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Resumen

En 1911, Kamerlingh Onnes descubrió la superconductividad enfriando

mercurio a temperaturas muy bajas. Observó que, por debajo de 4.2 K, la

resistencia eléctrica era nula. Desde entonces se han descubierto muchos otros

materiales superconductores, algunos con temperaturas de transición superio-

res al punto de ebullición del nitrógeno ĺıquido (77 K) que se conocen como

superconductores de alta temperatura.

El interés en estos materiales es elevado y actualmente se utilizan en mu-

chos campos diferentes. Una de las aplicaciones más relevantes son los imanes

superconductores que se emplean, por ejemplo, en f́ısica de altas enerǵıas

(CERN) o para diagnóstico médico en aparatos de imagen por resonancia

magnetica (MRI) o espectroscoṕıa de resonancia magnetica nuclear (NMR).

Cada aplicación precisa unos requisitos espećıficos y, generalmente, los

materiales superconductores tienen que ser procesados en forma de hilos o

cintas conductoras. Sin embargo, no todos los superconductores son suscep-

tibles de ser procesados y solo unos pocos están disponibles comercialmente:

Nb47wt%Ti, Nb3Sn, MgB2, Bi2Sr2Can-1CunO2n+4+x o BSCCO (también cono-

cidos como Bi-2212 si n = 2 y Bi-2223 si n = 3) e YBa2Cu3O7-x (también

YBCO o REBCO si el Y es sustituido por una tierra rara). Además para de-

terminadas aplicaciones se utilizan superconductores en forma masiva, princi-

palmente REBCO y BSCCO. Existen una serie de parámetros asociados a los

superconductores, como la temperatura cŕıtica (Tc), el campo cŕıtico superior

(Hc2), el campo de irreversibilidad (Hirr), la anisotroṕıa superconductora (γ)

o la densidad de corriente cŕıtica (Jc), que juegan un papel fundamental en su

aplicabilidad.

La microestructura de los materiales es esencial para las propiedades su-
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perconductoras finales por lo tanto, es fundamental analizar y optimizar las

caracteŕısticas microestructurales más relevantes (presencia de las fases super-

conductoras y secundarias, homogeneidad, calidad de la textura, tamaño de

grano, etc) que dependen en gran medida del método de procesado y de los

polvos utilizados como precursores en su preparación.

Este trabajo se ha centrado en el estudio y optimización de hilos com-

puestos metal/MgB2 y de materiales masivos de Bi-2212. El objetivo principal

de la tesis es el estudio de la microstructura de estos materiales, que han sido

fabricados a partir de diferentes precursores y usando métodos espećıficos de

procesado, y de cómo la microestructura influye en sus propiedades supercon-

ductoras. Debido a su diferente naturaleza, propiedades y comportamiento, el

manuscrito se ha divido en dos partes, cada una de ellas dedicadas a cada uno

de estos materiales.

En la investigación del MgB2 se analiza el efecto de los parámetros de

molienda de los polvos precursores, realizada en un molino de bolas plane-

tario, y de su dopaje con carbono, mediante al adición de ácido oleico, en

las propiedades superconductoras de hilos compuestos metal/MgB2. Para ello

hemos fabricado hilos con forro de hierro y núcleo superconductor de MgB2

usando la reacción in situ. El objetivo es encontrar las condiciones óptimas

de molienda y dopaje con carbono que permitan alcanzar una microestructura

controlada y homogénea con altos valores de Jc(H).

La estructura de esta parte del trabajo se detalla a continuación:

• En el Caṕıtulo 2 se resume el estado actual de los conductores de MgB2

y se describen los objetivos y la motivación del trabajo desarrollado en

la tesis en este campo.

• En el Caṕıtulo 3 se explica el proceso de fabricación de los hilos, desde

los polvos precursores hasta la propia fabricación del hilo mediante la

técnica polvo en tubo (PIT, de sus siglas en inglés) y el tratamiento

térmico final necesario para obtener la fase superconductora.

• En el Caṕıtulo 4 se ha estudiado la influencia de los parámetros de

molienda en la microestructura y en las propiedades superconductoras,

concretamente en los valores de Jc(H) y de temperatura cŕıtica.
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• En el Caṕıtulo 5 se ha analizado el efecto combinado de la molienda y

el dopaje con ácido oleico.

• El Caṕıtulo 6 se centra en el uso de técnicas magneto-ópticas (MO) para

analizar la distribución espacial del flujo magnético en el interior de las

muestras. Usando la técnica MO junto con la microscoṕıa electrónica de

barrido de emisión de campo (FESEM), se han correlacionado las propie-

dades superconductoras locales con las observaciones microestructurales.

Además, se ha demostrado que las imágenes MO obtenidas son muy

útiles para analizar la homogeneidad de los conductores y para compren-

der los valores de Jc globales obtenidos mediante medidas magnéticas o

de transporte.

• Finalmente, en el Caṕıtulo 7 se presentan las principales conclusiones

obtenidas en esta primera parte de la tesis.

El objetivo principal del estudio realizado sobre materiales masivos de

Bi-2212 es el desarrollo de un proceso industrialmente escalable basado en el

uso de hornos en continuo que puede ser utilizado para procesar piezas de

este material de grandes dimensiones. El proceso comprende todas las eta-

pas: la preparación de los precursores, el texturado por fusión zonal láser

(LZM) y el tratamiento térmico final necesario para obtener la fase supercon-

ductora. También se analizan los parámetros más relevantes y su efecto en la

microestructura y propiedades superconductoras de las muestras.

A continuación, se describe la estructura de esta segunda parte de la tesis:

• En el Caṕıtulo 8 se resumen los principales resultados obtenidos para

el texturado de barras y monolitos de Bi-2212 con las técnicas LZM y

fusión zonal láser asistida con corriente (EALZM). También se recogen

algunas de las modificaciones introducidas en los sistemas de procesado

láser para desarrollar procesos continuos. Finalmente, se describe la

motivación y los objetivos de esta segunda parte.

• En el Caṕıtulo 9 se ha analizado la posibilidad de preparar polvos de

Bi-2212 utilizando un proceso continuo de śıntesis de estado sólido. Esta

técnica se realiza en un horno de rodillos y permite superar ciertas li-
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mitaciones con respecto a la cantidad de polvo a preparar y su uni-

formidad. Se han analizado las caracteŕısticas de los polvos fabricados

con esta técnica, comparándolas con otros polvos comerciales y otros

fabricados con técnicas estándar de estado sólido. Teniendo en cuenta

las caracteŕısticas del horno utilizado se ha determinado cuántas veces

debe repetirse el tratamiento térmico para obtener un grado mı́nimo de

prestaciones en el polvo.

• En el Caṕıtulo 10 se ha descrito un método para texturar materiales ma-

sivos de Bi-2212 en geometŕıa plana, utilizando métodos de fusión zonal

inducida con láser (LZM) que son industrialmente escalables. Se ha vali-

dado la técnica de texturado utilizando precursores fabricados con polvos

comerciales y posteriormente se ha analizado la posibilidad de utilizar

precursores fabricados con el método de estado sólido en continuo.

• En el Caṕıtulo 11 se ha analizado el efecto de aplicar una corriente

eléctrica durante el procesado de fusión zonal de muestras planas ma-

sivas de Bi-2212, analizando sus propiedades microestructurales y su-

perconductoras. Se ha demostrado que un porcentaje importante de la

corriente aplicada no pasa a través de la zona fundida.

• Finalmente, las principales conclusiones de esta parte se recogen en el

Caṕıtulo 12.



Chapter 1

Introduction

1.1 Superconductivity: materials and relevant pa-

rameters

In 1911, Kamerlingh Onnes discovered superconductivity by cooling mer-

cury to extremely low temperatures, and observing that the metal exhibits zero

resistance to electric current at T < 4.2 K. During the first half of the the twen-

tieth century many other metals and alloys were found to be superconductors,

known as low temperature superconductors (LTS). These materials present

a transtition temperature from superconductor-to-normal state, Tc, typically

below 20 K, being 23.3 K the highest for Nb3Ge [1]. Probably the most widely

used superconductors discovered during this period were Nb47wt.%Ti and

Nb3Sn, with Tc values of 9.8 K [2] and 18.1 K [3] respectively.

In 1986, Bednorz and Müller discovered oxide based ceramic materials

with Tc of 35 K [4], inaugurating the high temperature superconductors (HTS)

research field. Since then, extensive research has raised Tc up to 138 K in

Tl-doped HgBa2Ca2Cu3O8+x (Hg-1223) [5, 6], and even up to 164 K in un-

doped Hg-1223 under 31 GPa [7]. Most important cuprate superconductors

are YBa2Cu3O7-x (known as YBCO or Y-123) and Bi2Sr2Can-1CunO2n+4+x

where n ranges from 1 to 3 (BSCCO) [8]. YBCO was the first discovered

superconductor above the boiling point of liquid nitrogen (77 K), specifically

at 93 K [9]. Tc in BSCCO materials ranges from ∼ 90 K for Bi2Sr2CaCu2O8+x

(Bi-2212) to 110 K for Bi2Sr2Ca2Cu3O10+x (Bi-2223).
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Thereafter, superconductivity has been found in other materials, such as

MgB2 (with Tc ∼ 39 K) and iron-based family, which awakened great inter-

est, both for their unconventional mechanism that governs superconductivity

and their potential applications. The first superconductor discovered of this

Fe-based family was LaFePO in 2006 with a Tc of ∼ 4 K [10]. The Tc has been

increased up to 109 K in 2014 for FeSe films grown over Nb-doped SrTiO3

surfaces [11]. One year later, in 2015, superconductivity was observed in the

hydrogen sulfide system (most probably H3S) under 155 GPa of pressure at

∼ 203 K [12], setting the record of highest Tc up to date.

In addition to the temperature constraint (T < Tc), there exist other

parameters that limit the superconducting state, such as the critical magnetic

field, Hc, and the critical current, Ic. All practical superconductors are type

II superconductors, presenting two critical fields: the lower critical field, Hc1,

and the upper critical field, Hc2. When the superconductor is exposed to field

values in the range Hc1 < H < Hc2, it is penetrated by magnetic flux forming

an ordered lattice of quantized line vortices of fluxons. This state is known

as the mixed state and the vortices are normal state cylinders of radius equal

to the coherence length, ξ. Associated to the core of these vortices, there

are superconducting screening currents whose density decreases exponentially

over a length equal to the London penetration length, λL. When increasing the

applied field, more vortices penetrate the sample increasing the flux density

in the superconductor. This process progresses until H = Hc2, where the

cores of the vortices begin to overlap and the whole superconductor ends up

transitioning into the normal state.

When a current density J flows through a type II superconductor sub-

jected to an applied magnetic field such as Hc1 < H < Hc2, a Lorentz force

FL (perpendicular to J and H) will act on the vortices inducing a flux flow

that will cause energy dissipation. In order to avoid magnetic flux motion,

vortices must be pinned (flux pinning) by nanostructural or microstructural

defects, depending on the material. The overall force at which these vortices

are pinned is known as pinning force Fp(T,H). The critical current density,

Jc(T,H), which is defined by the balance of the pinning and Lorentz forces,

Fp = FL, constitutes then the upper limit of transport current density in

practical applications.
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Furthermore, Jc will decrease when increasing H until it becomes zero.

That characteristic field is known as the irreversibility field, Hirr, which is al-

ways lower than Hc2 and plays a crucial role in the development of applications

because it determines the highest magnetic field at which the superconductor

can be put in service. Figure 1.1 shows both the Hirr and Hc2 fields of some

type II superconductors.

Figure 1.1: Magnetic field-temperature diagram for Nb47wt.%Ti, Nb3Sn, MgB2,

Bi-2223 and YBCO [13]. Hc2 is indicated in black and Hirr in red.

1.2 Applications of superconductivity

In terms of applications of superconductors, these can be divided in two

main categories: superconducting electronics, based on their quantum prop-

erties (such as the Josephson effect), and electric power applications, which

take advantage of their high current transport properties.

Superconducting quantum interference devices, SQUID, are without doubt

the most widely recognised application in the field of superconducting electron-

ics. They are currently used as the main component of magnetometers because

they are the most sensitive devices for detecting magnetic flux.

Electric power applications include among others, superconducting mag-
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netic energy storage (SMES), flywheel electrical energy storage (FEES) de-

vices, superconducting cables for power transmission and distribution, super-

conducting fault current limiters (SFCL) to protect the grid against shot-

circuits, superconductor-based transformers and also superconducting rotat-

ing machines, rotors and generators, which provide important mass and size

reductions.

Other major field of superconductivity applications is in high-field super-

conducting magnets. Superconductors are the only possibility for building the

high field magnets needed in high energy physics, as in CERN, and nuclear en-

ergy applications, such as ITER. However, the largest and most commercially

successful applications of superconducting magnets are magnetic resonance

imaging (MRI) devices for medical diagnosis, and in nuclear magnetic reso-

nance (NMR) spectroscopy, widely used in chemical, biological, biochemical

and pharmaceutical research and development.

For the majority of these applications, superconductors must be fabricated

into composite wires or tapes, and only a few are suitable and commercially

available: NbTi, Nb3Sn, MgB2, Bi-2212, Bi-2223 and YBCO (or REBCO

where Y is substituted by a rare earth). However, other applications demand

bulk superconductors, mainly REBCO and BSCCO [14].

Each application presents an specific set of requirements making certain

commercial superconductors more adequate than others. In addition to the

previously mentioned Tc, Hc2 and Hirr, the superconducting anisotropy γ,

defined as the ratioH
‖ab
c2 /H⊥abc2 , plays a crucial role, especially in HTS. Another

crucial parameter is the engineering current density, Je, defined as the ratio

between Ic and the cross-sectional area of the overall conductor (including

metal sheaths and matrix), which gives the “effective” current density that

the superconducting wire is able to carry. With all this in mind, the design

of superconducting applications has to pay special attention to the operating

requirements (T , direction and intensity of H, J) in order to choose the most

appropriate superconducting material.
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1.3 Objective and structure of the thesis

The intrinsic properties of each superconductor impose specific require-

ments in their fabrication process in order to be practical from the techno-

logical point of view [13]. For example, in HTS, Jc decreases exponentially

as a function of the misorientation angle between neighbour grains. Thus,

these superconductors require specific fabrication methods to induce texture,

i.e. to reduce as much as possible the grain misorientation. However, grain

boundaries can contribute to flux pinning in LTS and MgB2, which do not

need texture.

In the process of developing practical superconducting materials, it is fun-

damental to analyse and optimize their microstructure, due to its essential

role in their final superconducting properties. Relevant microstructural char-

acteristics, which include superconducting and secondary phases present in

the material, homogeneity, texture quality, grain size, etc, depend strongly on

the processing method and powders used as precursor.

The study of the microstructure of superconducting materials processed

from different precursors and their influence in their superconducting proper-

ties is the main objective of this thesis. It has been focused on the analysis of

two different superconductors, MgB2 and Bi-2212, for their interest from the

point of view of the applications. Due to their different nature, properties and

behaviour, the manuscript has been divided in two different parts:

• The first part is devoted to the analysis and improvement of monocore

Fe-sheathed MgB2 wires and tapes manufactured by the powder-in-tube

(PIT) technique, using drawing and rolling deformation methods and

in situ reaction. The effects of the precursor milling energy and car-

bon doping on the microstructural homogeneity and critical currents of

these conductors have been investigated. Combined magneto-optical,

microstructural and magnetization measurements in tapes made from

differently milled precursors have been performed in order to correlate

their local and global critical current densities with microstructural ob-

servations.

• The second part explores the development of an industrially scalable pro-
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cess to texture Bi2Sr2CaCu2O8+xmonoliths. This scale-up covers from

the synthesis of the precursor powders, the laser texturing method to

the final heat treatment required to obtain the superconducting phase.
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Chapter 2

Introduction and motivation

2.1 Current status of MgB2 conductors

The discovery of superconductivity in MgB2 by Nagamatsu et al. in

2001 [1], evoked great interest in the superconducting community. Its crit-

ical temperature of ∼39 K, simple crystal structure and high critical current

densities made soon this material very promising for technological applica-

tions.

Compared to LTS, the main advantage of MgB2 is its higher Tc because it

allows operation temperatures around 20 K, which implies lower operating cost

than LTS devices, usually working at temperatures below 5 K, and enhanced

thermal stability. Therefore, no liquid helium (with a boiling temperature of

4.2 K at atmospheric pressure) is required, making systems safer, easier to de-

sign, more compact and less expensive, both in production and maintenance.

Liquid neon could be interesting for MgB2 cooling due to its boiling temper-

ature, 27 K, but it is quite rare and expensive (more than 50 times of liquid

helium) and therefore is not suitable for its extensive use in commercial ap-

plications. Liquid hydrogen, with boiling temperature of 20 K at 1 bar, has

been proposed as a promising cooling alternative in future. Although safety

precaution requirements complicate a wide-spread use in certain laboratory

and industry environments and leave closed circuit refrigerators (cryocoolers)

as the preferred cooling option for MgB2 devices at present.

Compared to HTS, the starting materials of MgB2 are cheap and abun-
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dant and the manufacturing methods significantly cheaper. This is because

MgB2 has a low anisotropy γ and thus expensive texturing methods to achieve

bulks and wires with good superconducting properties are not required as for

HTS. Moreover, critical currents in MgB2 are not limited by weak-links as in

HTS, and clean grain boundaries are possible. Nonetheless, it must be re-

marked that the presence of secondary phases at the grain boundaries, like

magnesium or boron oxides, could reduce the Jc(H) values significantly and

should be avoided. The cost of HTS conductors is still very high and therefore

MgB2 would be preferable for certain applications despite the penalty of lower

operating temperatures imposed by its lower Tc. Moreover, superconducting

joints between MgB2 wires have been successfully developed [2], which is a

significant advantage with respect to HTS conductors.

MgB2 wires and HTS coated conductors require some technological ad-

vances for their commercial use, such as reliable long length manufacturing,

improved Jc values and enhanced conductor homogeneity. Moreover, a sig-

nificant decrease of the conductors cost, which is usually measured in terms

of cost/performance ratio (in e/kAm) is compulsory. Important efforts are

being made nowadays to achieve these objectives.

Many ways to optimise the superconducting properties of MgB2 materials

have been searched. Up to now, doping and grain size reduction have been

proven to be the most successful ways to increase Hirr, Hc2 and Jc(H) at high

magnetic fields, as it will be reviewed in more detail in sections 2.2 and 2.3.

In terms of superconducting performance, MgB2 can challenge commercial

LTS, i.e. NbTi and Nb3Sn, in the temperature operation range of 15-30 K.

Most applications require a flexible conductor architecture and MgB2 can be

manufactured with different shapes such as round or squared wires and tapes.

It can be a competitive conductor for low field applications, such as supercon-

ducting transformers [3], motors [4] and generators [5]. There are also moder-

ate field applications in which MgB2 conductors can be potentially used, for

example, adiabatic demagnetization refrigerators, superconducting magnetic

separators and magnetic energy storage (SMES) devices [6] and even in mag-

netic levitation [7]. Also high energy applications, such as high current busbars

to feed the high-field magnets, currently in developement at CERN [8], are

target applications for MgB2 conductors. Tomsic et al. [9] present a general
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overview of possible applications.

MgB2 offers an interesting perspective for new magnetic resonance imag-

ing (MRI) systems, specifically toward the development of liquid-helium-free

MRI. Although NbTi is well-established and still remains the MRI manu-

facturer’s choice, due to the continuous rising cost and supply difficulties of

helium, growing interest has been shown in MgB2-based systems. A model of

cryogen-free MgB2-based MRI is already commercialized by Paramed Srl with

0.5 T central field magnet operating at 18 K [10].

In particular, superconducting MgB2 conductors must fulfill some require-

ments for their use in applications. The need to ensure good thermal and

electrical stability for quench protection, usually requires multifilamentary

conductors made of a certain number of metallic sheathed monocore MgB2

wires embedded in a metal matrix encompassing different architectures. Both

metallic sheath and matrix need to provide an adequate thermal stability and

good mechanical properties to the conductor. Copper is usually used as metal

matrix to achieve the required thermal stability due to its high thermal and

electrical conductivity. On the other hand, the outer sheath is usually made

of nickel, monel or another alloys in order to increase the mechanical strength.

Finally, to act as diffusion barrier, the metal sheath surrounding the MgB2

cores has to be inert, i.e. not reactive with Mg, B or MgB2. Both Mg and

MgB2 tend to react with many metals such as Al, Cu, Ag [11], etc. There

are some elements that are inert or less reactive, for example Fe, Nb [12, 13],

Ti [14], Mo, Nb, V, Ta, Hf and W. Among these, the refractory metals (Mo,

Nb, V, Ta, Hf, W) have inferior ductility and higher price compared to Fe,

and consequently Fe is among the most appropriate sheath material for MgB2

wire and tape fabrication. Nb and Ti have also been widely used as diffusion

barriers. Some multifilamentary MgB2 wires and tapes commercialized by

Columbus Superconductors and Hyper Tech Research are displayed in Figure

2.1.

Another important fulfilled requirement of MgB2 for practical applications

is that MgB2 conductors can be available in long lengths (of few kilometres)

[15], which is industrially achievable by several methods. Among those, the

powder-in-tube (PIT) technique was primerly used by Glowacki et al. [16]

and has been widely used since then. More recently the internal Mg diffusion
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Figure 2.1: Cross-sections of commercial MgB2 multifilamentary conductors with

diverse architectures: (a) 19-MgB2-filaments inside a Cu ring with monel external

sheath and (b) 12-filaments surrounding a Fe+Cu core with Ni external matrix, are

commercialized by Columbus Superconductors. (c) 18-filaments surrounded by Nb

barrier, with Cu matrix for stabilization and monel outer sheath, from Hyper Tech

Research.

(IMD) process, originally proposed by Giunchi et al. [17], has also generated

great interest.

A diagram of the PIT method is displayed in Figure 2.2. In this technique,

a metallic tube is filled with either reacted MgB2 powders, so called ex situ

route, or a mixture of raw Mg and B powders that will eventually form the

superconducting phase, known as in situ route. After filling the metal tube

with those precursor powders, it is sealed and deformed to a thinner wire by

means of different mechanical deformation processes such as swaging, drawing

or groove rolling. Once obtained the monocore wires, these are inserted into

another metallic tube and then deformed again to the desired final shape

and dimensions to form a multifilamentary wire or tape, which is finally heat

treated to form the MgB2 phase (in situ route) or to sinter the prereacted

MgB2 grains (ex situ route) [18].

A scheme of the IMD process [19] is displayed in Figure 2.3. A pure Mg

rod is embedded axially in a B-powder filled metal tube prior to mechanical

deformation. Then, some wires are bundled together as with the PIT method

to form multifilamentary wires. The superconducting MgB2 phase is formed
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Figure 2.2: Draft of the different steps used in the PIT technique to produce mulfil-

amentary MgB2 wires or tapes for both in situ and ex situ routes.

during an annealing process in which the Mg diffuses into the B powders to

form a very dense layer of superconducting phase, typically <100 µm thick,

leaving a hole at the centre of each filament where the Mg rod was located

before the reaction. This resultant MgB2 layer has a very high density close

to 100 %, much higher than that of wires fabricated using the PIT technique

because the porosity associated with the Mg powder sites produced during the

annealing is eliminated [20,21]. Thus, this dense MgB2 layer presents excellent

Jc(H) values, higher than for wires fabricated with other techniques. It must

be noted, that due to the central hole in IMD-processed wires, there is a large

difference between Jc and Je, which is the relevant parameter for the device

designer. Despite this drawback, high Je values have already been obtained

by this method and intense research is under way by several research groups

to optimise the process [19]. The scale-up from laboratory to industrial imple-

mentation in order to achieve wires of several km length is challenging, since

the Mg rod should be in the centre with a very uniform B powder distribution

around it. Small misalignments of the Mg rod in the initial composite wire

way produce significant Je inhomogeneities along the final wire.

Regarding the PIT technique, both in situ and ex situ routes present var-

ious advantages and drawbacks, as Braccini et al. [22] discuss. The ex situ

route is suitable for long multifilamentary wires and tapes as it allows a better
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Figure 2.3: A scheme of the IMD process followed by Togano et al. [19] to obtain

single-, 7- and 19-filament wires.

control of the powder granulometry and purity degree of the MgB2, making

easier to maintain homogeneity over very long lengths and thus resulting more

attractive for the industrial applications. But ex situ samples require a heat

treatment for sintering in order to improve the grain connectivity and Jc(H),

which induces a recrystallization that decreases Hc2. On the other hand, in

situ route seems to be more promising due to its lower cost, high speed pro-

cessing, lower reaction temperatures and greater ease of doping. However, the

main concern of this route is to obtain homogeneous and dense samples. The

final density of in situ wires has been estimated to be about 50 % of the the-

oretical value [23], compared to the 70-80 % of ex situ wires [24]. It must be
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noted that the B and Mg precursors individually have a higher density than

MgB2, and thus the formation of the superconducting phase theoretically leave

a ∼23 % of empty space with respect to the initial volume occupied by the

precursors [25]. Another problem for industrial manufacture of MgB2 wires

or tapes using the PIT technique comes from the hardness and brittleness

of used precursors and metallic sheaths, making drawing or rolling processes

with very fine filaments difficult [26].

Some techniques have been developed to increase the mass density and

grain connectivity of MgB2 wires improving both the Jc(H) and Je(H) perfor-

mance, being the most relevant the Cold High Pressure Densification (CHPD)

technique developed by Flükiger et al. in 2009 [24] which allows an increase

of the in situ PIT mass density from 43 % to 73 % of MgB2 theoretical one. It

is based in the room temperature (RT) application of pressures up to 6.5 GPa

using solid anvils acting simultaneously on all the sides of a squared wire,

followed by a preassure release that allow a recovery of the wire without dam-

age, and prior to the heat treatment. This method achieved a considerable

enhancement of both Jc(H) and Hirr values [24,27].

2.2 Doping of MgB2

Doping MgB2 process has been widely searched to optimise Jc(H) values

for technological applications. There are three main doping strategies:

• By introducing elements or compounds that partially substitute the B

or Mg atoms inducing both strain and defects in the crystalographic

lattice, as well as changes in the densities of the electronic conduction

bands. This may produce an enhancement of the flux pinning reflected

on the Hirr(T ) improvement, an increase of the Hc2(0) value [28] but

also results in a lower Tc.

• By introducing nanoparticles that act as pinning centers and therefore

increase flux pinning and Jc(H).

• By introducing elements or compounds that reduce the oxygen content in

MgB2 thus reducing the insulating MgO phase that tends to reduce grain
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connectivity and Jc(H). As a consequence, a purer superconducting

MgB2 is obtained. Another related possibility is to introduce elements

or compounds that reduce grain boundary contamination and improve

connectivity.

Many substitutions of Mg and B by other element and the adittion of

different compounds have been tried as reviewed by Eisterer [23] and Collings

et al. [29].

When using metallic elements as dopants, those who are magnetic (Mn,

Fe, Co, Ni, etc) tend to decrease pinning or even supress superconductivity.

However, other metallic elements such as Ti, Zr [30], Ag [31], Si [32] and

La [33] seem to form nano-sized compounds, either with B or Mg, which

favour pinning. For example Shekhar et al. [31] have reported an improvement

of Jc(H) when a 10 % atomic Ag addition is performed in MgB2 bulk samples.

Another attempt to create nano-pinning centres has been followed using

metal oxides as dopants. Typically these materials are decomposed during

the heat treatments required to form the MgB2 phase and recombine either

producing nano-sized B-compounds and MgO (for Y2O3 [34], Dy2O3 [35],

HoO2 [36] and Pr6O11 [37]), or substituting Mg in the lattice (for Al2O3 [38]

and SiO2 [39]), or remaining as nanoparticles (for example TiO2 [40]). It seems

that the presence of nano-sized MgO grains in low quantities can improve

pinning [41]. These nano-MgO are formed when oxygen is released due to

decomposition of the added nano-oxide particles during annealing. Therefore,

there are serious limitations on the amount of metal-oxide dopants that can

be added without decreasing Tc and Jc(H).

Also inorganic compounds from nitrides, such as Si3N4 [42], silicides, such

as WSi2 and ZrSi2 [43], and borides, such as ZrB2, TiB2, NbB2 [44] and WB

[45], families have been used for doping MgB2. Best results to increase Jc(H)

have been obtained when these compounds are in the nano-size range [41].

However, further research in the pinning mechanisms and chemistry involved

is required.
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Carbon doping of MgB2

In order to increase the amount of strain in the lattice, pure carbon al-

lotropes and C-rich compounds have been extensively used for doping MgB2

[46] . C randomly substitutes B in the graphite-like honeycomb sub-lattice

formed by B atoms, thus introducing defects that act as pinning centres. In

addition, Mg(B1-xCx)2 compounds are isostructural in a wide range of compo-

sitions therefore C atoms increase lattice disorder and tend to decrease grain

size [47]. The overall result is an increase of Jc values, mainly at high fields.

Carbon doping has been obtained by addition of many different C rich

sources: solid and liquid, pure carbon and compounds (either organic or inor-

ganic), powders and nano-particles. The most relevant are detailed next.

As a figure-of-merit to compare the effect of the different types of doping,

the value of the magnetic field at which Jc = 1× 104 A cm−2 at 4.2 K has

normally been used.

Addition of pure carbon allotropes

Different pure carbon allotropes have been used for doping MgB2, most

notably graphite [48–51], nanodiamonds [52–54], C-nanoparticles [55, 56], C-

nanotubes [57–60], fullerene [61] and graphene [62]. No matter in which form,

pinning is enhanced and consequently Jc(H) performance is improved. How-

ever, this does not occur only by C-substitution but also due to the forma-

tion of nano-sized inclusions, coming from the non-reacted dopant introduced.

Typically, the amount of C introduced in the lattice depends both on the

sample annealing temperature and on the reactivity of the dopant (higher for

nanoparticles and nanotubes, lower for nanodiamonds and graphite powders).

Best results achieved so far are for nano-sized fullerene (C60, ∼0.71 nm)

doping with Jc(H) value at 4.2 K of 1× 104 A cm−2 at 14 T [61]. Good results

have also been obtained by Xu et al. using graphene, although with lower

Jc(H) value of 1× 104 A cm−2 at 5 K and 9.2 T [62].
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Addition of carbon rich inorganic compounds

The addition of nano-SiC particles was firstly proposed by Dou et al. [63]

to improve the pinning force and Jc(H) values of MgB2 bulk and wires, reach-

ing high Jc(H) values of 1× 104 A cm−2 at 12 T and 4.2 K. Later on, many

research groups confirmed this improvement in the performance of these ma-

terials [64–70]. To understand the mechanisms for such enhancement, Dou et

al. proposed a model in which fresh and highly reactive C is released from

SiC at low temperatures, 600 ◦C, when reacting with Mg to form Mg2Si and

Mg2SiO4, thus introducing C-atoms in the B-sites and increasing Hc2 [71]. Be-

sides, the resultant products, including the mentioned Mg2Si and the excess

of nano-sized C particles, can be embedded into the MgB2 matrix and act as

pinning centres.

The addition of submicron-sized inorganic compounds, such as carbides

and carbonates: TiC or Mo2C [72], NbC [73], Na2CO3 [74] or B4C [75,76] have

also been found to influence the MgB2 microstructure, either by decreasing

grain size or by increasing densification.

It must be remarked that nano-sized dopants are required in order to

increase flux pinning [77].

Addition of carbohydrates

Another used solid source of fresh C have been inexpensive carbohydrates,

such as sugar [78, 79], glucose (C6H12O6) and sucrose (C12H22O11) [80]. In

both cases, B is coated with the carbohydrate via wet route and then gath-

ered with Mg prior sample fabrication. It has been found to increase MgO

and C impurities content but also a substantial enhancement of Jc(H) at

high fields, with Jc value of 1× 104 A cm−2 at 5 K and 10 T for sugar addi-

tion [79], figure-of-merit similar to those accomplished with C-nanotubes and

C-nanoparticles.

Addition of aromatic hydrocarbons, ketones and alcohols

The addition of aromatic hydrocarbons, ketones and alcohols were initially

used as liquid media for wet ball milling processes in order to introduce C in
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the MgB2 lattice. Rather scarce success was obtained for acetone (C3H6O),

ethanol (C2H6O) and glycerine (C3H8O3), which results in a decrease of Jc(H)

values, probably due to the presence of oxygen in the compound that increases

the presence of MgO and B2O3 impurities.

However, the aromatic hydrocarbon toluene (C7H8) was proven to be a

useful media for wet ball milling and produced an increase in Jc(H) values due

to grain refinement in comparison with pure samples [81]. Good results have

been obtained for other aromatic hydrocarbons used for wet ball milling such

as benzene (C6H6), naphthalene (C10H8), thiophene (C4H4S), ethyltholuene

(C9H12) and xylene (C8H10), achieving Jc(H) value of 1× 104 A cm−2 at 4.2 K

and 10.5 T [82,83].

For other solid at RT polycyclic aromatic hydrocarbons, such as coronene

(C24H12) and pyrene (C16H10), similar results in terms of Jc(H) performance

have been obtained with values of 1× 104 A cm−2 at 4.2 K and 11.5 T [84–86].

It is believed that their greater C content, in terms of atomic weight, and their

decomposition temperatures in the range of MgB2 formation favour C doping,

and thus enhance flux pinning. Excellent results were obtained by Yamada

et al. [87] using ethyltholuene in combination with SiC (10 mol% each) and

wet ball milling of the precursor powders. Thus, the C content in MgB2

was increased in comparison with SiC doping alone and also the grain size

was slightly reduced as a consequence of ball milling, improving flux pinning

and Jc(H) dramatically up to 1× 104 A cm−2 at 4.2 K and 13.5 T although

Tc decreased down to 32.5 K. Main concern about aromatic hydrocarbons is

their inherent toxicity. Besides mutagenic and carcinogen effects they can also

produce pulmonar, gastrointestinal, renal and dermatological issues, so they

have to be carefully handled and specific safety precautions are required when

manipulating them.

Addition of carboxylic acids

The addition of different carboxylic acids with MgB2 has been proposed

not only for doping purposes but also for MgO removal. One example of

the latter is acetic acid (C2H4O2), which was used for washing ex situ MgB2

powder with good results, as MgO content diminished, but no appreciable
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C doping was observed [88]. Many other carboxylic acids have been used

as a source of fresh C, such as citric (C6H8O7), oxalic (C2H6O5) [89], malic

(C4H6O5) [90–92], glycolic (C2H4O3) [93], tartaric (C4H6O6) [94], and stearic

acids (C18H36O2) [95–97] as well as maleic anhydride (C4H2O3) [98]. Typically

the doped precursor powders are subjected to different degrees of milling to ho-

mogenize them and the substitution of B lattice sites by C atoms is estimated

to be at least one order of magnitude lower than the total amount of carbon

added to the precursor powders. Kim et al. [90] point out that C doping occurs

via nano-width coating of B grains when the fresh C is released during the

decomposition of carboxylic acids. In particular, good results have been found

when doping with stearic acid and maleic anhydride achieving Jc(H) values

at 4.2 K of 1× 104 A cm−2 at 12 T and 12.3 T respectively [95,98], comparable

to those obtained by nano-C and nano-SiC additions.

From the previously mentioned alternatives, a compilation of the most

effective C dopants, to increase Jc at high fields and low temperatures (4.2 K),

is presented in Table 2.1. From there, one can conclude that the best results

so far have been obtained when doping with pure carbon alone, in particular

with nano-sized fullerene, obtaining a value of Jc = 1× 104 A cm−2 at 14 T

and 4.2 K.

Dopant Magnetic Field Reference

Nano-C60 14 T [61]

Nano-SiC 12 T [63]

Ethyltholuene and nano-SiC 13.5 T [87]

Stearic acid 12 T [95]

Maleic anhydride 12.3 T [98]

Table 2.1: Comparison of the magnetic field values at which Jc = 1× 104 A cm−2 at

4.2 K, obtained for some of the most effective dopant additions.

Main drawbacks of many C-doped MgB2 materials are related to the impu-

rities formation that can act as pinning centres but can also deteriorate Jc(H)

values at low fields (i.e. grain connectivity) and decrease Tc. The essential

concern about nano-dopants is the possible formation of dopant agglomera-

tions and inhomogeneities within the sample. The core advantages of using

liquid C sources is that they can be combined with milling in order to avoid
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agglomerations and obtain a good homogenization of the dopant in the MgB2

matrix.

2.3 Ball milling of MgB2 precursors

Another possible way for improving flux pinning and consequently Jc(H)

in MgB2 is by grain refinement through ball milling [22, 99]. The inversely

proportional relation between grain size and flux pinning has been well stab-

lished in the literature [100–102]. This is because lower grain sizes imply larger

boundary surface and, hence, higher Jc(H) values. MgB2 grain size is heavily

influenced by precursor powder grain size, particularly B one. Ball milling of

the precursors reduces the grain size and enhance Jc(H).

In particular, high energy ball milling, which is a solid-state powder pro-

cessing technique also known as mechanical alloying [103], produces a very

fine grain with a fraction of the precursor powders already reacted to form

MgB2 [104]. Also excellent Jc(H) values were found (as high as 1× 104 A cm−2

at 4.2 K and 12.1 T and 16.4 T for non-doped and nano-sized C doped in situ

PIT samples, respectively) as a result of boundary pinning [105,106] and rela-

tively low sensitivity against oxidation in air [107]. These values are not only

comparable but greater than those obtained by simply doping, thus proving

the utility of this method to reduce grain size increasing flux pinning and

Jc(H), and even to introduce dopants in the MgB2 matrix.

Ball milling may present some technical issues that should be taken into

account, such as difficulties during wire drawing, or mechanical conformation

problems (shear bands, narrowing and even wire fracture) that can make hard

to obtain long wires.

Ball milling of the precursor powders may be applied both to in situ and

ex situ routes. For the latter, good results have been obtained in bulk samples,

processed by hot isostatic pressed (HIP) pellets [108–110], and PIT wires [26,

99, 111–114]. In particular, using ball milled C-doped HIP bulks Senkowicz

et al. [115] found that flux pinning is more influenced by grain refinement

than by grain connectivity, which is a weak function of milling time, while Tc

typically decreases when increasing ball milling time. They also found that
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despite of full C introduction achieved within short milling times (30-60 min),

further increase of milling time reduces grain size down to ∼20 nm enhancing

Jc up to 1× 104 A cm−2 at 4.2 K and 14 T [116]. Very similar results have been

obtained for C-doped ex situ PIT tapes with Jc(H) values of 1× 104 A cm−2

at 4.2 K and 13 T [22].

Regarding the in situ route, bulk samples made from ball milled powders

have been obtained from HIP [104, 117–119] and cold isostatic press (CIP)

[120–122]. Best results has been reported by Perner et al. for ball milled SiO2

and MgO doped HIP bulk samples with a Jc of 1× 104 A cm−2 at 10.3 T and

7.5 K [123]. Some authors have also studied the influence of Mg stoichiometry

in the superconducting properties of ball milled HIP bulks and found better

behaviour for those samples with an excess of Mg [124]. Experiments on

trapped magnetic field by bulk samples have been performed on ball milled

HIP [125] and CIP pellets [126], with good results, specifically in the latter

with Jc value of 1× 104 A cm−2 at 5 K and 9.5 T.

PIT wires made from ball milled in situ precursors have been investigated

by several groups [105, 106, 127–129]. It is worth mentioning that Jc values

of 1× 104 A cm−2 at 4.2 K and 9.5 − 10 T have been reported by different

groups [130,131].

At greater (industrial) scales, issues related to ball milling precursor pow-

ders can appear and some authors have studied the possible implications [132].

In conclusion, the ball milling technique is a powerful instrument to in-

crease flux pinning by decreasing grain size, specially when used in combina-

tion with somekind of doping. The best results obtained so far have been com-

piled in Table 2.2. In particular, Herrmann et al. obtained excellent results for

ball milled nano-sized C-doped in situ PIT samples with Jc > 1× 104 A cm−2

in magnetic fields < 16.4 T at 4.2 K [106]. This value broadly exceeds the

best result obtained with C doping alone (see Table 2.1), thus confirming the

crucial role of ball milling in the enhancement of Jc(H).
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Method Magnetic Field Temperature Ref.

C-doped ex situ PIT 13 T 4.2 K [22]

Non-doped in situ PIT 12.1 T 4.2 K [105]

C-doped in situ PIT 16.4 T 4.2 K [106]

C-doped ex situ HIP 14 T 4.2 K [116]

Oxides-doped in situ HIP 10.3 T 7.5 K [123]

Table 2.2: Compilation of the magnetic field value when Jc = 1× 104 A cm−2 for

different ball milling treatments of the precursor powders.

2.4 Objectives and motivation

As previously mentioned, C doping is unambiguously the most effective

way of improving the superconducting properties of MgB2. Best results have

been obtained when doping in situ powders, since this route facilitates the C

incorporation into the MgB2 lattice during the superconducting phase forma-

tion. With potential industrial applications in mind, non-toxic nor harmful C

dopants are preferred as they are easier to handle and more practical to use.

Liquid C sources would be advantageous in order to avoid particle agglomer-

ations and to achieve a better distribution of the dopant within the precursor

powders for a more efficient doping.

In this regard, Devener et al. showed that oleic acid (C18H34O2) binds

efficiently to fresh unoxidized boron surfaces via B-O-C bond formation thus

providing an effective barrier to air oxidation [133]. Also, oleic acid surfactant

coatings provide chemical stability to magnetic nanoparticles which easily ox-

idize such as Co, Ni, Fe and FePt [134]. Since oleic acid (Figure 2.4) is a

fatty acid present in animal and vegetable fats and oils, also present in human

diet, it is completely safe. Moreover, it is liquid at RT and has high C vs O

ratio (rCO = 9), which can be advantageous in order to avoid the formation

of secondary phases. Thus, the addition of oleic acid as C source fulfills the

advantages of best inorganic liquids for carbon substitution of boron in MgB2

conductors [135,136].

On the other hand, ball milling would be an extraordinary efficient tool

for controlling the MgB2 microstructure, for achieving a better homogeneity

of both the precursor powders and the different dopants, but also for reducing
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Figure 2.4: Representation of the oleic acid molecule. C atoms are pictured in black,

H atoms in white and O atoms in red.

grain size to enhance flux pinning and Jc(H) performance at higher magnetic

fields. Still, it must be carefully applied in order to avoid damaging Jc(H)

values at low magnetic fields.

The objective of this work is to analyse the effect of ball milling parameters

and the addition of oleic acid addition on the properties of superconducting

wires made by PIT method. The ultimate intention is to find the optimum

conditions for milling and C doping to achieve homogeneous wires with con-

trolled microstructure and high Jc(H) values. This work has been focused on

monocore Fe-sheathed MgB2 wires made by the in situ route.

The chapters in which this part is structured are detailed below:

• Chapter 3 covers the whole wire manufacture process, from the starting

precursor powder preparation to the wire manufacture by PIT technique

and the final thermal treatment to obtain the superconducting phase.

• Chapter 4 studies and compares the influence of ball milling parameters

on the microstructure and the superconducting properties of the wires:

Jc(H) and Tc.

• Chapter 5 analyses the combined effect of ball milling and oleic acid

addition on the microstructure and superconducting properties of MgB2

wires.

• Chapter 6 focuses on magneto-optical (MO) imaging experiments used

to analyse the spatial distribution of magnetic flux inside the samples.

Using MO imaging and field-emission scanning electron microscopy (FE-
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SEM), the local superconducting properties have been correlated with

the microstructural observations. Besides, MO images are a very pow-

erful tool to analyse the homogeneity of the wires and understand Jc

global values obtained with magnetic and transport measurements.

• Finally the main conclusions drawn from this part are presented in Chap-

ter 7.





Chapter 3

Manufacture of MgB2 wires

and tapes

In this chapter the full wire manufacturing process of Fe-MgB2 monocore

wires is detailed. Beginning with the in situ precursor powder preparation,

through the PIT and wire drawing to the final annealing.

3.1 Precursor powder preparation

The precursor powders used as starting materials were commercial Mg

powders (99.8 %, Goodfellow, maximum particle size of 250 µm) and amor-

phous B powders (99 %, New Metal & Chemicals Ltd., mean particle size

lower than 1 µm). In most cases the stoichiometry proportion Mg:B 1:2 was

used. In some wires a slight Mg excess (1.05:2) was used in order to compare

with stoichiometric wires.

A scheme of the three different precursor powder preparation routes used

in this work is displayed in Figure 3.1. Oleic acid (99 %, Alfa Aesar, C18H34O2)

was used as a C source. The initial addition of oleic acid was always 10 wt.%

of the total Mg+2B mass. Three different routes were used. Route 0 was used

to prepare non-doped precursors for the wires, while routes 1 and 2 are used as

precursor preparation to obtain C-doped wires, using two different procedures

as described next.
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Figure 3.1: Scheme of the three different routes of precursor powder preparation

used in this work.

• Route 0 - This is the non-doped route in which the Mg and B precursors

are mixed together in a Retsch MM2000 mixer mill. Subsequently, these

powders are ball milled.

• Route 1 - In this route B powders are mixed with oleic acid in a Retsch

mixer. Afterwards, this initial mixture is placed in a folded iron foil

(99.5 %, Goodfellow, 0.038 mm of thickness) inside a tubular furnace and

preheated at 400 ◦C for 1 h for oleic acid pyrolysis. This is done in an

underpressured Ar atmosphere (∼500 mbar at RT, to avoid oxidation and

possible overpressure when heating the Ar). The resulting powders are

then mixed with Mg powders in the Retsch mixer. Finally the precursors

are ball milled.

• Route 2 - An initial mixture of Mg and B is mixed in a Retsch mixer.

After that, the oleic acid is added to the mixture and mixed again in
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the same mixer. Then, the pryolysis of the oleic excess is carried out

by heating the mixture at 400 ◦C during 1 h, as in Route 1. Finally, the

precursor powders are ball milled.

In all cases, when using the Retsch mixer, a treatment of 30 minutes in air

in three steps of 10 min was used.

Three precursor batches were prepared with routes 0, 1 and 2, but without

the final ball milling process, to manufacture the corresponding reference wires

with non-milled precursor powders.

The precursor powders were ball milled using a planetary ball mill Retsch

PM 100, which has a sun disk of radius rp = 7 cm. The tungsten carbide

(WC) jar, of inner radius rv = 5.25 cm, was designed to be able to perform the

milling in a controlled atmosphere. Specifically, 1.5 bar pressure of Ar inside

the jar was used to avoid any possible air filtration during milling and thus

to minimize the oxidation of the precursor powders. The WC ball-to-powder

mass ratio, β, was always kept at ∼ 36. Typically we prepared ∼ 3 g of Mg and

B mixture for each wire, so that we used 14 WC balls with a radius rb = 5 mm.

The energy per unit mass transferred to the powder by ball milling, Et/m,

is a useful parameter to analyse the milling effects. There are different ap-

proaches to determine Et/m. In this work we have used the formula developed

in [137], which depends explicitly on the milling parameters as:

Et

m
= cβ

(ωprp)
3

rv
t, (3.1)

where ωp is the angular frequency, c is a dimensionless constant of the order

of magnitude of 0.1, m is the powder mass and t is the milling time. Thus,

considering only the parameters that are not part of the milling device, Et/m

is directly proportional to β, t, and to the cube of ωp.

In order to avoid mechanical alloying, in most cases, the powders were

milled changing the rotation sense every 3 min with 1 min of pause in between.

With this protocol we avoid creating local heating that may lead to MgB2 for-

mation. Some tests were carried out following the same procedure but without

the 1 min pause. For the manufactured wires, different milling conditions were

used. They are collected in Table 3.1. The effective ball milling times range
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from 1.5 h up to 16.5 h, and ωp values range from 200 rpm to 400 rpm, giving

Et/m values from 1.2× 106 J kg−1 to 1× 108 J kg−1.

Milling Condition t(h) ωp(rpm) Et/m(J kg−1)

M1 1.5 200 1.2× 106

M1 4 200 3× 106

M3 3 400 2× 107

M4 16.5 400 1× 108

Table 3.1: Different milling conditions of precursor for the manufactured wires. Et/m

values have been estimated using Eq. (3.1) and the parametres given in the text.

3.2 PIT and wire drawing

3.2.1 PIT process

After doping and/or ball milling processes, the precursor powders were

introduced into commercial 25-30 cm long Fe tubes (99.5 %, Goodfellow, outer

diameter of 5 mm and 0.25 mm of wall thickness) using a piston and a hammer

to obtain good compacted powders. Both the initial and final part of the Fe

tubes were sealed with lead, thus avoiding powder loss during wire drawing.

Then, the wire was drawn through several dies in steps of 0.1 mm from the

initial diameter down to a final 1.1 mm diameter, obtaining final wire lengths

of ∼ 2 m.

An intermediate annealing is required when the wire diameter reaches

about 3 mm for favouring the stress relief of the Fe sheath, thus allowing

us to continue the drawing process. Heating the wire to a sufficiently high

temperature provokes a reduction of its strength and then the residual stress

by plastic deformation can be relieved. Figure 3.2 shows the effect of stress

relief (in %) for Fe after a 1 h treatment as a function of the annealing tem-

perature. Hence, an intermediate annealing at 550 ◦C during 1 h was always

performed during the wire drawing process in order to remove at least a 70 %

of the initial stress. Higher temperatures, which would allow a greater stress

relief, were deliberately avoided to prevent the MgB2 formation.
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Figure 3.2: Effect of the annealing temperature during 1 h on the stress relief of Fe

(data extracted from the Ductile Iron Society [138])

3.2.2 Tape rolling for MO analysis

The MO imaging technique requires flat samples as it will be detailed in

Chapter 6. Therefore, in order to study our samples with this technique,

tapes were prepared by rolling pieces of MgB2 wires. Rolling parameters have

been defined to obtain flat samples of ∼ 2 mm width and 0.3 mm to 0.4 mm

thickness. The length of the final tape was ∼ 30 cm long. Before rolling,

another annealing at 550 ◦C, 1 h in Ar was performed to relieve the iron stress.

3.3 Final heat treatment

A final heat treatment of the wires or tapes is required in order to form

the MgB2 phase. The performed annealing of all the samples analysed in

this work (unless otherwise specified) is displayed in Figure 3.3. It comprises
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an initial ramp from RT to 630 ◦C in 6 h (1.7 ◦C min−1), a slow approach

to the annealing temperature (670 ◦C in this case) at 0.6 ◦C min−1 to avoid

temperature overshoot, the proper annealing at 670 ◦C during 5 h and finally

a slow free cooling down to RT.

Figure 3.3: Scheme of the final heat treatment of the wires and tapes to form

the MgB2 phase. Neither the time nor the temperatures are at scale for clarifying

purposes.

A tubular furnace is used for this purpose. This furnace is sealed at both

ends to allow the required controlled atmosphere during the annealing. Either

vacuum or Ar flow have been used. To minimize any possible oxidation of the

wire during heat treatment, it is placed inside an alumina tube with some iron

foils at both ends that act as oxygen trap. In this work the heat treatment

has been usually performed in 10 cm long pieces, with both ends sealed, and

in vacuum (0.01− 0.1 mbar).

3.4 Samples nomenclature

The samples we have analysed in this work are named as follows: first

letter W or T refers to wires and tapes, respectively; second letter indicates

the powder preparation route (0, 1 or 2) as shown in Figure 3.1; and third and

fourth characters designate the ball milling condition. For example, sample

W2-M1, would correspond to a wire made from C-doped precursor prepared

with route 2 and milled with milling conditions M1. Sample T0-M2 would

refer to a tape made from non-doped precursor milled with milling conditions

M2.
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Influence of ball milling

In this chapter, we analyse the influence of the energy transferred to the

precursor powders during ball milling on the microstructure and supercon-

ducting properties of the resulting Fe/MgB2 wires. The aim of this work is to

improve the microstructural homogeneity and superconducting properties of

the manufactured in situ wires.

The experimental techniques used to characterize the phase and micro-

structure of the samples (FESEM and X-ray diffraction) and their supercon-

ducting properties (SQUID-magnetometer and PPMS) are also described.

The manufacturing characteristics of the wires analysed in this chapter are

collected in 4.1. All the wires are made from non-doped precursor powders

and milled with different conditions. The results of the reference wire W0,

made with non-milled precursor powders, are also shown for comparison.

4.1 Phase composition analysis

The microstructural and phase composition of the samples were analysed

by field-emission scanning electron microscopy (FESEM, Carl Zeiss MER-

LIN), using secondary electrons (SE), angle-selective backscattered electrons

(AsB) and energy-dispersive X-ray spectroscopy (EDX). SE detector allows

topographical analysis of the sample, AsB gives crystal orientation and com-

positional contrast, and EDX allows the determination of the concentrations
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Sample
Ball Milling

O-cont. (at.%)
t(h) ωp(rpm) Et/m(J kg−1)

W0 0 0 0 3.5 (0.6)

W0-M1 1.5 200 1.2 · 106 8.1 (0.9)

W0-M2 4 200 3 · 106 9.2 (0.9)

W0-M3 3 400 2 · 107 8.2 (1.5)

W0-M4 16.5 400 1 · 108 6.4 (0.7)

Table 4.1: Manufacturing characteristics and properties of the MgB2 wires analysed

in this chapter. The ball milling parameters are t, the effective ball milling time,

and ωp, the mill rotation speed. The milling energy per unit mass transferred to the

powder Et/m was estimated using Eq. (3.1). The oxygen content (O-cont.) values

and standard deviations were deduced from FESEM images and EDX analysis. All

the wires were annealed at 670 ◦C for 5 h.

of the different elements present in the sample. All MgB2 wires FESEM im-

ages have been recorded with a 15 kV accelerating voltage and a probe current

of 600 pA.

It must be remarked that due to the presence of very light elements, such

as O and particularly B, the quantification of the elements by EDX can only

be semi-quantitative. In order to minimize these limitations and to facilitate

the comparison among the analysed samples, identical experimental conditions

were used in all cases. The oxygen content, in at.%, has been collected in Table

4.1 for all the analysed wires. Different regions of the samples were analysed,

and the mean values and standard deviations are shown. As a general trend, it

is observed that O-content is higher for the wires made from milled precursor,

which varies from ∼ 6.4 to 9.2 at.%, than for the reference wire W0, which

has 3.5 at.%. Due to greater affinity of finer Mg powders to form MgO and

to larger reactivity of smaller grains, any small leak in the mill jar would lead

to an increase in the oxygen content. Therefore, it would be expected that

the oxygen gathered by the precursor during ball milling would increase either

with milling time or with milling energy. Nevertheless, we did not observe

a clear correspondence between milling conditions and the oxygen content

estimated by EDX analysis.

The phase composition was analysed using the X-ray diffraction (XRD)
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patterns collected at room temperature on a RIGAKU D-max/2500 X-ray

diffractometer using Cu Kα radiation.

In Figure 4.1 the XRD patterns of some precursor powders are displayed.

For the non-milled precursor powders, M0, Mg peaks are clearly identified but

as long as B is amorphous it cannot be detected using this technique.

Figure 4.1: XRD patterns of precursor powders after mechanical milling for different

milling conditions: M0 (non-milled), M3 and M4. Peaks corresponding to Mg and

MgB2 phases are identified.

The XRD patterns of the most extensively milled precursor powders, that

is, those corresponding to milling conditions M3 and M4, show a broadening

of the Mg peaks due to a reduction of the grain size, which increases with

Et/m. It must be remarked that the MgB2 phase is clearly visible in the XRD

of powders milled with milling conditions M4. This is in agreement with the

limit for mechanical alloying at Et/m of 1× 108 J kg−1 reported in [137]. In

order to quantify the amount of MgB2 formed during milling M4, we have

used PDXL2 software of RIGAKU, which allows qualitative and quantitative

analysis of the XRD patterns. The estimated phase composition of milled

powder M4 was 60.4 wt.%, 36.2 wt.% and 3.4 wt.% of Mg, MgB2 and MgO,

respectively.
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After annealing, the wires were polished to remove the Fe sheath and to

have access to the superconducting core. XRD patterns of those polished

surfaces are shown in Figure 4.2. As expected, in all cases MgB2 appears as

the main phase of the core’s wires, but also MgO is present as secondary phase.

Besides, other residual phases were also identified, such as WC, which is due

to contamination from the milling jar and balls during milling process, and it

is especially visible in sample W0-M1. Finally, small peaks, identified as Fe2B

phase, are also present, which would be formed during thermal treatment due

to the reaction of the Fe sheath and B in the core.

Figure 4.2: XRD patterns of polished wire’s cores W0, W0-M1, W0-M3 and W0-M4.

Peaks of MgB2, MgO, WC and Fe2B are identified.

A semi-quantitative phase composition analysis was performed from these

XRD patterns using the reference intensity ratio (RIR) of each phase. RIR

is a parameter that can be found in XRD databases [139]. It is defined by

the ratio i/icor, where i is the intensity of the strongest line of the pattern of

the given phase and icor is the intensity of the strongest peak of a reference

phase, taken by convention to be α-Al2O3, corundum, in a 50/50 weight mix-

ture. Once identified the different phases present in the analysed material,

and knowing from the database their XRD patterns and their RIR values,

a semi-quantitative phase proportion can be derived by scaling the intensity

of the peaks of each phase by the corresponding RIR values. The obtained
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results in our samples are collected in Table 4.2. The amount of tungsten

carbide is very small in all wires, < 1 wt.%, even for wire W0-M1. It must

be remarked that WC has a considerably higher RIR value (14.58) than MgO

(1.0) [139], therefore the presence of very small amount of this phase is clearly

seen by XRD. Also note that the estimated wt.% of MgO slightly increases

with milling energy.

Sample MgB2 (%) MgO (%) WC (%)

W0 95.4 4.6 -

W0-M1 93.5 5.8 0.7

W0-M3 91.3 8.5 0.2

W0-M4 91.2 8.6 0.2

Table 4.2: Phase composition of the annealed wires analysed with a semi-quantitative

analysis using the RIR of each phase. % are in weight.

A more accurate estimation of oxygen content in MgB2 materials would

require XRD analysis of grounded cores and Rietveld fitting. Even so, the de-

termination of the oxygen content in these samples presents some challenges.

Rosová et al. [140] found that superconducting core in PIT samples made from

non-milled in situ precursor is composed of MgB2 grains with crystalline MgO

in form of thin oriented layers distributed between MgB2 grains in oriented

clusters and also amorphous MgO distributed along MgB2 cluster boundaries.

The presence of amorphous MgO causes differences in oxygen content estima-

tions by different methods (EDX or XRD).

4.2 Effects of milling energy on the wire microstruc-

ture

Figure 4.3 shows the FESEM images of the cross-section of longitudinally

polished wires, using the SE detector. The images are ordered with increasing

Et/m values from top to bottom.

Thus, Figure 4.3 (a) corresponds to the wire made from non-milled precur-

sor powders, W0, which is used as reference. Its core presents characteristic

irregular voids of different shapes and sizes (up to 300-400 µm), left by Mg
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Figure 4.3: FESEM images using SE detector of polished wires from lower (top) to

higher (bottom) Et/m values. Images correspond to (a) W0, (b) W0-M1, (c) W0-M2,

(d) W0-M3 and (e) W0-M4.
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when reacting with B to form the superconducting phase. Voids closer to the

Fe sheath are more elongated and parallel to wire axis, whereas those at the

center tend to be more isotropic because the decreasing shear stress transmis-

sion from the sheath to the core center during drawing. The core represents

about a 75 % of the wire cross-section.

A more homogeneous microstructure is displayed for sample W0-M1 in

Fig. 4.3 (b), where smaller and axially oriented voids left by Mg can be seen,

especially in regions closer to the Fe sheath. It shows a more dense core than

W0 due to grain refinement. W0-M1 core represents a 85 % of wire’s total

cross-section.

Sample W0-M2, Fig. 4.3 (c), also presents a homogeneous microstructure

as W0-M1. However, the voids left by Mg are no longer elongated nor oriented

in the axial direction. Also, these voids seem to concentrate in the central part

of the core, which represents a 84 % of the total cross-section.

The increase in Et/m of the precursor used for wire W0-M3, shown in

Fig. 4.3 (d), is translated to its microstructure in form of radially oriented

voids located in the central part of the core. In the case of wire W0-M4,

shown in Figure 4.3 (e), this characteristic orientation of voids in the radial

direction is even more severe, as larger voids are formed. Both wires W0-M3

and W0-M4 were difficult to draw. This is because the core becomes less

plastic upon increasing milling energy due to the decrease of grain size and

to the previously mentioned formation of MgB2 in the latter. It must be

noted that the presence of shear bands, narrowing and wire fracture during

deformation of wires made from ball milled precursor has been reported by

other groups [137]. The core section of wires W0-M3 and W0-M4 is 85 % of

the total wire cross-section.

Further insight into the samples microstructure can be seen in Fig. 4.4,

where the images of the four wires whose precursor powders were ball milled

are presented at higher magnification using the AsB detector.

The different orientation of the voids in the sample made with the lowest

energy milled powders, W0-M1 (Figure 4.4 (a)), compared to the rest of the

milled wires (Figures 4.4 (b)-(d)) is clearly observed. The composition is rather

homogeneous in all the samples, indicating uniform MgB2 formation during
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Figure 4.4: FESEM images using AsB detector and the same orientation as in Figure

4.3 of samples (a) W0-M1, (b) W0-M2, (c) W0-M3 and (d) W0-M4. The same

magnification has been used in all images.

annealing in agreement with XRD patterns. Nevertheless, there are some areas

of darker grey contrast (marked by arrows in Fig. 4.4 (a)), which correspond

to boron richer phases, as derived by EDX analysis. In all the samples some

small brilliant dots of size < 100 nm are also observed. Tungsten element is

clearly detected by EDX in these areas, indicating that these particles would

correspond to tungsten carbide contamination from the ball milling jar, also

in agreement with XRD experiments.

It must be noted that in Figure 4.4 (a) there are also some impurities

inside the voids (light grey phase) that correspond to Fe, which are thought

to be impurities dragged from the sheath to the core during polishing. Wire

W0-M2, Fig. 4.4 (b), shows a very granular microstructure that would lead to

poorer intergrain connectivity, which is probably related to the higher oxygen

content observed in this wire by EDX analysis, as explained previously (see

Table 4.2).

For a better understanding of the effects of the energy transferred to the

precursor powder during milling on the microstructure of the final wires, it is

also interesting to analyse the FESEM micrographs of the non-annealed wires.
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Figure 4.5 shows the images taken on polished longitudinal cross-sections using

the AsB detector for some of the analysed wires before (images on the left)

and after annealing (images on the right).

Figure 4.5: FESEM images using AsB detector of polished longitudinal cross-sections

before (left) and after (right) annealing. Sample W0 (a) and (b), W0-M1 (c) and (d),

W0-M4 (e) and (f) are displayed. The small differences observed in the diameter

among the samples are due to different heights at which the cross-section is polished

in each sample.

Grain size of Mg particles decreases when increasing Et/m from the non-

milled reference sample W0 (Fig. 4.5 (a) and (b)) to the milled sample W0-M1
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(Fig. 4.5 (c) and (d)). A longitudinal texture is observed in the Mg grains

of the less milled and non-annealed samples W0 and W0-M1 (Fig. 4.5 (a)

and (c)), where majority of Mg grains are elongated and disposed in the axial

direction. However, these Mg particles tend to be more spherically-shaped

towards the central part of the core. Also, some Fe impurities dragged from

the sheath during sample preparation can be seen in sample W0-M1 (Fig. 4.5

(c) and (d)).

In sample W0-M4, both non-annealed and annealed (Fig. 4.5 (e) and

(f) respectively), Mg grains are not visible because the high energy milling

reduced their size and also because the partial formation of MgB2, as seen in

XRD analysis (section 4.1). Also note that the radially oriented void structure

mentioned above already appears in the non-annealed sample. These voids or

cracks not only cannot be restored by the final heat treatment, but became

larger.

Porosity increases after the annealing in all samples as expected due to

the formation of MgB2, which has higher density than the precursors. It is

observed that the voids seen in the annealed samples take the shape and size

of the Mg grains observed in the non-annealed samples (except for samples

W0-M3 and W0-M4 as previously mentioned).

4.3 Effects of milling on the superconducting prop-

erties

The magnetic characterization of the wires was done on 5 mm long samples

of radius r ∼ 0.4 mm obtained after removing the Fe sheath by mechanical pol-

ishing. This Fe sheath removal was necessary because its strong ferromagnetic

signal hinders the superconductor’s contribution.

Vibrating sample magnetometers (VSM, Quantum Design PPMS-9T and

PPMS-14T) were employed to measure isothermal magnetic hysteresis loop

M(H). A SQUID-based Quantum Design MPMS-5T was used to measure the

AC magnetic susceptibility as a function of the temperature, χac(T ). From

these measurements we estimated the Tc value, defined from the in-phase

component of χac, χ
′(T ), as the onset of diamagnetism, i.e. the temperature
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at which the magnitude of diamagnetic signal increases above the noise level.

The error in this estimation is in our case approximately ±0.3 K. Also, the

transition width ∆Tw , defined as the temperature interval at which the χ′

varies from 10 % to 90 % of χ′(5 K), is obtained.

AC measurements were performed at a frequency of 120 Hz and with a

magnetic field amplitude of 0.1 mT. Figure 4.6 displays χ′/|χ′(5 K)|, as a

function of temperature for all the analysed wires. It is clear that Tc decreases

as Et/m increases, as seen in Table 4.3, but the transition is narrow in all

cases, ∆Tw = 0.5− 1 K.

Figure 4.6: Temperature dependence of the in-phase component of the AC suscepti-

bility, χ′(T ), divided by |χ′(5 K)|, for all analysed wires W0, W0-M1, W0-M2, W0-M3

and W0-M4.

Regarding the estimated Tc values, a correlation between this value and

Et/m is established in Fig. 4.7. Tc decreases as Et/m increases to an ap-

proximate rate of 2 K per order or magnitude of transferred energy to the

precursor powders, in the studied range. The exception of this behaviour is

observed for W0-M2 wire, which shows lower Tc than expected. This can be

explained taking into account that the oxygen content is higher in this wire

as it is presented in Table 4.1.
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Sample Tc(K) ∆Tw(K)

W0 37.7 0.7

W0-M1 37.5 0.6

W0-M2 34.7 0.9

W0-M3 35.2 0.5

W0-M4 33.3 1.0

Table 4.3: Tc and ∆Tw as derived from χac(T ) measurements of the milled MgB2

wires.

Figure 4.7: Tc values for the ball milled samples (black solid symbols) as a function

of the milling energy Et/m. Coloured bars correspond to the temperature intervals

at which χ′ varies from 10 % to 90 % of χ′(5 K) for each sample. The non-milled

sample W0, with Et/m = 0 J kg−1, is presented on the left edge of the figure for

clarity purposes.

In all measurements the magnetic field was applied perpendicular to the

wire axis so that the induced superconducting currents would be mostly flow-

ing along the wire axis. From the width of the magnetic hysteresis loops,

∆M(H), the inductive critical current densities were derived using Bean’s
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critical state model [141]:

Jc(H) =
3π

8

∆M(H)

r
, (4.1)

where ∆M(H) is in A m−1, r in m and Jc(H) in A m−2. This equation is

valid for wires of length L when L� r. An example of a M(H) measurement

at 5 and 20 K corresponding to wire W0-M1 is shown in Figure 4.8. For

these experiments the sample is zero-field-cooled from a temperature above

Tc to the measurement temperature. Once the temperature is stabilized, the

magnetic field amplitude is increased in steps of 1 T to maximum field of 9 T

(initial branch), then it is decreased down to zero in steps of −0.2 T, a finally

increased again in the opposite direction with the same steps of −0.2 T up to

−9 T.

Figure 4.8: Magnetization, M , as a function of magnetic field, µ0H, applied per-

pendicular to the wire’s axis, for sample W0-M1 at 5 K (blue) and 20 K (red). For

this wire, flux jumps are visible at 5 K upon decreasing the field in the range between

1.8 T and −3 T. Lines are just an eye guide.

The flux jumps observed in the M(H) curve at 5 K are caused by thermo-

magnetic instabilities [142,143]. These are originated by avalanches of pinned
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magnetic vortices triggered by changes in the applied magnetic. The motion of

a vortex dissipates heats and, if it is not removed quickly enough, will provide

energy to surrounding vortices and unpin them, so they will also move into the

sample and dissipate even more heat, and so on. These thermomagnetic in-

stabilities result in flux avalanches at low temperatures and applied magnetic

fields.

A comparison of Jc(H) curves of ball milled samples is presented in Fig.

4.9 at 5 K. Magnetic flux jumps (see Fig. 4.8) limit the magnetization values

at low magnetic fields, typically below 1 T to 2.5 T at 5 K depending on the

sample. Thus Jc(H) values are underestimated in that field range and have

been eliminated in the figure in order to gain clarity. W0 is presented as a

reference.

Figure 4.9: Jc(H) values at 5 K for non-milled, W0, and milled samples, W0-M1,

W0-M2, W0-M3 and W0-M4.

At 5 K, the two opposite effects of ball milling on Jc are clearly seen in

Figure 4.9. As mentioned before, on one hand, higher energy milling enhances

vortex pinning at high fields, so that the highest Jc’s at 5 K and µ0H > 5 T cor-

respond to wire made from the highest energy milled precursor, W0-M4. On

the other hand, at low fields (µ0H < 5 T), the highest Jc values correspond
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to the non-milled and low-energy milled samples W0 and W0-M1, respec-

tively, which indicates better grain connectivity and/or smaller amounts of

microstructural defects in these samples compared to wires made from higher

energy milling conditions M2, M3 and M4. Larger oxygen content in some

ball milled wires, with the presence of electrically insulating MgO precipi-

tates, would decrease supercurrent paths between neighbouring MgB2 grains

and therefore would result in worse connectivity.

Regarding W0-M2 and W0-M3 wires, it is observed that Jc(H) curves of

both wires are similar. Nevertheless, at high magnetic fields Jc values of the

former are higher than the latter, unexpectedly since W0-M3 is made from

higher energy milled precursor. This is probably due to a larger amount of de-

fects in wire W0-M2, in agreement with its higher oxygen content (Table 4.1)

and its lower Tc value (see Figure 4.7). As a consequence, Jc values of W0-M3

are lower than those of W0-M2. Finally, sample W0-M1, which shows a ho-

mogeneous microstructure and a lack of transversal porosity, exhibits Jc(H)

values similar to those measured for W0 at low fields, but higher in the high

field range (above ∼ 6 T). The transport critical current values have been

measured in selected wires, and the results will be discussed in Chapter 5.

The Jc(H) values at 20 K of the samples are displayed in Fig. 4.10. The

lower connectivity in W0-M3 and W0-M4 and the proximity of Tc limit the

Jc(H) values of these wires in all magnetic fields at this temperature. Note

that these wires have the lowest Tc (35.2 K and 33.3 K respectively). On the

other hand, Jc(H) values of the non-milled sample W0 and W0-M1 are almost

the same for the whole magnetic field range.

Our results show good agreement with those reported by Häßler et al. [137].

For Et/m of the order of 1× 108 J kg−1, they measured Jc ∼ 1× 104 A cm−2

at ∼ 7 T and 5 K, which is slightly lower field than for wire W0-M4 (∼ 8 T) for

similar Jc. Furthermore, sample W0-M3 with Et/m ∼ 1× 107 J kg−1 has Jc

of 1× 104 A cm−2 at ∼ 7 T, also slightly better than results presented in [137]

(∼ 6 T) for similar milling energy values.

However, as mentioned previously, both wires made with M3 and M4

milling conditions were difficult to draw and presented some unwanted mi-

crostructural features. This indicates that drawing is not the best method for

wire deformation when using high energy milled precursors. Recently, Saito et
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Figure 4.10: Jc(H) values at 20 K for non-milled, W0, and milled samples, W0-M1,

W0-M2, W0-M3 and W0-M4.

al. [144] have studied the properties of in situ monocore PIT wires manufac-

tured by different mechanical deformation methods (specifically only swaging,

groove rolling + roller drawing, and groove rolling + conventional drawing)

and concluded that the best superconducting performance is found for wires

manufactured by swaging until the final diameter. This method produces

optimum radial compressional stress in the core during deformation, which

increases both the MgB2 core density and the homogeneity along the wire’s

core. Therefore it is envisaged as a good manufacturing method for wires

made from high energy milled powders.

From our results, we have demonstrated that the best combination of ho-

mogeneous, less-porous microstructure and Jc(H) performance is found for the

milling condition M1 with a Et/m of 1.2× 106 J kg−1. This is in good agree-

ment with recent results obtained by Kodama et al., who observed optimum

performance for milling energies in the range of 1× 106 J kg−1 [145].
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4.4 Effect of different annealing temperatures on

the superconducting properties

The final heat treatment of all the above analysed samples was 670 ◦C ×
5 h (see Fig. 3.3). The influence of the heat treatment temperature on Jc

values was studied for some selected samples. The results of wire W0-M3 for

annealing temperatures ranging from 630 ◦C to 720 ◦C are shown in Figure

4.11. At 5 K the Jc(H) curves do not present any significant difference in the

measured field range. At 20 K and µ0H < 3 T, Jc values increase slightly when

increasing the annealing temperature, but become similar upon increasing the

magnetic field.

Besides, the value of Tc for the samples annealed at 630 ◦C and 720 ◦C

differs only in 0.5 K below and above respectively the obtained value of the

sample W0-M3, annealed at 670 ◦C, that is 35.2 K. This is in agreement with

the measured Jc(H) curves, previously discussed. Also, ∆Tw is the same for

Figure 4.11: Jc(H) values of wire W0-M3 at 5 and 20 K for three different annealing

temperatures. Annealing time was 5 h in all cases.
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all the three samples, 0.9 K, indicating that the superconducting transition

remains the same despite the annealing temperature.

The low melting temperature of Mg at 650 ◦C facilitates the Mg and B reac-

tion to form the superconducting MgB2 phase when using the in situ reaction

method. The effect of the heat treatment temperature on the superconducting

properties of the wires has already been reported in the literature for a wide

range of temperatures, typically from 600 ◦C to 900 ◦C [146–148].

In general, it is well known that cristallinity improves when raising the

reacting temperature, leading to higher Tc and a better grain connectivity.

On the other hand, low temperature sintering leads to small grain size and

grain distortion, which creates more grain boundaries and defects enhancing

flux pinning and Jc at high fields. This makes temperatures close to the

melting point of Mg as the preferred option for in situ reaction method. We

have used annealing temperatures just above this temperature to ensure full

reaction of the precursor, as when using annealing temperatures below 650 ◦C,

some wire regions may remain unreacted depending on the precursor’s grain

size and heat treatment time.



Chapter 5

Co-effect of ball milling and

carbon doping

Grain refinement and carbon doping are two processes used to improve the

Jc(H) performance of metal composite MgB2 wires and tapes. As it has been

shown in the previous chapter, precursor ball milling significantly affects the

wire microstructure of the final wires, as very fine and well mixed precursors

with higher reactivity can be obtained with this method. On the other hand,

the addition of oleic acid to the precursor powders can be successfully used

as a carbon source to improve Jc(H) of the wires. Nevertheless this doping

process also produces some unwanted inhomogeneity issues, both across and

along the wires, which are necessary to solve [135].

In order to enhance Jc(H) performance and the homogeneity of MgB2

wires, in this chapter the combined effect of carbon doping with oleic acid and

ball milling of the precursor powders is presented. With this aim, a character-

ization of the microstructure, phase composition and superconducting proper-

ties of the wires made from precursors with different milling parameters and

with oleic acid addition has been done. The results have been compared with

those of non-doped or non-milled reference wires.

The main characteristics of the wires analysed in this chapter are collected

in Table 5.1. These Fe-sheathed mono-core MgB2 wires were manufactured

by the PIT technique and in situ reaction with the manufacturing process

explained in detail in Chapter 3 (Fig. 3.1). The wires W1-M1, W2-M1 and
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W1-M3 were made from doped and ball milled precursors. Wires W1 and W2

were made from doped but non-milled precursor. Finally, W0, W0-M1 and

W0-M3 wires, which were fabricated from non-doped and milled precursor

(already analysed in Chapter 4), are included here as references for a better

comparison.

Sample C Doping Ball Milling O-cont. (at.%) Tc(K) ∆Tw(K)

W0 - - 3.5 (0.6) 37.7 0.7

W1 Route 1 - 7.4 (0.9) 36.0 1.5

W2 Route 2 - 5.4 (0.4) 35.3 0.7

W0-M1 - M1 (200 rpm× 1.5 h) 8.1 (0.9) 37.5 0.6

W1-M1 Route 1 M1 10.2 (0.9) 36.0 0.6

W2-M1 Route 2 M1 11.5 (0.8) 36.0 0.6

W0-M3 - M3 (400 rpm× 3 h) 8.2 (1.5) 35.2 0.5

W1-M3 Route 1 M3 13.7 (0.5) 32.8 1.1

Table 5.1: Manufacturing characteristics of the MgB2 wires analysed in this chapter.

The oxygen content (O-cont.) values and standard deviations have been deduced

from FESEM images and EDX analysis. Tc and ∆Tw are derived from χac(T ).

5.1 Co-effect of ball milling and C doping on micro-

structure

The microstructural properties of the analysed wires have been analysed

using FESEM. The oxygen content has been deduced from EDX analysis, as

explained in Chapter 4, and the results are given in Table 5.1. It is observed

that O-content of carbon doped wires is higher than for similarly processed

wires made with non-doped precursors. In the case of samples W1 and W2,

non-milled but C-doped, this is 7.4 and 5.4 at.% respectively, which is higher

than the obtained value in W0 (3.5 at.%). In principle, it seems that doping

the precursor powders with Route 1 introduces slightly more oxygen than with

Route 2. However, any significant difference vanishes with the ball milling pro-

cess of the precursor powders, as similar oxygen content values are obtained

for samples W1-M1 and W2-M1. These values, ∼ 10 at.%, are also slightly

higher than for W0-M1, 8.1 at.%. Moreover, for similar carbon doping con-

ditions, the estimated O-content increases with the milling energy, from 10.2
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at.% in wire W1-M1 up to 13.7 at.% in wire W1-M3. In summary, the in-

crease of O-content in the samples caused by C doping can be attributed to

the introduction of additional oxygen by the carboxylic groups (-COOH) of

the oleic acid.

Figure 5.1 shows the FESEM images of the cross-section of longitudinally

polished wires using the AsB detector. The slight differences in diameters

between the samples are again only due to differences during the polishing

process. The images on the left side of the figure correspond to non-milled

samples, while the corresponding images on the right side are for wires of sim-

ilar characteristics, but from precursor milled with condition M1. The two

wires displayed on the top of the figure are the non-doped W0 (Fig. 5.1 (a))

and W0-M1 (Fig. 5.1 (b)), which are used as reference samples. There are

large differences among wires made with non-milled powders and those fabri-

cated with milled precursors using conditions M1. It must be remarked that

the holes are reduced significantly upon milling for all samples, as explained

in Chapter 4.

Moreover, the non-milled and C-doped wire using route 1, W1, Fig. 5.1

(c), shows a very inhomogeneous microstructure, with areas of large poros-

ity (upper part) and other denser areas (lower part of the image). A similar

trend is also observed in sample W2 (Figure 5.1 (e)). The contrast differ-

ences in the images indicates differences in the composition in both regions.

A semi-quantitative analysis of the elements using EDX revealed that denser

and darker areas are Mg-B phases with higher boron contents while those sur-

rounded by pores (light grey) correspond to the superconducting MgB2 phase.

The observed phase inhomogeneity in these non-milled wires is thought to be

caused by the poorly mixed precursor due to the agglomeration of B powders

soaked in the oleic acid. This phenomenon is especially drastic for wires made

from precursor doped using Route 1, Figure 5.1 (c). Since the extension of

these boron rich areas across and along the wire is very irregular, this would

lead to very inhomogeneous critical current values for wire W1, or even to

resistive portions. As a consequence, W1 is a wire that cannot be used in

technological applications. Wire W2 also presents some non-superconducting

zones, Figure 5.1 (e), but these are of less extension and also more homoge-

neously distributed along the wire.
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Figure 5.1: FESEM images using the AsB detector of polished non-milled (left) and

milled (right) wires. Images correspond to (a) W0, (b) W0-M1, (c) W1, (d) W1-M1,

(e) W2 and (f) W2-M1. Wires W0 and W0-M1 are used here as references.

It is worth noting that the low-energy milling (M1) prevents this problem

and results in a remarkable improvement of the microstructure and phase

homogeneity of the cores when milling the C-doped precursor with milling

conditions M1, as shown in Figure 5.1 (d) and 5.1 (f). With this magnification,

no substantial differences are seen between these wires and the corresponding

non-doped one shown in Figure 5.1 (b).

A more detailed study can be done by analysing FESEM images at higher

magnification, which are displayed in Figure 5.2 for the same samples and

orientation as in Figure 5.1. Thus, sample W0, shown in Fig. 5.2 (a), presents
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a very homogeneous and well connected MgB2 regions. The inherent porosity

of this wire is also present.

Figure 5.2: FESEM images using the AsB detector and the same orientation as in

Figure 5.1 of samples W0 (a), W0-M1 (b), W1 (c), W1-M1 (d), W2 (e) and W2-M1

(f). All images are with the same magnification.

Samples W1, Fig. 5.2 (c), and W2, Fig. 5.2 (e), show inhomogeneous

phase microstructure, with pure dense MgB2 regions (light grey) combined

with B rich regions (dark grey). However, a very similar microstructure is

shown among all milled samples, whether C-doped, like W1-M1, Fig. 5.2 (d),

and W2-M1, Fig. 5.2 (f), or non-doped, like W0-M1, Fig. 5.2 (b). Sam-

ples W0-M1, W1-M1 and W2-M1, present small B rich regions in their cores

(marked with white arrows). Besides, in these three samples, the sizes of the

voids are similar. As already mentioned in Chapter 4, WC particles are present
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in the milled samples (marked with blue arrows). Metallic impurities within

the voids correspond to Fe from the sheath, which were introduced during the

preparation of the sample (marked with a red arrow).

Figure 5.3 shows the co-effect of ball milling and C doping on the micro-

structure of the wires, similarly to the comparison in Figure 5.2 but using a

higher milling energy (M3). Both wires, W0-M3 and W1-M3, present similar

microstructural features in terms of phase homogeneity and porosity. Despite

the observed granularity in both samples, the doped sample, Fig. 5.3 (b),

seems to present worse intergrain connectivity than the non-doped one, Fig.

5.3 (a), which is probably related to its higher oxygen content. Similar diffi-

culties were found during mechanical deformation of both wires by drawing,

as previously mentioned in Chapter 4.

Figure 5.3: FESEM images using the AsB detector of samples W0-M3 (a) and

W1-M3 (b). Both images are with the same magnification.

5.2 Co-effect of ball milling and C doping on the

superconducting properties

The magnetic characterization of the samples was performed using SQUID

and PPMS systems as explained in Chapter 4. The Tc and ∆Tw value (as de-

rived from χac(T ) magnetic measurements) of the analysed wires are collected

in Table 5.1.

Besides, electrical DC transport measurements in perpendicular DC mag-

netic fields were performed on 6 cm long wires, with the samples immersed in

liquid helium. The Jc(H) values were determined by the standard four-probe
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method using the 1 µV cm−1 criterion.

Tc values obtained for the C-doped wires show a decrease of 1.5 K to 2.5 K

when compared to their corresponding reference wires, that is, non-doped

wires with the same milling conditions. This would mean that the average

C doping in milled and non-milled samples is similar. The average doping

amount, x, of the Mg(B1-xCx)2 grains in the wire core was estimated in the

range of 1 % to 1.5 % for wires W1 and W2 [135].

Moreover, it must be remarked that both Tc and ∆Tw values are similar

for doped samples with different doping routes and the same milling condition

(W1-M1 and W2-M1). This would indicate that both doping routes are simi-

larly effective in introducing C in the MgB2 phase when used in combination

with the ball milling.

Before addressing the analysis of the co-effect of C doping and ball milling

on the Jc(H) behaviour of the wires, it is necessary to study the effect of oleic

acid addition in non-milled precursors. With this aim, Figure 5.4 compares

critical current densities of C-doped wires W1 and W2 with non-doped wire

W0. Symbols without lines correspond to the inductively estimated Jc(H)

values derived from the M-H measurements using Eq. 4.1. Note that as

explained in Chapter 4, Jc values at 5 K and low fields (< 2.5 T) are not

shown due to the presence of flux jumps in M(H). Solid symbols with lines

are for transport values measured with the sample immersed in liquid helium

(4.2 K).

The benefits of carbon doping can be seen in the improvement of inductive

Jc(H) values of wires W1 and W2 compared to W0, at medium and high fields,

especially at 5 K. Nevertheless, there are important differences between wires

W1 and W2 at 5 K. This is because using route 1 for C doping of non-milled

samples produces large phase inhomogeneities, as seen in Fig. 5.1, which also

results in significant differences in the derived Jc values in different pieces of

the same wire.

Transport Jc values of wires W0 and W2 are higher than the corresponding

induced values. The increase of voltage in the transport I−V curves (V ∝ In)

is sharper in sample W2 than in sample W0. For example, at µ0H ∼ 8 T,

the estimated n-values are ∼ 20 − 24 and ∼ 30 − 33 for wire W0 and W2,
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Figure 5.4: Jc(H) values at 5 K (solid symbols) and 20 K (semi-solid symbols) for

non-milled wires: non-doped (W0) and doped samples (W1 and W2). Symbols with-

out lines correspond to inductive Jc values and symbols with lines are for transport

values at 4.2 K.

respectively. It is very remarkable how the transport critical currents of wire

W1 are approximately one order of magnitude lower than their corresponding

inductive values. Moreover, the I − V curve measured in this wire is smooth

and shows a resistive tail, in clear agreement with microstructural observations

showing very inhomogeneous phase formation in wire W1, with large areas of

non-superconducting phase (Fig. 5.1 (c)).

Although the absence of weak links in MgB2 [149] allows in general good

agreement between transport and magnetic Jc values, several factors can result

in significant differences between values derived by both experiments. It is

important to keep in mind that Jc is affected by the selected electric field

criterion due to flux creep effects, which are more relevant at high fields and

low critical currents (< 108 A m−2) [150, 151]. The electric field criteria for

determination of Jc from magnetic measurements, which are influenced by

the applied field sweep rate, are more restrictive than those of transport.
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Therefore, for homogeneous and isotropic samples, transport Jc values should

be close but higher than inductively derived Jc’s, as it is seen in Fig. 5.4 for

wire W2.

For wire W0, the differences between induced and transport values (Figure

5.4) increase with the field strength since inductive values drop off more rapidly

in field than those of transport. This behaviour, which has also been reported

by different groups in similar processed wires [150–152], has been attributed to

the anisotropic connectivity in some PIT wires [151]. The magnetization of a

cylinder in perpendicular fields is controlled by the smaller of two quantities:

JcL · d or JcT · L, where d is the diameter of the superconductor, L is the

length, JcL is the critical current density along the wire’s axis and JcT along

the radial direction. In high fields, it is believed that the ‘rooftop’ critical state

profiles would be dominated by the return currents at both ends of the wire.

Since JcT is lower than JcL, magnetic Jc falls below the transport value in this

field range. These effects have been attributed to the fibrous microstructure

of these wires, with elongated pores produced by the fabrication process and

the MgB2 formation reaction. It must be remarked that other authors [153]

have demonstrated the existence of superconducting currents circulating on

different length scales in some MgB2 samples. In consequence, calculating Jc

by simply applying the critical state model to the measured ∆M would cause

in these cases some errors in the estimations of the induced Jc, mainly at low

and very high fields [153].

Next, we analyse the co-effect of C doping and milling, which has the

purpose of overcoming the aforementioned problems. Milling conditions M3

and M1 were used in this study and the results are shown in Figures 5.5 and

5.6, respectively.

It is seen that C doping produces in all cases an improvement of Jc at

high magnetic fields and a decrease at low magnetic fields compared to the

corresponding non-doped wires using the same milling conditions. In the case

of the samples with the milling condition M3 the Jc reduction at low fields is

more pronounced than for those of M1. Thus, better overall superconducting

performance is achieved for the millling condition M1. Also it is remarkable

the rather good agreement between induced and transport Jc values (Fig.

5.6) unlike the observed behaviour for non-milled samples. Besides, C-doped
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Figure 5.5: Inductive Jc(H) values at 5 K and 20 K for high energy milled samples,

non-doped (W0-M3) and C-doped (W1-M3).

Figure 5.6: Magnetic field dependence of inductive Jc values (symbols without lines)

at 5 K (solid symbols) and 20 K (semi-solid symbols) for non-doped, W0-M1, and

doped samples, W1-M1 and W2-M1. Transport Jc(H) values at 4.2 K are displayed

with solid symbols with lines.
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M1 samples still retain the microstructural benefits previously discussed in

Chapter 4, but enhancing the Jc(H) in high magnetic fields (up to 4 times

at 8.5 T). Note that different pieces of the same wire were measured in the

PPMS system, observing very similar Jc values in all of them (with differences

smaller than 10 % among samples).

In conclusion, we have obtained a very uniform microstructure and super-

conducting reproducibility in wires made from precursor powders with oleic

acid addition when using low energy milling conditions (M1). Unlike the case

of non-milled powders, both used C doping routes result in wires with very

similar superconducting properties when using this milling process. In terms of

transport Jc’s, we observe an increase of Jc with doping from ∼ 3× 107 A m−2

in W0-M1 to ∼ 1.3× 108 A m−2 in W1-M1, at 4.2 K and 9 T, similarly to

the behaviour obtained by other authors using other carboxylic acids as C

source [95, 96, 130, 131]. Further optimization of the wires would require a

better control of the precursor packing process, from the planetary ball mill

to the iron tube, which should be done in argon atmosphere to minimize the

amount of oxygen content in the precursor powders.





Chapter 6

Magneto-optical imaging of

MgB2 tapes

In order to further analyse the superconducting behaviour and homogene-

ity of the conductors made from ball milled precursor, and to explore the

reasons for the previously seen Jc decrease at low magnetic fields, in this

chapter the local magnetic flux distribution inside MgB2 tapes made from the

wires have been analysed using MO imaging. This technique, which is based

on the rotation of the polarization plane of light passing through a magne-

tized ferrimagnetic garnet film (Faraday effect), has been previously used to

visualize the magnetic flux distribution in HTS [154–158] and MgB2 [159,160]

superconductors.

Local superconducting properties obtained by MO imaging have been cor-

related with magnetization measurements and microstructural observations by

FESEM for these MgB2 samples.

6.1 MO imaging set-up and sample preparation

Magnetic flux distribution was visualised using MO imaging technique.

As field sensor we used in-plane magnetized bismuth-substituted iron garnet

sensor films, as described in [154,155,158,161], which provide strong rotation in

a weak magnetic field and give a desirable sensitivity and spatial resolution for
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monitoring the local magnetic field on the surface of the films. A scheme of the

MO microscope used in these experiments can be seen in Figure 6.1. The MO

indicator film is placed directly on top of the polished surface of the sample

and the light is reflected from the mirror on the bottom of the film before

going into the analyser of the optical system set above the sample holder.

The brightness of the images obtained with crossed polarizers represents the

absolute value of the magnitude of the z-component of the local magnetic field

in the sample.

Figure 6.1: Schematic set-up of the MO polarization microscope used for the exper-

iments.

A polarized-light microscope and a charge coupled device (CCD) is used

to capture and process the digital images obtained in the experiments. The

microscope consists of a stabilized light source, a polariser, an analyser and

optical components to project the image plane into the CCD camera with

various magnifications. All optical components, especially the objective lenses,

have small Verdet constants [157] in order to avoid the depolarization of the

light beam. The MO measurements were carried out in reflective mode and the

sensitivity is determined by the thickness of the magneto-optical layer crossed

by the light. These measurements were performed in collaboration with the
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Superconductivity Group at the University of Oslo (Norway) during my stay.

The main advantage of MO imaging technique is that it allows the analy-

sis of the local superconducting properties, whereas other techniques, such as

AC susceptibility, DC magnetization and transport critical current, give aver-

age values of the overall measured sample. On the other hand, MO imaging

technique also has some limitations, since the applied magnetic fields, which

are typically produced by an electromagnet, are rather low. Moreover, the

sample has to be as flat as possible in order to obtain good contact between

its surface and the MO indicator. Therefore a complementary analysis of the

superconducting sample by using the aforementioned techniques together with

microstructural observations would be very useful.

Originally, the samples proceed from the wires manufactured as explained

in Chapter 3. In order to obtain flat samples, some pieces of these wires

were cold rolled to tapes in consecutive steps until reaching ∼ 2 mm width

and ∼ 0.4 mm thickness, before the final annealing. Then, pieces of length

∼ 10−13 cm were sealed to prevent oxidation, and were heat treated at 670 ◦C

for 5 h in vacuum (0.1 mbar) to form the superconducting MgB2 phase.

The analysed tapes T0-M1, T0-M3 and T0-M4 were made from the milled

wires W0-M1, W0-M3 and W0-M4, respectively. Besides, a tape, T0, was

made from the non-milled wire W0 to be used as a reference.

6.2 Correlation between MO images and microstruc-

ture

Magneto-optical imaging was performed to evaluate the homogeneity of the

superconducting properties across and along the tapes. One of the tapes’ faces

was polished to remove the Fe sheath, so that there is not magnetic shielding by

the ferromagnetic Fe sheath under perpendicular fields and gives direct access

to the superconducting core both in MO experiments and microstructural

FESEM analysis.

Figure 6.2 shows FESEM and MO images of tapes made from powders

with increasing milling energies from top to bottom. FESEM and MO im-

ages correspond to the same area of the sample, except in Fig. 6.2 (d) where
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different areas of the same tape were analysed due to technical reasons. FE-

SEM images were taken with the SE detector to analyse the topographical

differences among the samples. MO images were taken after zero-field cooling

(ZFC) the sample from a temperature above Tc down to 20 K, then applying

a field of 85 mT perpendicular to the sample surface and finally reducing the

field to zero, to show the remnant flux density. It should be noted that the

length of the tapes analysed by MO imaging is about five times larger than

the core width (∼ 10 and ∼ 2 mm, respectively) in all samples. MO images

shown in Fig. 6.2 reveal that the maximum applied field of 85 mT is below

the field of full penetration, Hp, at 20 K in all samples. For example, M(H)

curves measured in different pieces of the same tapes, gave estimations of

µ0Hp ∼ 800 mT and ∼ 400 mT for T0-M1 and T0-M3, respectively.

As previously mentioned in Chapter 4, upon increasing the milling energy,

the microstructure of the superconducting cores changes gradually, forming

smaller grains and voids, but also producing variations on the voids orientation

[136,162]. The FESEM images of the tapes shown in Fig. 6.2 follow the same

trend. In the specimen made from non-milled powders (Fig. 6.2 (a)-left),

elongated voids parallel to the tape axis, with size of several hundred microns,

are observed. The shape of the magnetic flux front obtained by MO imaging,

Fig. 6.2 (a)-right, follows this porous structure. It must be remarked that the

orientation and shape of the voids in this sample facilitates the magnetic flux

penetration from both left and right ends towards the centre, compared to the

other analysed samples. Note that the upper and the lower bright horizontal

lines observed along the edges of tapes in MO images correspond to the MO

contrast from the edges of Fe-sheath where a concentration of the magnetic

flux take place.

The FESEM images shown in Fig. 6.2 indicate that the use of precur-

sors with increasing milling energy decreases gradually the porosity of the

final tape, as it happens with the wires. The MO image of the tape made

with low-energy milled precursors, T0-M1, Fig. 6.2 (b)-right, shows good and

homogeneous superconducting properties. Note that during polishing of this

tape, some Fe particles from the tape’s sheath were dragged towards the su-

perconducting core surface (light grey particles in FESEM, Fig. 6.2 (b)-left).

This also occurred during the wire’s polishing, see Figs. 4.4 and 5.2.
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Figure 6.2: FESEM (left) and corresponding MO images (right) of different tapes

made from powder with increasing milling energies from top to bottom. FESEM

images were taken with the SE detector. MO images were taken after ZFC to 20 K,

then applying a field of 85 mT perpendicular to the tape and finally removing the

field. FESEM and MO images correspond to the same area, except in (d) where

images of different areas of the same tape were analysed. The inset in (d) shows a

magnified image of the core near the sheath edge. The same magnification was used

for both FESEM and MO images.

Tape T0-M3, Fig. 6.2 (c)-left, has a dense core but also some microstruc-

tural defects, such as pores in the Fe sheath (seen in the upper-side of the

image), which affect significantly the superconducting properties of the core

around, as it is seen in Fig. 6.2 (c)- right. This sample also has a region with

lower local Jc (deeper penetration of the magnetic flux) in the upper-right

part of the image, which, again, coincides with a microstructural defect.

Finally, the tape made from the highest energy milled precursor (T0-M4)

has cracks perpendicular to the long direction of the tape, as clearly seen in

Fig. 6.2 (d)-left. MO image (Fig. 6.2 (d)-right) also shows a deep mag-



74 Chapter 6. Magneto-optical imaging of MgB2 tapes

netic flux penetration along these cracks that cross the superconducting core

and strongly decrease Jc in this tape. During mechanical deformation, the

fine-milled precursor forms highly dense blocks separated by less-denser packed

powders or even cracks that cross the tape from side to side perpendicular to

it. This forms the brick-like structures that cannot be restored by the final

heat treatment. Moreover, FESEM images show that the core is very dense in

the centre of this tape, while at the edges (upper and lower areas in Fig. 6.2

(d)-left), microstructural defects such as cracks and voids are present, which

produce magnetic flux patterns with a ripple-like shape, as shown in Fig. 6.2

(d)-right.

Since the reasons of the observed deterioration of superconducting prop-

erties in the sample T0-M3 were unknown, further MO experiments and FE-

SEM analysis were performed, comparing it with tape T0-M1, which shows

the best behaviour among the analysed tapes. With this purpose, MO images

were recorded with the following thermal and magnetic history: the tape was

field-cooled (FC) from T > Tc in a perpendicular field of 17 mT down to 20 K.

Next, after stabilizing the temperature, the field was decreased to zero. Subse-

quently, the field amplitude was increased again but in the opposite direction

to −85 mT, and finally returned back to zero. The results for tapes T0-M3

and T0-M1 are shown in Figs. 6.3, 6.4 and 6.5. Figs. 6.3 and 6.4 show MO

images of the sample T0-M3 with similar field and temperature histories at

20 K and 5 K, respectively. The corresponding M(H) curves but measured

in different pieces of the same tapes, are also included in these figures. MO

images taken in a field-cooled sample following this specific magnetic field pro-

tocol highlights the distortions in the magnetic pattern so that it is helpful to

reveal inhomogeneities in the superconductor.

Figure 6.3 shows MO images of tape T0-M3 taken at different magnetic

fields during this measurement. The image (not shown) taken just after field

cooling the sample to 20 K in 17 mT, displays a uniform grey background.

Upon decreasing the field to zero (b) a magnetic flux inhomogeneity (area

marked by an arrow) becomes visible in the MO image, and gets clearer when

further increasing the field amplitude in the opposite direction, as shown in

images (c) and (d). Note that at the magnetic field of −85 mT, shown in

(d), the shape of the penetration front is similar to that in Fig. 6.2 (c).
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Figure 6.3: (a) Magnetization values, M(H), and (b)-(f) MO images of the tape

T0-M3 at different fields after FC in 17 mT down to 20 K, then changing the field

to −85 mT and finally removing the field. The images correspond to: (b) 0 mT, (c)

−17 mT, (d) −85 mT, (e) −76.5 mT and (f) 0 mT, as marked in (a). The magnetic

field is applied perpendicular to the tape. The MO images correspond to the same

sample used in measurements of Fig. 6.2 (c), while M(H) was measured in a different

piece.
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When slightly decreasing the amplitude of the field again to −76.5 mT, image

(e), some new features in the penetration field front appear suddenly in the

upper part of the image (at positions marked with continuous arrows), and

also some “bubble like shape” magnetic inhomogeneities are formed in the

central part of the sample (marked by dotted arrows). Finally, MO image

(f) shows the trapped field, which has similar pattern as in (e) but with the

expected dark-bright-dark profile revealing the existence of flux-antiflux areas

due to hysteresis and the performed thermal-magnetic history. It must be

remarked that the left part of this sample shows good homogeneity and better

superconducting properties than the centre and right part of the sample.

Note that the initial round inhomogeneity is observed in the same position

in all measurement runs performed both at 5 and 20 K. While the bubble-like

feature that suddenly forms in the same place have not always the same struc-

ture. This can be seen in Figure 6.4, which shows MO images with similar

features as at 20 K. Note that “bubble like” structure is also suddenly formed

in the same area, but it is not exactly the same as in Figure 6.3. In this par-

ticular measurement these “bubbles” were formed in the upper branch, when

increasing the magnetic field amplitude from ∼ 68 mT to ∼ 76 mT. This be-

haviour suggests the existence of poor superconducting connectivity between

regions in this part of the sample.

For comparison, Fig. 6.5 shows the MO images of T0-M1 tape under ther-

mal and magnetic histories similar to those in Fig. 6.3. It must be emphasised

that the values of M(H) in the upper and lower branches are very similar, in-

dicating small penetration of the magnetic field and therefore higher Jc values

in sample T0-M1 compared to T0-M3. That is also in agreement with obser-

vations in ZFC measurements shown in Fig. 6.2. This tape presents indeed a

very homogeneous magnetic flux profile and therefore only both images taken

in zero-field are shown: in the decreasing (b) and increasing (c) field branch.

Note that the Fe particles present in the surface of the core (Fig. 6.2 (b)-left)

are well visible in MO images after field-cooling the sample, but do not have

any influence in the superconducting behaviour of this tape, as expected.

The magnetic inhomogeneities observed in FC MO images of tape T0-M3

in Figs. 6.3 and 6.4 could be due to the presence of cavities or holes, or

to the existence of poor superconducting links between regions within this
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Figure 6.4: MO images of the tape T0-M3 at different fields after FC in 17 mT

down to 5 K, then changing the field to −85 mT and finally removing the field. The

images correspond to: (b) −17 mT, (c) −68 mT, (d) −76 mT and (e ) 0 mT, as marked

schematically in (a). The magnetic field is applied perpendicular to the tape. M(H)

at 5 K was not measured so a scheme, (a), is shown for clarity purposes.

sample. A further analysis by FESEM of this tape discards the existence of

cavities, and confirms the formation of aggregates of MgB2 poorly connected

with each other, which are observed in this part of the sample, as shown in

Fig. 6.6 (b). The observed grain structure resembles the microstructure of

some ex situ MgB2 materials [163]. By contrast, other areas of this tape,
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Figure 6.5: (a) Magnetization values, M(H), and (b)-(c) MO images of the tape

T0-M1 in zero-field of the upper and lower branch, respectively, as marked in (a).

Similar thermal and magnetic history as in Fig. 6.3 was performed: the sample was

FC in 17 mT down to 20 K, the field was then changed to −85 mT and finally returned

back to zero. The sample of MO images is the same as in Fig. 6.2 (b), while M(H)

was measured in a different piece.

with higher Jc and good homogeneity according to MO images (left area in

Fig. 6.3), show well connected grains as it is seen in Fig. 6.6 (a). It must

be remarked that the FESEM images of tapes made with non-milled, Fig.

6.6 (c), and milled precursors with milling conditions M1, Fig. 6.6 (d), show

well-connected superconducting grains.

6.3 Comparison of Jc for wires and tapes

In order to explore deeper the similarities and differences among wires and

tapes, a comparison of the Jc(H) values of the wire and tape prepared with

the optimum milling condition M1 was carried out. In Figure 6.7, W0-M1 and
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Figure 6.6: FESEM images (SE detector) of the tape T0-M3 in the left region (a),

where Jc is higher, and in the central area (b) where“bubble like shape” magnetic

inhomogeneities are seen in Figs. 6.3 and 6.4. Image (c) is of the tape with non-milled

precursor and (d) of T0-M1. The same magnification has been used in all images.

T0-M1’s inductive Jc values at 5 K and 20 K are shown. Wire W0-M1 was

chosen due to the favourable balance between its Jc(H) dependence and its

desirable microstructural properties, such as good phase homogeneity and the

absence of big voids or/and cracks.

As for the wires, to avoid magnetic field shielding by the wire Fe-sheath

during magnetic measurements, a gentle mechanical polishing until obtaining

samples of an approximately size of 2 × 4 × 0.3 mm. The Jc(H) values of

the tapes were estimated from the width of the isothermal hysteresis loop,

∆M(H), measured with magnetic field applied perpendicular to the tape sur-

face, using the equation [164]:
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Figure 6.7: Magnetic field dependence of inductive Jc at 5 K and 20 K of non-doped

ball milled wire W0-M1 and tape T0-M1. Note that tapes T0-M1 for M(H) and MO

imaging are different pieces of the same tape.

Jc(H) =
∆M(H)

a ·
(
1− a

3c

) . (6.1)

Here 2a and 2c (a ≤ c) are the dimensions of the samples perpendicular

to the applied field. It can be seen that the obtained Jc(H) values for wires

and tapes are similar in a wide range of fields both at 5 and 20 K. The only

exception is at 5 K and µ0H > 7.5− 8.0 T, where Jc decreases more abruptly

in the tape than in the corresponding wire, probably due to their different

geometries.

Further insight into the flux front profile behaviour of this T0-M1 tape is

presented in Figure 6.8. This corresponds to the same tape as in Figs 6.2 (b)

and 6.5. The MO images show the remnant-trapped field at different tem-

peratures below Tc (5 K, 20 K, 30 K or 34 K) after ZFC, applying a maximum

perpendicular field of 85 mT and finally reducing the field to zero. Therefore

the distance of the maximum brightness to the tape’s edges would be roughly
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half of the penetration depth reached at this maximum applied field. At 5,

20 and 30 K, the magnetic flux front penetrates homogeneously into the tape

from the edges. Field penetration through the ends is seen in the images taken

at 30 K and above. At 34 K, the proximity to Tc ≈ 37.5 K enhances inhomo-

geneities along the tape, as displayed in Figure 6.8 (d). There is almost full

magnetic flux penetration at some positions, indicating an induction penetra-

tion field, µ0Hp, slightly higher than 85 mT at 34 K. Note that the Fe particles

observed by FESEM (Fig. 6.2 (b)-left) are also seen by MO imaging in Figure

6.8 (d).

Figure 6.8: MO images of tape T0-M1. The tape was zero-field cooled down to (a)

5 K, (b) 20 K, (c) 30 K and (d) 34 K. Then the field was increased to 85 mT and finally

set to zero.

Brandt [165] gives numerical calculations of the perpendicular flux density

profiles for long conductors of different thickness to width ratio (2b/2a) in

perpendicular fields and as a function of the applied field, H/Hp, where Hp

depends on Jc, a and b. By comparing the flux front penetration observed



82 Chapter 6. Magneto-optical imaging of MgB2 tapes

in MO images of Figure 6.8 with those given by Brandt’s simulations for

b/a ∼ 0.1 (as in this sample), it is possible to get rough estimations for Jc

of ∼ 4× 109 A m−2 and ∼ 1.5× 109 A m−2 at 20 K and 30 K, respectively, at

applied field of 85 mT, which shows good correspondence with Jc estimations

given by M(H) measurements (see Fig. 6.7).

Figure 6.9 shows the M(H) hysteresis loop measurement of sample T0-M1

at 34 K after having removed most of the Fe-sheath. The value of penetration

field µ0Hp at that temperature can be estimated to be ∼ 85 ± 5 mT, which

is in good agreement with MO image observed in Fig. 6.8 (d). The remnant

Fe-sheath adds a ferromagnetic signal to the superconducting one in the whole

M(H) loop.

Figure 6.9: Magnetization, M, as a function of the perpendicularly applied magnetic

field, µ0H, of tape T0-M1 at 34 K. Induction penetration field, µ0Hp, is ∼ 85±5 mT.

Note that there are some remnants of the Fe sheath in the sample, which add a

ferromagnetic signal to the superconducting signal.
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6.4 Dendritic avalanches in MgB2 tapes

During this thesis work, six MgB2 tapes were synthesized and characterized

by MOI. In one of them, T2-M1, of approximately 50 µm thick after having

polished the Fe sheath in one of the sides, dendritic avalanches were unexpect-

edly observed. It is also worth pointing out that the other five tapes, with a

thickness in the range 150-250 µm, which did not show dendritic avalanches

in MO imaging, displayed flux jumps registered by magnetometry at higher

fields. However, this field range is above the saturation field of the ferrite

garnet films used in the present work. This can be seen in Figure 6.10, which

shows the field profile after ZFC the tape down to 5 K and then the magnetic

field is increased in several steps up to the maximum applied field (85 mT)

perpendicular to the tape. MO images were taken during this field ramp, and

images in the figure corresponds to applied magnetic fields of (a) 17 mT, (b)

34 mT, (c) 51 mT, (d) 68 mT and (e) 85 mT. The tape is dark and the area

outside of its boundaries is brighter, which shows that the tape expels mag-

netic field. The bright horizontal lines at the upper and lower edges of the

tape are from the ferromagnetic contribution of the remaining iron sheath at

the edges. Bright flux front propagating into the sample when increasing the

field shows advancement of magnetic flux.

In addition to smooth flux penetration, Figure 6.10 clearly shows that spe-

cific dendritic avalanches are formed, which were not observed in the other five

tapes characterized by MO imaging. The observed dendrites have a branch-like

structure that resembles lightning and appear suddenly. The first dendrites

are small and as the applied magnetic field increases, new larger dendrites ap-

pear. Besides, the small dendrites at lower fields do not have as many branches

as those appearing at higher fields.

A systematic study of the observed dendritic avalanches in this tape was

carried out in order to understand their nature and behaviour [166]. The

spatial structure of the thermomagnetic avalanche events was resolved, and

the reproducibility and nucleation thresholds were determined. This study

was done in collaboration with the group of the University of Oslo and it is

part of the PhD thesis of T. Qureishy. Here we just summarize the main

conclusions of this study.
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Figure 6.10: MO images of the tape T2-M1 (made from wire W2-M1) at different

fields. For this measurement the sample was cooled down to 5 K in zero field. Once

the temperature is stable, the magnetic field is increased up to 85 mT. Images are

taken during this field ramp at different fields: (a) 17 mT, (b) 34 mT, (c) 51 mT, (d)

68 mT and (e) 85 mT. The magnetic field is applied perpendicular to the tape surface.

The dendritic avalanches in the tape have similar properties to those ap-

pearing in thin films, but have relatively few branches. Their patterns are

in most cases non-reproducible. The few cases of reproducibility of dendritic

formations in this sample were attributed to the presence of defects, proba-

bly cracks, near the edges. The average size of new dendritic avalanches, as
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well as their branching, increases with the increase of applied magnetic field.

Upon increasing the temperature, the number of avalanches decreases. The

lower threshold magnetic field for their appearance first increases slowly with

increasing temperature and then increases rapidly above 8 K. The analysis

of the threshold field indicated that the onset may be dictated by the edge

properties of the tape.

Dendritic avalanches have also been observed by MO imaging in differ-

ent superconductors, such as cold-rolled 0.42 mm thick Nb52Zr48 and 0.06 mm

thick Nb75Zr25 foils [167]. The spatial structure of a dendritic avalanche and

the exact applied field and temperature at which it occurs are usually unpre-

dictable, and they propagate at a speed of around 5 km s−1 [168, 169] and up

to 180 km s−1 [170]. They have upper and lower threshold fields for increas-

ing and decreasing applied magnetic fields [171]. Dendritic avalanches have

a threshold temperature as well, which in MgB2 films is about 10 K when

applying a field from zero and about 13 K when decreasing the field [172].





Chapter 7

Conclusions

We have analysed the effect of precursor ball milling on the properties of

monocore Fe-sheathed MgB2 wires and tapes prepared by the in situ powder-in-

tube (PIT) method by using drawing and rolling techniques. The effect of

milling energies per unit mass in the range between 1.2× 106 and 1× 108 J kg−1

(above the mechanical alloying limit) on the superconducting properties of

these conductors have been analysed.

Ball milling the precursor influences heavily the conductor’s microstruc-

ture, enhancing vortex pinning at high magnetic fields. Thus, the highest Jc’s

at 5 K and µ0H > 5 T correspond to the conductor made from the highest

energy milled precursor. Nevertheless, the use of the precursor with milling

energies above a certain limit produces microstructural defects during me-

chanical deformation, resulting in the formation of large transversal cracks,

which indicates that using just drawing to deform the wire is not appropriate

to fabricate conductors from high energy milled precursor powders. Other

types of mechanical deformation could be more suitable for our experimental

conditions, such as swaging because it produces larger radial compressional

stress in the core than drawing during wire deformation.

The wire and tape fabricated from the precursor with the lowest milling

energy shows good homogeneity with very reproducible Jc values. Thus this

solves the phase inhomogeneity problems found in non-milled and C-doped

wires. Besides, the combination of this milling energy and C doping enhances

Jc at high magnetic fields and retains homogeneous microstructures.
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Further optimization of the wires and tapes made from milled precursor

(doped and non-doped) would require a better control of the precursor packing

process, from the planetary ball mill to the iron tube, which should be done in

argon atmosphere to minimize the amount of oxygen content in the precursor

powders.

Magneto-optical (MO) imaging analysis has been performed in order to

investigate magnetic flux penetration in these samples, revealing local Jc vari-

ations in some of these superconductors and allowing further understanding of

the reasons of the observed Jc deterioration at low magnetic fields frequently

observed when the milling energy of the precursor powders is increased. It was

found that microstructural characteristics affect significantly the magnetic flux

front propagation observed by MO imaging at zero-field-cooled and field-cooled

conditions. MO imaging performed in field-cooled samples, following a specific

magnetic field sequence, highlights the distortions in the magnetic pattern so

that it has been found very helpful to reveal inhomogeneities in the supercon-

ductor. The MO images have been correlated with microstructural features

observed with field-emission scanning electron microscopy (FESEM), such as

small cracks, sheath pores or weakly-linked aggregates of MgB2 grains present

in some of the analysed tapes.
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[113] Lezza, P., Abächerli, V., Clayton, N., Senatore, C., Uglietti,

D., Suo, H. L., Flükiger, R., “Transport properties and exponential

n-values of Fe/MgB2 tapes with various MgB2 particle sizes”, Physica

C 401, 305 (2004).

[114] Romano, G., Vignolo, M., Braccini, V., Malagoli, A., Bernini,

C., Tropeano, M., Fanciulli, C., Putti, M., Ferdeghini, C.,

“High-energy ball milling and synthesis temperature study to improve



102 Part I. Bibliography

superconducting properties of MgB2 ex situ tapes and wires”, IEEE

Trans. Appl. Supercond. 19, 2706 (2009).

[115] Senkowicz, B. J., Giencke, J. E., Patnaik, S., Eom, C. B., Hell-

strom, E. E., Larbalestier, D. C., “Improved upper critical field

in bulk-form magnesium diboride by mechanical alloying with carbon”,

Appl. Phys. Lett. 86, 202502 (2005).

[116] Senkowicz, B. J., Mungal, R. J., Zhu, Y., Jiang, J., Voyles,

P. M., Hellstrom, E. E., Larbalestier, D. C., “Nanoscale grains,

high irreversibility field and large critical current density as a function

of high-energy ball milling time in C-doped magnesium diboride”, Su-

percond. Sci. Technol. 21, 035009 (2008).

[117] Perner, O., Eckert, J., Hässler, W., Fisher, C., Müller,
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[124] Perner, O., Eckert, J., Hässler, W., Fisher, C., Acker, J.,

Gemming, T., Fuchs, G., Holzapfel, B., Schultz, L., “Stoichiom-

etry dependance of superconductivity and microstructure in mechani-

cally alloyed MgB2”, J. Appl. Phys. 97, 056105 (2005).
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Part II

Exploring scale-up laser

process texturing of

Bi2Sr2CaCu2O8+x monoliths





Chapter 8

Introduction and motivation

8.1 Laser floating zone techniques to induce texture

in Bi-2212 rods

The superconducting Bi2Sr2CaCu2O8+x (Bi-2212) phase is a member of

the HTS family of BSCCO materials. The general chemical formula of this

family is Bi2Sr2Can-1CunO2n+4+x, where n ranges from 1 to 3. Bi-2212 and

Bi-2223, which correspond to n = 2 and n = 3 respectively, are the most stud-

ied superconductors of this family due to their higher critical temperatures.

Tc ranges from 80 K to 95 K for Bi-2212, depending on the oxygen content

and cation intersubstitution, and it is close to 110 K for Bi-2223, whereas for

Bi-2201 it is just about 10 K [1].

They all present complex tetragonal crystalline structures, and like other

HTS cuprates such as YBCO, are layered perovskites. The crystalline struc-

ture of the Bi-2212 phase is shown in Figure 8.1. The Cooper pairs are gen-

erated in the CuO2 planes and they move along them conferring the Bi-2212

phase a very high anisotropy: supercurrents along the a-b planes are up to

three orders of magnitude higher than in the c-direction, and the coherence

lenght along the c-axis, ξc, ∼ 0.5�A, is much lower than the in-plane value ξab,

∼ 19�A [1]. This high anisotropy and layered structure is the main cause of

the strong deterioration of current-carrying capability of these materials with

increasing temperature in presence of high magnetic fields. The influence of

grain boundaries is also critical in these materials, as they act as barriers to
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current flow and therefore reduce Jc values in polycrystalline materials [2].

Figure 8.1: Crystal structure of Bi - 2212 high temperature superconductor [3].

The weak-link problem is common to all HTS and has severe effects in the

intergranular critical current, decreasing it exponentially with the misorien-

tation angle between grains [4]. Due to this effect, practical HTS (BSCCO

superconductors among them) usually require adequate processing to induce

texture and align their grains. In the case of Bi-2212 materials, to achieve high

Jc values, a microstructure with low misorientation angles between the a-b

planes of neighbouring grains and c-axis texture is desirable. In Bi-2212/Ag

multifilamentary wires, the grain alignment is obtained by controlling the

melt-solidification [5]. However, Bi-2212 monoliths demand texturing meth-

ods used both to grow grains with the a-b planes parallel to the current flow

direction and to improve the contacts between them.

Methods that have been introduced to control the microstructure of the

Bi-based HTS superconductors include molten-zone techniques. In these cases,

a region of the samples is melted using a high energy source and this molten
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zone is moved in a controlled way along the sample. This technique is adecuate

to induce texture in Bi-based HTS materials due to their highly anisotropic

crystal growth. One of the most interesting molten zone methods is the floating

zone because it does not require holders nor crucibles, thus avoiding potential

contamination sources. Due to the surface tension in the molten zone, by con-

trolling the processing parameters it is possible to obtain a stable liquid volume

and to control the solidification of the textured material at the solid-liquid in-

terfase. In particular, the laser floating zone method (LFZ) allows texturing

with high growth velocities, up to 100 mm h−1 [6].

BSCCO superconductors are suitable to be processed with the LFZ tech-

nique because they possess a high fusion stability and a lower evaporation

tension [7]. The LFZ method was proved to be particularly useful to develop

Bi-2212 superconducting fibers or rods very soon after its discovery [8–12].

This is due to the high anisotropy during the solidification process leading

to a microstructure in which the superconducting phase has the c-axis nor-

mal to the growth direction and their Cu-O planes are oriented along the rod

axis [13], thus making possible to obtain attractive transport properties as a

consequence of the well-aligned grain orientation that was induced [14]. A

scheme of a LFZ device used to grow Bi-2212 fibers is displayed in Figure

8.2. Significant efforts were also carried out to texture Bi-2223 fibers, but it

is more difficult to obtain a good microstructure with good superconducting

properties due to its characteristic narrow phase stability [15].

Typical Jc values obtained in LFZ textured Bi-2212 thin rods at 77 K and

self-field are about 4000 A cm−2 [15], with best results to date of 5500 A cm−2

for rods textured at a rate of 15 mm h−1 [14].

The main relevant parameters in the LFZ processing of bulk Bi-2212 rods

are detailed by Dı́ez et al. [15]. It was observed that Ic at 77 K increases

linearly with the rod’s radius. Thus, the self-field generated at the surface of

the sample could be a limiting factor of the Jc at high temperatures.

Different starting materials and processing methods have been used to

study the influence of the precursor powder characteristics on the critical

current values of Bi-2212 LFZ processed fibers by Miao et al. [16]. They

found that the characteristics of the precursors modify the microstructure of

the Bi-2212 textured rods but do not affect significantly the superconducting
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Figure 8.2: Scheme of the laser-heated pedestal growth method used by Gazit et

al. [9].

properties. Even using the mixture of commercial oxides and carbonates, the

differences observed in the transport critical currents were lower than a 20 %.

The main differences are induced in the radial distribution of the supercon-

ducting phases, in principle, in the inner part of the samples while the super-

currents are confined to the region close to the rods surface, where the best

microstructure is obtained. Taking into account the different powders stud-

ied, the best results were reported for fibers obtained using precursor powders

fabricated by the polymer matrix and by the solid-state reaction methods.

The growth speed, also referred to as pulling rate, plays a crucial role in the

LFZ method as well, since lower growth speeds increase grain size and allows

a better grain alignment. Thus, the texture is definitely improved and higher

Jc values are obtained. However, there exists an optimum range of process-

ing velocities, which is between 15 and 30 mm h−1, because at lower speeds,

grains are very large and thermal stresses induce cracks that propagates easily

between them [14], reducing Jc values.

Further relevant requirements include the attainment of very low electric

resistive joints between the superconducting bulk material and the current

leads, not only for the characterization of the samples but also for their applica-
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tions. Otherwise, the resistive electric contacts will concentrate great amount

of heat while operating under high currents and could provoke hot spots that

end up melting the sample. Reproducible contact resistivity values, ρc, lower

than 1× 10−9 Ω cm2 (ρc = Rc · S where Rc is the contact resistance and S

is the contact area) have been obtained using an electrodeposition process of

silver in non-aqueous media on the as-grown samples before the required heat

treatment to obtain the superconducting phase [17].

A very interesting modification of the LFZ technique was developed at

the University of Aveiro (Portugal) and applied to Bi-2223 superconducting

fibre rods [18,19]. In this technique an electrical current is applied during the

texturing process through the crystallization interface to modify the phase

composition and texture of the rods. Very few years later it was also applied

to Bi-2212 [20,21]. It was demonstrated that the current application during the

growth process induces a selective and intense ionic migration along the rod

axis, resulting in an increase in the superconducting phase fraction and better

grain alignment. Thus, higher Jc values at 77 K have been reached, exceeding

the values obtained for LFZ processed fiber rods with the same experimental

conditions [20]. This method is known as electrically assisted laser floating

zone (EALFZ) growth and it has also been applied to non-superconducting

ceramics, such as thermoelectric ceramics [22]. A scheme of a typical EALFZ

setup system is displayed in Figure 8.3.

In the frame of the EALFZ technique, the influence of the current polarity

in the superconducting properties of the BSCCO fibers has also been studied.

It was found that when the DC current is applied from the crystallization in-

terface to the melt, a globular structure is developed instead of a preferential

grain alignment, which leads to an absence of superconducting phase solidi-

fication. However, reversing the polarization induces an improvement of the

grain alignment resulting in excellent textured materials [23,24].

The influence of the velocity at which the sample is textured has also

been studied for EALFZ processed Bi-2223 rods. It was found that low

(< 25 mm h−1) and high velocities (> 100 mm h−1) severely damage the Jc

performance of these rods processed under direct currents of 200 mA [21].

In particular, best Jc values obtained for EALFZ processed Bi-2212/2.9

wt.% Ag rods are ∼ 5800 A cm−2 at 77 K in self-field when applying a current
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Figure 8.3: Scheme of the electrically assisted laser floating zone system used by

Costa et al. [25] to grow vertically textured Bi-2212/Ag rods.

of 300 mA during processing [25]. These values are the highest reported to

date in massive bulk Bi-2212 superconducting samples.

8.2 Laser assisted zone melting to induce texture in

Bi-2212 monoliths

As previously mentioned, for the Bi-2212 rods Ic increases linearly with

the radius and so does the microstructural inhomogeneities. In addition, con-

sidering high power applications, such as current limiters, controlled and well

textured superconducting samples of long length and capable of supporting

high critical current density values are required. These facts limit the ap-

plicability of these materials and new geometries have been explored. Planar

Bi-2212 bulk materials could be used for resistive fault current limiters because

long length current-path materials can be obtained in meander geometry. Ad-

ditionally, controlling the thickness of planar samples, the thermal stability

can be improved since problems associated with hot spot generation are re-

duced. This is a critical limitation in the case of bulk HTSs for high power
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applications.

In-plane laser zone melting (LZM) method was first applied to process

planar oxide eutectis as reported by Larrea et al. [26], and was shortly after

successfully applied by Mora et al. to texture Bi-2212 planar bulk samples of

dimensions 100 mm× 10 mm× 1 mm [27]. Figure 8.4 displays a scheme of the

LZM used experimental setup [27].

Figure 8.4: Scheme of the LZM experimental setup used by Mora et al. [27] to

texture planar Bi-2212 bulk materials.

During the LZM processing of planar Bi-2212 bulk samples, the energy

dissipation is not the same at the center of the sample and in the borders.

This produces a characteristic semi-ellipsoidal shape of the molten zone. The

solid-liquid interface separates an amorphous region from the textured region,

in which the well-crystallized elongated grains of secondary Bi-free phases tend

to grow perpendicular to that solid-liquid interface.

Typically, these Bi-free phases present two out-of-equilibrium composi-

tions: (Sr1-xCax)CuO2 (known as 1:1) and (Sr1-xCax)2CuO3 (known as 2:1),

firstly identified in Bi-2212 samples by Oka et al. [28,29]. Also, an equilibrium

composition, (Sr1-xCax)14Cu24O41 (known as 14:24), was observed for the first

time by Roth et al. [30]. A scheme of a typical longitudinal cross-section of a

planar sample during the laser zone melting process is shown in Figure 8.5.

Mora et al. [27] showed how the shape of the solidification profile deter-
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Figure 8.5: Scheme of the typical solidification interface that occurs during laser zone

melting of planar samples, as shown by Lennikov et al. [32]. Here the longitudinal

cross-section of the sample is displayed.

mines the grain orientation within the processed sample. In the region closer

to the sample surface, the solidification profile is perpendicular to that sur-

face. Thus, the elongated grains of Bi-free phases are well-aligned parallel to

the surface. However, the solidification profile tends to curve as the melt pool

advances across the sample thickness, ending up being parallel to the sample’s

surface. This produces a microstructure of misaligned grains in the lower parts

of the laser affected regions, which can be up to 1 mm depth.

An example of these features can be seen in Figure 8.6. The right-hand

side image shows the frozen molten pool where both the solidification profile

and the different textured regions are displayed. The elongated Bi-free phase

grains (darker gray) grown from the molten pool can also be seen. In the

left-hand side image, which was taken with a higher magnification, the upper

well-aligned region is clearly distinguishable. Also, in the lower part of laser

affected zone, Bi-free phase grains are aligned at ∼ 45° with respect to the

surface.

Morever, Mora et al. [27] also found that most of the current flows through

the upper well-textured zone, with thickness of ∼ 200 µm. The depth of this

well-textured region can be enlarged by increasing the laser power or by de-

creasing the processing speed, which enhances the transport properties. Thus,
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Figure 8.6: FESEM images using AsB detector of longitudinal cross-sections of two

planar Bi-2212 LZM textured samples as shown by Mora et al. [27, 31] respectively.

Jc values of 3000 A cm−2 were obtained for optimum processing conditions [27].

Experimentally, a support material able to remove and redistribute the

heat during the LZM process is required to reduce the thermal shock. This

thermal shock is a consequence of the excessive thermal gradients during the

sample processing and may lead to sample bending and crack generation.

Therefore, it is desirable to heat the support material from below to reduce

this mentioned thermal shock. Mora et al. [31] found that when heating the

support material up to 600 ◦C, the thickness of the well-textured region in-

creases from ∼ 200 µm to ∼ 850 µm, and consequently Ic is enhanced too.

However, there are some critical limitations in the described LZM exper-

imental setup. The used furnace allows processing samples with a maximum

width of 10 mm. Besides, since the laser apparatus requires the furnace to be

open sky, only temperatures up to ∼ 700 ◦C can be achieved. This open sky

furnace configuration, where the sample is heated from below, also induces

undesired thermal gradients across the sample thickness.

8.3 Modification of laser processing systems to de-

velop a technological continuous process

In order to overcome the above mentioned limitations, Lennikov et al. [32]

demonstrated the possibility of processing Bi-2212 by the LZM technique with
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very wide laser melt lines (up to 250 mm) that allow texturing large areas. In

samples textured at low velocities, such as 15 mm h−1, they obtained Ic values

of 71 A at 77 K. They also proved that mid-IR radiation was useful for Bi-2212

texturing, using a 350 W and 20 kHz pulsed CO2 laser emitting at a wavelenght

of λ = 10.6 µm.

The use of these lasers provide some advantages as it allows very high

temperature processing (up to 3000 ◦C, depending on the material), a precise

control of processing parameters and the synthesis of materials with controlled

properties. But it also has some disadvantages as these conditions provoke

high thermal stresses in the ceramic samples that lead to the formation of

cracks. This is a critical issue regarding superconductors since these defects

end up deteriorating their transport properties. A solution to minimise crack

generation was developed by Estepa et al. [33], who patented a laser furnace

apparatus that allows focusing a laser beam on the surface of a sample which

moves inside the furnace at high enough temperatures. A scheme of this device

is displayed in Figure 8.7.

Figure 8.7: Scheme of the patented laser furnace apparatus as presented in [36].

This patented laser furnace apparatus allows obtaining a precise control

of the initial temperature of the sample (at T > 500 ◦C crack formation is

strongly reduced in many ceramic materials) but also a continuous processing,

which represents a great advantage in terms of industrial processes. The max-

imum temperature of the furnace is limited to 1200 ◦C and it allows processing

up to 60 cm wide pieces.

This laser furnace has been proved to be useful in several processes, such

as the synthesis of rare-earth aluminate coatings [34], to eliminate defects of

eutectic ceramic surfaces [35] and to process planar waveguides [36]. Among
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these processes, the processing of superconducting samples [37] is included as

it will be detailed later.

8.4 Objectives and motivation

The main objective of this work is to develop an industrially scalable pro-

cess of textured Bi-2212 monoliths regardless of their size. This process com-

prises all the stages from the precursor powder preparation to the final heat

treatment required to obtain the superconducting phase, including the LZM

texturing stage, and the analysis of relevant parameters and their effect on the

microstructure and superconducting properties of the bulk samples.

The chapters in which this part is structured are detailed below:

• Chapter 9 presents the characterization of precursor powders prepared

by different synthesis routes, with a special focus on a continuous solid-

state processing method, which is aimed to overcome present precursor

limitations regarding price, volume and uniformity. The characteristics

of these powders at different process stages are analysed and compared

with powders fabricated with the standard solid-state process and those

commercially available.

• Chapter 10 describes the method developed for processing large and pla-

nar Bi-2212 bulk materials, using industrial scale methods, including a

new laser line scanning configuration for LZM texturing. We analyse the

effect of the different precursor powders (prepared as described in Chap-

ter 9), laser texturing conditions and different heat-treatment methods,

on the material microstructure, which has been correlated with the su-

perconducting properties of the final processed material.

• Chapter 11 analyses the effect of applying an electric current during laser

processing of Bi-2212 planar bulk samples (EALZM method) and their

microstructural and superconducting properties.

• Finally the main conclusions that can be extracted from this part are

presented in Chapter 12.





Chapter 9

Continuous processing of

precursor powders

As the price of commercial Bi-2212 powders has increased in recent years,

reaching levels above 2 ke/kg, it is convenient to explore alternative routes of

synthesis of Bi-2212 powders, which can be industrially scalable and at lower

cost than those currently available from commercial suppliers. Different syn-

thesis routes have been proposed to prepare Bi-2212 powders [38]. One of

the most frequently used among them is the conventional solid-state reaction,

which, at the laboratory scale, is limited to small quantities of the order of

250-500 g. This is very low for a continuous process and requires processing the

powder in several batches. The aim of this work is to overcome the above men-

tioned problems by developing a novel continuous powder processing method

based on the use of a continuous furnace. This methodology, which is used rou-

tinely by the ceramic industry, can be applied to prepare Bi-2212 precursor

powders for melt texture processes without limitation regarding production

volume and uniformity.

In this chapter we describe this procedure, that we have called continuous

solid-state process. The characteristics of the powders processed with this

method are compared to those fabricated with the standard solid-state process

and the commercial ones.
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9.1 Description of the powders preparation method

Three different types of Bi-2212 precursor powders have been compared:

commercial powders, standard solid-state and continuous solid-state. Their

synthesis is described as follows:

Commercial powders (C)

Pure commercial precursor powders, named C, from Nexans SuperCon-

ductors GmbH, with stoichiometry Bi2.18Sr1.98Ca0.87Cu1.97Ox were analysed.

The grain size distribution, provided by the manufacturer, is characterized by

d10 = 0.10 µm, d50 = 1.18 µm and d90 = 2.18 µm.

Standard solid-state powders (SSS)

Precursor powders, named SSS, were made from a mixture of raw oxides

and carbonate powders with a Bi-Sr-Ca-Cu stoichiometry of 2.1:2:1:2, using

the standard solid-state reaction method. The Bi-2212 powders were prepared

from: Bi2O3 (99.9 % metal basis, Sigma Aldrich, mean particle size lower than

10 µm), SrCO3 (99.9 % metal basis, Sigma Aldrich), CaCO3 (99.5 % metal

basis, Alfa Aesar) and CuO (99.7 % metal basis, Alfa Aesar, maximum particle

size lower than 74 µm).

Initially, the precursor powders were dried at 350 ◦C during 6 h. Subse-

quently, the required quantities of components (Table 9.1) were mixed with

100 ml of heptane (C7H16) for 1 h at 300 rpm in a Retsch PM100 planetary

ball mill. Typically, a quantity of ∼ 115 g of precursor mixture is required to

obtain 100 g of Bi2.1Sr2CaCu2Ox (see Table 9.1). The used mill has a sun disk

radius of rp = 7 cm. The milling was performed in an agate jar of inner radius

rv = 38 mm, with 50 agate balls of radius rb = 5 mm and 1.4 g mass each.

Thus, the agate ball-to-powder mass ratio, β, was always kept at ∼ 0.7. In

this setup, the amount of milled powder for each run is limited to about 100 g.

After having finished the milling process, the residual heptane was eliminated

by slow drying at 120 ◦C for 24 h in a stove.

The mixed and milled powder is thermally calcined in a muffle furnace, in
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Precursor MW (g mol−1) n (mol) mass (g)

Bi-2212 909.28 0.11 100

Bi2O3 456.96 1.05 53.81

SrCO3 147.63 2.00 32.47

CaCO3 100.09 1.00 11.01

CuO 79.55 2.00 17.50

Table 9.1: Quantities of raw oxide and carbonate precursors used to obtain 100 g of

Bi-2212 in the 2.1:2:1:2 proportion.

air atmosphere, at 760 ◦C for 16 h in order to partially decompose the alkaline

earth carbonates. Two additional sintering processes at 830 ◦C for 16 h were

carried out to form the Bi-2212 phase. After each heat treatment, it is essential

to mill again the powder in order to avoid the formation of hard and bulky

aggregates.

Typically, the maximum amount of precursors that can be processed by

this method at the same time is ∼ 100 g, depending on the type of furnace

used. This is limited by the maximum temperature differences allowed in the

powder batch during heat treatment associated to the inherent temperature

gradients inside the muffle furnace. This fact constitutes the most restrictive

point of the sintering process, since the maximum amount of powders that can

be milled in each step can be increased with an adequate milling system.

Continuous solid-state powders (CSS)

The continuous solid-state (CSS) powders are produced from the same raw

oxide and carbonate powder mixture as in the standard solid-state reactions.

In this process, the heat treatment in a muffle furnace has been substituted

by a heat treatment in a continuous furnace, which is presented in Figure 9.1.

It is 4 m long and has three zones in which the temperature can be controlled

in an independent way. This allows creating a temperature profile inside the

furnace with an initial preheating region, a central zone at the maximum

required temperature and a final cooling zone. Temperatures up to 1200 ◦C

can be reached inside the furnace. The movement of the sample inside the

furnace is made by means of ceramic cylinders that rotate at a given velocity.
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Sample velocities in the range from 0.5 m h−1 to 4 m h−1 can be used.

Figure 9.1: Photograph of the 4 m long continuous furnace Nannetti ER 20.

Typically, 500 g of oxide and carbonate precursors were processed at the

same time (see Figure 9.2) in four ceramic crucibles that contained ∼ 125 g

each. The temperature of the preheating and cooling zones of the furnace

was fixed at 650 ◦C, and at the central zone it was 800 ◦C. The displacement

velocity of the powders were 1.5 m h−1, thus the duration of the heat treatment

was 2.5 h, with ∼ 45 min soaking at the highest temperature. A rough draft

of the temperature profile followed by the precursor powders is displayed in

Figure 9.3. In this work, this continuous heat treatment of the raw mixture

of the precursor powders was repeated up to seven times. The precursor

powders obtained after each heat treatment are named as CSSX with X being

the number of repetitions of the heat treatment.

It is important to optimise the velocity at which the sample is moving inside

the furnace. If is it too high the sample cannot reach a thermal equilibrium and

the maximum temperature reached in the sample is lower than the maximum

temperature reached in the furnace. For this reason, this velocity is strongly

determined by the length of the furnace. In this work we have chosen an speed

that it is low enough to reach this thermal equilibrium during a giving time

inside this furnace but high enough to keep the processing time in a period

that allows to prepare the powders for performing a new process every day.

Right after every heat treatment, the precursor powders mixture of each

ceramic crucible (∼ 125 g) were individually ball milled for 15 min at 300 rpm

with 80 ml of heptane with the same jar and balls used for SSS powder to break

the agglomerates and to decrease the particle size to facilitate the chemical
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Figure 9.2: Picture (a) shows the four ceramic crucibles that contain approximately

500 g of precursor powders entering the 4 m continuous furnace. Picture (b) shows a

closer look of the ceramic crucibles with the precursor powders prior the heat treat-

ment. The pinkish ligth inside the furnace is originated by red-hot resistances.
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Figure 9.3: Scheme of the temperature profile of the heat treatment at which the

precursor powders are subjected to in the continuous furnace. Neither the time nor

the temperatures are at scale for clarifying purposes.

reaction in the subsequent heat treatment. This is particularly critical in the

first two or three repetitions of the heat treatment, where most agglomerates

appear. Then, the residual heptane was evaporated at 120 ◦C for 24 h.

9.2 Characterization of the precursor powders

The phase composition of the different precursor powders at the different

processing steps was analysed using the measured XRD patterns. The parti-

cle size distribution was obtained with a laser diffraction analyzer and with

FESEM. Besides, a thermal characterization was performed with thermogravi-

metric analysis (TGA) and differential scanning calorimetry (DSC). Finally,

the superconducting properties of the powders were studied using AC mag-

netic susceptibility measurements as a function of the temperature, χac(T ).

9.2.1 Evolution of the phase composition

The evolution of the phase composition during the different steps of the

continuous solid-state process has been monitored using XRD patterns col-

lected at RT on a RIGAKU D-max/2500 X-ray diffractometer using Cu Kα

radiation.

The difractograms of the precursor powders obtained at different stages

of the continuous solid-state process are presented in Figure 9.4. The pat-
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tern at the top of the figure corresponds to the initial raw mixture of oxides

and carbonates (powder CSS0), which shows the expected phases: Bi2O3,

SrCO3, CaCO3 and CuO (see Table 9.1). Below is the pattern of the pre-

cursor powders after the first thermal treatment in the continuous furnace

(powder CSS1). The strongest peaks associated with Bi2O3 (see for instance

the peaks between 2θ = 26° and 28°) are no longer present, and also the

CaCO3 phase cannot be detected. The presence of the characteristic peak

at 7.2° indicates that the Bi-2201 phase has started to be formed in this fist

stage. Another Bi-containing compounds seem also to be present, identified

by Naumov et al. [39] by the general formula Bi4(Ca2-xSr1.5-x)O9.5, but they

have a wide range of compositions, making them difficult to identify by XRD.

Some traces of SrCO3 and CuO are also present. An important point is that

the Bi-2212 phase is not detected in these powders.

Figure 9.4: XRD patterns of the CSS0, CSS1, CSS3, CSS5 and CSS7 powders

The pattern corresponding to the precursor powders after the third thermal

treatment (CSS3) shows that the Bi-2212 phase has started to form, which

is remarkable considering the low number of heat treatments. Note that, in

addition to the Bi-2201 phase, there are some low intensity peaks of SrCO3,

CuO and Bi-containing compounds, indicating that some small amounts of

these phases are still present in these powders.
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The XRD pattern after the fifth heat treatment in the continuous furnace

(CSS5) shows the Bi-2212 and Bi-2201 as the main phases. The relative evo-

lution of these two phases have been analyzed by the ratio of the intensities

of the 2θ = 23.1° (Bi-2212) and the 2θ = 21.8° (Bi-2201) peaks. This ratio

was 0 in the case of the sample CSS1, 0.51 in CSS3 and 0.76 in CSS5. The

peak intensities of the SrCO3 and CuO phases are very similar in these three

powders, which could indicate that the changes in the amount of these two

phases are very small during the different continuous stages.

It is worth noting that the pattern of the final precursor powders sub-

jected to seven heat treatments (CSS7) does not show any significant differ-

ences with the corresponding one after five heat treatments (CSS5), except for

the fact that the intensity of the Bi-2212 peaks of CSS7 is slightly enhanced

(i23.1/i21.8 = 1.85), meaning this transformation has been evolving during this

step. Table 9.2 collects the main phases and the composition (wt.%) of the

CSS7 and the SSS precursor powders. This composition analysis was per-

formed using the RIR of each phase. It is important to take into account

that these Bi-based superconductors form by intercalation of the different

phase layers. In consequence, the Bi-2212 phase, for instance, shows a broad

range of compositions. This is reflected in the broadening of the XRD peaks.

For this reason, the values presented in Table 9.2 can be considered only as

semi-quantitative estimations to analyze the trends induced by the thermal

treatments.

Precursor Powders
Phase

Bi-2201 Bi-2212 SrCO3 CuO

CSS7 41.2 33.6 14.1 11.1

SSS 19.9 42.0 21.0 17.1

Table 9.2: Phase composition (wt.%) of the CSS7 and SSS precursor powders ob-

tained with a semi-quantitative analysis using the RIR of each phase.

As mentioned above, Bi-2212 phase begins to form in the continuous

solid-state process during the second or third heat treatment, reaching ∼ 34

wt.% in the CSS7 sample. It must be noted that the sum of Bi-2201 and

Bi-2212 phases reaches ∼ 75 wt.%. The other 25 wt.% corresponds mainly

to SrCO3 and CuO. In the standard solid-state powders, the Bi-2212 phase
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is present in about 42 wt.%, but the sum of Bi-2201 and Bi-2212 phases is

slightly lower than in the case of the continuous process (∼ 62 wt.%).

Figure 9.5: (a) XRD patterns of the C, SSS and CSS7 precursor powders. The

different phases are identified by the same symbols as in Fig. 9.4. (b) Detail of the

peak (008) of the Bi-2212 phase (2θ = 23.1°) showing the broadening and the small

shift.
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In Figure 9.5 (a) the XRD patterns of the C, SSS and CSS7 precursor pow-

ders are compared. Sharper peaks of the Bi-2212 phase than in the SSS and

CSS7 powders are clearly observed in the C powder pattern. If SSS and CSS7

powders are compared, Bi-2212 peaks are sharper and more prominent than

those of the Bi-2201 phase (i23.1/i21.8 = 6.44) in the SSS precursor, in good

agreement with the results shown in Table 9.2. Figure 9.5 (b) shows a detail

of these XRD patterns around the (008) peak of the Bi-2212 (2θ = 23.1°).
Besides a small shift in the position (2θ = 23.0° in C and 2θ = 23.1° in SSS

and CSS7 powders), it is clearly observed that the peaks of both solid-state

powders are broader than that of C powder. This can be explained by the pres-

ence of intergrowths of Bi-2201 in the Bi-2212 grains [9] during the solid-state

reaction process, which also complicates the phase quantification by XRD, as

previously mentioned.

9.2.2 Particle size distribution

The particle size distribution of the SSS and the CSS precursor powders

was analysed using a Beckman Coulter LS 13 320 laser diffraction particle size

analyser.

Figure 9.6 shows a comparison of the measured particle size distribution

of the SSS, CSS5 and CSS7 powders. The parameters d10, d50 and d90, char-

acterising the powder particle size distribution are collected in Table 9.3 for

these powders, together with those corresponding to the C powder, which were

provided by the manufacturer.

Precursor Powders d10 (µm) d50 (µm) d90 (µm)

C 0.10 1.18 2.18

SSS 4.74 22.95 55.59

CSS5 4.19 15.81 41.70

CSS7 4.05 16.84 42.45

Table 9.3: The particle size distribution parameters d10, d50 and d90 for different

precursor powders are collected.

The curves of both CSSX powders are very similar, as it would be expected

since after every heat treatment in the continuous furnace the powders are
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Figure 9.6: Particle size distribution of the SSS, CSS5 and CSS7 precursor powders.

ball milled, thus homogenizing the phases and the particle size. The main

differences between both powders are observed in the region between 30 µm to

50 µm, where the number of particles is significantly higher in the powders that

have been processed seven times. When we compare these distributions with

that of the SSS powders, we observe that the grain size distribution is similar

but slightly shifted in this case to higher sizes. This difference is probably

due to the different duration of the milling used in each procedure. Note that

the volume percentage of particles with sizes between 0.4 µm and 2 µm is very

similar in these three powders. The C powders present the smaller grain size

by more than an order of magnitude.

These results have also been confirmed by FESEM observations of the

different precursor powders, as presented in Figure 9.7. Clearly, the differences

in size of one order of magnitude can be observed if the image of powder C

(Fig. 9.7 (a)) is compared with the images taken in the other three powders.

Figure 9.8 shows C and CSS7 powders using higher magnification for more

detail. Note that these images were taken using the in-lens detector, which is

a high-efficiency annular SE detector used to map the surface structure of a
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sample. These images clearly show that the grains are agglomerates of stacked

planar grains.

In conclusion, the three powders fabricated using solid-state routes present

very similar values of grain size, as discussed above, with no significant differ-

ence in the obtained values among the CSS5 and CSS7 precursor powders.

Figure 9.7: FESEM images using the SE detector of the different analyzed precursor

powders: (a) C, (b) SSS, (c) CSS5, and (d) CSS7.

Figure 9.8: FESEM images using the InLens detector at a higher magnification of

the (a) C and (b) CSS7 precursor powders.
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9.2.3 Melting behaviour of the analysed powder

As these powders are intended for use as precursor for a melt-texture pro-

cess, it is important to study if the above mentioned differences have any

influence on their melting behaviour. This has been analysed using DSC and

TGA techniques. The measurements were carried out in a SDT Q600 sys-

tem which allows a simultaneous registry of weight loss (TGA) and heat flow

changes (DSC) along programmed temperature scans. DSC was calibrated

with sapphire standard and samples of about 15 mg were laid onto the tarred

alumina pans and air was used as the purge gas at a flow of 100 ml min−1. The

heat treatment applied to the precursor was a heating ramp of 10 ◦C min−1

from RT up to ∼ 1000 ◦C.

The percentage of weight loss as a function of the temperature is displayed

in Figure 9.9 for different precursor powders. The C powders present a weight

loss of about a 2 % between 100 and 250 ◦C, which can be due to elimination

of some hydroxide compounds that can be fixed in the surface of these small

powders. This was expected since these powders have been stored for more

than two years, they are very fine and, consequently, they are more reactive

with the ambient in comparison with the other powders.

Concerning the continuous solid-state precursors, the CSS0 presents the

greater weight loss as expected: up to a 14 % at 1000 ◦C. This is because the

oxides and carbonates react to form the Bi-2212 phase loosing all the C in

form of CO and CO2. In fact, as detailed in Table 9.1, 114.8 g of oxides and

carbonates are required to obtain 100 g of Bi-2212, which is in good agreement

with the TGA measurement. CSS5, CSS7 and SSS precursor powders present

very similar curves, so that the formation of the Bi-2212 would be similar in

all three cases. The slight difference between the curves of CSS5 and CSS7

(5 % and 5.5 % respectively) indicates that additional heat treatments would

not change essentially the precursor powder behaviour. Comparing the curves

of the SSS, CSS5 and CSS7 with the curve of sample C, it is observed that

the small mass loss at high temperatures in samples C starts at approximately

650 ◦C while in the other three samples starts near 750 ◦C.

The heat flow required to keep constant the heating ramp as a function

of the temperature is displayed in Figure 9.10 for the same precursor powders
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Figure 9.9: TGA of the C, SSS, CSS0, CSS5 and CSS7 precursor powders.

as in Fig. 9.9. The temperature region at which the Bi-2212 phase melts is

shown in more detail in the inset. The values at which the main melting peak

occurs are collected in Table 9.4.

Mayoral et al. showed that when low heating rates are used it is possible

to distinguish the melting of different phases [40]. They found that a small

part of the sample melts at temperatures between 865 and 870 ◦C, another

fraction, associated with the Bi-2201 phase melts between 875 and 885 ◦C,

and the greater portion melts between 885 and 895 ◦C. Data presented in the

inset of Figure 9.10 shows that a similar behavior is observed in the SSS, CSS5

and CSS7 precursors, with different melting phenomena above 870 ◦C. The

melting peaks of these powders are broader towards lower temperatures, which

is expected due to the variations in the stoichiometry and in the presence of

the lower melting temperature Bi-2201 phase [41] in these powders. The values

at which the main melting peak occurs and the values of the energy involved

in this endothermic peak are collected in Table 9.4. In the case of sample C,

as the Bi-2212 phase is the main one, only a peak is observed. By contrast,

the CSS0 sample shows a different behaviour showing a peak at 650 ◦C, and
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Figure 9.10: DSC as a function of the temperature of the C, SSS, CSS0, CSS5 and

CSS7 precursor powders.

a small step in the heat flow at 857 ◦C showing that the Bi-2201 phase is

forming. At temperatures above 890 ◦C it is possible to detect the formation

of the Bi-2212 phase.

Precursor Powders T (◦C) ΔH (J g−1)

C 887.88 82.6

SSS 891.11 102.9

CSS0 887.18 35.8

CSS5 885.27 87.9

CSS7 888.53 113.0

Table 9.4: Melting temperatures and enthalpy changes of the Bi-2212 phase for the

different precursor powders.

Mayoral et al. also showed that the Bi/(Sr+Ca) ratio can modify the

melting temperature up to 7 ◦C, but without a clear trend when this ratio is

changed [40]. In addition, depending on this ratio the mechanism that controls

the solid-state reactions that are involved are different. In this work, the used
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stoichiometries give a value of Bi/(Sr+Ca) of 0.76 for the C powder and 0.7

for the other powders that are considered as Bi-rich precursor powders. In the

case of the solid-state precursor powders, where a multiphase is obtained, the

mobility of reactants is accelerated by the formation of a liquid phase.

These results show a similar melting behavior of SSS, CSS5 and CSS7

powders. Thus taking into account powder properties and processing method

requirements, we can conclude that CSS5 present good characteristics to be

used as precursor for melt-processed Bi-2212 materials. Additional heat treat-

ments do not introduce substantial differences in the melting process of these

powders.

9.2.4 AC magnetic susceptibility analysis

The AC magnetic susceptibility as a function of the temperature, χac(T ),

of the precursor powders was measured using a SQUID-based Quantum Design

MPMS-5T system. The measurements were performed in zero DC field and

with AC magnetic fields of frequency of 120 Hz and amplitude of 0.1 mT.

Figure 9.11 (a) displays the in-phase component of χac, χ
′, divided by the

sample mass as a function of the temperature for C, SSS, CSS5 and CSS7

precursor powders. The same data together with the out-of-phase component,

χ′′, both scaled by |χ′(5 K)|, are also shown in 9.11 (b) and (c).

It is observed that all the samples show superconducting behaviour, but

with remarkably smaller χ′ values in the case of C precursor powders, by

approximately one order of magnitude at low temperatures. This behaviour

can be qualitatively explained by the differences in the grain sizes between

these powders (see Table 9.3 and Figure 9.7) and taking into account the value

of the in-plane London penetration depth in this material, λLab(0), which is

∼ 0.25 µm [42], the same order of magnitude than the grain size.
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Figure 9.11: (a) Temperature dependence of the in-phase and out-of-phase compo-

nents of the AC susceptibility, χ′(T ) and χ′′(T ), divided (a) by the sample mass, (b)

and (c) by |χ′(5 K)| for C, SSS, CSS5 and CSS7 precursor powders.
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As discussed by Campbell et al. [43], this is an important point to consider

when χac measurements are analysed. Clem and Kogan [44] presented the

calculation of the magnetic moment, µ, of a superconducting spherical particle

(radius r) as a function of the ratio x = r/λL when a weak magnetic field, H,

is applied:

µ = −Hr
3

2
P (x) (9.1)

where P (x) = 1− (3/x)coth(x) + 3/x2.

Although the Bi-2212 grains have a platelet-like shape, they are arranged

in the form of agglomerates with rather spherical configuration, as can be seen

in Figure 9.8. P (x) is proportional to the percentage of the sample volume

that would contribute to the diamagnetic signal. Table 9.5 shows the values of

P (x) at low temperatures if d50 and d90 values of each powder are considered.

Taking into account that the contribution of smaller grains in powder C has

a negligible contribution to the diamagnetic signal and that even with the

grains associated to d90 the diamagnetic signal is only a 22 % of the volume,

it is clear that the differences presented in Figure 9.11 (a), in which the C

powder has a signal of approximately the 12 % of the diamagnetism of the

SSS powder, could be explained taking into account the grain size distribution

of each powder.

Precursor Powders d50 (µm) P (r/λL(0)) d90 (µm) P (r/λL(0))

C 1.18 0.08 2.18 0.22

SSS 22.95 0.87 55.59 0.95

CSS5 15.81 0.82 41.70 0.93

CSS7 16.84 0.83 42.45 0.93

Table 9.5: Evolution of P (x) for some characteristic grain sizes in the different

powders.

The differences in the temperature dependence presented in Figure 9.11

(b) and (c) also can be explained considering the temperature dependence of

the λL [44]. Transitions becomes broader as the particle size is reduced [43]

following the trends presented in Figure 9.11 (b).

The results presented in this chapter show that it is possible to obtain
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Bi-2212 precursor powders using a continuous solid-state fabrication process.

Taking into account the characteristics of the continuous furnace that has been

used, the Bi-2212 appears after three repetitions of the heat treatment (CSS3)

and the main changes takes place after five repetitions (CSS5). Additional

treatments facilitate the evolution to the transformation of the Bi-2212 phase

but induce small changes in the overall properties of the powders.

In consequence, with these results, it is considered that after five repetitions

of the heat treatment in a continuous furnace, the quality of the precursor

powders obtained, CSS5, is sufficient to fabricate satisfactory high critical

temperature Bi-2212 superconductor ceramic monoliths by Laser Zone Melting

(LZM). In order to confirm these ideas, these powders are used as precursors

to fabricate LZM textured samples in the following chapters. A comparison

with the C precursor powders has been performed for selected cases in order

to confirm this hypothesis.





Chapter 10

Influence of the precursor and

the thermal heat treatment in

laser textured materials

In this chapter we describe the developed technique for processing large and

planar Bi-2212 bulk materials textured by LZM using industrial scale meth-

ods. We analyse and discuss the properties of the resulting superconducting

materials and their microstructural characteristics at the different processing

stages.

A new laser line scanning configuration for LZM processing has been used

with this aim, which is described in 10.2. In order to validate the proposed

method, it was firstly used to texture Bi-2212 materials made from commercial

powders (10.3), and subsequently to texture materials made from the contin-

uous solid-state precursors that were described in Chapter 9 (10.4). Finally,

we have analysed the effect of texturing both sides of the planar samples in-

stead of just one side with commercial powders (10.5). For those samples, we

have studied the possibility of using a continuous heat treatment to obtain the

superconducting phase after laser processing, instead of the “traditional” one

(10.6).



144 Chapter 10. Influence of the precursor and the thermal heat treatment in...

10.1 Pellet preparation

Two different kinds of pellets were prepared prior to the LZM process:

• Disks - 14 g of Bi-2212 were uniaxially pressed into disk at 140 MPa.

The disks have a diameter of 40 mm and a thickness of 2.1 mm. Besides,

3 wt.% of polymethyl methacrylate (PMMA, (C5H2O8)n) was used as

binder in combination with 0.5 ml of acetone (C3H6O) as a dispersant.

After the preparation, the dispersant was evaporated from the disks with

an infrared bulb. An example of this kind of samples is shown in Figure

10.1.

• Rectangular bars - between ∼ 6 and 8 g of precursor powders were

isostatically pressed at a equivalent pressure of 60 MPa without disper-

sant nor binder, to form rectangular bars of approximate dimensions

2 × 8 × 80 mm. A photograph of one of these rods is also displayed in

Figure 10.1.

Figure 10.1: Pictures of the two pellet geometries used for LZM process: disks and

rectangular bars.
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10.2 New laser line scanning configuration for LZM

processing

The prepared pellets were processed using a new laser line scanning con-

figuration, consisting in a CO2 pulsed laser coupled to a galvanometric mirror

system. The aim is to demonstrate the feasibility of texturing pieces of width

up to 40 mm and processing several samples in parallel, thus overcoming the

limitations of traditionally used laser configurations [36], which impose restric-

tions in the sample width due to intrinsic features. Preliminary tests using

this new set-up, carried out by Lennikov et al [32] for smaller samples, revealed

that superconducting properties of the textured material strongly deteriorate

when the texturing speed increases. The work developed in this thesis aims to

scale-up this procedure to larger samples, to overcome some of the problems

presented in [32] and to optimize the processing method. A novel two-step

LZM procedure is proposed to gain better control of the processed material

microstructure.

The LZM process was performed in air, inside a furnace, at a temperature

of 450 ◦C. An Easy-Laser 350 W SLAB-type pulsed CO2 laser, emitting at a

wavelength λ = 10.6 µm, was used (see Figure 10.2). The laser is a pulsed

system emitting with frequencies up to 20 kHz and pulse widths of 50 µs. One

important parameter of the laser process is the duty cycle, which is the fraction

of one period (the time that a pulsed laser needs to complete an on-and-off

cycle) in which the laser is active. For the laser used in this work, the maximum

duty cycle was 50 %.

The laser output beam is steered with a galvanometer mirror system, with

a diameter of 0.8 mm at a distance of 1050 mm, and the laser beam is displaced

along the y-direction with a steering speed of 12 m s−1. As it can be observed

in Figure 10.3, this allows obtaining from a circular laser beam a line over

the sample surface, which in this case is 250 mm long. The length of this line

must be larger than the sample width, otherwise the laser will change the sense

inside the sample and will create a localized region where the laser treatment

is stronger.

The beam line was directed to the sample surface at an angle of 15° with

respect to the sample surface normal. By modifying the laser power, the
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Figure 10.2: A scheme of the laser used for LZM processing of the samples [32]. 1.

CO2 laser. 2. Beam steering system. 3. Laser beam. 4. Sample movement stage. 5.

Protection plate with metal power dissipaters (not shown in 3D simulation). 6. Melt

line in the sample. 7. Non-processed zone of the sample. 8. Textured zone of the

sample. 9. Sample movement direction.

laser steering speed and the line width is it possible to control the amount of

energy deposited on the surface. In order to obtain a flat solidification front,

it is essential to control all these parameters to maintain a constant molten

volume, even when the laser beam is out of the sample. It is also possible to

process several samples in parallel, as shown in Figure 10.3.

The sample is displaced in the x-direction, with a traverse rate determining

the speed at which the molten zone travels along the sample. One of the

limitations of the equipment used in this work is that the minimum sample

displacement speed is 25 mm h−1.

Samples were textured at 450 ◦C using a two-step processing protocol. In

the first one, the sample travelling velocity was 100 mm h−1 and the duty



10.2. New laser line scanning configuration for LZM processing 147

Figure 10.3: Picture of two Bi-2212 disks (4 cm in diameter) placed over a Cu piece

inside the furnace during laser treatment. The image clearly shows that the width of

the scaned laser line is longer than the sample width and that several samples can be

processed in parallel.

cycle was 45 %. For the second step, the sample velocity was decreased to

30 mm h−1 and the duty cycle was increased to 50 %. The objective of the

first texturing treatment is to quickly melt, densify and consolidate the sample

surface, while in the second one, the objective is to induce an adequate texture

to the previously treated surface of the sample. An example of a textured

Bi-2212 disk and rectangular bar samples are displayed in Figure 10.4. In the

case of the disk, the laser treatment was stopped 1 cm before the final of the

sample to analyse the solidification front. The image clearly shows that it is

horizontal and that a high degree of texture has been induced after the laser

texturing process.

All samples are processed over a bulk Cu piece of 10 cm×10 cm×5 mm that

acts as a sample holder and contributes to homogenize the temperature at the

base. Thermal insulators, such as alumina plates, were initially used as sub-

strates but discarded because, unlike copper, they absorb the laser radiation

inducing additional local heating and cause bending of the sample.
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Figure 10.4: Left-hand side picture shows a textured Bi-2212 disk of 40 mm of

diameter. Laser texturing process was started in the bottom part of the sample and

was stopped 1 cm before finishing it in order to record the shape of the solidification

front. Right-hand side picture shows a textured Bi-2212 rectangular bar 73 mm long.

Not the full length of the rectangular bar is processed.

10.3 Validation of the new LZM processing method

General rectangular bar samples were prepared from commercial precursor

powders using the processing method described in 10.2 and the results are

presented in this section.

10.3.1 Microstructure after the first step of the LZM texturing

process

Figure 10.5 shows the longitudinal cross-section of the textured monolith,

named TC1 (Textured monolith fabricated with Commercial precursor), af-

ter the first processing step, performed at 100 mm h−1 to quickly melt and

densify the sample surface. This microstructural analysis was performed on

a less-than-usual wide rectangular bar (∼ 3.2 mm-width) and before any heat

treatment in order to better investigate the phase composition and texture

induced by laser.

The FESEM images show the typical three regions frequently observed
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Figure 10.5: FESEM image using AsB detector of the longitudinal cross-section of

sample TC1 subjected to the first step of the LZM texturing process at 100 mm h−1.

in any laser process: the molten region (indicated as MR) near the treated

surface, the original one (indicated as NTAR) at the bottom and a thermally

affected region (indicated as TAR) in between.

In the lower part of the sample the initial raw commercial precursors can

be seen. From the EDX analysis, adjusting the Bi to 2.18, the composition

is 2.18:1.90:0.83:1.92, which is similar to the given nominal composition of

2.18:1.98:0.87:1.97.

The other two regions affected by the laser can be seen with higher mag-

nification in Figure 10.6. The densification reached by the laser treatment

creates bubbles in the lower part of the molten region.

In the thermally affected zone, the grain size ranges from less than 1 µm to

more than 60 µm. The microstructure shows that the solidification rate was

too high to produce texture and it produces a structure of grains that mainly

nucleates from the interface between the melt and the thermally affected re-

gion, inside a matrix of amorphous material.

Several phases can be distinguished. The composition of the three major

phases, deduced from FESEM images and EDX analysis, is collected in Table

10.1. The main component is a matrix with a regular grey contrast, that

corresponds to a fast solidified liquid phase and whose composition is very close

to the Bi-2212 phase of the precursor powders. The amount of Bi increases,

most probably due to the formation of Bi-free oxides as well as Ca and Cu
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Figure 10.6: FESEM images using AsB detector of the longitudinal cross-section of

the thermally affected zone by the first step of the laser processing at 100 mm h−1

in sample TC1. (a) General view of the microstructure. (b) Detail of the interfase

between the melted and the thermally affected regions.

oxides. Inside this matrix, a random structure of Bi-2201 grains (lighter grey

contrast) can be observed. From the analysis of the composition, also the

amount of Bi is too high and some traces of Ca are also detected by EDX

as a signal of the intergrowths between Bi-2201 and Bi-2212 phases and the

possible contribution of the surrounding phases. Some Bi-free grains (dark

grey contrast) nucleate in the interface of this region. This Bi-free phase is

the so called 1:1, with a composition (Sr1-xCax)CuO2, x = 0.6. The presence

of this Bi-free phase was previously reported in Bi-2212 laser textured samples
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by other authors [7,14,45]. Also small grains of Cu and Ca oxides can be found

in the lower part of the laser melted region (black contrast).

Phase
Composition (at.%)

Bi Sr Ca Cu O

Matrix (Bi-2212) 16 (1) 13 (1) 5 (1) 12 (1) 54 (3)

Bi-2201 20 (1) 14 (1) 3 (1) 9 (1) 54 (2)

1:1 - 16 (1) 11 (1) 25 (1) 48 (2)

Table 10.1: Chemical composition values and standard deviations of the three major

phases deduced from FESEM images and EDX analysis after the first step of the LZM

processing of sample TC1.

10.3.2 Microstructure after the second step of the LZM tex-

turing process

The second step of the laser processing is performed at 30 mm h−1 and

affects more deeply the microstructure and phase composition, as can be seen

in Figure 10.7. The thermally affected region (indicated as TAR) is approx-

imately 240 µm, three times thicker than when the first laser treatment at

100 mm h−1 was performed. The melted region (indicated as MR) also grows

in thickness. The lower part of the melted region is characterized by the ac-

cumulation of 1:1 phase grains whose growth direction is different across the

melted area. This reflects the change in the thermal gradients in this region

during the texturing process. Besides, grains of Cu and Ca oxides can also be

seen, which are mainly at the bottom of the melted region.

In the upper part, the sample TC1 exhibits a region with long and oriented

grains almost parallel to the surface. Figure 10.8 shows this region, where the

three main phases previously mentioned, i.e. Bi-2201 (light grey contrast),

matrix with a composition close to Bi-2212 (regular grey contrast) and Bi-free

1:1 (dark grey contrast), are clearly distinguishable. Furthermore, Ca oxide

grains can also be seen in black.

Another example of this upper well-textured region from other part of the

sample TC1 with a higher magnification is displayed in Figure 10.9, where

even grains of the 1:1 phase aligned parallel to the surface can be observed.
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Figure 10.7: FESEM image using AsB detector of sample TC1 longitudinal

cross-section after the second and final step of the laser processing at 30 mm h−1.

Figure 10.8: FESEM image using AsB detector of the well-textured region of sample

TC1 longitudinal cross-section after the second and final step of the laser processing

at 30 mm h−1.
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Moreover, Cu oxide particles are observed inside the Bi-2212 matrix, showing

an eutectic-like structure. These Cu oxide grains have a darker grey contrasts

than that of the Bi-2212 matrix.

Figure 10.9: FESEM image using AsB detector at a higher magnification of the

well-textured upper region of sample TC1 longitudinal cross-section after the second

and final step of the laser processing at 30 mm h−1.

The compositions of these three phases (Table 10.2) are practically iden-

tical to those obtained when analysing the phase composition after the first

step of the LZM texturing procedure (see Table 10.1).

Phase
Composition (at.%)

Bi Sr Ca Cu O

Matrix (Bi-2212) 16 (1) 13 (2) 5 (1) 13 (2) 53 (3)

Bi-2201 20 (1) 14 (1) 2 (1) 9 (1) 55 (3)

1:1 - 16 (1) 10 (1) 24 (1) 52 (2)

Table 10.2: Chemical composition values and standard deviations of the three major

phases were deduced from FESEM images and EDX analysis after the two-step LZM

processing of sample TC1, before the final heat treatment.

Typically, bar pellets are fabricated with a thickness of ∼ 2 mm (see section

10.1). After the texturing process the transverse cross-section of the laser

affected region is not uniform due to the differences in the heat evacuation

rates in the center and in the border of the sample. Figure 10.10 shows the
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typical transversal cross-section. From these measurements it can be deduced

that the cross-section has been reduced a 40 % due to densification during the

laser process. The final thickness at the center of the sample is approximately

∼ 1.2 mm.

Figure 10.10: FESEM images using AsB detector of the transverse cross-section of

sample TC1 after the second texturing step.

In fact, the thermally affected cross-section can be determined from these

images to be ∼ 0.02 cm2, by subtracting the total area minus the dark grey

lower part area which corresponds to the original non-processed ceramic.

10.3.3 Microstructure after heat treatment

Bi-2212 materials show an incongruent melting that leads to multiphase

materials [38]. Thus, after the texturing process, a thermal treatment is re-

quired to recover the superconducting phase. Bi-2212 phase grows from the

Bi-2201 phase due to diffusion phenomena of the (Sr1-xCax)CuO2.

Heat treatment

Mora et al. [46] obtained that as-grown LFZ Bi-2212 rods have to be main-

tained at 845 ◦C for at least 60 h to form the superconducting phase. Natividad

et al. [47] used Simplex Methods to optimize the heat treatment of LFZ tex-

tured Bi-2212 rods, concluding that the heat treatment requires two steps, one

at 870 ◦C to form the Bi-2212 phase and a second one at 800 ◦C to adjust the

oxygen content.



10.3. Validation of the new LZM processing method 155

Later works optimised this heat treatment for textured LZM monoliths

[48–50], which is shown in Figure 10.11 and that we will denominate “tra-

ditional” treatment from now on in this thesis. It is performed in air and

consists in a first heating from RT to 800 ◦C at 1.33 ◦C min−1 which slows

down to 0.42 ◦C min−1 from 800 ◦C to 850 ◦C. Then, samples are kept at

850 ◦C for 60 h. Thus, the different phases present in the sample react to form

the Bi-2212 superconducting phase [47]. After that, a quick cooling down to

800 ◦C is performed at 4.20 ◦C min−1 and the sample is maintained at this

temperature for another 12 h to adjust the oxygen content. Finally, a decrease

from 800 ◦C to RT is performed at a rate of 1.33 ◦C min−1. When the temper-

ature reaches values of the order of 600 ◦C, it is quenched in order to avoid

the expulsion of the captured O-atoms at lower temperatures.

Figure 10.11: “Traditional” heat treatment comprised of an initial heating from

RT to 850 ◦C in 12 h, followed by a two-step heat treatment at 850 ◦C for 60 h and

800 ◦C at 12 h respectively. Finally, a controlled cooling from 800 ◦C to RT in 10 h

with a quench at 600 ◦C is performed. The complete treatment is carried out in air

atmosphere.

Phase composition after heat treatment

Another rectangular bar also made with C precursor powders and named

TC2 (8.6 mm-width) was prepared following the same process than sample

TC1. As it can be observed in Fig. 10.12, the microstructure of the textured

region of sample TC2 has homogenized considerably in terms of phase com-
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position in comparison with the as-grown samples, i.e. just after the laser

processing (sample TC1). From the images, it can be observed that the main

phase is the Bi-2212, but some grains of the 1:1 and Bi-2201 phases still remain

as minority phases. This indicates that the phase segregation occurred during

the texturing process is not uniform and in some regions there are Bi-2201

deficiency and 1:1 excess to complete the reaction, while in others it is the

opposite. The 1:1 grains are mainly concentrated in the upper well-textured

region and in the inner part of the melted region.

Figure 10.12: FESEM image using AsB detector of the longitudinal cross-section of

LZM processed sample TC2. The image was taken after subjecting the sample to the

“traditional” heat treatment.

Table 10.3 presents the chemical composition of the three major identified

phases as measured by EDX analysis using the FESEM images. These com-

positions are similar to those measured in the as-grown samples (see Tables

10.1 and 10.2). This means that the recovery of the superconducting Bi-2212

phase achieved through the “traditional” heat treatment does not show chem-

ical deviations from its original stoichiometry.

The upper well-textured region, indicated in Fig. 10.12 as WTR, is pre-

sented in Fig. 10.13, with higher magnification. With the exception of the

1:1 phase grains (dark grey) and some small and disperse holes, a highly ho-

mogeneous Bi-2212 phase (regular grey) is obtained. Some traces of Bi-2201

grains (light grey) are still present among the Bi-2212 matrix, as previously

mentioned. Besides, some oblique scratches, consequence of the polishing used

during the sample preparation, can be also observed. It is important to remark
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that the desired orientation of the superconducting grains, aligned parallel to

the surface, it is successfully achieved.

Phase
Composition (at.%)

Bi Sr Ca Cu O

Bi-2212 15 (1) 13 (1) 5 (1) 13 (2) 54 (2)

Bi-2201 20 (1) 14 (1) 2 (1) 9 (1) 55 (2)

1:1 - 17 (1) 9 (1) 24 (1) 50 (2)

Table 10.3: Chemical composition values and standard deviations of the three major

phases deduced from FESEM images and EDX analysis after subjecting the LZM

textured sample TC2 to the “traditional” heat treatment.

Figure 10.13: FESEM image using AsB detector of the upper well-textured part of

sample TC2 displayed in Fig. 10.12 at a higher magnification.
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10.3.4 Superconducting properties

After performing the “traditional” heat treatment required to obtain again

the superconducting Bi-2212 phase, the need to evaluate the superconducting

performance of the rectangular bar shaped sample, TC2, arises. In order

to do that, both the Tc and Ic (77 K) are measured for sample TC2 with

the following dimensions: width w = 8.6 mm and distance between voltage

contacts l = 10.5 mm.

Taking into account that the cross-section of sample TC2 is not fully tex-

tured, instead of using quantities that require a precise determination of that

transport cross-section, such as the resistivity (ρ) or the Jc, the resistance,

R(T ), re-scaled by a geometrical factor w/l (being w and l the samples’s

width and distance between voltage contacts respectively), and the transport

applied current also re-scaled (I/w) are used to compare the behaviour of

different samples with different widths.

R(T ) measurements were performed using a four-point configuration, im-

mersing the superconducting sample TC2 in liquid nitrogen and letting it

warm up slowly as the nitrogen evaporates until reaching room temperature.

A current bias of 1 mm was used. A Tc of 86.4 K was deduced from the R(T )

measurement presented in Figure 10.14.

Besides, the transport critical current value was measured at 77 K with

the sample immersed in liquid nitrogen and the electrical current applied in

the perpendicular direction to the solidification front. Figure 10.15 shows the

obtained data from which the Ic value was determined using the 1 µV cm−1

criterion.

As can be seen in Fig. 10.15, the plotted data are not the measured I −V
curve but the measured electric field, E, versus the I/w. From the data at

high E values, considering the potential dependence of the I − V curve in the

dissipative regimen:

E ∝
(
I/w

Ic/w

)n

(10.1)

an adjustment to an potential function y = a · xb is performed as can be

observed in Figure 10.16. From the constants of the fitting, we can deduce



10.3. Validation of the new LZM processing method 159

Figure 10.14: Measurement of the electrical resistance, R, as a function of the

temperature from 77 K up to RT of sample TC2. R is re-scaled by a geometrical

factor (w/l) for comparison purposes.

Figure 10.15: Transport critical current measurement of LZM textured sample TC2

on a linear plot. The x-axis is re-scaled dividing it by the width of the sample, w, for

comparison purposes.
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that Ic/w = 141.2 A cm−1 and n = 6.23. The value of Ic/w is a 40 % higher

than the maximum value published in the previous work of Lennikov et al.

(101.4 A cm−1) [32], even if the texturing speed was twice in the present work.

Figure 10.16: Fit of the E − (I/w) curve of sample TC2 in the dissipative regimen

to a potential dependence.

Therefore, considering the width of the sample TC2 (8.6 mm) and esti-

mating the thickness of its well-textured region (∼ 480 µm, see Fig. 10.12),

the area of an ellipse, with these dimensions as axes, gives an approximate

value of the textured transport region of ∼ 3.24 mm2. Thus, a Jc value of the

order of 3.7 kA cm−2 can be obtained. This Jc value is in the range of typical

values for Bi-2212 LFZ processed thin rods [15, 51] and slightly higher but in

the order of magnitude of the best results obtained to date for LZM processed

planar Bi-2212 bulks [27]. Despite the high sensitive to the transport region

chosen for the definition of the Jc values, these results validate the two-step

LZM process used to texture the samples.



10.4. Properties of LZM textured materials using CSS precursors 161

10.4 Properties of LZM textured materials using

CSS precursors

In order to study the microstructural and superconducting properties of the

LZM Bi-2212 samples manufactured from the continuous solid-state precursor

powders, three rectangular bar-shaped pellets were prepared using the CSS0,

CSS1 and CSS5 powders described in section 9.1. CSS5 has been selected

because the results obtained in Chapter 9 show that this is the minimum

number of processing steps to reach a certain quality. CSS0 and CSS1 powders

have also been studied to determine if textured materials obtained with these

low reacted powders are similar. These pellets were processed by the two-step

LZM method (detailed in 10.2) and subsequently subjected to the “traditional”

heat treatment (shown in Fig. 10.11). The microstructure of the samples

before and after this final heat treatment has been analysed.

10.4.1 Microstructure of the as-grown LZM samples

The microstructure of the longitudinal cross-sections of three Bi-2212 rect-

angular bars after the two-step LZM process is displayed in Figure 10.17. The

textured sample processed with the CSSO precursor, TCSS0, presents a very

disordered microstructure (Figure 10.17 (a)), with the presence of bubbles

much larger than in the other analysed samples (Figs. (b) and (c)). This

would be due to CO and CO2 formation during the LZM process that get

trapped inside the sample.

It is remarkable that not only the order in the microstructure, but also the

depth of the molten region (indicated as MR), grows with the number of heat

treatments of the precursor powders. In particular, it almost doubles from

sample TCSS0 to sample TCSS5. Besides, the well-textured region (indicated

as WTR) grows notably in depth when increasing the number of the precursor

heat treatments. Note that the thickness of the well-textured region of the

sample TCSS5 is very similar to that of sample TC2.

The three main observed phases are the same as those identified in sample

TC1 (see Table 10.2), i.e. matrix close to Bi-2212 in regular grey, Bi-2201 in

light grey and the Bi-free phase (1:1) in dark grey. Table 10.4 collects the
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Figure 10.17: FESEM images using AsB detector of the longitudinal cross-sections

after the LZM texturing process of samples (a) TCSS0, (b) TCSS1 and (c) TCSS5.

chemical composition of the three phases estimated from EDX analysis.

The composition of these phases in the as-grown samples does not depend

on the powders used as precursor, CSS0, CSS1 or CSS5. Note that for the

matrix with a composition close to the Bi-2212 phase, this would correspond
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Sample Phase
Composition (at.%)

Bi Sr Ca Cu O

TCSS0

Matrix (Bi-2212) 14 (1) 13 (2) 5 (1) 12 (2) 56 (2)

Bi-2201 19 (2) 13 (1) 2 (1) 9 (1) 57 (3)

1:1 - 12 (1) 11 (1) 22 (2) 55 (3)

TCSS1

Matrix (Bi-2212) 14 (1) 12 (1) 4 (1) 11 (1) 59 (2)

Bi-2201 18 (1) 12 (1) 2 (1) 8 (1) 60 (2)

1:1 - 13 (1) 10 (1) 21 (1) 56 (2)

TCSS5

Matrix (Bi-2212) 14 (1) 12 (2) 4 (1) 12 (2) 58 (3)

Bi-2201 17 (1) 12 (1) 2 (1) 8 (1) 61 (3)

1:1 - 12 (1) 10 (1) 21 (1) 57 (2)

Table 10.4: Chemical composition (in at.%) and (standard deviations) of the three

major phases deduced from FESEM images and EDX analysis after the LZM pro-

cessing of the samples fabricated using the continuous solid-state precursor powders

CSS0, CSS1 and CSS5, before the final heat treatments.

approximately to a phase composition 2.33:2:0.67:2, i.e. laser processing pro-

duces Bi-enrichment and Ca-impoverishment with regard to the initial pre-

cursor stoichiometry (2.1:2:1:2). It is also remarkable that the composition of

the different phases present in these samples is very similar to sample TC1 at

this stage (Table 10.2).

The size of the 1:1 phase grains keeps approximately constant for the three

samples and very long grains parallel to the sample’s surface can be seen in

Fig. 10.17. Those grains and the microstructure that surrounds them can be

seen in Figure 10.18, where the upper well-textured region of the three samples

is displayed at a higher magnification.

In addition to the previously mentioned phases, grains of Ca oxide (black

contrast, red arrows) are more abundant in samples TCSS0 and TCSS1, as can

be seen in Figure 10.19, where images of the well-textured region at a higher

magnification are displayed. This is probably due to the fact that the oxides

and carbonates are more abundant in the early stages of the heat treatment

of the precursor powders, such as CSS0 and CSS1. Besides, traces of Cu oxide

(blue arrows) are found inside the matrix regions between Bi-phase grains.

In conclusion, when comparing the microstructure and phase composition
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Figure 10.18: FESEM images using AsB detector of the well-textured upper region of

the longitudinal cross-sections after the LZM texturing process of samples (a) TCSS0,

(b) TCSS1 and (c) TCSS5.

of the as-grown LZM textured samples (prior to the final heat treatment)

made with C and CSS5 precursor powders, it is observed that the chemical

composition of the phases found is very similar. This is a positive result since

this is achieved with precursors obtained using the novel continuous procedure
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Figure 10.19: FESEM images using AsB detector of the closer to the surface of the

sample region of the longitudinal cross-sections at a higher magnification of the LZM

textured samples (a) TCSS0 and (b) TCSS1. Red arrows indicate Ca oxides and blue

arrows indicate Cu oxides.

proposed in this work. Also, these results show that a minimum quantity of

heat treatment cycles is required, because a better microstructure has been

obtained in the sample TCSS5 than in the other two samples.

10.4.2 Microstructure of LZM samples after the final heat

treatment

The same thermal treatment that was described in 10.3.3 has been used to

form the Bi-2212 phase. Figure 10.20 shows a general image of the longitudinal

cross-section of the three samples. As it can be seen, their microstructure tend

to homogenize as the precursor powders are subjected to more heat treatments.
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Figure 10.20: FESEM images using AsB detector of the longitudinal cross-sections

after subjecting to the “traditional” heat treatment of LZM textured samples (a)

TCSS0, (b) TCSS1 and (c) TCSS5 precursor powders. An Ag voltage contact can be

seen on the surface of the sample TCSS0.
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Thus, sample TCSS0 (Figure 10.20 (a)), presents the most heterogeneous

microstructure in terms of phase composition. The elongated grains of the

Bi-free phase (1:1) have not completely reacted with the Bi-2201 grains to form

the superconducting Bi-2212 phase. Ca oxide grains are also distinguishable.

In agreement with the microstructural characteristics observed in the as

-grown samples, after the final heat treatment the sample TCSS5 (Figure 10.20

(c)) shows much better phase homogeneity and texture (with grains aligned

almost parallel to the sample surface), than samples TCSS1 (Figure 10.20 (b))

and TCSS0 (Figure 10.20 (a)), although some remaining secondary phases are

still observed.

The upper well-textured region of the three samples is displayed in Figure

10.21. In these images, it is observed the presence of elongated 1:1 grains that

are parallel to the sample surface. The edges of these grains are not straight

due to their reaction with the surrounding Bi-2201 grains to form the Bi-2212

phase.

The phase analysis in these samples after the heat treatment (not shown)

reveals very similar compositions to those observed in the as-grown samples

(see Table 10.4). In particular, the composition of the Bi-2212 phase is exactly

the same for the three samples (2.18:2:0.91:2), and very similar to the values

obtained for the as-grown LZM samples.

In general, the obtained results indicate that the LZM process induces a

similar phase composition in all samples regardless of the precursor powders

used, either commercial or continuously processed. Main differences have been

obtained in the distribution of the different phases, obtaining a better orien-

tation in the border of the sample when more reacted or commercial powders

are used.

In consequence, it should be expected that a better performance of the

superconducting properties will be attained when the samples have been pro-

cessed with these powders.
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Figure 10.21: FESEM images at a higher mangification using AsB detector of the

well-textured upper region of the longitudinal cross-sections after subjecting to the

“traditional” heat treatment of LZM textured samples (a) TCSS0, (b) TCSS1 and

(c) TCSS5.

10.4.3 Superconducting properties

In order to evaluate the superconducting performance of the rectangular

bar shaped samples made with the continuous solid-state precursor powders,

Tc and Ic (77 K) in self-field were measured using the same procedure and
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experimental conditions indicated in 10.3.4.

Figure 10.22 shows the R(T ) measurements (re-scaled by the w/l geomet-

rical factor) of samples TCSS0, TCSS1 and TCSS5. Tc values of 85.0 K, 85.9 K

and 85.7 K, respectively, were obtained from these measurements. Note that

they are all remarkably similar, with differences within 1 K, and just slightly

lower than the Tc value of sample TC2, which was 86.4 K.

Figure 10.22: The electrical resistance, R, measured as a function of the temperature

from 77 K up to RT for samples TCSS0, TCSS1 and TCSS5. R is re-scaled by a

geometrical factor (w/l) for comparison purposes.

The important feature of this measurement is that the value of R · w/l at

RT decreases as the number of heat treatments at which the precursor powders

are subjected increases. The difference between samples TCSS0 and TCSS1

is high. Additional continuous treatments induce much lower differences.

The Ic/w values at 77 K in self-field were determined from the transport

critical current measurements presented in Figure 10.23 of samples TCSS1

and TCSS5. The obtained values were Ic/w = 64.3 A cm−1 and n = 5.56 for

sample TCSS1, and Ic/w = 104.6 A cm−1 and n = 5.01 for TCSS5. These

Ic/w values are a 45 % and a 74 %, respectively, of the value obtained for
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sample TC2, and their n values are just slightly lower.

Figure 10.23: Measurement of the transport critical current at 77 K of a samples

TCSS1 and TCSS5. The x-axis is re-scaled dividing it by the width of the sample, w,

for comparison purposes.

In summary, the differences in the superconducting performance found

between the samples made with commercial (C) and continuously processed

(CSS5) precursor powders are not significant, provided that in the latter case

the precursor is subjected to several heat treatments. This result constitutes

not only a validation of the new proposed precursor synthesis route but also of

the industrial scale-up method for processing, which uses a laser-line-scanning

configuration and a two-step texturing procedure. Nevertheless, it is remarked

that further optimization of the complete procedure would be still required,

for example, by the optimization of the maximum temperature during the

formation of the CSS5 precursor or by tuning the composition of the initial

raw precursor.
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10.5 Two-face LZM texturing process

During the LZM texturing process of the Bi-2212 monoliths, certain prob-

lems with the reproducibility of the results have appeared. We believe that

this is related with two aspects of the sample microstructure that were ob-

served in the characterization of these materials. The first one is that the

depth of the textured region is not uniform in all the length of the sample,

leaving some regions with a smaller transport cross-section which could limit

the Ic performance.

The second problem is the presence of cracks on the lower part of the

sample. These cracks just appear occasionally and are a consequence of the

high thermal stresses induced in the sample during the laser treatment. The

presence of these cracks can be reduced processing the samples over a metallic

substrate that helps with the heat removal. In this case, as previously men-

tioned, a bulk Cu piece was used. But in some cases, samples bend during

the laser processing, reducing the thermal contact with the metallic support

substrate.

These two issues can be observed in Figure 10.24, which shows the longi-

tudinal cross-section of sample TC1, a rectangular bar fabricated using com-

mercial precursor powders after the LZM texturing process. The cracks, as

the one displayed in the figure, can reach lengths up to several hundreds of

microns, even reaching the laser textured region, affecting the transport Ic

performance.

Figure 10.24: FESEM image using AsB detector of a longitudinal cross-section of

sample TC1, subjected to the first and second step of the LZM texturing process at

100 mm h−1 and 30 mm h−1, respectively, and before the final heat treatment.
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We have tried to reduce these problems by texturing both sides of the

sample. This approach was developed by Mora et al. [31] with the objective

of increasing the transport capability of these materials, which was reached in

some experimental circumstances. In our case, we want to increase the density

of the back side of the sample, with the objective of reducing the possibility

of crack generation during the laser processing of the opposite side.

In order to investigate this possibility and as proof of concept, two disks

were prepared with commercial silver doped precursor powders from Nexans

SuperConductors GmbH. Their stoichiometry is Bi2.02Sr2.02Ca0.98Cu1.99Ox and

a 2.9 wt.% of Ag, and present a grain size distribution characterized by

d10 = 0.10 µm, d50 = 1.18 µm and d90 = 2.18 µm.

These samples were LZM processed with the previously described setup

(see 10.2) using a variation of the two-step method. This variation consisted

in performing an initial laser process in both sides of the samples at high

speed, 500 mm h−1. The second step is applied at 30 mm h−1 in only one of

the faces to obtain a well-aligned textured microstructure.

Some other processing differences compared with the description in sec-

tion 10.2 were used: the distance between the laser and the sample surface

was reduced 100 mm, with the objective of increasing the laser beam diam-

eter and the molten region length, and the steering speed was increased up

to 18.75 m s−1 reducing the time the laser is out of the sample and, in conse-

quence, reaching a more stable temperature of the melt volume. The line scan

width and the furnace temperature used were the same, that is 250 mm and

450 ◦C respectively.

Figure 10.25: FESEM image using AsB detector of the longitudinal cross-section

of a Bi-2212 disk made with C precursor powders processed with the two-face LZM

texturing procedure.
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The longitudinal cross-section of one of these samples is displayed in Fig-

ure 10.25, where the effects of the LZM process on both faces can be seen.

Using the previously mentioned variation of the two-step method results in a

complete absence of cracks on the lower part of the sample. Furthermore, the

cross-section thickness homogeneity could be enhanced by this method.

10.6 Exploring the use of a continuous heat treat-

ment in textured samples

The samples manufactured with the two-face LZM process have been used

to explore the use of a continuous heat treatment. The objective of this study

is to explore this possibility that can be an alternative to the heat treatments in

standard furnaces when the dimensions of the samples increase above certain

values.

From one of the textured disks, two samples ∼ 3 cm-long were extracted.

In one of the samples, 0.8 cm-wide and named TTA, the “traditional” heat

treatment, described in section 10.3.3, has been performed. In the second

one, 1.4 cm-wide and named TCAX, we have performed a continuous heat

treatment in air using in the continuous furnace shown in Fig. 9.1. The

temperature evolution followed by the sample is schemed in Figure 10.26.

The temperatures in the three regions of the continuous furnace were set

Figure 10.26: Scheme of the temperature evolution of the sample during a step of

the continuous heat treatment in air in order to obtain the superconducting Bi-2212

phase. The temperatures shown are those of the three regions of the furnace.
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to 650, 860 and 650 ◦C. With this temperature profile, the thermal treatment

consists on an initial heating in ∼ 1 h from RT to 860 ◦C, temperature at which

the sample is maintained for about 2 h and finally cooled down again to RT in

∼ 1 h. Considering that the total time of this continuous heat treatment is just

∼ 4 h, which is not enough to allow a complete formation of the Bi-2212 phase,

it is expected that several repetitions of this treatment would be needed. In

particular, 10 repetitions were used and the sample is called TCA10.

Figure 10.27 shows the microstructure of both samples. Obviously the

main trends are similar. The face subjected to the second step of the LZM

processing at 30 mm h−1, shown in the top side of Fig. 10.27, presents a

good texture with a high degree of grain alignment in the two samples. The

contrary occurs to the face subjected only to the first step of the LZM process

at 500 mm h−1, shown in the opposite lower side, which lacks of texture.

Figure 10.27: FESEM image using AsB detector of the longitudinal cross-section

of the Bi-2212 two-face LZM textured samples. Sample TTA, displayed in (a), was

subjected to the “traditional” heat treatment, while sample TCA10, shown in (b),

was subjected to the continuous heat treatment.
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The main difference between both treatments is better observed in Figure

10.28 which shows the upper well-textured region with higher magnification.

Figure 10.28: FESEM image using AsB detector of the longitudinal cross-section

of the upper well-textured region of the Bi-2212 two-faces LZM textured samples.

Sample TTA is displayed in (a), while TCA10 is shown in (b).

Table 10.5 collects the chemical composition of the three major phases

identified in the samples after the heat treatments. The values obtained are

very similar for both heat treatments, specially for the Bi-2212 phase. This is

a remarkable feature because it means that the continuous heat treatment is

comparable in terms of phase composition to the “traditional” heat treatment.

In sample TTA, the amount of the Bi-2201 phase is very low indicating that

the transformation in the Bi-2212 phase is almost completed. By contrast, we

observe that in the case of sample TCA10 this is not finished and the amount

of Bi-2201 phase is still important.
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Sample Phase
Composition (at.%)

Bi Sr Ca Cu O

TTA

Bi-2212 15 (1) 13 (1) 6 (1) 13 (1) 53 (3)

Bi-2201 21 (2) 15 (1) 2 (1) 9 (1) 53 (2)

1:1 - 19 (2) 8 (1) 27 (2) 46 (3)

TCA10

Bi-2212 15 (1) 13 (1) 6 (1) 13 (1) 53 (3)

Bi-2201 20 (1) 14 (2) 2 (1) 10 (1) 53 (3)

1:1 - 17 (1) 9 (1) 25 (2) 49 (2)

Table 10.5: Chemical composition values and standard deviations of the three major

phases deduced from FESEM images and EDX analysis of the samples made with C

precursor powders after subjecting them to the “traditional” heat treatment, TTA,

and to the continuous heat treatment repeated 10 times, TCA10.

10.6.1 Superconducting properties

Figure 10.29 shows the R(T ) curves measured in sample TTA and in two

samples with the continuous heat treatment after 6 and 10 iterations, i.e.

TCA6 and TCA10, respectively. The first remarkable difference is that the

resistance in the normal state is approximately 2.5 times lower when the “tra-

ditional” heat treatment is performed.

The second point is the differences in Tc. In the case of sample TTA, the

obtained value is 87.9 K, very similar to the values measured for the samples

in the previous sections, just slightly higher. The Tc value obtained for the

sample with the continuous heat treatment is 4 K lower (83.4 K). This can be

explained taking into account that in the “traditional” heat treatment, two

steps were required, one at high temperature to form the Bi-2212 phase and

a second one, at 800 ◦C, to adjust the oxygen content.

This second step is not present in our case, because the speed of the sample

is the same in each part of the furnace and the length is very short. But it

could be done in longer furnaces with the possibility of controlling the temper-

ature and the speed in different sections of the furnace. Another possibility

would be to combine iterations of the continuous heat treatments at different

temperatures, at 860-870 ◦C for the formation of the Bi-2212 phase and at

800 ◦C to adjust the oxygen.
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Figure 10.29: The electrical resistance, R, measured as a function of the tempera-

ture from 77 K up to RT for samples TTA, TCA6 and TCA10. R is re-scaled by a

geometrical factor (w/l) for comparison purposes.

The transport critical current measurements at 77 K of both samples are

displayed in Figure 10.30 with their respective fittings.

The obtained Ic/w value of sample TTA is 32.8 A cm−1 with n = 4.80,

while sample sample TCA10 presented a slightly lower value of 31.2 A cm−1

with n = 5.13. This is probably due to the above mentioned lack of optimiza-

tion of the continuous heat treatment. However, both Ic/w and n values are

very similar, despite the difference with the values obtained for the other sam-

ples, TC2 and TCSSX. This is due to the different precursor powders used,

which for samples TTA and TCA10 were the Ag-doped commercial precursors.

An optimization of the “traditional” heat treatment for samples fabricated

with these powders would be required to obtain the same Ic/w values.

Nevertheless, this proof of concept with Ag-doped commercial precursor

powders opens a new scenario in which samples could be processed in a con-

tinuous process, from the raw mixture of carbonates and oxides, to the final

heat treatment required to obtain the superconducting Bi-2212 phase. Thus,
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Figure 10.30: Transport critical current measurement of the samples TTA (gold

inverted triangles) and TCA10 (pink stars). The x-axis is re-scaled by Ic/w of sample

TTA for comparing purposes.

samples of almost any given size could be processed. The temperature profile

of this furnace, as well as the sample speed inside the furnace, must be tuned

in order to optimize this continuous heat treatment.



Chapter 11

Progress in electrically

assisted laser processing of

Bi-2212 monoliths

In this chapter we have analysed the effect of applying an electrical current

to the Bi-2212 monoliths during the LZM process. This procedure will be

called electrically assisted laser zone melting (EALZM), in a similar way to

the EALFZ [21–25]. In particular, we analyse the influence of the polarity of

the applied current during the texturing process and the modifications induced

by the laser power in the microstructural and superconducting properties.

11.1 Reported benefits of the EALFZ technique

The EALFZ modification has been proven to be a very interesting tecnique

to improve the LFZ sample processing, as previously introduced in Chapter 8.

In particular, Costa et al. [25] observed that the polarity of the applied current

is an important factor and summarized the changes induced by the electrical

current in the microstructure in the EALFZ process in comparison with the

LFZ technique: (i) the grain alignment is improved by current application; (ii)

the primary Bi-free 1:1 phase characteristic of the LFZ technique is substituted

by the equilibrium cuprate (Sr,Ca)14Cu24O41 (known as 14:24 phase); (iii) the

Bi-rich remaining liquid (last solidified fraction) is decreased with the applied
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current; and (iv) a higher amount of Bi-2212 phase compared to Bi-2201 phase

is found when the electrical current is applied.

This is due to the modifications introduced by the applied electrical cur-

rent in the electromigration phenomenon during the texturing process, which

also changes the thermal gradients and modifies the freezing rate conditions,

leading to solidification conditions closer to the equilibrium. The electromi-

gration phenomenon is altered by promoting a cationic drift perpendicular to

the solidification front, more significantly in the case of Cu ions. A scheme of

this phenomenon can be seen in Figure 11.1.

Figure 11.1: Scheme of the molten zone during the EALFZ growth of bulk

Bi-2212/Ag rods as shown by Costa et al. [25]. This scheme evidences the Cu ionic

drift toward the solidifaction interface.

The Cu ions increase their ionic mobility toward the solidification inter-

face, thus favouring the developement of richer Cu phases. This explains

the appearance of the Cu-rich equilibrium cuprate 14:24 phase instead of the

metastable 1:1 phase. Also, the increase of Bi-2212 phase on behalf of Bi-2201

phase can be explained by this phenomenom. Besides, the ionic drift has also

been proven to intensify the grain alignment and refinement, which favours

the superconducting transport properties [20].

Furthermore, Carrasco et al. [23] showed that the benefits of the applied
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electrical current can be erased by reversing the current flow polarity. This

induces a disordered microstructure where no preferential grain alignment is

observed. Besides, multiple stoichiometric deviations occur. Consequently,

the superconducting performance deteriorates.

11.2 Description of the electrically assited laser tex-

turing process

Bi-2212 rectangular bar shaped monoliths of approximate dimensions 2×
8 × 80 mm were prepared as in section 10.1 using commercial silver doped

precursor powders from Nexans SuperConductors GmbH. Their stoichiometry

is Bi2.02Sr2.02Ca0.98Cu1.99Ox and a 2.9 wt.% of Ag, and present a grain size

distribution characterized by d10 = 0.10 µm, d50 = 1.18 µm and d90 = 2.18 µm.

These monoliths were textured using the experimental setup detailed be-

low.

11.2.1 Diode laser

The laser is a diode model, Monocrom LBS-80300W, emitting in a contin-

uous wave at λ = 810 nm. It emits 10 divergent lines that can be transformed

in a line of 50 mm length and 0.5 mm width using a set of cylindrical focusing

lenses. A scheme of the apparatus is shown in Figure 11.2.

The high power laser line induces a molten zone in the sample when in-

ciding in its surface. This molten zone is moved along the sample using a

movement control stage. In order to reduce the thermal shock, the sample is

placed inside a small portable open air furnace at 500 ◦C.

This apparatus, with different configurations, has been previously used

to process Bi-2212 monoliths [27, 31], thick films [48] and cylinders [51]. In

these works, it was found that the minimum energy needed to texture these

materials is 1 W/(mm-width).

One of the limitations of this laser configuration is that the energy dis-

tribution along the laser beam is not uniform. Figure 11.3 shows the typical

energy profile of this line and shows that the working region is limited to sam-



182 Chapter 11. Progress in electrically assisted laser processing of Bi-2212...

Figure 11.2: Scheme of the diode laser used for the EALZM processing of the samples

as published in [48]. 1. Diode laser module. 2. Laser beam. 3. Cylindrical lens. 4.

Non-processed zone of the sample. 5. Molten volume formed in the sample. 6.

Textured zone of the sample. 7. Sample movement direction.

ples with widths lower than 15 mm, where the energy density differences are

lower than a 10 %.

11.2.2 Sample holder

This is the first time that this apparatus is used for EALZM processing,

and therefore a sample holder was developed to introduce the current during

the texturing process. Figure 11.4 shows a scheme of the sample holder and
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Figure 11.3: Power distribution profile along the laser beam length for a source

current of 19 A.

the experimental configurations used during the experiments.

The sample is placed over a ceramic substrate and it is held on each extreme

by a pair of copper pieces where two silver tapes were soldered. Typical current

values of 1 A were used during the texturing process. This sample holder is

Figure 11.4: Scheme of the sample holder used for applying the electrical current

during the EALZM processing of the samples. Two configurations were possible:

direct and inverse current.
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placed inside the open air furnace at 500 ◦C which is displaced at the processing

velocity of 20 mm h−1.

Three different configurations can be studied. The first one is the tradi-

tional configuration without applying an electrical current. When applying

a current, two additional configurations are possible: the direct and the in-

verse one. In the direct configuration, the applied current polarity and the

sample movement sense are the same, and the applied current flows from the

non-textured to the textured regions through the molten region. In the inverse

configuration, the current flows from the textured region to the non-textured

one.

11.3 Influence of the electric current polarity

In order to study the influence of the applied current polarity, three Bi-2212

rectangular bar shaped samples (one for each configuration) were EALZM

processed with the experimental setup described above using a source current

for the diode laser of 19.5 A. This source current produced a laser power

of 1.7 W mm−1. An applied current of 1 A was used during the texturing

process. The samples are named DC19.5 (direct), ZC19.5 (zero current) and

IC19.5 (inverse).

11.3.1 Microstructure of the samples

Figure 11.5 shows the microstructure of the longitudinal cross-section close

to the interface between the frozen molten pool and the textured region of

the three samples, after the laser processing. Analysing the texture of the

Bi-free grains, it can be observed that the thickness of the region with a good

texture in sample CD19.5 is higher than for sample ZC19.5. When the inverse

configuration is used, as in sample IC19.5, the degree of alignment of the well

textured region is lower than in the other two samples. Another difference

is the length of these well-oriented grains in these regions that reaches up to

1300 µm for sample DC19.5 and 650 µm for sample ZC19.5. These results are

in good agreement with similar results reported in the literature [20,25].

The difference in the thickness of the textured region is related with the
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Figure 11.5: FESEM images using AsB detector of the longitudinal cross-section at

the interface between the molten frozen pool and the textured region of the as-grown

Bi-2212 EALZM processed samples with a diode laser source current of 19.5 A: (a)

DC19.5, (b) ZC19.5 and (c) IC19.5.

shape of the solidification front. Close to the surface it is perpendicular to

the sample surface and the region with this shape is bigger in sample DC19.5.

In the case of sample IC19.5, this perpendicular section is very small. Also

it is important to mention the presence of large bubbles in the lower part of

the laser molten region. Due to the change in the direction of the thermal

gradient in this lower part, the grains change their growth direction, reaching

in some cases the perpendicular direction to the movement. The accumulation

of Bi-free and Ca oxide (black grains) particles in the lower border of the
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molten region is also relevant.

Figure 11.6 shows a detail of the upper part of the textured regions in

these three samples. As usual, all the samples exhibit the three main phases

usually observed after laser treatment. The dark grey grains in the FESEM

micrographs correspond to the 1:1 phase. We have not observed any difference

in the composition of this phase due to the electric current application during

processing as was observed for EALFZ Bi-2212 rods, where the presence of

the phase 14:24 instead of the 1:1 was reported [25]. Around these Bi-free

grains we observe some grains (in light grey) with a composition close to the

Bi-2201 but with a ratio Bi/Sr = 1.4 and Bi/Cu = 2.25. The amorphous

matrix between these grains has a composition close to the Bi-2212 with a

ratio Bi/Sr = 1.25 and Bi/Cu = 1.2. There are not significant changes in the

composition and the main differences between the samples can be found in the

grains orientation of each phase. In the case of sample DC19.5, Fig. 11.6 (a),

the Bi-2201 grains follow in most cases the orientation of the Bi-free grains.

This orientation is lower in the sample ZC19.5, Fig. 11.6 (b), and it is mainly

lost in sample IC19.5, Fig. 11.6 (c).

Figure 11.6: FESEM images using AsB detector of the longitudinal cross-section of

the upper well-textured region of the as-grown Bi-2212 EALZM textured samples (a)

DC19.5, (b) ZC19.5 and (c) IC19.5.
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Figure 11.7 shows with more detail the microstructure of sample DC19.5,

in order to point out the main relevant microstructural characteristics of these

samples. Ag is segregated from the other phases. In most cases, Ag spheres

can be observed between the Bi grains. In the photograph, some of these

spheres are enclosed in circles. Also, between these Bi-grains we observe a

second phase (round darker phases in Figure 11.7) that corresponds to Cu

oxide and that forms an eutectic structure with the Bi-2212 matrix in some

regions.

Figure 11.7: FESEM image using AsB detector of the same area shown in Figure 11.6

(a) taken at a higher mangnification, corresponding to a longitudinal cross-section of

the well-textured region of the as-grown Bi-2212 EALZM processed sample DC19.5.

Ag spheres are marked in circles.

The three EALZM textured samples were subjected to the “traditional”

heat treatment described in 10.3.3. Figure 11.8 shows a detail of the micro-

structure of the transverse cross-section of sample DC19.5. This section does

not show the alignment of the grains observed in the longitudinal direction

but it has been used to identify the different phases that are present in the

sample.

The main effect of the heat treatment is that the Bi-free phase transforms

to the equilibrium 14:24 phase, probably due to the addition of Ag in the

precursors. Besides, the main phase is Bi-2212, which shows Ca deficiency:

Ca/Bi = 0.3, indicating that this phase corresponds to Bi-2212/Bi-2201 in-
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Figure 11.8: FESEM image using AsB detector of the upper well-textured region of

the transversal cross-section of sample DC19.5 after subjecting it to the “traditional”

heat treatment.

tergrowths. The small grains, with a lighter grey contrast in the micrograph,

correspond to Ag grains that fulfil the pores between the superconducting

grains, and obviously do not have the spherical shape that was observed just

after the heat treatment.

In consequence, we have observed that the application of an electrical cur-

rent during the texturing process of these monoliths can modify the orientation

of the grains and the distribution of the different phases, but the chemical com-

positions are the same in all three cases, indicating that the effect is lower than

in other geometries as in the EALFZ.

Figure 11.9 shows the total transverse cross-sections of the three samples.

In accordance with the images presented in Figure 11.5, three regions can be

observed: the textured region in the upper part of the sample; a second region

that comprises the lower part of the molten material, which has large number

of bubbles and is non-textured, and a thermally affected region; and finally,

at the bottom, a third region that has not been affected by the laser.

From the analysis of the images, the percentage of each region is recorded

in Table 11.1 and the transport cross-section (i.e. the textured area) can be

estimated to be 3.6 mm2 for sample DC19.5, 3.2 mm2 for sample ZC19.5 and

2.5 mm2 for sample IC19.5.
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Figure 11.9: FESEM images using AsB detector of the transversal cross-sections of

the EALZM processed samples (a) DC19.5, (b) ZC19.5 and (c) IC19.5.

Region
Sample

DC19.5 ZC19.5 IC19.5

Textured 26 % 22 % 18 %

Lower part of the molten 31 % 43 % 40 %

Non-affected by the laser 43 % 35 % 42 %

Table 11.1: Area percentage of each region of Bi-2212 EALZM textured samples

with a diode laser source current of 19.5 A.

11.3.2 Superconducting properties

The superconducting properties of the three EALZM textured samples

were investigated measuring their R(T ) (re-scaled by the geometrical factor

w/l) from 77 K to RT. The measurement is shown in Figure 11.10. The dis-
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tance between the voltage contacts was 7.2 mm for sample DC19.5, 13.5 mm

for sample ZC19.5 and 9.7 mm for sample IC19.5.

Figure 11.10: Measurement of R(T ) from 77 K up to RT for the EALZM textured

samples DC19.5 (green), ZC19.5 (blue) and IC19.5 (red). R is re-scaled by a geomet-

rical factor (w/l) for comparison purposes.

These measurements allow to determine their Tc, which were 86.6 K for

sample DC19.5, 88.1 K for sample ZC19.5, and 87.9 K for sample IC19.5. These

values are very similar among them and are also similar to other Tc values

previously measured in this work.

It is remarkable that R ·w/l at RT is lower for sample DC19.5 than for the

other two samples. In particular, the data of the samples ZC19.5 and IC19.5

run rather parallel, being the latter the one with the highest R · w/l(300 K).

This is in good agreement with the degree of grain alignment seen in their

microstructures displayed in Figure 11.6.

In addition to the R(T ) measurements, Ic measurements at 77 K were

also carried out, and the results are displayed in Figure 11.11. From these

measurements, the Ic/w and n values of each sample can be determined to

be 41.2 A cm−1 and 4.92 for sample DC19.5; 28.2 A cm−1 and 4.56 for sample
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ZC19.5; and 22.4 A cm−1 and 4.44 for sample IC19.5.

Figure 11.11: Transport critical current measurements of the EALZM processed

samples DC19.5 (green circles), ZC19.5 (blue circles) and IC19.5 (red circles) are

shown. Only the less noisy part of the curve is shown to obtain a better fitting.

These Ic/w values are in good agreement with both the R(T ) measure-

ments and the microstructure of the samples, where the sample DC19.5 pre-

sents the best superconducting performance due to the influence of the electric

current introduced during the texturing process to enhance the grain align-

ment.

Furthermore, a very similar Ic/w and n values were obtained for both

samples ZC19.5 and TTA/TCA10 (see section 10.6), textured with rather

similar conditions but with different lasers. This similitude is due to the

fact that those samples were prepared using the same Ag-doped commercial

precursor powders.
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11.4 Modifications when increasing the textured

area

After having established the benefits of EALZM processing samples with

the direct configuration, where the applied electrical current flows from melt

to the textured region, the next logical step is to analyse if this effect is main-

tained or even enhanced, when increasing the textured cross-section.

In order to study that, two more samples were EALZM textured with

the direct configuration using again an applied current of 1 A and a source

current for the diode laser of 19 A, named DC19, and 20 A, named DC20 (the

sample processed at 19.5 A is characterized in the previous section). These two

source currents correspond to a laser power of 1.6 W mm−1 and 1.8 W mm−1

respectively.

A test was performed for a diode laser source current of 21 A with the

direct configuration but the melt reached completely the cross-section of the

bar. Although this would be in principle the ideal case, the surface tension of

the melt was not enough to maintain the shape of the sample, that ended up

breaking the sample and interrupting the current flow through it. To use these

levels of power, other geometries are required, as for instance, superconducting

coatings, where the substrate will maintain the mechanical integrity of the

total sample.

11.4.1 Microstructure of the samples

The FESEM images of the upper well-textured region of the longitudinal

cross-sections of the samples DC19 and DC20 after subjecting them to the

“traditional” heat treatment are displayed in Figure 11.12.

The phase homogeneity is similar in all the samples, i.e. DC19, DC19.5 and

DC20, as expected due to the use of the direct configuration to texture them.

In the three of them, the predominant phase is the Bi-2212, and some traces

of unreacted grains of the 14:24 phase still remain, which is usual. However,

the size of the well-aligned grains in the sample DC20 is greater compared to

the other samples. This could be due to the fact that more cross-section of

the sample is textured.
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Figure 11.12: FESEM images using AsB detector of the longitudinal cross-section

of the upper well-textured region of the annealed Bi-2212 EALZM textured samples

(a) DC19 and (b) DC20.

Region
Sample

DC19 DC19.5 DC20

Textured 15 % 26 % 35 %

Lower part of the molten 20 % 31 % 37 %

Non-affected by the laser 65 % 43 % 28 %

Table 11.2: Area percentage of each region of Bi-2212 EALZM textured samples

DC19, DC19.5 and DC20.

Figure 11.13 shows the total cross-sections of samples DC19 and DC20.

The same three regions that were found in the samples processed at a diode

source current of 19.5 A can be observed. From the analysis of the images,

the percentage of each region is collected in Table 11.2 and the transport
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cross-sections are estimated to be 2.5 mm2 for the sample DC19 and 4.8 mm2

for the sample DC20.

Figure 11.13: FESEM images using AsB detector of the transversal cross-sections

of samples (a) DC19 and (b) DC20.

11.4.2 Superconducting properties

Figure 11.14 shows the R(T ) measurement (re-scaled by the geometrical

factor w/l) from 77 K to 300 K for these samples. In this Figure, the measure-

ment of a non-textured sample, named NT, subjected to the “traditional” heat

treatment is also displayed for a comparison purpose. The distance between

the voltage contacts was 13.3 mm for sample DC19A, 14.2 mm for sample DC20

and 14.3 mm for sample NT.

The Tc values derived from the R(T ) measurement were 87.8 K and 88.2 K

for samples DC19 and DC20, which are very similar to the value obtained for

the sample DC19.5 (88.1 K).

The value of R ·w/l(300 K) is rather similar for the three textured samples,

which is in good agreement with the phase homogeneity observed in their

microstructures.
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Figure 11.14: Measurement of R(T ) of the EALZM textured samples DC19, DC19.5

and DC20. The resistivity measurement of the non-textured sample NT is shown in

black. R is re-scaled by a geometrical factor (w/l) for comparison purposes.

Figure 11.15: Transport critical current measurements of the EALZM processed

samples DC19 (purple diamonds), DC19.5 (green circles) and DC20 (orange squares).

Only the less noisy part of the curves are shown to obtain a better fitting.
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Furthermore, Ic measurements at 77 K were performed and are displayed

in Figure 11.15. Consequently, the Ic/w and n values were obtained for each

sample, being 38.7 A cm−1 and 5.34 for sample DC19, and 66.4 A cm−1 and

5.59 for sample DC20. Sample DC19.5 presents intermediate Ic/w values as

expected, specifically 41.2 A cm−1. In order to understand these differences, it

must be taken into account that transport current mainly flows in the region

close to the surface where a well-textured microstructure is reached and that

this region was much thicker in sample DC20.

11.5 Analysis of the current distribution during the

EALZM process

Previous results show that the modifications induced in the microstructure

during the EALZM are lower than in the case of the EALFZ process. A

possible explanation can be found taking into account that only a fraction of

the applied current can flow through the textured region.

In order to obtain some data for these calculations, the resistivity as a

function of the temperature, ρ(T ) have been measured on the sample NT (i.e

a pellet subjected to the final heat treatment, but without laser processing)

and is presented in Figure 11.16.

From the evolution of ρ(T ) in the NT sample and taking into account its

dimensions, the temperature dependence (T > 200 K) of the resistivity, ρnt,

is:

ρnt = 11 + 0.06 · T (µΩ m) (T in K) (11.1)

During the EALZM process, the evolution of the sample resistance was

recorded by measuring the voltage at the 1 A current supply. Taking into ac-

count that the resistance of the contacts also affects this measurement, the

evolution of the sample resistance has been evaluated considering the varia-

tions of the total resistance and comparing with the extrapolated values de-

duced from the temperature dependence of the resistivity. Considering the

texturing experiment of sample DC19, it was observed that after having turn
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Figure 11.16: Resistivity of the sample NT. The whole cross-section of the sample

was used in the calculation of ρ.

on the laser, the resistance of the sample increases 16 mΩ. In this increase,

two contributions are important, the increase of the temperature in the region

where the laser is acting from 500 ◦C to values close to 900 ◦C and the change in

the resistance in the region that was melted. During the laser processing and

additional increase of 29 mΩ was measured. After having textured a length of

31 mm the laser was turn off again and once the sample was cooled again to

500 ◦C, the sample resistance showed an increase of 19 mΩ in comparison with

the resistance of the sample at the same temperature at the beginning of the

experiment.

Taking into account the extrapolated value ρnt(500 ◦C) = 57.4 µΩ m, the

resistance at 500 ◦C of this 31 mm long sample before texturing, Rorig1(500 ◦C),

was:

Rorig1(500 ◦C) = 57.4 · 10−6 · 0.031

16.8 · 10−6
= 0.106 Ω (11.2)

where 16.8× 10−6 m2 is the total cross-section of this sample. In consequence,

the resistance after the texturing process increases up to R19(500 ◦C) = 0.019+

0.106 = 0.125 Ω.
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In this model, at this moment the sample can be considered as two re-

sistances in parallel, one associated with the 65 % of the total area that

has not been affected by the laser (Table 11.2) and the second associated

to the region that has been melted or affected with the laser process. The

resistance of the non-affected region can be estimated to be Rnt19(500 ◦C) =

Rorig1(500 ◦C)/0.65 = 0.163 Ω and, in consequence, the second resistance asso-

ciated with the section that has been affected with the laser is Rt19(500 ◦C) =

0.536 Ω.

With these values, the percentage of the applied current that has been used

to modify the texturing process is a 23.3 % of the applied current, 233 mA.

When the texturing process is performed with a diode source current of

19.5 A on a sample with a cross-section area of 13.9 mm2, the resistance in-

crease after having textured 34 mm is 77 mΩ.

Rorig2(500 ◦C) = 57.4 · 10−6 · 0.034

13.9 · 10−6
= 0.140 Ω (11.3)

R19.5(500 ◦C) = 0.077 + 0.140 = 0.217 Ω (11.4)

In this sample the non-textured region covers a 43 % of the total section

and, in consequence, Rnt19.5(500 ◦C) = 0.326 Ω and Rt19.5(500 ◦C) = 0.649 Ω,

using only a 33.4 % of the applied current.

When the texturing process is performed with a diode source current of

20 A (cross-section area, 14.5 mm2) the resistance increase after having tex-

tured 33 mm is 115 mΩ:

Rorig3(500 ◦C) = 57.4 · 10−6 · 0.033

14.5 · 10−6
= 0.131 Ω (11.5)

R20(500 ◦C) = 0.115 + 0.131 = 0.246 Ω (11.6)

In this sample the region that has not been affected by the laser covers

a 28 % of the total section, and in consequence, Rnt20(500 ◦C) = 0.468 Ω and

Rt20(500 ◦C) = 0.519 Ω. With this distribution of resistances, the expected
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percentage of the applied current that flows through the region affected by

the laser is 47.4 %.

This simplified model does not consider the heating and melting of a frac-

tion of the sample that occurs when the laser is applied. The measured increase

in the sample resistance when the laser is turned on is higher than expected,

considering the local temperature increment and the size of the molten region.

In consequence, it is expected that the resistance of the molten region would

be higher than the values calculated with this simplified model in the textured

regions. Thus, the obtained results only mark an upper limit for the fraction

of the applied current that flows through the molten region. However, they

clearly show that EALZM requires reducing as much as possible the region

that is not affected by the laser and that the total applied current will be only

used if the full cross-section is melted by the laser.

In conclusion, the EALZM is a technique that will be more adequate for

superconducting coatings over non-conductive substrates where the laser can

melt completely the cross-section of the coating and the current can only flow

through the molten material.





Chapter 12

Conclusions

We have developed an industrially scalable process of texturing Bi-2212

monoliths regardless of their size that comprises several stages. In the first

stage, the feasibility of producing precursor powders in a continuous process

from a mixture of raw oxides and carbonates has been developed and demon-

strated. This procedure has been called continuous solid-state route. A com-

plete characterization (particle size distribution, phase composition, thermal

stability and temperature dependence of the AC magnetic susceptibility anal-

ysis) of the precursor powders obtained with this process has been carried

out and the obtained results compared with those of commercial and stan-

dard solid-state precursor powders. The advantages and disadvantages of

this method in comparison with the standard solid-state process have also

been reviewed. We concluded that the powders obtained with the continu-

ous solid-state procedure after five heat treatments in the continuous furnace

meet the requirements to be used as precursor in subsequent laser texturing

processes.

Regarding the laser texturing process, the possibility of using a CO2 pulsed

laser apparatus with galvanometric mirrors to texture Bi-2212 monoliths has

been investigated and demonstrated by developing a two-step laser zone melt-

ing (LZM) texturing process. This process is performed in air inside a fur-

nace at 450 ◦C and the samples are textured at 100 mm h−1 (first step) and

30 mm h−1 (second step) over a bulk Cu piece. This configuration allows tex-

turing pieces up to 20 cm width or several samples in parallel. The micro-
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structure and phase composition of samples made either with commercial or

with the continuous solid-state precursor powders and subjected to an opti-

mised two-step (“traditional”) heat treatment were analysed after each step of

the process. It has been observed that when continuous solid-state precursors

are used, the superconducting properties are similar to the textured samples

fabricated with commercial precursors. Moreover, the possibility of using a

continuous heat treatment, which could eventually substitute the “traditional”

one in a normal furnace, has also been analysed. It has been demonstrated that

after a suitable optimisation process, this continuous heat treatment could be

adequate.

Obviously, the best superconducting performance has been obtained in

samples fabricated with commercial precursor powders subjected to the “tra-

ditional” heat treatment, with Jc values of the order of ∼ 3.7 kA cm−2 at 77 K

and self-field. These results are among the best reported to date for planar

Bi-2212 monoliths. However, a rather remarkable performance has also been

obtained for samples made with continuous solid-state precursor powders sub-

jected to the “traditional” heat treatment, obtaining Ic/w values up to a 74 %

of the Ic/w of the sample made with commercial precursor powders.

All these results show that continuous processes can be used to fabricate

the precursor, to texture the sample and to perform the heat treatment. These

processes allow to overcome the main limitations associated with the sample

dimensions when using typical furnaces.

The influence of the polarity of the applied current during the electrically

assisted laser zone melting (EALZM) texturing of Bi-2212 monoliths has also

been analysed. In the case of the EALZM process, a diode laser in continu-

ous wave mode was used to texture the samples at 20 mm h−1 inside an open

sky furnace at 500 ◦C. Three possible configurations (direct, zero current and

inverse) were investigated. We concluded that the one in which the current

flows from the melt to the textured region (direct configuration) favours the

grain alignment and consequently the superconducting performance. Further-

more, it was demonstrated that the Ic/w value of EALZM processed sam-

ples in the direct configuration could be enhanced by increasing the textured

cross-sectional area. How the applied current is distributed through the melt

and the non-textured region during the processing of the samples has also
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been studied. The results indicate that only a fraction of the current flows

through the molten volume, which leaves room for improving this technique.

This could be done by texturing superconducting coatings over an insulating

substrate where the full cross-section can be melted with the laser, so the total

applied current will be forced to flow through the molten material.
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Conclusiones

A continuación se detallan las principales conclusiones obtenidas en esta

tesis. En primer lugar, se describen las relativas al estudio de las propiedades

superconductoras de hilos de MgB2 a partir de los procesos de optimización

de los parámetros de molienda y de dopaje de los precursores.

Se ha analizado cómo se modifican las propiedades de los hilos y cintas

monofilamento de MgB2 con forro de hierro fabricados con la técnica de polvo

en tubo (PIT, de sus siglas en inglés) y reacción in situ al modificar los

parámetros utilizados en la molienda de los precursores. En particular, se

ha estudiado el efecto de la enerǵıa por unidad de masa de las moliendas en

el rango 1.2 × 106 y 1 × 108J kg−1 (siendo este último valor mayor al ĺımite

de aleación mecánica) en las propiedades superconductoras de estos hilos y

cintas.

La molienda de los precursores modifica considerablemente la microestruc-

tura de los conductores mejorando el anclaje de los vórtices para campos

magnéticos altos. El hilo fabricado con los precursores molidos con la enerǵıa

más alta es el que presenta el valor de Jc más alto a 5 K y µ0H > 5 T. Sin

embargo, a partir de un valor determinado de enerǵıa de molienda se observan

defectos en la microestructura de los hilos, como es la presencia de grietas

transversales de gran tamaño. Este hecho muestra que cuando se utilizan es-

tos precursores, los hilos no se pueden fabricar únicamente por trefilado. Es

conveniente utilizar otros métodos, como por ejemplo técnicas de laminado

con surcos o de estampación con martillo rotatorio, en los que se produce una

mayor compresión sobre el núcleo en la dirección radial durante la deformación

del hilo.

El hilo y la cinta fabricados con precursores molidos con menor enerǵıa
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presentan una buena homogeneidad y valores de Jc muy reproducibles. Esta

alternativa resuelve los problemas de inhomogeneidad observados en los hilos

dopados con carbono y sin molienda. Además, combinando una adecuada

enerǵıa de molienda con dopaje con carbono se obtienen valores de Jc más ele-

vados en presencia de altos campos magnéticos y permite obtener microestruc-

turas homogéneas.

Una de las formas de mejorar las propiedades de los hilos y cintas (dopados

y sin dopar) seŕıa realizar el traspaso de los polvos desde el molino al tubo de

hierro en una atmósfera inerte, minimizando la cantidad de ox́ıgeno presente

en los precursores.

Para visualizar la penetración de flujo magnético en estos conductores y por

tanto poder estudiar las propiedades superconductoras locales, hemos utilizado

técnicas magneto-ópticas (MO). Se han observado variaciones locales de Jc

en algunos de los hilos superconductores, lo que ha permitido entender las

razones del deterioro de Jc a bajos campos magnéticos en alguno de los hilos

fabricados. Utilizando la técnica MO en distintas condiciones de enfriamiento,

con y sin campo magnético, se ha podido comprobar que las caracteŕısticas de

la microestructura afectan de manera significativa al frente de propagación del

flujo magnético. Las medidas realizadas durante el enfriamiento con campo

magnético muestran las distorsiones en el patrón magnético, muy útil a la hora

de desvelar inhomogeneidades en el superconductor. Las imágenes MO han

confirmado las caracteŕısticas microestructurales observadas con microscoṕıa

electrónica de barrido de emisión de campo (FESEM) como, por ejemplo, la

presencia de pequeñas grietas, poros en el forro de hierro o agregados de granos

de MgB2 con uniones débiles que se han encontrado en algunas de las cintas

estudiadas.

A continuación, se detallan las conclusiones relativas al estudio del escalado

industrial de un proceso de texturado láser en monolitos de Bi2Sr2CaCu2O8+x.

Se ha desarrollado un método escalable a nivel industrial para texturar

monolitos de Bi-2212 independientemente de su tamaño. Para ello, se ha es-

tudiado la viabilidad de producir polvos precursores en un proceso continuo

con una mezcla de óxidos y carbonatos al que se ha llamado ruta de estado

sólido en continuo. Se han caracterizado de manera completa los precursores

aśı obtenidos (denominados polvos en continuo) y se han comparado con los
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polvos Bi-2212 comerciales y con los obtenidos mediante śıntesis de estado

sólido estándar (polvos estándar). Esta caracterización abarca el ánalisis de la

distribución del tamaño de part́ıcula, composición de fases, estabilidad térmica

y la dependencia de la susceptibilidad magnética AC con la temperatura. Tras

5 tratamientos térmicos en el horno de rodillos, los polvos en continuo son ade-

cuados para utilizarlos como polvos precursores en los procesos de texturado

láser que se realizan a continuación.

En lo relativo al texturado láser de monolitos de Bi-2212, se ha desarro-

llado un proceso de texturado en dos pasos por fusión zonal láser (LZM) que

utiliza un láser pulsado de CO2 acoplado a espejos galvanométricos. Esta con-

figuración permite texturar muestras con una anchura de hasta 20 cm o varias

muestras en paralelo. Las muestras se texturan en aire en un horno de rodillos

a 450 ◦C, moviéndose sobre una pieza de cobre a una velocidad de 100 mm h−1

durante el primer tratamiento y 30 mm h−1 el segundo. Después de cada etapa,

se ha analizado la microestructura y la composición de las muestras fabricadas

tanto con polvos precursores comerciales como con polvos estándar, una vez

que han sido sometidas al tratamiento térmico habitual. Las propiedades su-

perconductoras obtenidas utilizando los precursores estándar son parecidas a

las de las muestras texturadas fabricadas con polvos comerciales. Además,

se ha analizado la posibilidad de realizar un tratamiento térmico en continuo

en el interior de un horno de rodillos que, después de una optimización ade-

cuada, podŕıa llegar a sustituir al habitual y ser utilizado en muestras de gran

tamaño.

Las mejores propiedades superconductoras se han obtenido en las mues-

tras texturadas fabricadas con polvos comerciales sometidos al tratamiento

térmico habitual, alcanzando valores de Jc ∼ 3.7 kA cm−2 a 77 K y campo

propio. Estos resultados están entre los mejores que se han publicado hasta

la fecha para monolitos de Bi-2212. No obstante, también se han obtenido

resultados del mismo orden de magnitud en las muestras fabricadas con los

polvos precursores en continuo sometidos al tratamiento térmico habitual, con

valores de Ic/w hasta un 74 % de los obtenidos para las muestras fabricadas

con precursores comerciales.

Estos resultados muestran que los procesos en continuo son válidos para

fabricar precusores, texturar muestras y realizar tratamientos térmicos. De
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esta manera, se pueden superan las principales limitaciones relativas al tamaño

de las muestras que están asociadas con los tratamientos realizados en hornos

convencionales.

También se ha estudiado la posibilidad de aplicar una corriente eléctrica

durante el proceso de texturado de los monolitos de Bi-2212 por fusión zonal

láser asistida con corriente (EALZM). En este caso, se ha empleado un láser

continuo de diodos para texturar las muestras a 20 mm h−1 dentro de un horno

abierto a 500 ◦C. Se han estudiado tres posibles configuraciones: directa, sin

corriente e inversa. Se ha observado que la configuración directa (en la que la

corriente fluye de la zona fundida a la zona texturada) favorece el alineamiento

de los granos del material y por tanto permite obtener mejores propiedades

supercondutoras. Además, se ha demostrado que en las muestras procesadas

por EALZM en configuración directa, el valor de Ic/w mejora al aumentar

la sección transversal que ocupa la zona texturada, ya que conlleva que un

mayor porcentaje de la corriente eléctrica aplicada se utiliza para favorecer

el texturado de la muestra. Asimismo, se ha investigado cómo se distribuye

la corriente a través de la zona fundida y de la zona no texturada durante

el procesado. Los resultados muestran que solo una parte de la corriente

fluye por la zona fundida. Esto supone que para poder utilizar esta técnica en

todo su potencial es mejor trabajar con recubrimientos superconductores sobre

sustratos aislantes en donde la zona fundida puede cubrir todo el espesor de

la muestra y por tanto toda la corriente aplicada deberá atravesar el fundido.
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β - ball-to-powder mass ratio

γ - superconducting anisotropy

∆H - enthalpy change

∆M - width of magnetic hysteresis loop

∆Tw - superconducting transition width

θ - angle of the diffracted wave

λ - wavelength

λL - London penetration depth

λLab - in-plane London penetration depth

µ - magnetic moment

µ0 - magnetic permeability of free space

µ0H - magnetic field

µ0Hp - magnetic field of full penetration

ξ - superconducting coherence length

ξab - superconducting in-plane coherence length

ξc - superconducting coherence length in the c-axis

ρ - resistivity

ρc - contact resistivity

ρnt - resistivity of non-textured region

ρt - resistivity of textured region

χac - magnetic susceptibility

χ′ - in-phase component of χac

χ′′ - out-of-phase component of χac

ωp - angular frequency
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a - tapes width

b - tapes thickness

c - tapes length

d - diameter

d10, d50, d90 - intercepts for 10 %, 50 % and 90 % of the cumulative mass

E - electric field

Et/m - energy transferred per unit mass

H - magnetic field strength

Hc - critical magnetic field

Hc1 - lower critical field

Hc2 - upper critical field

Hirr - irreversibility field

i - intensity of the strongest line of the pattern

I - transport current

Ic - superconducting critical current

icor - intensity of the strongest peak at a reference phase (taken by convention

to be α-Al2O3, corondum, in a 50/50 weight mixture)

Jc - superconducting critical current density

JcL - superconducting critical current density along wire axis

JcT - superconducting critical current density along wire radial direction

Je - superconducting engineering critical current density

l - distance between voltage contacts

L - length

M - magnetization

MW - molecular weight

n - number of moles

R - electrical resistance

r - radius

rb - ball radius

Rc - contact resistance

Rnt - resistance of non-textured region

rp - sun disk radius

Rt - resistance of textured region

rv - jar inner radius

S - surface
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t - time

T - temperature

Tc - superconducting critical temperature

V - voltage

w - width of the sample

AC - alternate current

AsB - angle-selective backscattered electrons

Bi-2201 - Bi2Sr2CuO6+x

Bi-2212 - Bi2Sr2CaCu2O8+x

Bi-2223 - Bi2Sr2Ca2Cu3O10+x

BSCCO - family of superconductors Bi2Sr2Can-1CunO2n+4+x, n = 1, 2, 3

C - commercial

CCD - charge coupled device

CERN - Conseil Européen pour la Reserche Nucléaire

CHPD - cold high pressure densification technique

CIP - cold isostatic press

CSS - continuous solid-state

CVD - chemical vapour deposition

DC - direct current

DSC - differential scanning calorimetry

EALFZ - electrically assisted laser floating zone

EALZM - electrically assisted laser zone melting

EDX - energy-dispersive X-ray spectroscopy

FC - field cooling

FESEM - field-emission scanning electron microscopy

HIP - hot isostatic press

HTS - high temperature superconductor

IBAD - ion beam-assisted deposition

IMD - internal magnesium diffusion process

in-lens - high-efficiency annular secondary electron detector

LFZ - laser floating zone

LTS - low temperature superconductor

LZM - laser zone melting

MR - molten region

MRI - magnetic resonance imaging system
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MO - magneto-optical

NTAR - non-thermally affected region

O-cont. - oxygen content

PIT - powder-in-tube technique

PPMS - physical property measurement system

RIR - reference intensity ratio

RT - room temperature

SE - secondary electrons

SMES - magnetic energy storage device

SQUID - superconducting quantum interference device

SSS - standard solid-state

TAR - thermally affected region

TGA - thermogravimetric analysis

VSM - vibrating sample magnetometer

WTR - well-textured region

XRD - X-ray diffraction

YBCO - YBa2Cu3O7-x

ZFC - zero-field cooling
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de Materiales y, en especial, a Cristina por los buenos ratos que pasamos y las

conversaciones que tuvimos durante las observaciones con el FESEM. También

quiero agradecerle a Ana Arauzo del Servicio de Medidas F́ısicas que siempre

ha estado ah́ı para echarme una mano con las medidas en el SQUID y el

PPMS.

I would also like to thank Pavlo and Thomas at University of Oslo, not

only for the stimulating scientific colaboration but also, for making me feel

welcome and comfortable during my stay in Norway.



222 Agradecimientos
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cuchado y ayudado cuando han podido y que han hecho el tiempo que llevo
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