosis, Cell. 

Death Dis. 7 (2016) e2293. 

52. Ye, Y. C., Wang, H. J., Yu, L., Tashiro, S., Onodera, S., and Ikejima, T. RIP1-

mediated mitochondrial dysfunction and ROS production contributed to tumor 

necrosis factor alpha-induced L929 cell necroptosis and autophagy, Int. 

Immunopharmacol. 14 (2012) 674-682. 

53. Borutaite, V., and Brown, G. C. Caspases are reversibly inactivated by hydrogen

peroxide, FEBS Letters 500 (2001) 114-118. 

54. Saito, Y., Nishio, K., Ogawa, Y., Kimata, J., Kinumi, T., Yoshida, Y., Noguchi, N.,

and Niki, E. Turning point in apoptosis/necrosis induced by hydrogen peroxide, 

Free Radic. Res. 40 (2006) 619-630. 

55. Gavara, R., Llorca, J., Lima, J. C., and Rodriguez, L. A luminescent hydrogel based

on a new Au(I) complex, Chem. Commun. (Camb) 49 (2013) 72-74. 

56. Blanco, M. C., Cámara, J., Gimeno, M. C., Jones, P. G., Laguna, A., López-de-

Luzuriaga, J. M., Olmos, M. E., and Villacampa, M. D. Luminescent homo-and 

heteropolynuclear gold complexes stabilized by a unique acetylide fragment, 

Organometallics 31 (2011) 2597-2605. 

ACCEPTED MANUSCRIPT



30 

Graphical abstract

ACCEPTED MANUSCRIPT



31 

HIGHLIGHTS 

- Gold(I) complex [Au(C≡C-2-NC5H4)(PTA)] induces necroptosis on Caco-2 cells.  

- The complex enters the mitochondria, alters its function and produces ROS 

increase. 

- Necroptosis depends on ROS increase, TNF-, RIP-1 activation and NF-κB 

signaling.  

- [Au(C≡C-2-NC5H4)(PTA)] induces cell death on 2D and 3D colorectal carcinoma 

model  

- This is the first evidence of gold compound able to overcome apoptosis 

resistance. 

ACCEPTED MANUSCRIPT


