000075025 001__ 75025
000075025 005__ 20200117221651.0
000075025 0247_ $$2doi$$a10.3389/fpls.2018.01216
000075025 0248_ $$2sideral$$a107343
000075025 037__ $$aART-2018-107343
000075025 041__ $$aeng
000075025 100__ $$0(orcid)0000-0003-3608-4720$$aYruela, I.$$uUniversidad de Zaragoza
000075025 245__ $$aEvolution of Protein Ductility in Duplicated Genes of Plants
000075025 260__ $$c2018
000075025 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075025 5203_ $$aPrevious work has shown that ductile/intrinsically disordered proteins (IDPs) and residues (IDRs) are found in all unicellular and multicellular organisms, wherein they are essential for basic cellular functions and complement the function of rigid proteins. In addition, computational studies of diverse phylogenetic lineages have revealed: (1) that protein ductility increases in concert with organismic complexity, and (2) that distributions of IDPs and IDRs along the chromosomes of plant species are non-random and correlate with variations in the rates of the genetic recombination and chromosomal rearrangement. Here, we show that approximately 50% of aligned residues in paralogs across a spectrum of algae, bryophytes, monocots, and eudicots are IDRs and that a high proportion (ca. 60%) are in disordered segments greater than 30 residues. When three types of IDRs are distinguished (i.e., identical, similar and variable IDRs) we find that species with large numbers of chromosome and endoduplicated genes exhibit paralogous sequences with a higher frequency of identical IDRs, whereas species with small chromosomes numbers exhibit paralogous sequences with a higher frequency of similar and variable IDRs. These results are interpreted to indicate that genome duplication events influence the distribution of IDRs along protein sequences and likely favor the presence of identical IDRs (compared to similar IDRs or variable IDRs). We discuss the evolutionary implications of gene duplication events in the context of ductile/disordered residues and segments, their conservation, and their effects on functionality.
000075025 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E35-17R
000075025 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075025 590__ $$a4.106$$b2018
000075025 591__ $$aPLANT SCIENCES$$b20 / 228 = 0.088$$c2018$$dQ1$$eT1
000075025 592__ $$a1.687$$b2018
000075025 593__ $$aPlant Science$$c2018$$dQ1
000075025 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075025 700__ $$0(orcid)0000-0002-5462-907X$$aContreras-Moreira, B.$$uUniversidad de Zaragoza
000075025 700__ $$aDunker, A.K.
000075025 700__ $$aNiklas, K.J.
000075025 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000075025 773__ $$g9 (2018), 1216 [10 pp]$$pFront. plant sci.$$tFRONTIERS IN PLANT SCIENCE$$x1664-462X
000075025 8564_ $$s469252$$uhttps://zaguan.unizar.es/record/75025/files/texto_completo.pdf$$yVersión publicada
000075025 8564_ $$s96654$$uhttps://zaguan.unizar.es/record/75025/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075025 909CO $$ooai:zaguan.unizar.es:75025$$particulos$$pdriver
000075025 951__ $$a2020-01-17-22:08:55
000075025 980__ $$aARTICLE