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Continuing a program of examining the behavior of the vacuum expectation value of the stress tensor in a
background which varies only in a single direction, we here study the electromagnetic stress tensor in a
medium with permittivity depending on a single spatial coordinate, specifically, a planar dielectric half-
space facing a vacuum region. There are divergences occurring that are regulated by temporal and spatial
point splitting, which have a universal character for both transverse electric and transverse magnetic modes.
The nature of the divergences depends on the model of dispersion adopted. And there are singularities
occurring at the edge between the dielectric and vacuum regions, which also have a universal character,
depending on the structure of the discontinuities in the material properties there. Remarks are offered
concerning renormalization of such models, and the significance of the stress tensor. The ambiguity in
separating “bulk” and “scattering” parts of the stress tensor is discussed.
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I. INTRODUCTION

Most studies of the Casimir effect deal with quantum
fluctuation forces between rigid bodies separated by vac-
uum. Such forces are finite and can be calculated exactly, in
principle. (For reviews, see, for example, [1–3].) Casimir’s
original configuration was that of perfectly conducting plates
in otherwise empty space [4]. This was generalized by
Lifshitz to dielectric slabs, but again they were separated by
vacuum [5]. The addition of Dzyaloshinskii and Pitaevskii
was essential to the replacement of the intervening vacuum
by a homogeneous medium [6]. The resulting theory has
been remarkably successful, and was confirmed by the
verification of the attractive force of a helium film by a

substrate [7,8], well before the modern demonstration of the
vacuum Casimir force [9]. The theory has been applied to a
wide variety of fields [10–15].
The local Casimir energy density and other components

of the stress tensor have also been intensively investigated.
These exhibit well-known behaviors near the surfaces of
the bodies. (For a review of some of the literature on this,
see Ref. [16].) This is relevant, not only for a deeper
understanding of the Casimir force, but fundamentally for
the coupling to gravity; in simple contexts, the local
Casimir stress tensor has been shown to be consistent with
the equivalence principle, including the divergent contri-
butions [17]. Consistent results for finite Casimir stress
tensor components were earlier obtained in Refs. [18,19].
At least formally, separating rigid bodies by a uniform

dielectric leads to no difficulties in computing vacuum
forces, and even dispersion can be incorporated, although
including dissipation may present challenges. However, the
situation is much less clear when the bodies are immersed in
an inhomogeneous medium. There have been various
attempts to describe Casimir forces with nonuniform dielec-
trics [20–22]. The most ambitious treatment of the inho-
mogeneous electromagnetic Casimir problem seems to be
that of Griniasty and Leonhardt [23,24], who examine the
local stress tensor and propose a specific renormalization

*prachi.parashar@ntnu.no
†kmilton@ou.edu
‡liyang@ou.edu
§Hannah.J.Day-1@ou.edu∥guoxinmike@ou.edu
¶fulling@math.tamu.edu
**cavero@unizar.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 125009 (2018)

2470-0010=2018=97(12)=125009(19) 125009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.125009&domain=pdf&date_stamp=2018-06-12
https://doi.org/10.1103/PhysRevD.97.125009
https://doi.org/10.1103/PhysRevD.97.125009
https://doi.org/10.1103/PhysRevD.97.125009
https://doi.org/10.1103/PhysRevD.97.125009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


scheme to remove the divergences that occur in such
circumstances. For the case of a one-dimensional slab with
a dielectric response that varies smoothly except for a
discontinuity in the slope as one enters the material, they
find a universal singularity behavior in the normal-normal
component of the vacuum expectation value of the stress
tensor at the boundary between vacuum and the dielectric.
For some years we have been investigating similar

issues, but in the scalar field context [25–28]. In particular,
using a WKB analysis, we identified the universal Weyl
divergences in the stress tensor components for an arbitrary
semi-infinite slab described by a potential vðzÞ, where z is
the distance into the slab. For particular cases (a linear or a
quadratic wall) we also examined how the remainder of the
stress tensor, after the divergent and growing terms are
removed, behaves near the edge. In this connection the
work of Mazzitelli et al. should be mentioned [29,30]. (For
more references, see the appendix of Ref. [27], and also
Ref. [31], which should have been included there.) Very
recently, we have made further progress in understanding
how the divergences are to be renormalized [32].
In the present paper, inspired by the remarkable results of

Ref. [24], we generalize our considerations [25–28] of the
local stress tensor in one-dimensional geometries to the
electromagnetic case, in which the role of the potential is
played by the permittivity. More precisely, the deviation of
the permittivity from its vacuum value will be referred to
as the potential in this paper. In the next section, we review
the difficulty of formulating the stress tensor in inhomo-
geneousmedia, and derive the nonconservation law satisfied
classically by the spatial stress tensor. In Sec. III we show
how the Green’s dyadic for this problem breaks up into
transverse electric (TE) and transverse magnetic (TM) parts.
We also write down the construction of the various compo-
nents of the stress tensor in terms of the TE and TMGreen’s
functions. This also includes the correct dispersive factor for
the energy density [33].
The generic setup of the problem is given in Sec. IV,

including the breakup of the Green’s functions into “scatter-
ing” and “bulk” parts, referring to the contributions from the
outgoing wave and incoming wave contributions. This
breakup, of course, is not unique. An example, the reflec-
tionless potential considered in Ref. [24], is treated some-
what more generally in Sec. VA. There we show, using the
uniform (Debye) asymptotic expansions for the modified
Bessel functions, that there are two types of singularities in
the normal-normal component of the stress tensor occurring
at the edge between thevacuumanddielectric region: a cubic
singularity if there is a discontinuity in the permittivity, and a
quadratic one (coinciding with that found in Ref. [24]) if
only the derivative of the permittivity is discontinuous. We
also show that the bulk term (the term independent of the
reflection coefficient) contains the expected leading Weyl
divergence, as well as further divergences involving the
potential, which are regulated by point splitting.

A second example for which the TE and TM Green’s
functions may be exactly found is given in Sec. V B. The
same edge behavior is found as in Sec. VA for the
continuous case. This behavior is evidently universal, as
claimed by Ref. [24], and we demonstrate that explicitly in
Sec. VI A, using a general perturbative expansion of the
Green’s functions. All of the above neglects dispersion. In
Sec. VI B we discuss the more realistic plasma model, which
results in the elimination of the edge singularity in the
normal-normal stress, but yields the divergence structure for
the bulk contribution coinciding with that for the scalar case
considered in Ref. [28]. For the plasma model of dispersion,
the TE Green’s function is identical with the scalar one.
Other components of the stress tensor are considered in

Sec. VII. Again, for the plasma model, the divergences
arising from the bulk term in the Green’s function coincide
with those found for the scalar situation for both TE and
TM modes, and the edge singularity for the TE mode for
the energy density coincides with that found for the
canonical scalar energy density in Ref. [28], while the
TM mode has a different numerical coefficient.
The breakup into bulk and scattering parts is not unique,

because we can always add an arbitrary admixture of the
exponentially suppressed fundamental solution to the
exponentially growing one. We attempt to explore this
further in Sec. VIII, for the TE mode, which can be exactly
solved for a potential that depends on the z coordinate
linearly. Numerically, we show that the scattering part of
the energy density and the normal-normal component of
the stress tensor rapidly go to zero as the dielectric is
penetrated, the former exhibiting the expected edge singu-
larity. If an admixture of the first solution is added to
the second, the edge singularities do not change, but the
behavior inside the dielectric is altered. However, the mixed
solution still tends to zero as one goes deeply within the
material. Only if the scattering part of theGreen’s function is
completely suppressed (a set of measure zero in parameter
space) does the qualitative (and quantitative, for the diver-
gences and edge singularities) behavior change.
We finally consider a situation with mirror symmetry

in Sec. IX. Here we consider two reflected potentials
meeting at z ¼ 0 so there is no vacuum region. In this
case, not surprisingly, the edge singularity is doubled.
Concluding remarks are offered in Sec. X. In Appendix A
we explain the point-split regulation we use in this
paper, while in Appendix B we develop the perturbation
theory for a potential which is both continuous and has a
continuous first derivative, but where the second derivative
is discontinuous.
In this paper we use Heaviside-Lorentz electromagnetic

units, and ℏ ¼ c ¼ 1.

II. FORCE ON DIELECTRIC

From the Maxwell-Heaviside equations we can derive
the statement of electromagnetic momentum conservation.
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We follow Sec. 7.1 of Ref. [34]. Equation (7.10) there
says that

fþ ∂
∂tG ¼ −Di∇Ei þ ∇ · ðDEÞ − Bi∇Hi þ ∇ · ðBHÞ;

ð2:1Þ

where

f ¼ ρEþ j ×B ð2:2Þ

is the force density on the charged particles, and the field
momentum is

G ¼ D ×B: ð2:3Þ

Here, a summation convention is used for repeated indices,
and ρ and j are the free charge and current densities.
To what extent is the right side of Eq. (2.1) the negative
of a total divergence, −∇ · T, which would imply a local
conservation law of momentum? As usual it is convenient
to do a Fourier (frequency) transform of the fields (we will
here suppress the spatial coordinates), assuming a linear
medium. For the electric fields

EðtÞ ¼
Z

dω
2π

e−iωtEðωÞ;

DðtÞ ¼
Z

dω
2π

e−iωtεðωÞ ·EðωÞ; ð2:4Þ

where we have introduced a frequency-dependent permit-
tivity tensor, εðωÞ, which we allow to be spatially varying.
Similarly for the magnetic fields,

HðtÞ ¼
Z

dω
2π

e−iωtHðωÞ;

BðtÞ ¼
Z

dω
2π

e−iωtμðωÞ ·HðωÞ; ð2:5Þ

where μðωÞ is the frequency-dependent permeability. We
now take the average over a time T large compared to atomic
timescales but short compared to macroscopic times, so the
dyadic product can be written, for example, as

DðtÞEðtÞ ¼ 1

T

Z
dω
2π

½εðωÞ ·EðωÞ&EðωÞ': ð2:6Þ

Then, in the absence of dissipation, we use the Hermiticity
property arising from the reality of the constitutive relations
in spacetime, εijðωÞ ¼ εjið−ωÞ ¼ εjiðωÞ'.1 If the permit-
tivity and permeability were independent of position, there
would be an averaged macroscopic stress tensor,

T ¼ 1

T

Z
dω
2π

!
1
2
½DðωÞ' ·EðωÞ þBðωÞ' ·HðωÞ&

− DðωÞ'EðωÞ −BðωÞ'HðωÞ
"
: ð2:7Þ

However, if the electrical properties depend on position, this
is not the case, but, rather, the right side of Eq. (2.1) would be

− ∇ · Tþ 1

2T

Z
dω
2π

½EiðωÞ'ð∇εijðωÞÞEjðωÞ

þHiðωÞ'ð∇μijðωÞÞHjðωÞ&: ð2:8Þ

For a recent review concerning electromagnetic stress
tensors see Ref. [35].
For example, consider a dielectric body (μ ¼ 1)

immersed in a static classically imposed electric field.
Because there is no time dependence and no free charge,
we have

∇ · T ¼ 1

2
trEEð∇Þε; ð2:9Þ

where the trace is over the tensor indices, and the notation
ð∇Þ is a reminder that the free vector index is on the
gradient operator. Suppose the body, which need not be
homogeneous, is immersed in a homogeneous medium of
permittivity ϵ. The force on the body is the momentum flux
into the body,

F ¼ −
I

S
dS · T; ð2:10Þ

since the local momentum conservation law holds there,
where S is a surface that entirely surrounds the body. By the
divergence theorem

F ¼ −
Z

V
ðdrÞ∇ · T ¼ −

1

2

Z

V
ðdrÞtrEEð∇Þε; ð2:11Þ

where the spatial integral is over the interior of the body
(because the permittivity is constant outside the body). This
is a generalization of the familiar formula for the force on a
dielectric, Eq. (11.44) of Ref. [34], to which it reduces for
the isotropic case.
We can immediately generalize this to the Casimir force

by replacing in Eq. (2.8)

hEðωÞEðω0Þ'i ¼ 2πδðω − ω0Þ 1
i
ΓðωÞ; ð2:12Þ

in terms of the Green’s dyadic Γ, so that the dispersion
force on the dielectric body is

FCas ¼ −
1

2i

Z
ðdrÞ

Z
dω
2π

trΓðr; r;ωÞð∇Þεðr;ωÞ: ð2:13Þ
1That is, ε† ¼ ε. This cannot be true if dissipation is present. In

that case, if we suppose ε is symmetric, ℜε and ℑε are then both
diagonalizable, but in different bases.
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Here we have identified 2πδð0Þ with the averaging time T.
In particular, if the body has a homogeneous dielectric
constant ε ≠ ϵ, then

∇ε ¼ −ŝðε − ϵÞδðs − s0ðr⊥ÞÞ; ð2:14Þ

where the surface of the body is given by s ¼ s0ðr⊥Þ, in
terms of a coordinate s (outwardly) normal to the surface.
The other coordinates are denoted by r⊥. (For the case of a
planar body in the x-y plane, s ¼ z.) Thus the Casimir force
on the body is given by an integral over the surface of the
body,

FCas ¼
1

2i

I

S
dS

Z
dω
2π

trðε − ϵÞðr;ωÞΓðr; r;ωÞ: ð2:15Þ

Again, this is an obvious generalization of known formulas.2

The general form for the nonconservation of the vacuum
expectation value of the electromagnetic stress tensor in a
medium is

∇ · hTðrÞi ¼ 1

2i

Z
dω
2π

trΓðr; r;ωÞð∇Þεðr;ωÞ; or

∂jhTjiiðrÞ ¼
1

2i

Z
dω
2π

Γjkðr; r;ωÞ∂iεkjðr;ωÞ: ð2:16Þ

This is, of course, quite analogous to the nonconservation
equation satisfied by the stress tensor for a scalar field in a
background potential [28].

III. GREEN’S FUNCTIONS

In this paper we will consider planar situations in which
the permittivity εðzÞ and the permeability μðzÞ depend only
on a single coordinate z. We will also allow ε and μ to
depend on frequency. For simplicity, we will henceforth
assume that ε and μ are isotropic. It is also convenient to
make a Euclidean transformation ω → iζ. The general
Green’s dyadic obeys an equation which follows from
the Maxwell-Heaviside equations,

!
−

1

ζ2
∇ ×

1

μ
∇ × −ε1

"
· Γ ¼ 1; ð3:1Þ

which breaks into two modes, TE and TM modes, denoted
by two scalar Green’s functions labeled by E and H,
respectively. These satisfy the differential equations

!
−

∂
∂z

1

μ
∂
∂zþ

k2

μ
þ ζ2ε

"
gEðz; z0Þ ¼ δðz − z0Þ; ð3:2aÞ

!
−

∂
∂z

1

ε
∂
∂zþ

k2

ε
þ ζ2μ

"
gHðz; z0Þ ¼ δðz − z0Þ: ð3:2bÞ

The spatial Fourier components of Γ, defined by

Γðr; r0Þ ¼
Z ðdk⊥Þ

ð2πÞ2
eik⊥·ðr−r0Þ⊥γðz; z0Þ; ð3:3Þ

are given in terms of these two scalar Green’s functions, in
the coordinate system where k⊥ has only a component in
the x direction (we drop the z, z0 dependence of gE and gH):

γðz;z0Þ

¼

0

BB@

1

ε
∂z

1

ε0
∂z0gH−1

ε
δðz−z0Þ 0

ik
εε0

∂zgH

0 −ζ2gE 0

−
ik
εε0

∂z0gH 0
k2

εε0
gH−

1

ε
δðz−z0Þ

1

CCA:

ð3:4Þ

Here ε ¼ εðzÞ, ε0 ¼ εðz0Þ. These are just as given in
Refs. [1,36].
The Fourier-transformed electromagnetic stress tensor

may also be given in simple form in terms of these two
scalar Green’s functions. For example, the zz component of
the reduced stress tensor is simply

tzzðzÞ ¼
1

2ε0
½∂z∂z0 − ðk2 þ ζ2ε0μÞ&gH

þ 1

2μ0
½∂z∂z0 − ðk2 þ ζ2εμ0Þ&gE; ð3:5Þ

where after differentiation, the limit z → z0 is understood.
Let us also record the other diagonal components of the

reduced stress tensor. First, the energy density, which must
include the dispersive factors, is

t00ðzÞ ¼
1

2

dðζεÞ
dζ

!
1

ε
∂z

1

ε0
∂z0gH − ζ2gE þ k2

εε0
gH

"

þ 1

2

dðζμÞ
dζ

!
1

μ
∂z

1

μ0
∂z0gE − ζ2gH þ k2

μμ0
gE
"
:

ð3:6Þ

To preserve the symmetry between the transverse compo-
nents of the reduced stress tensor, we rotate γ to a general
coordinate system. Doing so does not affect t00 and tzz, but
yields after using the equations of motion (3.2)

txxðzÞ¼
1

2ε0

#
−
k2x−k2y
k2

ð∂z∂z0 þζ2ε0μÞþk2
$
gH

þ 1

2μ0

#
−
k2x−k2y
k2

ð∂z∂z0 þζ2εμ0Þþk2
$
gE; ð3:7aÞ

2For example, for the case of a dielectric ball, this formula
leads immediately, upon use of the orthogonality relations for the
vector spherical harmonics given in Ref. [34], p. 534, to the
expression (5.19) for the total outward stress given in Ref. [1].
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tyyðzÞ¼
1

2ε0

#
−
k2y−k2x
k2

ð∂z∂z
0þζ2ε0μÞþk2

$
gH

þ 1

2μ0

#
−
k2y−k2x
k2

ð∂z∂z0 þζ2εμ0Þþk2
$
gE: ð3:7bÞ

There are also off-diagonal terms, linear in kx or ky, which
would vanish upon regulated integration, if that regulation
respects the two-dimensional rotational symmetry of the
problem. Such a regulator reduces txx and tyy to

txx ¼ tyy ¼
k2

2

!
1

ε
gH þ 1

μ
gE
"
: ð3:8Þ

The four-dimensional trace

tμμ ¼ tzz þ txx þ tyy − t00

¼ −
1

2

ζ
ε
dε
dζ

#
1

ε0
ð∂z∂z0 þ k2ÞgH − ζ2εgE

$

−
1

2

ζ
μ
dμ
dζ

#
1

μ0
ð∂z∂z0 þ k2ÞgE − ζ2μgH

$
ð3:9Þ

is zero if there is no dispersion.

IV. GENERIC PLANAR PROBLEM

To save typographical space, we use comma-separated
notation, ðμ; εÞ and ðE;HÞ, to write the TE and TM mode
expressions in the following. We can construct the Green’s
functions from the solutions of the homogeneous equations

#
−∂z

1

μ; ε
∂z þ

k2

μ; ε
þ ζ2ðε; μÞ

$%
FE;H

GE;H
¼ 0: ð4:1Þ

Here we take F to denote a solution that does not diverge
for z → ∞ (typically goes to zero), while G is an arbitrary
independent solution. The Wronskian of these two solu-
tions is

wðzÞ ¼ FðzÞG0ðzÞ −GðzÞF0ðzÞ: ð4:2Þ

We want to solve the Green’s function equations (3.2) in
terms of these solutions, for the situation of a “soft wall,”
where

μðzÞ; εðzÞ ¼
%
1; z < 0;

μ̃ðzÞ; ε̃ðzÞ; z > 0.
ð4:3Þ

The solutions are (κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ζ2

p
)

gE;Hðz; z0Þ ¼

8
>><

>>:

1

2κ
½e−κjz−z0j þ RE;Heκðzþz0Þ&; z; z0 < 0;

1

αE;H
½FE;Hðz>ÞGE;Hðz<Þ þ R̃E;HFE;HðzÞFE;Hðz0Þ&; z; z0 > 0.

ð4:4Þ

Here, the constant α is related to the Wronskian by

αE;H ¼ wE;HðzÞ
μ̃ðzÞ; ε̃ðzÞ

: ð4:5Þ

The reflection coefficients are determined by requiring that
gE:H be continuous at z ¼ 0, and that 1

μ;ε ∂zgE;H also be
continuous there. This corresponds to the continuity of
ẑ × E and ẑ ·B, and of ẑ ×H and ẑ ·D. (Imposing
these matching conditions requires the form of the
Green’s function for z> > 0 > z<, not displayed here.)
The consequence is

RE;H ¼
κFE;Hð0Þ þ 1

μ;ϵF
E;H0ð0Þ

κFE;Hð0Þ − 1
μ;ϵF

E;H0ð0Þ
ð4:6Þ

and

R̃E;H ¼ −
κGE;Hð0Þ − 1

μ;ϵG
E;H0ð0Þ

κFE;Hð0Þ − 1
μ;ϵF

E;H0ð0Þ
: ð4:7Þ

Here μ ¼ μ̃ð0Þ, ϵ ¼ ε̃ð0Þ.

In the above construction,G is completely arbitrary, save
that it is a solution, independent of F, to the differential
equation (4.1). Therefore, the reflection coefficient R̃ is
not unique, and indeed can be made equal to zero by the
replacement G → G − R̃F. To have a unique reflection
coefficient, we need a condition to determine the form
ofG. Such is supplied by imposing a boundary condition at
z → −∞, even though this is outside the region z; z0 > 0
where the construction (4.4) holds. That is, assuming the
continuous functions ε̃ðzÞ, μ̃ðzÞ hold in all space, so there is
no discontinuity, wewill henceforth chooseG subject to the
boundary condition

z → −∞∶ GE;H → 0: ð4:8Þ

Then the reflection coefficient is uniquely defined.
[These boundary conditions as stated here are somewhat
schematic; the specific conditions at (∞ depend on the
structure of εðzÞ.]
The stress in the vacuum region, to the left of the wall

(z < 0), is immediately calculated from Eq. (3.5):
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z < 0∶ tE;Hzz ¼ −
κ
2
; ð4:9Þ

which is independent of z, the term involving the reflection
coefficient having canceled out. This is universally recog-
nized as an irrelevant bulk term, since it has no contribution
from the wall, and would be present if vacuum filled all
space, so it is to be omitted.
It is the assertion of Ref. [24] that the same omission is to

be done for the contribution to the stress tensor coming
from the part of the Green’s function in the z > 0 region
that is not proportional to the reflection coefficient: in
particular, they advocate omitting the stress tensor con-
tribution arising from the term 1

αFðz>ÞGðz<Þ in the Green’s
function (4.4), even though it is spatially varying, because
this term would be there in the absence of the edge at z ¼ 0.
This hypothesis may be suspect, but we will follow it for
the moment.

V. EXACTLY SOLVABLE EXAMPLES

Now we examine two cases where both the TE and TM
modes may be explicitly given. In the first example, the
permittivity has a singularity at a finite value of z, which is
the natural boundary of the problem, and in the second the
permittivity has an exponential behavior.

A. Inverse square permittivity

Let us consider a planar medium described by

a > z > 0∶ μ̃ ¼ 1; ε̃ðzÞ ¼ λ
ða − zÞ2

; ð5:1Þ

whichhas a singularity at z ¼ a. [This is a slightly generalized
version of the medium considered in Ref. [24], where the
potential was continuous, so ϵ≡ ε̃ð0Þ ¼ λ=a2 ¼ 1.] Because
of that singularity, the right side of the wall has a finite
depth, 0 < z < a; the region z > a is completely discon-
nected from the region containing the wall. This potential
has the virtue of allowing explicit solutions:

FE;H ¼ ða − zÞ(1=2Iνðkða − zÞÞ;
GE;H ¼ ða − zÞ(1=2Kνðkða − zÞÞ; ð5:2Þ

where

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λζ2 þ 1

4

r
;

1

αE;H
¼ 1; λ: ð5:3Þ

Here F is chosen to be finite as z → a. Indeed, Iνð0Þ ¼ 0,
Kνðþ∞Þ ¼ 0, consistent with the criteria stated in the
previous section. Then the reflection coefficients in the
medium are

R̃E;H ¼ −
ka
1;ϵK

0
νðkaÞ þ ðκa( 1

2ð1;ϵÞÞKνðkaÞ
ka
1;ϵ I

0
νðkaÞ þ ðκa( 1

2ð1;ϵÞÞIνðkaÞ
: ð5:4Þ

The scattering part of the zz component of the reduced
stress tensor (the part proportional to the reflection coeffi-
cients) is

ts;E;Hzz ðzÞ ¼ 1

2
R̃E;H

%
−
#
k2ða − zÞ þ λζ2 − 1=4

a − z

$
I2νðkða − zÞÞ

þ k2ða − zÞI02ν ðkða − zÞÞ

( kIνðkða − zÞÞI0νðkða − zÞÞ
'
: ð5:5Þ

As we wish to examine the stress just inside the wall,
we can use the uniform asymptotic expansion (UAE) for
the Bessel functions, because it captures the short-distance
behavior [37]. That expansion is, as ν → ∞,

IνðνZÞ∼
1ffiffiffiffiffiffiffiffi
2πν

p eνηðZÞ

ð1þZ2Þ1=4

!
1þ

X∞

k¼1

ukðtÞ
νk

"
;

KνðνZÞ∼
ffiffiffiffiffi
π
2ν

r
e−νηðZÞ

ð1þZ2Þ1=4

!
1þ

X∞

k¼1

ð−1ÞkukðtÞ
νk

"
; ð5:6aÞ

I0νðνZÞ∼
1ffiffiffiffiffiffiffiffi
2πν

p eνηðZÞ
ð1þZ2Þ1=4

Z

!
1þ

X∞

k¼1

vkðtÞ
νk

"
;

K0
νðνZÞ∼−

ffiffiffiffiffi
π
2ν

r
e−νηðZÞ

ð1þZ2Þ1=4

Z

!
1þ

X∞

k¼1

ð−1Þk vkðtÞ
νk

"
;

ð5:6bÞ

where uk and vk are polynomials in t ¼ ð1þ Z2Þ−1=2. The
first of these are

u1ðtÞ ¼
1

24
ð3t − 5t3Þ; v1ðtÞ ¼

1

24
ð−9tþ 7t3Þ: ð5:7Þ

All we need to know about the functions in the exponents is
the derivative:

η0ðZÞ ¼ 1

Zt
: ð5:8Þ

If we retain only the leading factor in the UAE the
reflection coefficients are approximately

R̃E;H ∼ −πe−2νηðka=νÞ
κa( 1

2ð1;ϵÞ −
1
1;ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2a2 þ 1=4

p

κa( 1
2ð1;ϵÞ þ

1
1;ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2a2 þ 1=4

p : ð5:9Þ

Here κ̃2 ¼ ϵζ2 þ k2. In the remaining factor of Eq. (5.5) we
must keep the Oð1=νÞ corrections because they are of the
same order in κa as the leading term in the stress tensor
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construction, leaving for the rest of the zz component of the
reduced stress tensor

ts;E;Hzz ∼
R̃E;H

4πða − zÞ
e2νηðkða−zÞ=νÞ

×
!
1þ 4ðκ̃aÞ2½v1ðtÞ − u1ðtÞ&=ν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λζ2 þ k2ða − zÞ2 þ 1=4

p ( 1

"
;

t ¼
#
1þ

!
kða − zÞ

ν

"
2
$−1=2

; ð5:10Þ

where u1ðtÞ − v1ðtÞ ¼ t
2 ð1 − t2Þ. The UAE presumes that

the significant values of κ̃ are large. If ϵ ¼ εð0Þ ≠ 1, in the
first approximation we may neglect terms of order 1=ðκ̃aÞ
and smaller, so the reflection coefficients reduce to

R̃E;H ≈ −πe−2νηðka=νÞ
κ − 1

1;ϵ κ̃

κ þ 1
1;ϵ κ̃

; ð5:11Þ

which has the form familiar from a step discontinuity in the
dielectric constant. Further, near the boundary, the expo-
nents combine:

2νηðkða − zÞ=νÞ − 2νηðka=νÞ ≈ −2κ̃z; ð5:12Þ

which makes use of Eq. (5.8). Finally, to carry out the
integrals over frequency and transverse wave vectors we
adopt polar coordinates, so that

Z
dζ

Z
ðdk⊥Þ¼

1ffiffiffi
ϵ

p
Z

∞

0
dκ̃κ̃2

Z
1

−1
dcosθ

Z
2π

0
dϕ; ð5:13Þ

with
ffiffiffi
ϵ

p
ζ ¼ κ̃ cos θ, k ¼ κ̃ sin θ. The angle θ occurs

inside the two reflection coefficients, as well as inside
the formula for tszz, Eq. (5.10), since near the wall
½u1ðka=νÞ − v1ðka=νÞ&=ν ¼ ð1 − cos2θÞ=ð2κ̃aÞ, and the
integrals of these dependencies for the TE and TM modes
give

EðϵÞ ¼
Z

1

−1
d cos θcos2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ϵ − 1Þcos2θ þ 1

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ϵ − 1Þcos2θ þ 1
p

þ 1
;

ð5:14aÞ

HðϵÞ ¼
Z

1

−1
dcosθðcos2θ− 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ϵ− 1Þcos2θþ 1

p
− 1=ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ϵ− 1Þcos2θþ 1
p

þ 1=ϵ
:

ð5:14bÞ

The functions EðϵÞ and HðϵÞ are elementary, given in
terms of logarithms, but are not very illuminating to
display. Instead we show the plot of them in Fig. 1, and
give the limits for small and large values of ϵ − 1:

ϵ − 1 ≪ 1∶ EðϵÞ ∼ −
1

10
ðϵ − 1Þ þ 9

140
ðϵ − 1Þ2 þ ) ) ) ;

HðϵÞ ∼ −
43

30
ðϵ − 1Þ þ 93

140
ðϵ − 1Þ2 þ ) ) ) ;

ð5:15aÞ

ϵ ≫ 1∶ EðϵÞ ∼ π −
10

3
þ 3π=2 − 4

ϵ
−
4

3

1

ϵ3=2
þ ) ) ) ;

HðϵÞ ∼ −
10

3
þ 3π

ϵ
−

4

ϵ3=2
þ ) ) ) : ð5:15bÞ

The remaining integral on κ̃ is simple, so after integrating
over k and ζ, we are left with the “scattering part” of the zz
component of the stress tensor near the wall (z → 0þ):

Ts;E;H
zz ∼ −

1

64π2
ffiffiffi
ϵ

p 1

az3

%
EðϵÞ
HðϵÞ

: ð5:16Þ

And the total zz component of the stress is the sum of these
two components, which for the case of a small disconti-
nuity reduces to

Ts;EþH
zz ¼ 23

960π2
ðϵ− 1Þ 1

az3
;

E
H

¼ 3

43
; ϵ− 1 ≪ 1:

ð5:17Þ

This cubic singularity disappears if there is no disconti-
nuity, that is, ϵ ¼ 1, where κ̃ ¼ κ. Then we need to keep the
order 1=ν correction in the reflection coefficients as well, so
Eq. (5.9) gets modified to

R̃E;H∼ ∓ π
4κa

½1 ∓ ð1 − cos2θÞ&e−2νηðka=νÞ; ð5:18Þ

FIG. 1. The ϵ-dependent factors in the zz components of the
stress tensor in Eq. (5.14). The small and large ϵ − 1 limits go out
to third order and −7=2 order, respectively. Clearly, the TE
contribution is almost insignificant, and the two asymptotic limits
accurately cover the full range of ϵ.
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which when inserted into Eq. (5.10) yields immediately

ts;E;Hzz ¼ −
1

16κa2
½1 ∓ ð1 − cos2θÞ&2e−2κz: ð5:19Þ

When the integrals over κ and θ are carried out, we obtain

Ts;E;H
zz ∼ −

1

1920π2a2z2

%
3

43
; ð5:20Þ

the sum of the two contributions being

Ts;EþH
zz ¼ −

23

960

1

π2a2z2
; ð5:21Þ

which is exactly the result found in Ref. [24]. The similarity
of the coefficients in Eqs. (5.17), (5.20), and (5.21) is
striking.
We close this subsection by examining the omitted

contribution from the “bulk” term in the interior,

gb;E;Hðz; z0Þ ¼ 1

αE;H
FE;Hðz>ÞGE;Hðz<Þ

¼ ð1; λÞða − zÞ(1=2ða − z0Þ(1=2

× Iνðkða − z>ÞÞKνðkða − z<ÞÞ: ð5:22Þ

It is quite obvious that this does not give singular behavior
near the discontinuity in εðzÞ at z ¼ 0, but it does yield
divergent contributions. The corresponding reduced stress
tensor has a form similar to that given in Eq. (5.5):

tb;E;Hzz ðzÞ ¼ 1

2

%
−
#
k2ða − zÞ þ λζ2 − 1=4

a − z

$
Iνðkða − zÞÞKνðkða − zÞÞ þ k2ða − zÞI0νðkða − zÞÞK0

νðkða − zÞÞ

( k½Iνðkða − zÞÞK0
νðkða − zÞÞ þ I0νðkða − zÞÞKνðkða − zÞÞ&

'
: ð5:23Þ

Now, when the UAE is inserted, the cancellation observed
in the reflection-dependent part does not occur, so the
leading term is

tb;E;Hzz ∼
1

4ða − zÞ

(
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λζ2 þ k2ða − zÞ2

q
( 1

)
: ð5:24Þ

For the moment we examine only the leading term in the
limit of this expression as z → 0, which is

tb;E;Hzz → −
κ̃
2
; ð5:25Þ

the obvious generalization of Eq. (4.9). When this is
integrated over all frequencies and wave numbers, and
regulated by point splitting as in Ref. [28], we obtain (see
Appendix A)

Tb;E;H
zz ∼−

1

4π2
ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃3

sin κ̃δ
κ̃δ

¼ 1

2π2
ffiffiffi
ϵ

p
δ4

; δ→ 0;

ð5:26Þ

exactly the leading bulk divergence seen for each scalar
mode in Ref. [28], apart from the expected index of the
refraction factor. Later we shall encounter the subleading
divergences dependent on the potential; beyond them, in
the exact tb;E;H there are finite terms that presumably have
physical significance.

B. Exponential permittivity

Let us give another exactly solvable model. Consider the
permittivity function

εðzÞ ¼
%
1; z < 0;

eαz; z > 0.
ð5:27Þ

For the two modes, the two fundamental solutions to
Eq. (4.1) are for z > 0 [38]

FEðzÞ
GEðzÞ

'
¼

%
Kνð2ζeαz=2=αÞ;
Iνð2ζeαz=2=αÞ;

ð5:28aÞ

FHðzÞ
GHðzÞ

'
¼ eαz=2

%
Kν̃ð2ζeαz=2=αÞ;
Iν̃ð2ζeαz=2=αÞ;

ð5:28bÞ

where

ν ¼ 2k
α
; ν̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4k2

α2

s

: ð5:29Þ

Again, the second solution is unique, according to the
criteria enunciated in Sec. IV, because Iνð0Þ ¼ 0. In each
case, the effective Wronskian (4.5) is the same,

αE;H ¼ α
2
: ð5:30Þ

Using the UAE, the leading bulk stress tensor component is
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tb;Ezz ¼ −
κ̆
2
; κ̆ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ζ2eαz

p
; ð5:31aÞ

tb;Hzz ¼ −
κ̆2

2κ̂
; κ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ζ2eαz þ α2

4

r
: ð5:31bÞ

The scattering part of the reduced stress tensor, near the
wall, has the form seen before in Eq. (5.19) if we replace ζ2

by κ2 cos2 θ, and a by 2=α, where α is the slope of the
potential at the edge:

ts;E;Hzz ∼ −
α2

16κ
e−2κz

8
>>><

>>>:

!
ζ2

2κ2

"
2

;

!
1 −

ζ2

2κ2

"
2

:

ð5:32Þ

From this follows the same result for the stress tensor as
in Eq. (5.20).
We will see in the following section that this behavior is

universal, as long as the potential is continuous and has a
linear slope at the edge.

VI. UNIVERSAL EDGE BEHAVIOR

A. First-order perturbation theory

Griniasty and Leonhardt [24] asserted that the behavior
of the zz component of the subtracted stress tensor seen in
Eq. (5.20) is universal. That is, it holds whenever the
potential is continuous, but has a discontinuous slope at
the origin, the slope being in that case α ¼ 2=a. We will
prove that assertion here, which follows from perturbation
theory near the edge. We can generalize this slightly, by
allowing for a discontinuity ϵ − 1 in the permittivity near
the boundary. Sufficiently close to the edge, εðzÞ ¼
ϵð1þ αzÞ, and we will calculate the stress tensor in the
approximation that α is very small compared to κ.
We start with the TE mode. The functions F and G

satisfy

!
−

d2

dz2
þ κ̃2 þ ζ2ϵαz

"%
FEðzÞ
GEðzÞ

¼ 0: ð6:1Þ

This is easily solved perturbatively for solutions that
decay exponentially fast, or that grow exponentially fast,
at infinity:

FEðzÞ
GEðzÞ

'
¼ e∓κ̃zfE∓ðzÞ; fE∓ðzÞ ¼

!
1−

ζ2αϵz
4κ̃2

ð1( κ̃zÞ
"
;

ð6:2Þ

keeping terms out through OðαÞ. Since the differential
equation contains no first derivatives, the Wronskian
remains constant,

wðzÞ ¼ 2κ̃: ð6:3Þ

Using the “bulk” part of the Green’s function in the
medium, the first term in the second line of Eq. (4.4),
we find for the corresponding reduced stress tensor

tb;Ezz ¼ −
κ̃
2
−
αζ2ϵ
4κ̃

zþOðα2Þ; ð6:4Þ

which agrees with Eqs. (5.24) or (5.31a) when they are
expanded for small α (fixed z). Integrated over frequency
and wave numbers, we obtain the full bulk stress tensor,
when the time splitting, or transverse space splitting,
regulation as in Eq. (5.26) is inserted (see Appendix A),

Tb;E;τ
zz ¼ 1

2π2
ffiffiffi
ϵ

p
δ4

!
1þ 3

2
αz
"
; Δ ¼ 0; δ ¼ τ=

ffiffiffi
ϵ

p
;

ð6:5aÞ

Tb;E;δ
zz ¼ 1

2π2
ffiffiffi
ϵ

p
δ4

!
1 −

1

2
αz
"
; τ ¼ 0; δ ¼ jΔj:

ð6:5bÞ

The relative factor of −3 between the linear dependencies
of these two forms is the result of the identity given in
Ref. [17], reproduced here in Eq. (A6).
The reflection coefficient computed from Eq. (4.7) to

first order in α is

R̃E ¼ −
!
κ − κ̃
κ þ κ̃

þ ζ2αϵ
4κ̃2

1

κ þ κ̃

"
: ð6:6Þ

The first term in the parentheses refers to the scattering due
to the discontinuity in εðzÞ at the edge, while the second
term refers to the contribution arising from the slope of
the potential. If the latter effect is negligible, this agrees
with the form in Eq. (5.11). A bit of algebra shows that the
“scattering” part of the reduced stress tensor is

ts;Ezz ¼ −
αϵζ2

8κ̃2

!
κ − κ̃
κ þ κ̃

þ ζ2αϵ
4κ̃2

1

κ þ κ̃

"
e−2κ̃z: ð6:7Þ

When Eq. (6.7) is integrated over frequency and transverse
wave numbers according to Eq. (5.13), the result for the
stress coincides with that given in Eq. (5.16):

Ts;E
zz ¼ −

αEðϵÞ
128π2

ffiffiffi
ϵ

p 1

z3
; ð6:8Þ

recalling that there α ¼ 2=a. On the other hand, if εðzÞ is
continuous, so ϵ ¼ 1, we obtain

Ts;E
zz ¼ − α2

2560π2
1

z2
: ð6:9Þ

This exactly coincides with Eq. (5.20).
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The linearized version of the TM equation (4.1) is

#
−

d2

dz2
þ κ̃2 þ α

!
d
dz

z
d
dz

− k2z
"$%

FHðzÞ
GHðzÞ

¼ 0; ð6:10Þ

which has a first-order perturbative solution

FHðzÞ
GHðzÞ

'
¼ e∓κ̃zfH∓ðzÞ;

fH∓ðzÞ ¼
#
1þ αz

2

!
1 −

ζ2ϵ
2κ̃2

ð1( κ̃zÞ
"$

: ð6:11Þ

Now the Wronskian of the two solutions is not constant,

wHðzÞ ¼ 2κ̃ð1þ αzÞ; ð6:12Þ

which is exactly what is needed to make αH a constant:

αH ¼ wHðzÞ
εðzÞ

¼ 2κ̃
ϵ
: ð6:13Þ

The bulk term in the zz-component of the stress tensor turns
out to be the same as its TE counterpart (6.5), for example,
for time splitting:

Tb;H;τ
zz ¼ 1

2π2
ffiffiffi
ϵ

p
δ4

!
1þ 3

2
αz
"
: ð6:14Þ

Now it is straightforward to calculate the scattering part
of the stress tensor to Oðα2Þ, in terms of the reflection
coefficient:

R̃H ¼ −
#
κ − κ̃=ϵ
κ þ κ̃=ϵ

− α
2ðκ þ κ̃=ϵÞ

!
1 − ζ2ϵ

2κ̃2

"$
: ð6:15Þ

The zz component of the scattering part of the reduced
stress tensor is then

ts;Hzz ¼ α
4
e−2κ̃z

#
κ − κ̃=ϵ
κþ κ̃=ϵ

−
α
2

1

κþ κ̃=ϵ

!
1−

ζ2ϵ
2κ̃2

"$!
1−

ζ2ϵ
2κ2

"
:

ð6:16Þ

Again, if for ϵ ≠ 1 we drop the second term in the square
brackets, we see the appearance of the TM reflection
coefficient for a discontinuity in the permittivity, which
leads to the stress tensor as z → 0þ:

Ts;H
zz ¼ −

α
128π2

ffiffiffi
ϵ

p HðϵÞ 1
z3
; ð6:17Þ

coinciding with the TM part of Eq. (5.16). If ϵ ¼ 1
however, the second term in Eq. (6.16) must be retained,
leaving just the form seen in Eq. (5.32), and we obtain for
the zz component of the stress tensor

Ts;H
zz ¼ −

43

7680π2
α2

z2
; ð6:18Þ

which again exactly coincides with Eq. (5.20).

B. Dispersion

The above assumes that the permittivity does not depend
on frequency. This is quite unrealistic. Instead, let us
examine what happens if we use a plasma model, where
α ¼ α0=ζ2. This then makes the TE mode coincide with the
linear scalar problem considered in Ref. [28]. There the
divergent terms were isolated using a WKB approximation.
We can easily reproduce those leading divergences. To
compare with the results there, we set the discontinuity
ϵ − 1 equal to zero.
With the plasma dispersion relation, the bulk term (6.4)

reads, before integration,

tb;Ezz ¼ − κ
2
− α0z

4κ
; ð6:19Þ

and then carrying out the frequency and wave number
integrations using the formulas in Appendix A, we find

Tb;E
zz ¼ 1

2π2δ4
−

α0z
8π2δ2

; ð6:20Þ

which are the two leading divergent terms found in
Ref. [28] for a linear potential. Perhaps surprisingly, the
same holds for Tb;H

zz .
To get the logarithmically divergent term in Tb;E

zz one
might think we would have to work out perturbation theory
to second order, which we will do in the next section.
However, the zz component of the reduced bulk stress
tensor to second order can be calculated by knowing only
the OðαÞ solutions because we easily see from the
definition of the Wronskian that

tb;Ezz ¼ −
κ̃
2
þ 1

2wE ðf
E0
− fE0þ − αζ2ϵzfE−fEþÞ: ð6:21Þ

From this follows

tb;Ezz ¼ −
κ̃
2
− αγκ̃zþ α2γ2

!
1

4κ̃
þ κ̃z2

"
; ð6:22Þ

where we have introduced the abbreviation γ ¼ ζ2ϵ=ð4κ̃2Þ.
The small δ expansion of

R∞
0 dκ sinðκδÞ=κ2 [Eq. (A3e)]

yields in second order in the plasma model

Tb;Eð2Þ
zz ∼ − α20z

2

32π2
ln δ; ð6:23Þ

which corresponds to the logarithmically divergent term
found in Ref. [28].
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Again only the first order result is necessary to give the
order α2 contribution to the bulk stress for the TM mode,
since the same formula as Eq. (6.21) applies for the TM
mode as well. The result is only slightly different from that
in Eq. (6.22):

tb;Hzz ¼ −
κ̃
2
− αγκ̃zþ α2γ2κ̃z2 þ α2

4κ̃

!
γ −

1

2

"
2

: ð6:24Þ

This leads to exactly the same logarithmic divergence in
the plasma model as in Eq. (6.23). However, to get such
terms for the other components of the stress tensor, we need
second-order perturbative solutions for F and G, which we
will deal with in the following section.
As for the scattering contributions, it is evident that due

to the softening produced by the plasma dispersion relation,
the singular behavior in Ts;E

zz as the edge is approached from
the inside goes away, consistent with the numerical results
shown in Fig. 5 of Ref. [28]. (See further discussion in
Sec. VIII.) The scattering part of Ts;H

zz in the plasma model
has to be defined with an infrared cutoff, but certainly also
does not diverge as the edge is approached.
So we have verified and extended the results of Ref. [24]:

For a vacuum interface with a planar dielectric without
dispersion, if the permittivity is continuous, but has a linear
slope at the edge, the singularities in the normal-normal
component of the stress tensor possess a universal 1=z2

form, where z is the distance from the edge into the
medium. If the permittivity is discontinuous, the normal-
normal component of the stress tensor has a 1=z3 singu-
larity, and as shown in Appendix B, the singularity is
reduced to logarithmic if the discontinuity is in the second
derivative. As we will see Sec. VII, the singularities in the
energy density are one order higher for a linear disconti-
nuity. Only the behavior of the potential at the edge of the
dielectric is necessary to determine the singularities in form
and magnitude; this we have demonstrated through exam-
ples and a general perturbative analysis.

VII. OTHER STRESS TENSOR COMPONENTS

Let us now examine other components of the stress
tensor, particularly in the continuous permittivity situation.
The leading perturbative approximation yields the leading
divergent structure, and the leading behavior near the edge.
We will consider both the dispersive case with the plasma
model, since it is approximately realistic and agrees, for the
TE mode, with the scalar case, and the situation when the
permittivity is independent of frequency.

A. Leading-order contributions

Including the dispersive factor, the reduced TE energy
density for the plasma model, where α ¼ α0=ζ2, is for
small α0z (exactly, for a linear potential)

tE00 ¼
1

2
ð∂z∂z0 þ k2 − ζ2ϵþ α0ϵzÞgE; ð7:1Þ

which agrees with the scalar energy density for a linear
potential provided the conformal parameter ξ ¼ 0 (or in the
language of Ref. [28], β ¼ −1=4), surprisingly, not the
scalar conformal value of ξ ¼ 1=6. (That is, the canonical
stress tensor emerges, not the conformal one.) Thus we see
that (setting ϵ ¼ 1)

tE00 ¼ tEzz þ ðk2 þ α0zÞgE: ð7:2Þ

Using the point-splitting methods of the Appendix, we find
for the bulk contribution to the energy density

Tb;E
00 ∼

8
>><

>>:

3

2π2δ4
−

α0z
8π2δ2

; τ splitting;

−
1

2π2δ4
þ α0z
8π2δ2

; Δ splitting;
ð7:3Þ

which coincides with the leading divergences found in
Ref. [28]. Note that

∂
∂δ ðδT

Δ
00Þ ¼ Tτ

00 ð7:4Þ

holds for the relation between the energy densities with
the spatial and temporal cutoffs, as in Ref. [17]. And in the
medium, just to the right of the edge, we find for the
scattering contribution

ts;E00 ∼ −
α0k2

16κ4
e−2κz; ð7:5Þ

which when integrated over frequency and wave numbers
yields

Ts;E
00 ∼ −

α0
96π2z

; ð7:6Þ

exactly the result as for the scalar case with β ¼ −1=4 given
by Eq. (6.7) of Ref. [28].
Had we assumed that α was independent of ζ, the sign

of the potential term in Eq. (7.1) would have reversed, and
we would have obtained instead for the bulk divergence
(with temporal splitting)

Tb;E
00 ¼ 3

2π2δ4

!
1þ 3

2
αz
"
; ð7:7Þ

and for the edge singularity in the scattering part

Ts;E
00 ∼ −

α
960π2z3

; ð7:8Þ

more singular than the behavior of Ts;E
zz in this non-

dispersive model seen in Eq. (6.9).
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For the remaining diagonal components, from Eq. (3.8),
for τ splitting, or Δ splitting, respectively, in the plasma
model,

Tb;E
xx ¼ Tb;E

yy ¼

8
>><

>>:

1

2π2δ4
−

α0z
8π2δ2

;

−
1

2π2δ4
;

ð7:9Þ

which exactly coincides with the leading scalar divergences
found in Ref. [28] when we average over ρx, ρy there. It is
easily checked that the trace identity (3.9) is satisfied:

ðTb;EÞμμ ¼ −
α0z
4π2δ2

: ð7:10Þ

For the scattering part,

Ts;E
xx ¼ Ts;E

yy ¼ −
α0

192π2z
; ð7:11Þ

which is exactly half the energy density found in Eq. (7.6)
as required by the trace of the scattering part of the stress
tensor being of Oðα20Þ.
For the TM mode in the plasma model the bulk part of

the reduced energy density is

tb;H00 ¼ − ζ2

2κ

!
1 − α0z

2κ2

"
; ð7:12Þ

which, upon integration, leads to the same result as
Eq. (7.3). The transverse bulk parts of the reduced stress
tensor are

tb;Hxx ¼ tb;Hyy ¼ k2

4κ

!
1 − α0z

2κ2

"
; ð7:13Þ

leading to the same result as Eq. (7.9), as required by the
trace identity. For constant α the energy density divergence
is the same as for the TE part, Eq. (7.7). The scattering part
of the reduced energy density is

ts;H00 ¼ α0
8ζ2

k2

κ2

!
1 −

ζ2

2κ2

"
e−2κz ¼ 2ts;Hxx ¼ 2ts;Hyy ; ð7:14Þ

which is twice the transverse reduced stress tensor com-
ponents, as required by the trace identity. This possesses
singularities, when ζ2 ¼ κ2 cos2 θ goes to zero, so the
meaning of these seems somewhat obscure. However, if
we adopt the nondispersive model and assume that α
is constant, we can find the energy density singularity
near the edge

Ts;H
00 ¼ 3α

320π2z3
; ð7:15Þ

which is −9 times that from the TE mode, Eq. (7.8).

B. Second order perturbation theory

To proceed further, we need to work to the next order in
perturbation theory. It is easy to work out the solutions to
Eq. (6.1) to second order, assuming the potential is exactly
linear. The two solutions are

FEðzÞ
GEðzÞ

'
¼ e∓κ̃z

!
1 − αγzð1( κ̃zÞ

þ α2γ2z
κ̃

#
1

2
ðκ̃zÞ3 ( 5

3
ðκ̃zÞ2 þ 5

2
κ̃z( 5

2

$"

þOðα3Þ
≡ e∓κ̃zfE∓: ð7:16Þ

The expansion parameter is αγ. The Wronskian changes,
but is still constant:

wE ¼ 2κ̃ − 5
α2γ2

κ̃
þOðα3Þ: ð7:17Þ

The TM equation (4.1) is, assuming an exactly linear
potential,

!
−

∂
∂z

1

1þ αz
∂
∂zþ

k2

1þ αz
þ ζ2ϵ

"%
FH

GH
¼ 0; ð7:18Þ

which can also be straightforwardly solved to second order
in α:

FHðzÞ
GHðzÞ

'
¼ e∓κ̃z

%
1þ z

#
α

!
1

2
− γ

"
∓ α2

2κ̃

!
3

4
− 5γ2

"$

þ z2
#
∓ κ̃αγ þ α2

!
5γ2

2
−
1

8
−
γ
2

"$

∓ α2γκ̃z3

6
ð3 − 10γÞ þ α2γ2κ̃2z4

2

'
: ð7:19Þ

Note that the terms of order αγ and of order α2γ2 coincide
with those of the TE solutions in Eq. (7.16). TheWronskian
of these two solutions gives

αH ¼ wH

ϵð1þ αzÞ
¼ 2κ̃

ϵ
þ α2

3 − 20γ2

4κ̃ϵ
: ð7:20Þ

C. Oðα2) corrections

Now to get the order-α2 corrections to the energy density,
we have to use the second-order solutions, Eqs. (7.16) and
(7.19). A straightforward calculation reveals, for the bulk
contributions to the reduced energy density,

tb;E00 ¼−2κ̃γþ4ακ̃γ2zþα2γ2

2κ̃
ð3−10γ−24γκ̃2z2Þ; ð7:21aÞ
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and

tb;H00 ¼−2κ̃γþ4ακ̃γ2z

þα2

8κ̃
ð−1þ4γþ12γ2−40γ3−96γ3κ̃2z2Þ: ð7:21bÞ

Note that the Oðα0Þ, OðαÞ and the Oðα2γ2Þ, Oðα2γ3Þ terms
are the same for the TE and TM contributions, which means
that the divergences in the plasma model are the same, for
example, in temporal point splitting for ϵ ¼ 1 as defined
in Appendix A,

Tb;E;H
00 ¼

Z
dζ
2π

Z ðdk⊥Þ
ð2πÞ2

eiζτtb;E;H00

¼ 3

2π2δ4
− α0z
8π2

1

δ2
þ α20z

2

32π2
ln δþ ) ) ) ; ð7:22Þ

where the remainder is finite as δ → 0. This includes the
results already found in Eq. (7.3), and coincides with the
scalar divergences found in Ref. [28].
We can also straightforwardly find the next order

corrections to the scattering part of the zz component of
the reduced TE stress tensor, for example, with ϵ ¼ 1,

ts;Ezz ¼ −
α2γ2

4κ
½1 − 2αγzð2þ κzÞ&e−2κz; ð7:23Þ

but the order α3 correction means that the corresponding
term in Ts;E

zz has one less power of z, so in the constant α
situation, through this order,

Ts;E
zz ¼ α2

2560π2z2
þ 3α3

1768π2z
: ð7:24Þ

(In the plasma model, recall that there is no singularity in
Ts;E
zz .) Dimensionally, since ½α& ¼ 1=L, the higher order

corrections to the edge singularity must be subdominant.
Similarly, we can write for the TE part of the reduced

energy density through order α2,

ts;E00 ¼ −αγ
k2

4κ2

!
1 −

αγ
κ
½k2ð−2þ 2κzþ 2ðκzÞ2Þ

− κ2ð1þ 4κzÞ&
"
e−2κz; ð7:25Þ

which leads to, for constant α, the energy density through
Oðα2Þ,

Ts;E
00 ¼ −

α
960π2z3

−
α2

17920π2z2
; z → 0þ : ð7:26Þ

Again, the correction is necessarily subdominant.

VIII. EXACT LINEAR TE POTENTIAL

Of course, the linear TE problem is exactly solvable
in terms of Airy functions, as seen in Refs. [25–28].
Independent solutions of Eq. (6.1) are (α ¼ α0=ζ2)

FðzÞ
GðzÞ

'
¼

%
Aiðα−2=30 ðκ2 þ α0zÞÞ;

Biðα−2=30 ðκ2 þ α0zÞÞ;
ð8:1Þ

which haveWronskian α1=30 =π. It is then immediate to write
down the exact form of the Green’s function.
By using the asymptotic expansion of the Airy functions

for the large argument, we straightforwardly obtain for the
TE reduced scattering Green’s function

gs;Eðz;z0Þ

∼−
α0
16κ3

exp½2κ33α0
ð2−ð1þα0z=κ2Þ3=2−ð1þα0z0=κ2Þ3=2Þ&

½ðκ2þα0zÞðκ2þα0z0Þ&1=4
:

ð8:2Þ

The above is valid if κ3=α0 ≫ 1. If we now regard the
potential as weak, we expand in powers of α0 and obtain
through second order

gs;Eðz;z0Þ≈−
α0
16κ4

!
1−

α0
4κ2

ðzþz0Þ−α0
4κ

ðz2þz02Þ
"
e−κðzþz0Þ:

ð8:3Þ

This coincides exactly with the Green’s function
obtained from the perturbative solution (6.2), and leads,
for example, to

ts;Ezz ¼ −
α20
64κ5

e−2κz; ð8:4Þ

which follows from (6.7) when ϵ ¼ 1 and α ¼ α0=ζ2. But
when one tries to integrate this over wave numbers and
frequency, one encounters an infrared divergence at κ ¼ 0.
Of course, such a divergence is not present in the exact
solution, since the perturbative expansion is not valid for
small κ. In fact, if the exact expression for ts;Ezz is integrated
the result is finite, but nonzero, at z ¼ 0, as shown in Fig. 2,
as earlier stated.
We can do the same type of calculation for the energy

density. In this case the energy density does diverge as the
edge is approached from within the medium, according
to Eq. (7.6). In fact, the numerical integration of the exact
formula fits this asymptotic formula quite well for small z,
as shown in Fig. 3. Ts;E

xx has nearly identical behavior,
except for the factor of 2 seen in Eq. (7.11).
The above figures were drawn with the assumption that

the second solution G was exactly the second Airy function
Bi. But, as noted in Sec. IV, the definition of the reflection
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coefficient is ambiguous, since the second solution may
contain an arbitrary admixture of the first. The criteria given
in Sec. IV do not apply, because both Ai and Bi behave as
damped oscillatory functions for large negative z. The
addition of the second solution is typically asymptotically
exponentially subdominant, so this ambiguity does not
appear in the asymptotic estimates. However, the ambiguity
will affect the behavior away from the edge. We investigated
this by substituting in the reflection coefficient Bi →
Biþ λAi, where λ is a constant. (In fact, λ could be a
function of κ.) In Fig. 4 we show how agreement with the
estimate (7.6) is greatly improved by the choice of λ ¼ 2=π.
The reason for this particular value agreeing with the
asymptotic estimate is, at present, mysterious.

The edge singularity is not altered when different
constant values of λ are used as compared to the perturba-
tive result because the leading asymptotic behavior of the
Airy functions is

AiðxÞ
BiðxÞ

'
¼ 1

ð2; 1Þ
ffiffiffi
π

p
x1=4

e∓2x3=2=3; x → þ∞; ð8:5Þ

so that when these are used for large κ and fixed z we see
that the admixture parameter is related to the perturbation
theory one by

λPT ¼ λ
2
e−4κ

3=3: ð8:6Þ

Here, the latter parameter is defined in the language of
Sec. VI A by taking the second solution to be

G ¼ eκzfþ þ λPTe−κzf−: ð8:7Þ

Thus, it is evident that the admixture of the first solution
will be exponentially suppressed within the wave number
integral.
The comparison between the perturbative value of the

reflection coefficient and the exact one is shown in Fig. 5.
Because the perturbative solutions are normalized such
that Fð0Þ ¼ Gð0Þ ¼ 1, which is not the case for the Airy
functions, an appropriate normalization factor must be
supplied: what is plotted in the dotted curve in the figure
is RPT ¼ − π

8κ3 e
4κ3=3. These curves reveal that the validity of

the perturbative solution depends on the inequality

α0 ≪ κ3: ð8:8Þ

FIG. 3. The TE scattering contribution to the energy density
within the medium, again calculated in the plasma model, with
ϵðzÞ ¼ 1þ z=ζ2. The solid curve is the exact numerical integra-
tion, which has to be carried out to very large values of κ for small
z, because of near-perfect cancellations between the moderate κ
contributions. The dashed curve represents the asymptotic
estimate (7.6).

FIG. 4. The relative error of the asymptotic estimate for the
TE scattering energy density (7.6) when the reflection coefficient
R̃E is replaced by R̃E − λπ=2. Here u ¼ Ts;E

00 and Δu ¼
ðTs;E

00 Þasym − Ts;E
00 . Shown are the errors for λ ¼ 0 (upper curve),

that is, just using the Bi function as the second solution, and for
λ ¼ 2=π, 1, 2, that is, with Bi replaced by different mixtures of Bi
and Ai. Here again we assume α0 ¼ 1.

FIG. 2. The exact TE scattering contribution to the zz
component of the stress tensor Ts;E

zz within a medium having a
linear potential, ϵðzÞ ¼ 1þ z=ζ2, characterized by a plasma-
model dispersion relation. (That is, ϵ ¼ 1 ¼ α0.) Although the
stress gets larger in magnitude as the edge is approached, it
remains finite, and it goes to zero deep within the medium.
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It will be noted from Figs. 2 and 3 that the stress tensor
components rapidly go to zero as one goes deeper into the
potential, as expected. To further explore this, we look at
the Green’s function, which represents the expectation
value of the product of the electric fields in the medium,
for the case α0 ¼ 1,

Gs;Eðz; z0Þ ¼
Z

dζ
2π

ðdk⊥Þ
ð2πÞ2

gs;Eðz; zÞ

¼ −
1

2π

Z
∞

0
dκκ2

κBiðκ2Þ − Bi0ðκ2Þ
κAiðκ2Þ − Ai0ðκ2Þ

× Aiðκ2 þ zÞAiðκ2 þ z0Þ: ð8:9Þ

This is plotted, for z ¼ z0, in Fig. 6. For even larger z than
shown in the figure, the reflection coefficient may be

replaced by its small-κ expansion, and then the resulting
analytic form of the diagonal Green’s function ultimately
agrees with that found by numerical integration. (For a
20-term expansion of R̃E, the error of the analytic approxi-
mation is less than 1% for z > 11.)

IX. REFLECTED POTENTIALS

Of course, there is no net force on the semi-infinite slab
we have been considering to this point. This is because Tzz
must vanish at infinity, and once the obvious bulk sub-
traction is made, Tzzð0−Þ ¼ 0, according to Eq. (4.9). So
suppose we consider two bodies, constructed by placing the
mirror image of our potential to the left of z ¼ 0: that is, we
assume εðzÞ ¼ εð−zÞ. These are two bodies in contact, not
disjoint. Then for either the TE or TM mode, the Green’s
function may be constructed in terms of the fundamental
solutions of the homogeneous equations, F̃ and G̃, where
F̃ → 0 as z → þ∞, and G̃ → 0 as z → −∞,

gðz; z0Þ ¼ 1

A
F̃ðz>ÞG̃ðz<Þ; ð9:1Þ

in terms of the effective Wronskian factor A. If we expand
this out in terms of the solutions on the right for the semi-
infinite slab, denoted as previously by F and G, we find
for z, z0 > 0

gðz; z0Þ ¼ 1

α
½Fðz>ÞGðz<Þ þ RFðzÞFðz0Þ&; ð9:2Þ

where α is the Wronskian term for the half-space. Here the
reflection coefficient is

R ¼ −
ðFGÞ0ð0Þ
ðF2Þ0ð0Þ

: ð9:3Þ

Perturbatively, it is easy to check that to first order

R ¼

8
>><

>>:

−
αγ
κ
; TE;

α
κ

!
1

2
− γ

"
; TM;

ð9:4Þ

which are twice as big as the values found for the semi-
infinite slab, in Eqs. (6.6) and (6.15), as would be expected,
because the slope discontinuity is doubled.
In the case of the plasma model, Ts

zz is finite, and for an
exact linear potential was solved explicitly in Sec. VIII—
see Fig. 2. So in the case of two facing reflected linear
potentials in contact, one might think that a finite force of
one body upon the other could be determined,

Ts;E
zz ð0Þ ¼ −0.001017α4=30 ; ð9:5Þ

where we have restored the proper scaling with the
coupling. Although this appears to be a finite attraction
between the two slabs, the interpretation of this is suspect

FIG. 6. The diagonal elements of the scattering contribution to
the TE Green’s function for the linear wall, ϵðzÞ ¼ 1þ z=ζ2, for z
within the wall. This represents the expectation values of the
square of the electric field, which rapidly decrease to zero as the
wall is penetrated.

FIG. 5. The asymptotic TE reflection coefficient −α0=ð8κ3Þ
(dotted) from Eq. (6.6) compared to the exact reflection coef-
ficient (solid) given by Eq. (4.7), for the linear potential. The
former has to be normalized by the correct factor to account for
the normalization of the Airy functions in the Green’s function.
Here α0 ¼ ϵ ¼ 1.
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for the reasons stated in Sec. II, because the body is not
immersed in a homogeneous medium. As there is no
distance scale in the problem aside from the coupling, it
is impossible to connect this to a change in the energy
according to the principle of virtual work. Moreover, the
ambiguity of separating bulk and scattering parts remains.

X. CONCLUSION

In this paper we have extended our previous calcu-
lations on the soft wall problem to the electromagnetic
case. In the plasma dispersion model, the TE mode
coincides with the scalar case considered in Ref. [28].
Without dispersion we recover the universal edge behav-
ior found by Ref. [24]. We also reproduce the Weyl
divergences found in the scalar case. We do this, first by
considering explicitly solvable examples, and then by
performing a generic perturbative analysis for small
slopes in the dielectric potential.
Let us summarize the salient features. For the plasma

model, where the potential may be defined by εðzÞ − 1 ¼
vðzÞ=ζ2 we see universal Weyl singularities in the bulk
stress tensor for both TE and TM polarizations:

Tb;E;H
zz ¼ 1

2π2δ4
−

v
8π2δ2

−
v2

32π2
ln δ; ð10:1aÞ

Tb;E;H
00 ¼ 3

2π2δ4
−

v
8π2δ2

þ v2

32π2
ln δþ v00

48π2
ln δ; ð10:1bÞ

which coincide with the divergences found for a scalar field
[28]. (The second derivative term is seen for the quadratic
potential treated in Appendix B.) For the nondispersive
model, with temporal splitting,

Tb;E;H
zz ¼ 1

2π2δ4

!
1þ 3

2
αz
"
;

Tb;E;H
00 ¼ 3

2π2δ4

!
1þ 3

2
αz
"
: ð10:2Þ

For the singularities just inside the edge, with a constant
(nondispersive) linear potential near the edge, with no
discontinuity,

Ts;E
zz ∼ −

α2

2560π2
1

z2
; Ts;H

zz ∼ −
43α2

7680π2
1

z2
; ð10:3aÞ

Ts;E
00 ∼ −

α
960π2

1

z3
; Ts;H

00 ∼
3α

320π2
1

z3
: ð10:3bÞ

These results are very similar to those seen for the quadratic
potential treated in Appendix B, with the replacements
α=z → −β, α2=z2 → 4β2 ln z.

One might think one could remove the Weyl divergences
by removing all terms with polynomial growth in z, for
surely such growth deep within the material is unphysical.
Unfortunately, the WKB analysis of Ref. [28] shows there
must also be z2 ln z terms in the linear plasma-model TE
case, which is confirmed by numerical experiments, so
such a procedure appears impossible.
Although we recover expected results, as well as some

new features, our analysis remains incomplete. It hinges on
a breakup between bulk and scattering contributions, which
is not unique; however, it captures the essential asymptotic
behavior for large wave numbers. The suggestion that to
achieve a finite stress one merely omits the bulk terms
is plausible, but this is not a unique process. Moreover,
there are finite, position-dependent contributions to the
stress tensor contained in the bulk term that likely cannot be
merely discarded.
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APPENDIX A: POINT-SPLITTING
REGULARIZATION

To pass from the reduced (Fourier-transformed) stress
tensor components to the space-time stress tensor, we need
to integrate over (imaginary) frequency and transverse
wave vectors. Doing so leads to divergences for the bulk
parts, so we regulate the integrals by point splitting in the
transverse directions and in time:

TðzÞ ¼
Z

∞

−∞

dζ
2π

Z ðdkÞ
ð2πÞ2

eiζτeik·Δtðκ̃; ζÞ;

κ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ζ2ϵ

p
; τ;Δ → 0; ðA1Þ

writing in a generic form. If the function t only depends
on κ̃ we can evaluate this in polar coordinates, with the
polar angle being the angle between δ ¼ ðτ=

ffiffiffi
ϵ

p
;ΔÞ and

κ̃ ¼ ð
ffiffiffi
ϵ

p
ζ;kÞ. Then

TðzÞ ¼ 1

2π2
1ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃2

sin κ̃δ
κ̃δ

tðκ̃Þ: ðA2Þ

The resulting Fresnel integrals of this type are obtained by
integrating by parts and discarding the contribution at
infinity (justified in a distributional sense):
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Z
∞

0
dκ κ2 sin κδ ¼ − 2

δ3
; ðA3aÞ

Z
∞

0
dκ κ cos κδ ¼ −

1

δ2
; ðA3bÞ

Z
∞

0
dκ sin κδ ¼ 1

δ
: ðA3cÞ

We can also give the integrals which have infrared
singularities (regulated by a cutoff μ, which never appears
in the results):

Z
∞

μ

dκ
κ
cos κδ ∼ −γ − ln μδ; δ → 0; ðA3dÞ

Z
∞

μ

dκ
κ2

sin κδ ∼ δð1 − γ − ln μδÞ; δ → 0: ðA3eÞ

But we also encounter terms where ζ2 appears linearly.
Then it is easiest to consider time splitting and space
splitting separately. For the τ cutoff, the angular average of
ϵζ2 gives

TτðzÞ ¼
1

4π2
ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃2

Z
1

−1
d cos θeiκ̃τ cos θ=

ffiffi
ϵ

p
κ̃2cos2θ

¼ −
1

2π2
ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃4

! ∂
∂ðκ̃δÞ

"
2 sin κ̃δ

κ̃δ
;

δ ¼ τ=
ffiffiffi
ϵ

p
; ðA4Þ

while for the spatial cutoff (which, without loss of general-
ity we can choose to be in the x direction),

TΔðzÞ ¼
1

8π3
ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃2

Z
1

−1
d cos θ

×
Z

2π

0
dϕeiκ̃δ sin θ cosϕκ̃2cos2θ

¼ 1

4π2
ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃4

Z
π

0
dθ sin θcos2θJ0ðκ̃δ sin θÞ

¼ 1

2π2
ffiffiffi
ϵ

p
Z

∞

0
dκ̃ κ̃4

!
sin κ̃δ
ðκ̃δÞ3

−
cos κ̃δ
ðκ̃δÞ2

"
: ðA5Þ

In these expressions we have not written the remaining
function of κ̃ within the integrals. The relation between the
two cutoff factors is just that given in Ref. [17]:

d
dx

!
x
#
sin x
x3

−
cos x
x2

$"
¼ −

d2

dx2
sin x
x

: ðA6Þ

APPENDIX B: QUADRATIC POTENTIAL

Suppose the potential begins quadratically, that is,
it is continuous, with a continuous first derivative, but a
discontinuous second derivative at the edge,

εðzÞ ¼ 1þ βz2: ðB1Þ

We then easily find the fundamental solution to first order
in β:

FEðzÞ
GEðzÞ

'
¼ e∓κz

#
1 ∓ βζ2z

4κ3
ð1( κzþ 2

3
ðκzÞ2Þ

$
; ðB2aÞ

FHðzÞ
GHðzÞ

'
¼ e∓κz

#
1 ∓ βz

4κ3
ððζ2 − 2κ2Þ ( ðζ2 − 2κ2Þκz

þ 2

3
ζ2ðκzÞ2Þ

$
: ðB2bÞ

Here we again note that the terms proportional to ζ2 are
identical. The Wronskians of the solutions are

αE ¼ wE ¼ 2κ þ βζ2

2κ3
; ðB3aÞ

αH ¼ wHðzÞ
εHðzÞ

¼ 2κ þ β
2κ3

ðζ2 − 2κ2Þ: ðB3bÞ

First consider the bulk divergences. The identity (6.21)
still holds with the potential αζ2ϵz here replaced by βζ2z2,
so it is straightforward to compute in the plasma model,
where βζ2 ¼ β0 is a constant,

Tb;E
zz ¼ 1

2π2δ4
−

β0z2

8π2δ2
−
ðβ0z2Þ2

32π2
ln δ; ðB4Þ

which is just as expected from the WKB analysis of
Ref. [28]. The divergent terms are again the same for the
corresponding TM contributions. And for the energy density,
with temporal splitting

Tb;E
00 ¼ 3

2π2δ4
−

β0z2

8π2δ2
þ β0
24π2

ln δ; ðB5Þ

again as expected. Although for the TM part a singularity
emerges in the ζ integration once again, the first two terms
here are reproduced.
For the nondispersive, constant β, case we obtain results

precisely analogous to those in Eqs. (6.5a), (6.14) and (7.7):

Tb;E;H
zz ∼

1þ 3
2 βz

2

2πδ4
; Tb;E;H

00 ∼
3þ 9

2 βz
2

2πδ4
: ðB6Þ

For the scattering parts, we need the reflection coefficients:

R̃E ¼ βζ2

8κ4
; R̃H ¼ β

8κ4
ðζ2 − 2κ2Þ: ðB7Þ

Then, for the normal-normal stress tensor and the energy
density we obtain terms which are less singular toward
the edge than was the case for the linear potential for the
nondispersive case:
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Ts;E
zz ∼ −

β2

640π2
ln z; Ts;H

zz ∼ −
43β2

1920π2
ln z; ðB8aÞ

Ts;E
00 ∼

β
960π2z2

; Ts;H
00 ∼ −

3β
320π2z2

: ðB8bÞ

Notice that the ratios of the zz components are 43=3, while
the energy densities are in the ratio −9, exactly as in the
linear case, which reflects the fact that the angular
integrations over cos2 θ ¼ ζ2=κ2 are the same.
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