000074965 001__ 74965
000074965 005__ 20210208180200.0
000074965 0247_ $$2doi$$a10.3390/geosciences8080288
000074965 0248_ $$2sideral$$a107603
000074965 037__ $$aART-2018-107603
000074965 041__ $$aeng
000074965 100__ $$0(orcid)0000-0002-3635-6223$$aFernández-Pato, J.
000074965 245__ $$aDevelopment of a new simulation tool coupling a 2D finite volume overland flow model and a drainage network model
000074965 260__ $$c2018
000074965 5060_ $$aAccess copy available to the general public$$fUnrestricted
000074965 5203_ $$aNumerical simulation of mixed flows combining free surface and pressurized flows is a practical tool to prevent possible flood situations in urban environments. When dealing with intense storm events, the limited capacity of the drainage network conduits can cause undesirable flooding situations. Computational simulation of the involved processes can lead to better management of the drainage network of urban areas. In particular, it is interesting to simultaneuously calculate the possible pressurization of the pipe network and the surface water dynamics in case of overflow. In this work, the coupling of two models is presented. The surface flow model is based on two-dimensional shallow water equations with which it is possible to solve the overland water dynamics as well as the transformation of rainfall into runoff through different submodels of infiltration. The underground drainage system assumes mostly free surface flow that can be pressurized in specific situations. The pipe network is modeled by means of one-dimensional sections coupled with the surface model in specific regions of the domain, such as drains or sewers. The numerical techniques considered for the resolution of both mathematical models are based on finite volume schemes with a first-order upwind discretization. The coupling of the models is verified using laboratory experimental data. Furthermore, the potential usefulness of the approach is demonstrated using real flooding data in a urban environment.
000074965 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CGL2015-66114-R$$9info:eu-repo/grantAgreement/ES/MINECO/DI-14-06987
000074965 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000074965 592__ $$a0.392$$b2018
000074965 593__ $$aEarth and Planetary Sciences (miscellaneous)$$c2018$$dQ2
000074965 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000074965 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000074965 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000074965 773__ $$g8, 8 (2018), 288 [19 pp]$$pGeosciences (Switz.)$$tGeosciences (Switzerland)$$x2076-3263
000074965 8564_ $$s1441334$$uhttps://zaguan.unizar.es/record/74965/files/texto_completo.pdf$$yVersión publicada
000074965 8564_ $$s103693$$uhttps://zaguan.unizar.es/record/74965/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000074965 909CO $$ooai:zaguan.unizar.es:74965$$particulos$$pdriver
000074965 951__ $$a2021-02-08-17:42:41
000074965 980__ $$aARTICLE