Evolution of Protein Ductility in Duplicated Genes of Plants
Resumen: Previous work has shown that ductile/intrinsically disordered proteins (IDPs) and residues (IDRs) are found in all unicellular and multicellular organisms, wherein they are essential for basic cellular functions and complement the function of rigid proteins. In addition, computational studies of diverse phylogenetic lineages have revealed: (1) that protein ductility increases in concert with organismic complexity, and (2) that distributions of IDPs and IDRs along the chromosomes of plant species are non-random and correlate with variations in the rates of the genetic recombination and chromosomal rearrangement. Here, we show that approximately 50% of aligned residues in paralogs across a spectrum of algae, bryophytes, monocots, and eudicots are IDRs and that a high proportion (ca. 60%) are in disordered segments greater than 30 residues. When three types of IDRs are distinguished (i.e., identical, similar and variable IDRs) we find that species with large numbers of chromosome and endoduplicated genes exhibit paralogous sequences with a higher frequency of identical IDRs, whereas species with small chromosomes numbers exhibit paralogous sequences with a higher frequency of similar and variable IDRs. These results are interpreted to indicate that genome duplication events influence the distribution of IDRs along protein sequences and likely favor the presence of identical IDRs (compared to similar IDRs or variable IDRs). We discuss the evolutionary implications of gene duplication events in the context of ductile/disordered residues and segments, their conservation, and their effects on functionality.
Idioma: Inglés
DOI: 10.3389/fpls.2018.01216
Año: 2018
Publicado en: FRONTIERS IN PLANT SCIENCE 9 (2018), 1216 [10 pp]
ISSN: 1664-462X

Factor impacto JCR: 4.106 (2018)
Categ. JCR: PLANT SCIENCES rank: 20 / 228 = 0.088 (2018) - Q1 - T1
Factor impacto SCIMAGO: 1.687 - Plant Science (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E35-17R
Tipo y forma: Article (Published version)
Área (Departamento): Área Bioquímica y Biolog.Mole. (Dpto. Bioq.Biolog.Mol. Celular)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2020-01-17-22:08:55)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-09-27, last modified 2020-01-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)