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RESUMEN

La visión por computador es un campo de investigación en continua expansión, que
tiene como principal objetivo desarrollar algoritmos para extraer información del en-
torno a partir de imágenes. Las aplicaciones de este campo son innumerables, y con-
tinuos avances muestran un prometedor futuro por delante. En la actualidad, la visión
por computador se encuentra presente en muchas áreas, entre las que pueden incluirse,
por ejemplo, la conducción autónoma, el control de drones o la robótica. En particular,
nuestra motivación está dentro del contexto de la asistencia personal, en donde las téc-
nicas de visión por computador se desarrollan para estar al servicio de las personas, y
especialmente de personas con discapacidades. En esta tesis, nos centramos en el pro-
blema de desarrollar un asistente basado en sistemas de visión artificial que permita a
las personas con discapacidad visual desplazarse de manera segura y eficiente. Existen
dispositivos ampliamente extendidos para la ayuda de ciegos, como el bastón blanco o el
perro lazarillo. Si bien este tipo de dispositivos son de utilidad en situaciones simples y
de corto alcance, creemos que ha llegado el momento de utilizar los avances tecnológicos
para mejorar la capacidad y autonomía del usuario al proporcionarle información adi-
cional. La aparición reciente en el mercado de cámaras RGB-D de bajo coste, así como
sus posibilidades de miniaturización, demuestran que el desarrollo de sistemas portables
con dicha tecnología es más que plausible en un futuro próximo. En esta tesis el uso
de cámaras RGB-D es un elemento central, ya que permiten capturar simultáneamente
información tridimensional junto con el color, siendo especialmente útiles para detectar
formas y obstáculos. Para superar algunas limitaciones de este tipo de cámaras, se ha
investigado su uso combinado con cámaras omnidireccionales, creando nuevos sistemas
que permitan capturar más información del entorno desde un único punto de vista.

Un objetivo general de esta tesis ha sido desarrollar diversos métodos para obtener
información relevante de la escena que pueda ayudar en la navegación humana. De la
amplia gama de posibles tipos de información que se pueden obtener del entorno, nos
centramos en la extracción de información estructural representativa de cualquier en-
torno construido por el hombre. Particularmente, hemos desarrollado un sistema capaz
de encontrar el suelo y la orientación de la escena, así como los posibles obstáculos
presentes en el entorno. Este sistema de navegación, que está basado en el uso de la
percepción de profundidad de la escena, ha sido desarrollado dando como resultado la
contribución de un algoritmo de detección, modelado y recorrido de escaleras. El método



propuesto es capaz de detectar escaleras ascendentes y descendentes, obtener su orienta-
ción y dimensiones, así como re-localizar continuamente al sujeto durante su recorrido
utilizando un algoritmo de odometría visual que funciona en paralelo.

Con el objetivo de proporcionar un mejor entendimiento visual de la escena, pro-
ponemos estimar la distribución estructural de la habitación, lo cual podría ayudar en
tareas como navegación, reconocimiento de escenas o detección de objetos. Sin embar-
go, una de las principales limitaciones de las cámaras RGB-D es su reducido campo de
vista. Para superar este inconveniente, se presenta la siguiente contribución que consiste
en el desarrollo y calibración de un novedoso sistema de visión que permite extender
el campo de vista mediante cámaras omnidireccionales. Concretamente, se ha desarro-
llado un nuevo sistema híbrido con lente de ojo de pez y cámara de profundidad, así
como el necesario método de calibración del sistema. Además, para extender el método
desarrollado a otros sistemas, se ha elaborado un segundo método de calibración ba-
sado en observaciones de líneas que nos permite calibrar múltiples combinaciones de
cámaras, sin requerimiento de solapamiento de campos de vista y sin necesidad de cons-
truir ningún patrón de calibración. El sistema híbrido de cámaras desarrollado permite
vislumbrar nuevas posibilidades, que motivan la siguiente contribución: el diseño de un
método de estimación de la estructura del entorno que permite obtener reconstrucciones
3D a escala de la escena. Este método se fundamenta en el uso del amplio campo de
vista del ojo de pez y de la percepción 3D de la cámara de profundidad.

Si bien la extracción de información relevante del entorno es un problema relevante,
también lo es la comunicación de la información obtenida al usuario. Éste es un pro-
blema complejo que no es tratado en la mayoría de sistemas de asistencia basados en
visión por computador de la literatura. Dados los nuevos avances en visión prostética,
consideramos viable el contribuir en este área con las técnicas de visión por computador
desarrolladas en esta tesis. Actualmente, pacientes con prótesis visuales son capaces de
ver una distribución de puntos de luz, llamados fosfenos. Sin embargo, actualmente el
conjunto de fosfenos tienen resolución espacial y rango dinámico limitados. Nuestra si-
guiente contribución es el desarrollo de algoritmos de codificación de la información
percibida en patrones de fosfenos, mediante una representación icónica que hace posi-
ble entender la escena para su navegación. Partiendo de la información de profundidad
proporcionada por el sensor, el método desarrollado permite al usuario percibir a través
de la codificación en fosfenos algo tan necesario como es la sensación de movimiento y
profundidad del entorno, siendo la clave en técnicas de representación icónica propues-
tas.



ABSTRACT

Computer vision is an impressively expanding field of research that aims to develop
algorithms to extract information of the environment using images. The applications
of such field are endless, and continuous advances show a bright future ahead. No-
wadays computer vision is applied to many areas, such as autonomous driving, drones
or robotics. In particular, our motivation lies within the context of human assistance,
where computer vision techniques are developed to be of service of people, especially
people with disabilities. In this thesis, we particularly focus on the problem of deve-
loping a camera-based assistant that allows visually impaired people to move safe and
efficiently. Popular low-tech aids for the blind, such as the white cane, work well for
simple, short-range situations, but we believe technological advances can enhance the
overall experience by providing useful information. Particularly, the advent a few years
ago of consumer RGB-D cameras and its current miniaturization possibilities paves the
way for a wearable system with such type of camera quite affordable and plausible in
the near future. We use RGB-D cameras as a central element of our system, since they
provide three-dimensional information alongside color, making them especially useful
to detect shapes and obstacles. Additionally, we have also explored their combination
with omnidirectional cameras, to create new powerful systems able to capture more in-
formation of the environment at once.

A main goal of this thesis is to develop a variety of methods to recover relevant
information of the scene that would help in human navigation. Since this problem is
too general, we focused on addressing the extraction of common structural information
that can be found in any man-made environment. Particularly, we developed a system
able to find the floor and the orientation of the scene, in which obstacles along the way
could be detected using depth perception. We extended this navigational system leading
to our first major contribution, which is the elaboration of a stair detection, modeling
and traversal algorithm. This proposed method is able to detect ascending and descen-
ding staircases, obtain their orientation and dimensions, and continuously re-localize the
subject during the traversal using a visual odometry algorithm running in parallel.

Additionally, in order to enable a better understanding of the scene, we propose to
estimate the layout of the room, which could help in tasks such as navigation, scene
recognition or object detection. However, one of the main limitations of the RGB-D
cameras is their narrow field of view. In order to overcome this limitation, our next con-
tribution was to develop and calibrate novel camera systems to extend the field of view
by means of omnidirectional cameras. In particular, we developed a fisheye and depth



hybrid camera system and the corresponding method of calibration for these type of
systems. Moreover, to extend the possibilities to other systems, we developed a second
calibration method based on line observations able to calibrate multiple camera combi-
nations, without overlapping field of view requirements and without needing to build a
calibration pattern. With our hybrid camera system we open new possibilities such as
the design of a layout estimation method, able to obtain full-scaled 3D reconstructions
of the scene, benefiting from the wide field of view of the fisheye and the data from the
depth camera, which is also a relevant contribution.

The communication of the perceived information to the user is a complex problem
not directly treated in many of the assistive computer vision systems of the literature.
Given the new advances in prosthetic vision, we investigated the application of the deve-
loped computer vision techniques to this area. Patients with visual prosthesis are able to
see an array of light dots, called phosphenes. However, nowadays phosphene arrays have
limited spatial resolution and dynamic range. Our next major contribution was the chal-
lenging task of codifying the information extracted to phosphene patterns, with an iconic
representation that makes possible to understand the scene with the limitations given. In
particular, we use the depth camera to extract free walking space in the scene, and using
an iconic-based approach allows to provide comfortable and informative visual cues that
other existing methods usually lack.
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1
INTRODUCTION

The field that aims to make computers extract information from images is called
computer vision. This field has been active for over half century, but it is increasingly
growing as years go by, with continuous advances and growing number of areas of in-
terest. The explosion of popularity is happening in the world of academia research, but
also in the many incarnations of the industry. For instance, nowadays it is widely used
in applications such as autonomous driving, robotics, augmented reality, aerial supervi-
sion, security cameras, social media platforms or automatic inspection in manufacturing
processes. The main reason for this to happen is due to the astonishing results that the
state of the art is achieving: now it is possible to accomplish tasks that were unthinkable
a few decades back. In addition, the expectation of the field is to keep improving in the
future, as newer methods arise and computational or technical enhancements happen.
At this day and age, one could say computer vision is one of the most promising and
exciting areas to work on.

In this thesis, the methods and algorithms proposed have been developed within this
context, and thus they represent new contributions to the state of the art of computer
vision. To present a more detailed description about the contents of the thesis, the fol-
lowing sections are going to answer the most important questions. In particular: Why?
We describe the motivation of this thesis and the global aim that stimulates the research
carried out through all these years (Section 1.1); How? the description of the system fra-
mework that is necessary to address the established problem (Section 1.2); and What?
With the global aim in mind and the set of tools defined, we enumerate the particular go-
als we strive to achieve (Section 1.3). Alongside the goals, the particular contributions
with its correspondent publications are also pointed out. In addition, Section 1.4 shows
a brief description about the contents to come during the rest of the document.
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1. INTRODUCTION

1.1. MOTIVATION

Many of the applications of computer vision techniques intend to directly or indi-
rectly improve the quality of life of people. But some people have special needs, such as
the disabled, or the elderly people. Here, of the many applications of computer vision,
we focus on the development of algorithms and techniques in the framework of what is
called assistive computer vision. In particular, our main concern has been to deal with
visually impaired people, which are the ones that may benefit the most of having visual
aid, since cameras perceive the type of stimuli that people with that disability cannot
perceive properly. Visual impairment impacts many aspects of the life of the people af-
fected by it, such as the ability to read text or interpret signs, the recognition of objects
and people, or problems related to mobility. According to [Bourne et al., 2017], in 2015
there were 253 million of visually impaired people worldwide. Of them, 36 million
are blind and 217 have moderate to severe vision impairment. Due to the growth and
ageing of the world’s population, the number of blind people could rise to 115 million
in 2050 [Bourne et al., 2017]. This large amount of people is not negligible and shows
the need of portable, practical, and highly functional assistive devices to help out people
under these circumstances. Additionally, the problem aggravates in low-income coun-
tries and it is important to note that 81% of people living in blindness are aged 50 or
above, so the system to develop should not be high priced or technologically complex.
Giving assistance to the visually impaired has been a relevant topic for many years in
the computer vision community, and many advances have been accomplished in some
specific tasks. However, it still remains hard to integrate them naturally. The continuous
improvements in electronics, increasing capacity and portability, makes the problem of
creating assisting devices more relevant now than ever.

In this thesis, we pay special attention to the mobility problems derived from visual
impairment. Safely moving from one point to another poses some difficulties, such as
the presence of (moving) obstacles, traffic, orientation issues or the detection of curbs
or doors. Some of these problems are usually overcome by their remaining senses,
a previous knowledge of the environment or with the help of low-tech mobility aids
such as the white cane or guide dogs. Nevertheless, even when moving in familiar
environments or using a mobility aid, visually impaired people are still prone to be
involved in accidents. According to the survey performed in [Manduchi and Kurniawan,
2011], 7% of the respondents experienced falls while walking at least once a month.
Moreover, the frequency of accidents has nothing to do with the type of mobility aid or
the number of times going out along unfamiliar routes.

Although the reliability, feedback, simplicity and price of mobility aids like the white
cane seem hard to beat, we believe with modern sensors and techniques the navigating
experience can be enhanced comfortably. The idea is to complement rather than re-
place, increasing and improving the amount of information they can already receive by
other means. For example, while a white cane does a good job at detecting obstacles
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and providing cues in short range, it is not as useful in mid and large range. And most
importantly, when users are moving, obstacle avoidance is not their only concern: they
would need as well to acquire some extra knowledge about the environment that allow
them to know where to go or which path is the best to take. This necessity becomes
even bigger when they are in an unknown environment with hardly any previous notion
about it, since there is not cognitive map of the environment already acquired. Without
appropriate orientation and position cues they might not be able to head to the shor-
test or safest path unless they get external help, which is an important limitation. The
underlying challenge is to think about the information the user might want or need to
receive. This is where the problem differs from the equivalent in robotics, since humans
have their own decision-making process, having a more complex and spontaneous way
of thinking, and no restrictions for any predetermined set of rules or behaviors. Howe-
ver, there are certain structures that are common in man-made constructions worldwide,
like the stairs, doors or walls, that are essential in human navigation and thus required to
be detected regardless of the environment the user is moving in. In this thesis, we have
paid especial attention to those kinds of structures, since they are the foundation of any
navigational aid such as the one we sought to create.

In essence, the main motivation of this thesis is to make the navigation of visually
impaired people be an overall better experience, by enhancing the safety, efficiency and
completeness they can get with current assistive devices. It is also important to note that,
while our main concern is to improve the quality of life of those with visual impairment,
the idea of enhancing the experience with cameras could be of use in other applicati-
ons, such as people in especially demanding works (e.g. firemen, policemen), or tourists
in unknown spaces. Besides, the methods and techniques here proposed may also be
beneficial in other fields of research, such as robotics, augmented reality or SLAM (Si-
multaneous Localization and Mapping). For instance, some of the perception problems
related to mobility of people are also shared in the field of service robotics (e.g. home
telepresence robots), since in both cases the person or robot needs to move in the same
type of environments. The possibility of generalizing our methods to other fields was
encouraging, and served as additional motivation throughout the realization of the thesis.

1.2. SYSTEM FRAMEWORK

In the previous section it was stated the general problem we intend to solve in this
thesis, which is providing assistance to the visually impaired people, with main focus
on mobility issues. Not all cases of visual impairment are similar, since they may have
different cause and different degree of vision loss, which may range from moderate low
vision to total blindness. The scope of this thesis does not lie on attempting to restore the
ability to see properly, which is an issue that concerns other areas of research. Instead,
we believe that using modern assistive technologies we can improve the quality of life
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of those affected by this condition, by helping them get through some limitations and re-
cover some lost functionality for their daily life. The methodology resides in developing
a system able to extract useful information from the environment and transmitting it to
the user by other means than the visual system.

A system such as the one we aim to develop can be divided in two main modu-
les or parts: perception and communication. The perception problem is the process of
extracting information from the environment and interpreting it. This problem is usu-
ally approached with sensors that are able to capture raw data of the scene (e.g. laser
scanners, sonars, cameras) and then processing this data in a computer for which appro-
priate algorithms have been developed. The communication problem is the process of
transmitting the information already interpreted to the user. This problem is approached
by taking advantage of the remaining senses of the user. For example, two widespread
ways to achieve that are by sending audio signals or via haptic feedback. Recently, visual
prostheses are starting to be implanted in some cases of blindness. During the realization
of this thesis, we studied both problems, since they are connected and equally relevant:
having one of them functional in a real system would be not truly useful without the
other.

The demand for assistive technologies for the visually impaired is not a new issue,
but it has been increasing in the last decades. Many systems addressing this problem
have already been proposed in the literature, and even some have been commercialized
in the last few years. Before explaining our ideas, we think it is important to provide an
insight of the most influential works for the thesis here presented. Thus, the next section
briefly reviews the state of the art on this subject. Then we will be ready to motivate and
describe the main aspects of our system.

1.2.1. ASSISTIVE SYSTEMS FROM THE LITERATURE

Probably the earliest technological aids developed for the blind were sonar-based.
Sonar sensing, while being an old technology, can be helpful to detect the presence of
obstacles in front of the user. Two classic examples, coming from the University of Mi-
chigan, are the Navbelt [Shoval et al., 1998] and the GuideCane [Borenstein and Ulrich,
1997]. They exemplify, respectively, two common configurations of assistive devices for
the visually impaired: a wearable system, and an enhanced version of the white cane.
The Navbelt uses an array of ultrasonic sensors arranged radially in a belt, so that they
can detect obstacles in the surroundings of the subject without having to actively point at
any particular direction (Figure 1.1a). The navigation suggestions were communicated
to the user via stereo audio interface, with beeps and continuous sounds. On the other
hand, the GuideCane attempts to enhance a regular white cane by adding an array of
ultrasonic sensors covering about 120◦, and by using wheels to roll on the floor, with a
motor that steers the system avoiding obstacles (Figure 1.1b). As the authors themselves
analyze in [Shoval et al., 2000], the GuideCane is much more intuitive to use as it directs

4



1.2. SYSTEM FRAMEWORK

(a) (b) (c)

FIGURE 1.1. Three examples of sonar-based assistive devices for the visually impaired. (a) NavBelt [Shoval
et al., 1998]. (b) GuideCane [Borenstein and Ulrich, 1997]. (c) A commercial system called Ultracane.

the user as it moves before him, like a guide dog. Unlike the Navbelt, it is possible to
achieve normal walking speeds without needing any training. Besides, it does not use
audio signals, which block audio cues from the environment that are very important for
blind people. However, the information these systems provide is very limited: basically
two dimensional occupancy mapping, with poor angular resolution and unable to detect
more complex features and objects. More modern approaches such as the already com-
mercialized UltraCane1 solve some of these limitations, also attempting to enhance the
white cane. In particular, besides a downward facing ultrasonic sensor that detects usual
obstacles, it additionally incorporates another one facing upwards to prevent obstacle
collision at chest/head height (Figure 1.1c). The feedback to the user is provided via a
tactile interface, felt by the user when holding the cane. While undoubtedly a good en-
hancement to a regular white cane, it is still unable to perceive and communicate more
meaningful information than the mere presence of obstacles.

Another type of sensors used in assistive systems is the laser scanner. Compared
to the sonar, they are able to get much more rich and accurate information from the
environment; but they are often expensive, heavy and involve high power requirements.
One example of wearable system to aid blind people is shown in [Ueda et al., 2006],
where the main sensor is a 3D laser scanner chest-mounted, used to detect obstacles and
then warn the user via audio interface. Laser scanning is also used in [Capi and Toda,
2011], where they propose a robotic system consisting on one PC, two laser range finder,
a camera, a microprocessor and a joystick potentiometer, all of it mounted in a trolley

1https://www.ultracane.com/
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walker.
Some other common sensors used in this context are RFID [Kulyukin et al., 2004]

and GPS. The latter provides very useful navigation cues whenever you are outdoors and
want reach another destination in the city. It is completely implemented in devices such
as smartphones, that most people already possess; and with the help of modern text-
to-speech (TTS) and speech-to-text (STT) capabilities, and the accurate maps that most
widely used services provide (e.g. Google Maps), we could say that this technology
already provides useful navigation cues rather comfortably. Nonetheless, this techno-
logy only works outdoors, and it does not solve other problems that users may come
across during outdoor navigation, such as traffic, curbs and collision with people and
other obstacles. On the other hand, in order to take advantage of the RFID technology,
it is necessary to have a previously prepared environment, which is something we can-
not normally assume. For example, [Faria et al., 2010] tested a system with RFID tags
along the path and in specific points of interest. The RFID reader is in the white cane,
at the lower part, to read the tags placed in the ground; and the transmission of infor-
mation is via a combination of TTS and Bluetooth headphones and haptic feedback.
Alternatively, [Ahmetovic et al., 2016] suggest a turn-by-turn navigational assistant that
uses a smartphone, but instead of RFID, GPS or Wi-Fi they use as landmarks a set of
pre-installed Bluetooth low energy beacons to localize the user. Receiving this kind of
information is useful and reliable, but the lack of infrastructures to set out a system like
this, is a very strong drawback.

Recently, the most promising assistive systems use cameras as main type of sensors.
There are many reasons to adopt cameras as centerpiece for this kind of problem. First,
because of their functionality. The amount of tasks that can be achieved with computer
vision is unbeaten: you can go beyond obstacle detection and use it for recognizing ob-
jects, people, traffic signs, and so on. Being multifaceted is a major advantage, since it
makes possible to perform most of the tasks with only one sensor. The extensive rese-
arch in this field in this and other related topics such as robotics or autonomous driving
has paved the way for this type of sensors. Besides, the costs of using cameras are mi-
nimal: they are already available, portable and cheap. Every year digital cameras are
able to produce better image quality with smaller size of sensors at cheaper price, as the
extensive usage of cameras in portable devices such as smartphones is currently putting
in evidence. The apparition of the first smart-glasses also shows that it is possible to mi-
niaturize the sensors and use them in an unobtrusive wearable system. The price point
is also extremely relevant: according to [Bourne et al., 2017], the 89% of the world’s
visually impaired live in low- and middle-income countries. An example of how mono-
cular vision can be helpful to detect specific features, such as text signs, doors, elevators
or cabinets is shown in [Tian et al., 2013] (Figure 1.2a). There are also commercial sys-
tems, like OrCam2: a small device that can be attached to any glasses, and that possess a
camera able to recognize text, faces, colors, objects and bank notes. The information is

2https://www.orcam.com/en/
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(a) (b)

FIGURE 1.2. (a) Example of door detection and text information extraction with conventional cameras from
[Tian et al., 2013]. (b) A woman using OrCam, a commercial visually impaired aid attached to the glasses that
using a camera performs tasks such as reading text aloud.

transferred to the user by saying it aloud. To avoid overwhelming the user, it only says
things aloud when it points to where they want to have the text recognized (Figure 1.2b).
In [Yoshida et al., 2011], edges extracted in the image are codified in sounds so that a
trained user can interpret them and recognize shapes.

Unfortunately, there are some limitations to take into account when considering ca-
meras. While they are able to capture similar kind of information to what the human
eyes can do, it is still impossible to reach the performance and level of abstraction of
the brain to interpret such input. The images that can be acquired during the normal use
are highly variable and it is not an easy task to develop an algorithm able to understand
the scenes everywhere, with other adjacent problems such as occlusions or changeable
lightning conditions. In addition, cameras may have physical problems such as being
out of focus to the important part of the image, motion blur due to the movement of the
person, or simply capturing poorly framed images that leave the relevant features out
of sight. Besides, sometimes computer vision algorithms are highly time consuming,
but for this task they must execute in real time in order to be useful. Some of these
issues can be overcome with what we call unconventional cameras, i.e. camera systems
more complex than a regular monocular camera that may include other artifacts (e.g.
lenses, projectors, mirrors, other cameras) that allow them to retrieve more information,
or information of different nature.

One of the biggest challenges of using cameras in navigation is the geometric recon-
struction of the environment, which is often solved using SLAM algorithms or camera
systems that are able to retrieve depth information from the scene. These camera sys-
tems are called range cameras, i.e. camera systems able to capture 2D images in which
each pixel represents the distance to a point in the scene, called range images or depth
images. For example, a system that has two cameras calibrated and a shared field of view
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(a) [Molton et al., 1998] (b) [Rodriguez et al., 2012]

FIGURE 1.3. Examples of stereo-vision used for assistance for the visually impaired.

is called a stereo camera. With stereo vision it is possible to retrieve 3D information of
the scene, similar to the depth perception of the human pair of eyes. This perception
can easily be used to improve the detection of obstacles or specific shapes, being a clear
advantage over monocular cameras. In 1998, Molton et al. proposed a wearable system
composed mainly by a stereo camera to help blind people avoid obstacles [Molton et al.,
1998]. The electronics and computing devices as well as the sensors are mounted in a
backpack, with the two cameras placed over the shoulders (Figure 1.3a). A more mo-
dern approach using a head-mounted stereo vision system is the one shown in [Pradeep
et al., 2010]. It joins in the same mobility system a SLAM algorithm along with obstacle
detection. With the visual odometry and the mapping they perform a traversability ana-
lysis of the environment and a tactile interface situated on a vest steers the subjects away
from obstacles along the path. Rodriguez et al. in [Rodriguez et al., 2012] proposed
another obstacle avoidance system using stereo cameras, with acoustic feedback instead
of vibration interface (Figure 1.3b).

Nevertheless, stereo vision has some problems capturing depth in texture-less or re-
peated areas, which could make them not completely reliable in some relatively simple
situations such as looking at a plain wall or to the floor. To overcome these limitati-
ons, there are other types of range cameras, such as the Time-Of-Flight (TOF) or the
Structured-Light cameras (SL). Both types of range cameras work with laser projection
to the scene (with usually infrared light) and are able to infer the depth either by emitting
light pulses and measuring the per-pixel delay after reflecting in the scene (TOF), or by
projecting a light pattern to the scene and measuring its distortion (SL). Since such sen-
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(a) [Bostelman et al., 2006] (b) [Qian and Ye, 2013]

FIGURE 1.4. Examples of visual aids from the literature with TOF cameras.

sors emit its own light, the problem of texture-less and repeated areas is eliminated, and
additionally work well in low light and even complete darkness. However, the sun also
emits infrared light, causing interferences that prevents those sensors to extract reliable
information at the light of day. Therefore, its use is mostly restricted to indoor environ-
ments. Time-Of-Flight is used in this context in works such as [Bostelman et al., 2006]
and [Lee et al., 2012], with main application for object detection (Figure 1.4a). In [Qian
and Ye, 2013] the TOF sensor is attached to an otherwise plain white cane, and it is used
to extract 3D planes and recognize staircases (Figure 1.4b).

Since 2010, the introduction in the consumer market of the Microsoft Kinect (Fi-
gure 1.5a), along with its developer counterpart the Asus Xtion Pro (Figure 1.5b), made
a huge impact in the field. The Kinect is a system that combines structured-light range
sensing with a synchronized conventional camera, allowing to benefit from the strengths
of both worlds and overcome some drawbacks. For example, some objects of certain
surface materials or with thin or complex shapes often do not return good depth measu-
rements. Nevertheless, in some tasks the color image can be helpful to overcome that
limitation. We studied this problem in [Perez-Yus et al., 2018c], where we demonstrate
how objects that return poor depth data can be tracked with RGB camera and the depth
information of the surroundings can be used to improve the performance. These types of
systems are commonly referred to as RGB-D cameras (i.e. color, RGB, and depth, D).
The Kinect was sold as a video game device, used to track your body and movements,
and thus its price was not very high (around $150). For that price, having depth images
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(a) Microsoft Kinect (b) Asus Xtion Pro Live

FIGURE 1.5. RGB-D cameras widely used in the literature due to their affordable price.

of good resolution (640× 480) was groundbreaking, considering how fast and reliable it
was to obtain reconstructions of the scene with this system. Quickly, developers started
working on applications with such sensors. That is the case of [Zöllner et al., 2011],
which proposed a head-mounted configuration or [Bernabei et al., 2011], which uses a
waist-mounted configuration along with an accelerometer to detect the movement of the
user, floor and obstacles. [Mann et al., 2011] introduces the use of a vibro-tactile helmet
to communicate with the user besides the head-mounted RGB-D sensor. Also Lee et al.
in [Lee and Medioni, 2011] improved what was published for Pradeep et al. in [Pra-
deep et al., 2010] by replacing the stereo camera with an RGB-D camera. Aladren et
al. [Aladren et al., 2016] improved the way-finding by fusing data from the depth and
RGB camera; the latter being used to extend the information recovered by the depth pla-
nar segmentation. In this case, the presence of obstacles or walls is communicated to the
user with audio signals. More modern approaches integrate machine learning techniques
for segmentation of the scene with RGB-D, like [Wang et al., 2014b]. Newer RGB-D
devices have been appearing with enhanced features. For example, the Kinect v2 has a
TOF camera that provides much higher resolution. The Google Tango project showed
the miniaturization possibilities of these systems, by adding them to smartphones and
tablets. In [Li et al., 2016], a Tango device is used for localization inside a semantic map
of the scene and obstacle avoidance. In 2017, the iPhone X included a depth front-facing
camera to recognize the face and unlock the phone automatically.

Throughout this section, we have cited many systems from the literature that feature
a communication interface to transmit the information to the user, mainly via audio or
tactile signals. Nevertheless, in some cases it is possible to communicate with the user
using the visual system with prosthetic vision. Visual prostheses consist of retinal or
cortical implants that apply electrical stimulation of the visual cortex or other parts of
the visual pathway (such as retina) and cause patients to perceive bright dots of light
called phosphenes [Brindley and Lewin, 1968]. Using an array of electrodes it is possi-
ble to generate a grid of phosphenes that resemble a low resolution image made of dots.
Typically, these systems are paired with a camera that acquire images and a portable
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(a) Argus II: The implant (b) Argus II: External equipment

(c) Example of visualization of a door

FIGURE 1.6. Argus II Retinal Prosthesis from Second Sight. (a) Photo of the implant and representation of its
main components. (b) External equipment, including glasses with the camera, the antennas to communicate
wirelessly to the implant, and the Video Processing Unit (VPU). (c) The images captured by the camera are
transformed into an electronic coded signal that activates the electrode array provoking the visualization of
dots of light called phosphenes (right).

computer that converts the image data into an electronic coded signal that is transferred
to the electrode array via wireless interface. Experimental results demonstrate that pa-
tients with this kind of devices can detect phosphenes at individual electrodes and they
were able to develop coordination in using their visual prosthetic device [Ahuja et al.,
2011]. Currently there are systems commercially available, such as the Argus II Retinal
Prostheses System, from Second Sight3 (Figure 1.6).

1.2.2. PROPOSED FRAMEWORK

After gathering information of what has been done in the past about assistance for
the visually impaired, we decided a few features of how a system developed by us should
be.

3http://www.secondsight.com/
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(a) (b)

FIGURE 1.7. Different sensor placements we have used in this thesis: (a) Head-mounted (b) Chest-mounted

The main sensor of our system is an RGB-D camera. Having 3D perception can
help recognizing the basic structures of the environment as well as detecting obstacles
along the path, enabling a more robust and secure navigation for the user. The loca-
lization of the user can be tackled with SLAM techniques that use these sensors. The
main drawback of RGB-D cameras is the poor performance outdoors. In this thesis, our
experiments focus on indoor applications, though the approaches would still be valid
outdoors if the sensor is substituted for a similar one able to work in sunlight.

The usage of additional sensors is convenient and advisable. RGB-D cameras have
limitations, like the limited field of view. For example, adding omnidirectional cameras
to the system allows to capture the whole scene around, so the user does not need to be
accurately pointing to a precise direction. In this thesis, we have calibrated an omnidi-
rectional camera with an RGB-D camera in a hybrid system. Other sensors like Inertial
Measurement Units (IMU) have proven to help in SLAM techniques, and although they
were not utilized in this thesis, they could be a useful enhancement for the system.

We decided our system should be wearable, meaning all the sensors, hardware and
communication parts should be worn by the user. This allows the system to work auto-
nomously without depending on external infrastructures, such as RFID tags. Since our
idea is to complement and not replace, this leaves the usage of additional aids such as
the white cane to the preference of the user.

An important consideration is the location of the camera worn by the user. We consi-
der an egocentric point of view, or first person view, where the camera points to the scene
emulating the visual field of view that a person typically has. Specifically, in this work
we have considered two possibilities: chest-mounted and head-mounted (Figure 1.7).
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Wearing the camera in the chest has more stability and is always pointing at the region
in front of the user, causing safer navigation in terms of detecting obstacles. However,
the field of view of wearing the camera on the head is larger, less likely to be obstructed,
and the user can stand and scan the environment more comfortably and intuitively than
having to move the whole body. Mayol-Cuevas et al. in [Mayol-Cuevas et al., 2009]
provided a more extended analysis on the matter, analyzing social aspects as well. In
particular, it claims a chest-mounted configuration is likely the most social acceptable
one as it interferes the least in social interaction. Nevertheless, the perspectives of mini-
aturization of RGB-D cameras in the near future may made glass-mounted cameras the
less intrusive ones. Without a clear winner, our decision was to make the methods to
develop able to work independently of location of the camera during normal usage, with
the only possible exception of initialization of the algorithm.

About the communication user interface, our group –as many others– has used audio
responses in previous works [Aladren et al., 2016]. In this thesis, we decided to focus
on the problem of visual prostheses. While the information provided by these systems
is still limited (low resolution and dynamic range), our efforts were destined to design
iconic representations that may provide relevant navigation cues despite these limitati-
ons. In this case, the work was performed by simulating prosthetic vision, due to the
impossibility of carrying out experiments with real patients.

1.3. GOALS AND CONTRIBUTIONS

Once we have asserted our motivation and the framework of our thesis, it is time to
define the specific goals to pursue, and the extent of the work developed in these four
years in those lines of research. In particular, the thesis can be divided in four main
lines of work. The first three are related to the perception of the environment, meaning
the extraction of relevant information that the user might need to receive. We focus on
extracting basic information that allows the user to move safely (e.g. avoiding obstacles),
but also providing additional contextual information that enables to perform higher level
tasks, such as presence and location of staircases or recognition of the shape of the room
layouts. For some of these tasks we also propose the usage of a novel hybrid device that
provides depth perception and wide field of view images at the same time. The last line
of work is about conveying the perceived information to users, in this case, focusing on
blind people that use visual prostheses.

The next sections detail each specific line of work followed, pointing out the contri-
butions and associated publications that came out as a result of our work.
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1.3.1. STAIRS DETECTION, MODELING AND TRAVERSAL

The users need to be able to move safely in any environment, whether it is known
or unknown. This includes the detection for avoidance of obstacles and other hazards
that may be dangerous for a safe navigation. While a white cane does a good job at
detecting obstacles in short range, our goal attempts to address mid and large range
obstacle detection. RGB-D cameras and computer vision algorithms may be used to that
end. However, when users are moving in an unknown environment, obstacle avoidance is
not their only concern: they would want to acquire knowledge of the presence of certain
structures that allow them to move efficiently from one place to another. Independently
of the environment, the most widespread structures that any person may come across in
its daily life are stairs and curbs. Detecting them is crucial for both safety reasons and
for communicating them the possibility of moving up or down the building.

Thus, our first goal was to create a perception system that allows the user to move
in any environment safely and efficiently, by including the detection of stairs in a more
general obstacle detection framework.

MAIN CONTRIBUTIONS:

• We have developed a stair detection algorithm from point clouds obtained from an
RGB-D camera that surpassed the state of the art.

• Besides the detection, our algorithm models the stair dimensions and retrieves the
position and orientation with respect to the user.

• Additionally, by running a visual odometry algorithm in parallel, we have also
developed a stair traversal algorithm that allows to model the full staircase and
retrieve the step where the user stands.

• Reciprocally, during traversal the current view is used to correct the drift of the
visual odometry.

ASSOCIATED PUBLICATIONS:

[1] Perez-Yus, A., Gutierrez-Gomez, D., Lopez-Nicolas, G., and Guerrero, J. J. (2017b).
Stairs detection with odometry-aided traversal from a wearable RGB-D camera.
Computer Vision and Image Understanding, 154:192–205

[2] Perez-Yus, A., Lopez-Nicolas, G., and Guerrero, J. J. (2015). Detection and mo-
delling of staircases using a wearable depth sensor. ECCV 2014 Workshops, Part
III, LNCS 8927(3):449–463

[3] Guerrero, J. J., Perez-Yus, A., Gutierrez-Gomez, D., Rituerto, A., and Lopez-
Nicolas, G. (2015). Human navigation assistance with a RGB-D sensor. In VI
Congreso Internacional de Diseño, Redes de Investigación y Tecnología para to-
dos (DRT4ALL), pages 285–312
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INTERNATIONAL COMMUNICATIONS:

– Oral presentation at the 2nd Assistive Computer Vision and Robotics workshop
(ACVR), in conjunction with European Conference on Computer Vision (ECCV),
2014, Zurich (Switzerland). Related publication: [2]

– Poster presentation at the International Computer Vision Summer School (ICVSS)
2015, Sicily (Italy). Title: Stair detection and modelling from a wearable depth
camera.

1.3.2. UNCONVENTIONAL CAMERA SYSTEMS AND

CALIBRATION

One of our main concerns was about choosing the means we use to perceive in our
system. We manifested our primary interest in RGB-D cameras as main sensor, because
of the numerous advantages they have. However, these cameras have some limitations
that could be overcome with some additional sensors. We wanted to explore the possi-
bility of extending the field of view that most of these cameras usually have by using
unconventional camera systems. In particular, we devised a novel hybrid camera system
composed by a depth and a fisheye camera. To use such system it is required to perform
calibration, and there were no existing methods suitable for this device. Therefore, it
was necessary to develop new calibration methods that allowed to calibrate that system.

Our second goal was to explore new ways to enhance RGB-D cameras, particularly
focusing on the expansion on the field of view. For this, it is necessary to propose novel
unconventional camera systems and methods to calibrate them easily and with as fewer
constraints as possible.

MAIN CONTRIBUTIONS:

• We have proposed a novel hybrid camera system, composed by a depth and a
fisheye camera, that attempts to combine the advantages of both systems (3D per-
ception and wide field of view).

• A calibration procedure to calibrate such system has been developed, considering
the particularities of the problem.

• To provide a more general solution to the calibration problem, another method
based on line correspondences was proposed, able to calibrate multiple configura-
tions of RGB-D based systems, without needing to build a calibration device or to
have overlapping field of view among the cameras.

• This newer method was successfully tested with the aforementioned device and
others, including a rig of 8 RGB-D cameras arranged radially to provide omnidi-
rectional field of view.
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ASSOCIATED PUBLICATIONS:

[4] Perez-Yus, A., Fernandez-Moral, E., Lopez-Nicolas, G., Guerrero, J. J., and Rives,
P. (2018a). Extrinsic calibration of multiple RGB-D cameras from line observati-
ons. IEEE Robotics and Automation Letters, 3(1):273–280

[5] Perez-Yus, A., Lopez-Nicolas, G., and Guerrero, J. J. (2016a). A novel hybrid
camera system with depth and fisheye cameras. In IAPR International Conference
on Pattern Recognition (ICPR), pages 2789–2794

INTERNATIONAL COMMUNICATIONS:

– Oral presentation at IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, Vancouver (Canada). Related publication: [4]

– Poster presentation at ICPR, 2016, Cancun (Mexico). Related publication: [5]

1.3.3. SCALED LAYOUT FROM WIDE FIELD OF VIEW

RGB-D CAMERA

With depth cameras it is relatively simple to detect obstacles, if obstacles are simply
considered as groups of 3D points that could obstruct the way of a walking person.
However, in this work we aim to enhance the navigation experience of people with
vision problems, and one way of doing this is providing context. One of the most basic
information that we can extract to contextualize a scene is the spatial layout of the room
the user is in. That information is useful and essential to enable or facilitate many tasks
including navigation, localization, object detection or scene recognition. While layout
estimation is not a new issue, existing methods usually have major limitations. For
example, they are usually up to scale if they are recovered on single image, and the field
of view is often too small, so the recovered layout may be wrong because of lack of
spatial information, or may not produce relevant information for higher level operations.
One of the keys to tackle these limitations is the usage of unconventional cameras, such
as our novel device with fisheye and depth camera, designed to have wider field of view
while providing synchronized 3D information.

Our third goal was, therefore, to develop a method to estimate the layout of the scene
combining information coming from a fisheye and a depth camera, and thus, obtaining
scaled 3D reconstructions of a large extent of the room, benefiting from the wide field
of view of the fisheye and the scale and range information from the depth camera.

MAIN CONTRIBUTIONS:

• We have proposed a method to recover the full-scaled 3D layout of the scene in
one single shot.
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• It corresponds with the first application of the novel hybrid camera we introduced,
with a fisheye and a depth camera. From the fisheye we are able to extract lines
that are used to find relevant corners and generate layout hypotheses. The depth
camera enhances the process and incorporates scale to the final reconstruction.

• As a result, our returned 3D reconstruction works as an extension of the 3D data
captured by the depth sensor to over 180 degrees of field of view.

ASSOCIATED PUBLICATIONS:

[6] Perez-Yus, A., Lopez-Nicolas, G., and Guerrero, J. J. (2018b). Scaled layout re-
covery with wide field of view RGB-D. Submitted to a journal

[7] Perez-Yus, A., Lopez-Nicolas, G., and Guerrero, J. J. (2016b). Peripheral expan-
sion of depth information via layout estimation with fisheye camera. In European
Conference on Computer Vision (ECCV), pages 396–412. Springer

INTERNATIONAL COMMUNICATIONS:

– Poster presentation at ECCV 2016, Amsterdam (Netherlands). Related publica-
tion: [7]

– Oral presentation at the International workshop on Lines, Planes and Manhattan
Models for 3-D Mapping (LPM) in conjunction with IROS 2017, Vancouver (Ca-
nada). Title: Wide RGB-D for Scaled Layout Reconstruction.

1.3.4. ICONIC PHOSPHENIC REPRESENTATION FOR HUMAN

NAVIGATION WITH VISUAL PROSTHESES

Besides perception tasks, in this thesis we aim to work on the communication pro-
blem taking advantage of new advances in visual prostheses. Recent research demon-
strates that visual prostheses are able to provide visual perception to people with some
kind of blindness. In visual prostheses, image information from the scene is transfor-
med to a phosphene pattern to be sent to the implant. This is a complex problem where
the main challenge is the very limited spatial and intensity resolution. Moreover, depth
perception, which is relevant to perform agile navigation, is lost, and codifying the se-
mantic information to phosphene patterns remains an open problem. One way to tackle
these limitations is to design an iconic representation of the environment that could be
displayed with phoshpene patterns. That way, even with the low resolution, useful infor-
mation could be transferred to the users.

Hence, our fourth goal was to design and implement a new iconic representation of
the environment, particularly dealing with navigation purposes, where the information
to transfer via phosphene patterns would be useful to move in indoor environments avoi-
ding obstacles. Given the difficulties of working with real people with visual prostheses,
at this point our goal stayed confined to simulated prosthetic vision.
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MAIN CONTRIBUTIONS:

• We have developed an RGB-D based method that is able to perceive the free space
in front of the user and provide the walkable floor area.

• We have designed an iconic representation with phosphene patterns that realisti-
cally simulates the information provided with visual prostheses. This iconic re-
presentation consists in showing the walkable polygon of the floor with a chess
pattern that provides sense of depth and movement and therefore, makes the na-
vigation more comfortable and informative, while additionally indicating the pre-
sence of obstacles.

• Experiments have been performed in simulation environments and with real data
from indoor environments obtained with a head-mounted RGB-D camera.

ASSOCIATED PUBLICATIONS:

[8] Perez-Yus, A., Bermudez-Cameo, J., Lopez-Nicolas, G., and Guerrero, J. J. (2017a).
Depth and motion cues with phosphene patterns for prosthetic vision. In IEEE
International Conference on Computer Vision Workshops (ICCVW), pages 1516–
1525

INTERNATIONAL COMMUNICATIONS:

– Poster presentation at the 5th International Workshop on Assistive Computer Vi-
sion and Robotics (ACVR), in conjunction with IEEE International Conference
on Computer Vision (ICCV), 2017, Venice (Italy). Related publication: [8]

1.3.5. COMPLEMENTARY CONTRIBUTIONS

During this thesis, two research stays have been carried out. In addition, some Master
and Bachelor thesis have been supervised.

1.3.5.1. RESEARCH STAY AT UNIVERSITY OF WASHINGTON, SEATTLE,
USA

• SUPERVISOR: Dieter Fox
• DATES: Sept. 17 – Dec. 15, 2015 (90 days)
• SUMMARY: During this stay, the core element of the research was RGB-D came-

ras, matching the framework of the thesis. However, in this case, we focused on
studying and improving the limits of perception of RGB-D systems when facing
difficult or complex objects and environments. Particularly, there are certain ob-
jects whose surface properties or complex shapes prevents the depth sensor from
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returning good depth measurements, and only color-based methods can be app-
lied. We show how the depth information of the surroundings of the object can
still be useful in the object pose tracking with RGB-D even in this situation. Spe-
cifically, we propose using the depth information to handle occlusions in a state
of the art region-based object pose tracking algorithm. Experiments with recor-
dings of humans naturally interacting with difficult objects have been performed,
showing the advantages of our contribution in several image sequences.

• RESULTS: Publication of a paper presented in a workshop:

[9] Perez-Yus, A., Puig, L., Lopez-Nicolas, G., Guerrero, J. J., and Fox, D. (2018c).
RGB-D based tracking of complex objects. Understanding Human Activities
through 3D Sensors Workshop (UHA3DS), in conjunction with ICPR 2016, LNCS
10188

1.3.5.2. RESEARCH STAY AT INRIA SOPHIA-ANTIPOLIS, FRANCE

• SUPERVISOR: Patrick Rives
• DATES: Sept. 1 – Nov. 29, 2016 (90 days)
• SUMMARY: During this stay, the line of work was focused on the calibration of

unconventional camera systems, particularly developing the extrinsic calibration
method based on line observations. In these three months I could benefit from the
expertise of Patrick Rives and Eduardo Fernandez-Moral, and also make use of
the multi-camera sensors they developed in their lab.

• RESULTS: The journal publication [4], also presented in an international robotics
conference (IROS 2017).

1.3.5.3. SUPERVISION OF BACHELOR AND MASTER THESIS

• STUDENT: Clara Fernandez Labrador
In this Master thesis we have developed a method for 3D layout recovery of in-
door scenes from a single 360 degrees panoramic image. This method has the
main novelty of combining geometric reasoning on computer vision and deep
learning techniques adapted to the proposed image geometry. Our method uses
the extraction of structural corners as a starting point to construct layout hypothe-
ses assuming Manhattan World and without any prior information about the room
shape. In particular, corners are extracted as intersections of lines that are ortho-
gonal in 3D space. This process has been enhanced with a Convolutional Neural
Network that detects structural edges and allows filtering lines belonging to other
non-relevant objects. From these possible corners we draw layout hypotheses and
choose the best fitting solution to the normals’ map extracted with another CNN.
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We show results of 3D layouts recovered from images of the SUN360 public da-
taset. We demonstrate the effectiveness of our method with respect to existing
works and the advantages of the introduction of deep neural networks in the pi-
peline of the process. As a result of this work, a research paper was written and
submitted to a journal.

[10] Fernandez-Labrador, C., Perez-Yus, A., Lopez-Nicolas, G., and Guerrero,
J. J. (2018). Layouts from panoramic images with geometry and deep learn-
ing. Submitted to a journal

[a] Fernández Labrador, C. (2017). Estimation of the 3D layout of indoor envi-
ronments from panoramic images. Master thesis, Universidad de Zaragoza.
Supervised by J.J. Guerrero and A. Perez-Yus

• STUDENT: Enrique Otero Moliner
In this bachelor thesis, we developed a framework for evaluation of iconic phos-
phene representations in simulated prosthetic vision. In particular, we created
several realistic virtual indoor environments in which a simulated robot with a
RGB-D camera can be externally controlled by a subject. The subject must na-
vigate trying to avoid collisions only viewing an iconic representation with phos-
phene arrays similar to what a real user of prosthetic vision would see. Several
students collaborated in the experiments and we collected the data and provide
qualitative and quantitative analysis of the validity of the representation approach
and the overall performance with different parameters of representation.

[b] Otero Moliner, E. (2017). Development of simulated prosthetic vision in
virtual environments. Bachelor thesis, Universidad de Zaragoza. Supervised
by G. Lopez-Nicolas and A. Perez-Yus

• STUDENT: Daniel Cantón Toro
In this bachelor thesis, we developed a new and improved framework for evalua-
tion of iconic phosphene representations in simulated prosthetic vision. In parti-
cular, with respect to previous work, the main difference here is that we consider
more realistic movements on simulation, including movements of the head, which
translates in more complexity on the segmentation of the scene and thus the sys-
tem overall.

[c] Cantón Toro, D. (Expected Sept. 2018). Virtual reality for simulated prost-
hetic vision with phosphene patterns. Bachelor thesis, Universidad de Zara-
goza. Supervised by G. Lopez-Nicolas and A. Perez-Yus
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1.4. OUTLINE

1.4. OUTLINE

From here on, the following chapters describe, respectively, each of the four main
blocks of the thesis, with a final conclusions chapter at the end. Each of the four main
chapters have a brief introduction to the problem and the state of the art related to the
matter. Then they continue with the extended explanation of the method to end with
some experiments and final discussion. In more detail, the rest of the document is orga-
nized as follows:

• In Chapter 2, we describe our stair detection, modeling and traversal algorithm.
The chapter includes specific related work about the matter and experiments.

• In Chapter 3, we present our new hybrid camera system with depth and fisheye
camera and two calibration methods: one specific to that camera system, and
another more general to calibrate this and other unconventional camera systems
that include RGB-D. Related work about extrinsic calibration is provided, along
with experiments of both methods presented.

• In Chapter 4 we introduce our scaled layout recovery algorithm that uses the
hybrid camera system to obtain complete 3D reconstructions of rooms of variable
shapes.

• In Chapter 5, we show our approach of iconic representation with phosphene pat-
terns, to enable human navigation to people with visual prostheses. Experiments
in simulation and with real images have been performed in a simulated prosthetic
vision framework.

• Finally, in Chapter 6 we conclude this thesis, with some final remarks and ideas
for future work.

21



1. INTRODUCTION

22



2
STAIRS DETECTION, MODELING AND

TRAVERSAL

Stairs are one of the most common structures present in human-made scenarios, and also
one of the most dangerous for those with vision problems. In this chapter we propose a complete
method to detect, localize and parametrize stairs with a wearable RGB-D camera. Our proposal
uses the depth data to determine if the horizontal planes in the scene are valid steps of a staircase
judging their dimensions and relative positions. As a result, we obtain a scaled model of the
staircase with the spatial location and orientation with respect to the subject. The visual odometry
is also estimated to continuously recover the current position and orientation of the user while
moving. This enhances the system giving the ability to come back to previously detected features
and providing location awareness of the user during the climb. Simultaneously, the detection of
the staircase during the traversal is used to correct the drift of the visual odometry. A comparison
of results of the stair detection with other state-of-the-art algorithms was performed using public
dataset. Additional experiments have also been carried out, recording our own natural scenes
with a chest-mounted RGB-D camera in indoor scenarios. The algorithm is robust enough to
work in real-time and even under partial occlusions of the stair.
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2. STAIRS DETECTION, MODELING AND TRAVERSAL

2.1. INTRODUCTION

We have defined one of our main goals as the development of a perception system
that allows the user to move safely and efficiently in any environment. Probably the
first task that comes to mind within this goal is obstacle avoidance: forewarning the
user to avoid collisions, with sufficient time in advance to make the navigation efficient.
Modern RGB-D cameras are extremely helpful in this task providing 3D information
at mid-range, and thus there are many works addressing this problem with this type of
sensor in the literature [Zöllner et al., 2011, Bernabei et al., 2011, Mann et al., 2011,
Lee and Medioni, 2011, Pradeep et al., 2010]. In this chapter, we go beyond obstacle
detection and focus on the also immensely relevant task of stair detection. Stairs are
basic structures in human-made constructions that allow humans to displace vertically
between different floors. They are omnipresent inside buildings and besides they exist
in many outdoor man-made environments worldwide. However, they are a potential
source of serious accidents. RGB-D cameras can assist enormously, as stairs usually
have a similar and distinctive shape which can be perceived by these instruments: a
sequence of steps consisting in shifted parallel planes, occasionally with perpendicular
risers joining one another. The case of single steps, or curbs, must be also considered,
since it is also a potential dangerous structure.

Here, we present a method which takes advantage of RGB-D cameras in the tasks of
stair detection, modeling and traversal. Each task is defined as follows:

• Detection: to notice the presence of stairs, avoiding false positives and negatives.
We consider the possibility of detecting both ascending and descending staircases,
of any number of steps.

• Modeling: for any positive detection, to provide the dimensions of the steps, num-
ber of them in sight and position and orientation of the staircase with respect to
the user. This task is useful for navigation and validation of the stair detection.

• Traversal: to be able to follow the user while going up or down the staircase,
obtaining real-times updates of the position of the user during the way (e.g. num-
ber of step on which stands), completing the full model of the stair, and noticing
the end of the stair.

In our current framework, we use a wearable RGB-D camera with the computations
performed in a computer (Figure 2.1a). Consequently, given the limitations of RGB-D
cameras in sunlight, we restrain our experiments to indoor environments. Without loss
of generality, we have used a chest-mounted camera placement to record the sequences,
with the camera slightly looking downwards (e.g. about 45◦) to ensure not missing the
staircases. Given the 45◦ vertical field of view of the RGB-D camera used, should be
enough to locate the obstacle-free path in front of the subject and detect stairs. Additi-
onally, we have included the estimation of the visual odometry [Gutierrez-Gomez et al.,
2015] during the navigation with the RGB-D camera. This allows us to maintain loca-
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(a)

Segmentation and

classification

Stair detection

and modeling

(b)

FIGURE 2.1. (a) Photo of the current wearable camera system. The camera is placed on the chest, pointing
downwards. The computations are performed in a laptop carried in a backpack. (b) Block diagram of one
iteration of the main loop of the proposed method.

tion awareness and to know the relative position to relevant features in the scene even
when they are not in the current view. The visual odometry is also used to accomplish
the traversal task. On the other hand, visual odometry methods have drift that keeps
accumulating through time. Our stair traversal method has the double duty of correcting
such drift by using online stair observations. In this work, we also make use of the Man-
hattan World assumption [Coughlan and Yuille, 1999], according to which the world is
organized following three orthogonal main directions. Thus, we retrieve those Manhat-
tan directions to make a faster and simpler stair modeling, considering staircases most
likely follow that convention in indoor man-made environments.

A diagram summarizing how the system works is shown in Figure 2.1b. The sensor
provides RGB and Depth images which are used to compute a 3D point cloud [Rusu and
Cousins, 2011] and to feed the visual odometry estimation. With the 3D point clouds
we perform a planar segmentation of the scene, compute the relative transformations of
the user to the environment and obtain a classification of the planes according to their
orientation. Unidentified vertical planes and clusters of points are classified as obstacles
to be avoided. The horizontal planes classified as step candidates are run through the stair
detection and modeling algorithm. When the system detects that the user has reached
the proximity of the staircase the system proceeds with the stair traversal algorithm, able
to recover the position of the user along the stairway using the user pose estimated with
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2. STAIRS DETECTION, MODELING AND TRAVERSAL

the visual odometry module. Simultaneously, the live information from the camera is
used to correct the visual odometry drift. Experiments to test our system’s detection
ratio, quality of the model, temporal performance and drift correction during traversal
have been carried out and included at the end of this chapter.

2.2. RELATED WORK

Different approaches with different types of sensors have been used for detecting
stairs. For instance, conventional cameras were used by Se and Brady [Se and Brady,
2000]. They use grayscale images to detect and estimate the orientation and slope of
staircases in order to help partially sighted people by using traditional computer vision:
Gabor filtering, vanishing point detection and homographies (Figure 2.2a). In the same
vein, Hernandez et al. [Hernandez and Jo, 2010] propose to find the diagonal lines cor-
responding to the handrails to select stair candidates (Figure 2.2b), which seems hardly
applicable in scenarios where staircases do not have handrails or those are hard to de-
tect. Hesch et al. [Hesch et al., 2010] focus on detecting descending staircases for small
ground robots in both far and near distance, being the latter the most interesting. It uses
line detection combined with optical flow computation in order to detect the edges of
the first step-downs, which is very useful since it is by far the most dangerous situation.
However, it is designed for autonomous tracked vehicles with small size and the camera
situated close to the floor, which is a different problem than a wearable system for hu-
man navigation (Figure 2.2c). Wang [Wang and Wang, 2009] used Real AdaBoost for
training a cascaded classifier (Figure 2.2d). In [Carbonara and Guaragnella, 2014], an al-
gorithm to detect ascending stairs in frontal and lateral views is proposed and tested with
images coming from a smartphone. In this case, they solve the detection recognizing the
periodic structure of staircases analyzing the frequency spectrum.

Stairs are usually characterized by a distinctive shape formed by a flight of steps,
which probably makes the sensors capable of measure depth the most appropriate for the
task, as they provide three-dimensional information. That is the case of stereo cameras.
Gutmann et al. proposed a stair detection algorithm for humanoid robots in [Gutmann
et al., 2004] where the stereo vision system segments the scene into planar surfaces. Lu
et al. [Lu and Manduchi, 2005] combine the use of the geometry information provided
by a stereo system with the RGB data to make the system less prone to error. Pra-
deep et al. [Pradeep et al., 2008] use stereo vision to estimate normals and planes of the
scene. However, they provide the basis for stair finding but not the recognition itself.
Recently, new approaches address this problem with stereo vision producing outperfor-
ming results. That is the case of [Harms et al., 2015], which detects ascending staircases
extracting concave and convex 3D edges of stairs (Figure 2.3a). Apart from detection,
they incorporate modeling of the staircase and line tracking while traversing the stair as
well. In [Schwarze and Zhong, 2015], another head-mounted stereo system is used to
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(a) [Se and Brady, 2000] (b) [Hernandez and Jo, 2010]

(c) [Hesch et al., 2010] (d) [Wang and Wang, 2009]

FIGURE 2.2. State-of-the-art stair detection algorithms using conventional monocular cameras.

retrieve models of ascending stairs that keep growing as traversing (Figure 2.3b).

Most of the authors who use laser scanning for finding stairs focus on robot na-
vigation [Albert et al., 2001, Mihankhah et al., 2009, Bansal et al., 2011, Park et al.,
2011]. In [Qian and Ye, 2013] they use a laser sensor attached to a white cane. Plane
extraction with a NCC-RANSAC procedure provides a good segmentation for stair de-
tection. In [Ishiwata et al., 2013], a small laser range sensor attached to the chest of
the subject is used to develop a visually impaired assistant. With this laser scanner, a
segmentation of the scene is performed and the coordinates are classified into horizon-
tal or vertical segments, after which the system judges whether there are steps or not.
While similar to our proposal, in this case they only return positive detection of ascen-
ding and descending staircases, without further computation of the model. Recently,
Stahlsmidth et al., proposed two methods for ascending [Stahlschmidt et al., 2015a] and
descending [Stahlschmidt et al., 2015c] staircases, that use information coming from a
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(a) (b)

(c)

(d) (e)

FIGURE 2.3. (a) Point cloud from the stereo system in [Harms et al., 2015], with highlighted convex (red)
and concave (green) edges. (b) Model of the staircase while traversing from [Schwarze and Zhong, 2015].
(c) Graph-based stair detection (left) and an example of stair detection (right) from a 3D laser scan including
railing (green points) from [Westfechtel et al., 2016]. (d) Stair modeling with laser data from humanoid
robot [Oßwald et al., 2011b]. (e) During traversal of the humanoid robot, the edges from the camera view are
used to refine the pose of the stair [Oßwald et al., 2011a].
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TOF camera. In [Stahlschmidt et al., 2015b] the same author proposed an algorithm
to extract the relevant parameters of the staircase. An interesting approach is shown
in [Westfechtel et al., 2016], where a graph-based method for point cloud data allows
to classify the points among treads, risers and railing system (Figure 2.3c). The railing
system, while often overlooked, could be really useful in the field of assistive computer
vision. The traversal of staircases has not been treated thoroughly regarding visually
impaired aids with laser scanners, but there have been some approaches in humanoid
robotics. Oßwald et al. in [Oßwald et al., 2011b] studied two planar segmentation ap-
proaches to model staircases using the laser range data acquired by tilting the head of a
humanoid robot (Figure 2.3d). In [Oßwald et al., 2011a] they show how the model of
the stair is used as input for the traversal of a spiral staircase combined with the laser
data, the joint encoders, an IMU, and a camera pointing downwards to help the robot
refine his pose for stair climbing. The model is projected to the camera images, and the
pose of the robot with respect to the stair is refined with the edges extracted that should
match the model (Figure 2.3e). In [Oßwald et al., 2012] they improve the method by
additionally adding chamfer matching to refine the pose of the model of the staircase.
In our work, only the RGB-D sensor is used to compute the model, the pose, and the
close-range refinement.

The appearance in the consumer market of modern RGB-D cameras such as Micro-
soft Kinect or Asus Xtion Pro Live have become a new and powerful election to work
on this topic. Some authors make use of these sensors applying machine learning algo-
rithms to perform staircase detection. In the case of [Filipe et al., 2012], neural networks
are used to detect the presence of obstacles and classify scenes captured by the depth
camera among ascending staircase, descending staircase, or none. Wang and Tian used
a similar approach, where the groups of parallel concurrent lines in the RGB image de-
tected by the Hough transform are classified between stairs and pedestrian crosswalks
using the depth information [Wang and Tian, 2012]. More recently, [Munoz et al., 2016]
train an SVM for similar purposes.

Other authors preferred the usage of geometrical reasoning instead of machine learn-
ing to detect staircases with RGB-D. This is the approach we also consider to solve this
problem, trying to overcome some of the shortcomings of these methods and to enhance
the functionality of the system. For example, the method of [Tang et al., 2012] needs an
accelerometer to help identifying the ground plane orientation, whereas our algorithm
does it automatically with just the depth information. Their algorithm to find steps runs
by looking for planes one by one at certain heights, which is prone to fail as it does not
take into account any other shape constraint except having sufficient points. This may
cause false positives and that the inliers of the planes correspondent to the steps include
more points than the ones the step actually has (Figure 2.4a). Besides, they conside-
red there is a staircase if there are three or more steps, ignoring the possibility of less
than three steps, which is also quite common in doorways or other special constructi-
ons. Another similar approach that improves the results and some of these shortcomings
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(a) (b)

FIGURE 2.4. (a) Stair detection image from [Tang et al., 2012], where the points correspondent to each step
extend beyond the actual step. (b) Model of the staircase from [Delmerico et al., 2013].

is shown in [Vlaminck et al., 2013], but it still has some important limitations. They
find the floor as the biggest plane parallel to the floor plane, which might not be true if
there are some other dominant planes, such as big table. Besides, they use a RANSAC
algorithm every time they want to find any specific plane, but they might not even be on
the scene, being highly time-consuming. But the main shortcoming of these two works
is focusing on the detection and ignoring the modeling. With the modeling, the actual
measurements of the steps can be obtained, information which can be used to verify the
detection, to give indications to the user or to analyze the traversability of the staircase.
Tang et al. provided a dataset of some staircases both ascending and descending and
other common indoor scenes to detect false positives [Tang et al., 2012]. A comparison
of our results with the methods from [Tang et al., 2012] and [Vlaminck et al., 2013] will
be shown later in this chapter. Particularly, this comparison shows that the absence of
the retrieval of the fully measured model of the staircase in [Tang et al., 2012,Vlaminck
et al., 2013] leads to more false positives.

On the other hand, Delmerico et al. proposed an ascending stairway modeling that
introduces some interesting ideas [Delmerico et al., 2013]. Their goal is to localize and
model stairways to check for traversability and enable autonomous multi-floor explora-
tion. The model of the staircase is an inclined plane inside a bounding box containing
the stairway, and the measurements of the steps and the whole staircase (Figure 2.4b).
In order to build up a complete model of the stairway they align the point clouds from
different views relying on the robot’s estimated pose, which is typically more complica-
ted in human navigation. In addition, the stair edge detection, which is the starting point
of their algorithm, is based on abrupt changes in depth that only appears in ascending
staircases when the sensor is lower than the steps, i.e. a small robot. That collapses with
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(a) (b)

FIGURE 2.5. (a) Stair detection with wide FOV camera, showing directions to follow and audio cues [Romić
et al., 2017]. (b) Stair detection with a radar scanner designed for a wheel chair from [Abdulatif et al., 2017]

our idea of a chest-mounted configuration. Moreover, the incapacity of the algorithm to
detect descending stairs and their requirement of a minimum of three steps for detecting
a stairway leaves a margin of improvement.

New works using RGB-D appeared in the last few years. For example, [Chan et al.,
2017] proposes a method that combines 2D features (Hough lines extraction) embedded
with 3D data. A new method uses an RGB-D sensor coupled to mobile devices [Ci-
obanu et al., 2017]. They initially extract patches parallel to the floor plane given the
gravity direction from the IMU, and then use those to detect ascending and descending
staircases. This method is considerably faster than other similar alternatives. Also, wide
angle cameras were used for this task in [Romić et al., 2017], in a system that included
sound guidance to communicate the best direction to follow (Figure 2.5a). In [Abdu-
latif et al., 2017] they introduce a mirror-based two-dimensional frequency-modulated
continuous-wave radar scanner for wheelchairs to enable stair detection (Figure 2.5b).

2.3. SCENE SEGMENTATION AND CLASSIFICATION

In any visual assistant, in order to perform any complex task it is necessary to re-
cognize features in the surroundings. Before the recognition, a partition of the envi-
ronment in different segments must be performed, and that is called segmentation. The
starting point of this method is the segmentation of the scene in planes and clusters
(Section 2.3.1). To give context to these segments it is necessary to calculate how the
scene is oriented with respect to the user (Section 2.3.2). Once we have calculated the
main transformations of the scene it is possible to classify the planar segments according
to their orientation and localize the step candidates (Section 2.3.3).
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2.3.1. SEGMENTATION

In most human-made scenarios, the basic structure of the scene is a combination of
planes at different orientations. Range sensors have proven to be extremely helpful for
planar segmentation, and many algorithms have been developed through the years [Hoo-
ver et al., 1996]. We use the algorithm from [Rabbani et al., 2006], integrated in the
Point Cloud Library (PCL) [Rusu and Cousins, 2011]. This region-growing algorithm
outputs delimited regions of points with similar normal orientations and spatially lying
on a unique 3D plane. We prefer this approach instead of using direct plane detection
algorithms, such as RANSAC, because with region-growing the planes found form alre-
ady closed regions corresponding to one single element and are not a set of uncorrelated
points scattered in the scene (e.g. Figure 2.4a). Prior to this phase the point cloud is
filtered to reduce the amount of data and then a normal extraction algorithm is applied.
Our complete segmentation procedure has the following stages:

2.3.1.1. DOWNSAMPLING

Each point cloud has a large quantity of points (640 × 480 pixel) which provi-
des redundant information and makes further computations highly time-consuming (Fi-
gure 2.6a). Thus, the first operation is downsampling. We apply the 3D voxel grid filter
from [Rusu and Cousins, 2011] to the point cloud, i.e. a 3D division of the space in a
grid of 3D boxes (voxels) inside of which there is only one point (the centroid) instead
of the initial set of points contained. The size of the edges of the voxels is determined
by balancing time consumption and accuracy. Big voxels improve the performance rate
but reduces the accuracy of the models. Typically, a size of voxels of about 3 − 4cm
worked well for us. This is a common algorithm widely used for downsampling point
clouds, which also helps removing noise and smoothing the surfaces. As a result of the
downsampling we define the point cloud PC =

{
pC1 ,p

C
2 , ...,p

C
i , ...p

C
n−1,p

C
n

}
, where

pCi =
(
xCi , y

C
i , z

C
i

)
represents each of the n points in the scene in the camera reference

C (Figure 2.6b).

2.3.1.2. NORMAL ESTIMATION

The surface normal estimation is based on the Principal Component Analysis (PCA)
[Rusu and Cousins, 2011], consisting in the analysis of the eigenvectors and eigenva-
lues of a covariance matrix created from the nearest neighbors of every point pi. The
eigenvector associated with the smallest eigenvalue corresponds to the normal direction
ni (Figure 2.6c). We considered the neighbors in a small radius (5cm around the points)
to reduce the computation time and be able to detect sharper edges. In this process the
curvature of the surfaces ci is also computed to feed the following stage.
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(a) Initial point cloud (b) Voxel grid filter

(c) Normal estimation (d) Region growing segmentation

(e) Euclidean cluster extraction (f) Classification

FIGURE 2.6. Example of the segmentation process used in this work: (a) Initial colored point cloud as
retrieved by the camera. (b) Cloud after applying a voxel grid filter. (c) Normal extraction. (d) After the
region-growing algorithm, where the planar regions are colored in random colors. (e) Non-planar clusters
from the Euclidean Cluster Extraction algorithm colored randomly. (f) Classification of planes (yellow =
vertical, blue = horizontal, green = floor, red = others).
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2.3.1.3. REGION-GROWING

This algorithm [Rabbani et al., 2006] starts from a seed, which is the point with
minimum curvature, and then expands the region towards the neighboring points that
have small normal deviation and similar curvature value. The neighboring points which
satisfy the normal and curvature threshold become the new seeds and the process is repe-
ated until the region cannot expand any more. Then, a new initial seed is chosen among
the remaining points, and the process starts over until the regions found are smaller than
a certain pre-established threshold. The thresholds we set in normal’s deviation and cur-
vature values are respectively 6◦ and 0.5. The minimum size of a region is set to 50
points.

We get as output a set of regions RC = {RCk } where RCk ⊆ PC (Figure 2.6d).
Usually all pki =

(
xki , y

k
i , z

k
i

)
∈ RCk lie on a plane Akxki + Bkyki + Ckzki + Dk = 0

where (Ak, Bk, Ck, Dk) are the plane coefficients of RCk . However, the points of the
region might as well form a curved surface with smooth transitions, which would satisfy
the thresholds above. As the ground, walls, doors or steps are all planes, it is important
to verify this possibility. Thus, a RANSAC algorithm seeks for the biggest plane in
each region. If most of the points are inliers (we set more than 80%), it is considered
a planar surface with the plane equation obtained, and therefore normal vector nCk =
(Ak, Bk, Ck) and distance to the origin Dk.

2.3.1.4. EUCLIDEAN CLUSTER EXTRACTION

The points still not belonging to any region go through a cluster extraction algorithm
which establishes connections and forms separate entities just by looking at their Eucli-
dean position in the scene, ignoring normal orientations. In this operation we group in
the same instance all the points that form isolated objects in the scene in a set of clusters
CC = {CCk } where CCk * RC (Figure 2.6e).

2.3.2. SCENE ORIENTATION

As the points of the cloud are referenced to the camera, a change of the reference
system is necessary to determine the position with respect to the user in order to provide
a more natural way to understand the environment and the movements of the person. Be-
sides, the fact that most human-made indoor scenarios are composed by planes situated
in three dominant orientations can be used in our benefit.

2.3.2.1. CAMERA TO FLOOR

The information from the camera is not very useful on its own when reasoning about
the scene if the relative position of the camera to the world is unknown. We move the
reference frame from the camera to the floor by computing the transformation CTF
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xC0

zC0

yC0

xCk

zCk yCk

CoTCk

zF

yF = yM

xFzM

xM

FTM

CTF

vF

FIGURE 2.7. Main frame transformations of the algorithm. C0TCk
: from the initial camera reference frame

(Ct=0 = C0) to the camera in t = k (Ck). CTF : from the camera reference frame (C) to the floor (F ).
FTM : Transformation from the floor reference frame (F ) to match the Manhattan directions (M ).

shown in Figure 2.7. That way all the planes will be properly oriented and the height
of the points with respect to the floor allows to draw conclusions about the nature of the
objects in the scene.

The computation of this transformation requires to find the floor plane (in Figure 2.7
the green plane with normal vF ). As no other sensor has been used for this task, the
only previous knowledge is the approximate location of the camera on the chest. A
RANSAC procedure [Fischler and Bolles, 1981] is used to find the biggest planes one
by one, and the relative distance and orientation of each plane with respect to the camera
are analyzed to determine whether it is floor or not. Note that, simply considering the
largest plane to be the floor will not be true whenever there are more dominant planes
in the scene (e.g. a table, a wall). The rules to verify that a plane is floor or not are the
following:

• The orientation of the normal must be coherent with the orientation of the camera
in the chest. For example, in Figure 2.7 it would be an approximate rotation of
≈ 180◦ in zC and of ≈ 45◦ in xC so the yF matches the floor normal vF .

• The distance of the plane to the camera should be within a provided valid range
which depends on the height of the user.

• It is very likely that the floor appears close to the subject, as the camera points
down. So we can consider for floor detection points closer than a certain threshold
in zC .
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FIGURE 2.8. Projection of the point clouds to the floor reference frame from a real case scenario, where
the white points on the floor are those which form the best floor candidate plane and the yellow arrow is the
corresponding normal.

This computation requires relaxed thresholds to not discard valid portions, as condi-
tions can vary due to the movement and the height of the subject; but they should quickly
discard planes belonging to instances such as walls or tables. In our implementation the
inclination of the camera is not restricted to 45◦, but within a valid range of 20◦ − 70◦

and the height of the camera from the floor within 1 − 1.6m. The distance to consider
points as inliers in the RANSAC is the voxel edge size. The last condition could be
useful to discard the planes which are extremely close to the floor, such as steps, which
could deceive the algorithm. The algorithm typically start searching within zC = 1m
and progressively increasing the threshold until a valid plane is found. In Figure 2.8
there is an example with a real point cloud where the points within the initial threshold
are colored in white.

2.3.2.2. FLOOR TO MANHATTAN

We assume that most indoor scenes satisfy the Manhattan World assumption, i.e.
most planes have normals in three mutual orthogonal directions [Coughlan and Yuille,
1999]. This simplifies the reasoning about the environment, and it is widely used in
the literature since it is usually correct in indoor environments. In our case of study we
are going to use it to retrieve the directions of the stairs, as most certainly lie in that
convention. The stair must be properly oriented to get the model that fits the points
better.

To acquire the Manhattan directions (mx, my , mz) we can take advantage of the
previous transformation floor CTF , as it already matches the vertical direction (my =
yF ). The problem is then reduced to find mx and mz . After the segmentation we have a
set of planes with their normal directions and their number of points. The two orthogonal
directions which satisfy the greater number of points are the mx and mz . To solve the
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FIGURE 2.9. Excerpt from the Technical Edification Code of Spain (Código Técnico de la Edificación, CTE,
DB-SUA, section 1.4.2., 2006) showing measurements that stairs must have.

ambiguity of these directions we choose as mz the one that has the smallest angle with
the vector pointing out to the front of the user (zF ). Once we have the Manhattan
directions we define the reference frame M . In Figure 2.7 the xM share directions with
the blue and purple planes and zM with the orange one. Throughout iterations the FTM

is recalculated but maintaining the orientation convention assumed.

2.3.3. CLASSIFICATION OF REGIONS

Once we have the planar regions with their normals and the transformations to the
Manhattan directions, we can transform the regions RC to the new reference frame RM .
The regions are then classified regarding their orientation and relative position. To consi-
der a plane parallel or perpendicular to another a threshold of 10◦ is considered in every
case.

The planes which are perpendicular to the floor are classified as vertical (e.g. walls,
doors, risers, furniture). These are the planes used to obtain the Manhattan directions of
the environment. As we have these directions, extended reasoning about the orientation
of the walls can be done and new subcategories of vertical planes can be added (left,
right, frontal).

The planes which are parallel to the floor are horizontal. The distance of the planes
to the floor (Hk) is considered for further analysis, considering the dimensions regulated
by the Technical Edification Code1 (Figure 2.9). According to the Code the vertical
distance between two consecutive steps ranges from a minimum Hmin = 13cm to a
maximumHmax = 18.5cm. Horizontal regions are considered as step candidates if they
are situated above (in ascending stairways) or below (in descending ones)Hmin from the
floor (Figure 2.10). The floor must have height zero given the transformation FTM and

1Código Técnico de la Edificación (2006). CTE, DB-SUA, section 1.4.2., http://www.
codigotecnico.org/
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FIGURE 2.10. Classification of planes regarding orientation and height. Horizontal planes are classified
among Floor (green), Obstacles (red) or Step candidates (blue) depending their distance to the floor. Vertical
planes (yellow) are used to compute FTM .

other planes whose height does not fit above descriptions (i.e. less height than Hmin)
are considered obstacle. To evaluate this condition it is necessary to add a threshold as
the measurements can be noisy. Other size and shape restrictions are kept to a minimum
at this point because they could discard valid portions of steps which might be useful
for a better modeling of staircases. From this operation we get a set of step candidates
S = {S1, S2, ..., Si, ...Sns−1, Sns

} where Si = {Rk | ‖nk×yF ‖ ≈ 0, |Hk| ≥ Hmin}
and ns is the number of step candidates. The existence of a set of at least one step
candidate activates the stair detection algorithm.

The planes which are not perpendicular nor parallel to the ground, along with the
non-parallel regions and clusters (Section 2.3.1) are kept as obstacles and removed from
further analysis. This information could be used to obtain the obstacle-free walkable
area. Note that, the fact that the floor plane is visible does not always mean it is walkable
area, since there could be some obstacle above, like a table. Two examples of removing
the obstacle area from the floor plane are shown in Figure 2.11. In Figure 2.6f there is a
complete example of the classification.

2.4. STAIR DETECTION, MODELING AND

TRAVERSAL

The step candidates obtained in Section 2.3.3 are the input of the stair detection
and modeling algorithm, whose output consists in the detection and retrieval of a scaled
model of the staircase. At this moment, the algorithm is functional with both ascending
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FIGURE 2.11. In green, the portion of the ground which can be walked over as it has no obstacles.

and descending staircases. Isolated single steps can also be detected. The algorithm is
able to overcome partial occlusions of a stairway splitting steps in more than one region
in the detection. Spiral staircases can be detected but the modeling part has not been
addressed yet.

2.4.1. STAIR DETECTION

The detection consists in determining the presence of a staircase in the scene. That
is, to determine whether the ns step candidates (S), or a subset of those, form a staircase
or not. To verify this, we analyze if the disposition of the step candidates resembles an
actual staircase, i.e. they form groups of planes that are uniformly separated vertically
by regulated distances, and shifted horizontally so they are not on top of each other. The
algorithm establishes connections among the candidates forming a graph-like structure,
such as the ones shown in Figure 2.12. The connectivity between step candidate regions
SA and SB has been computed considering there is at least a minimum pre-established
number of points from SA inside a valid range of distances from SB . In this case, we
set a radius of 0.5m for the Kd-tree nearest neighbor search and a minimum amount of
10 points to set a valid connection. Connected steps are organized in levels that measure
the distance to the floor in steps. For example, level 1 means first step upwards, whereas
level -2 means two steps down the staircase. The floor plane is the reference, at level
0. Creating connections as described allow us to discard unconnected candidates and to
overcome occlusions that may create separate planar patches of the same step, like in the
second example of Figure 2.12.

The candidates are analyzed one by one starting from the closest to the floor, and
verifying the connections to the previously established levels every time (Figure 2.13a).
We define a set of levels L = {Lj}, where j = 0..nL and nL is the highest level de-
tected. The level zero is occupied by the floor, so initially nL = 0. The candidates whose
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FIGURE 2.12. On the left, two examples of stair detection with both ascending and descending stairs (top)
and with more than one region per level (bottom). The connectivity is traced with white arrows. At the right,
the graph structure that summarizes the connections between regions and its organization per level.

centroid is between Hmin and Hmax to the ground constitute the first step candidates
(Figure 2.13b). The first step must be connected to the floor if it is present in the image
(Figure 2.13c). If no first step candidate satisfies neighboring conditions, the algorithm
determines there is no staircase. Otherwise, L1 = S1 (where Hmin ≤ H1 ≤ Hmax) is
established, and nL = 1.

The algorithm takes the remaining step candidates by height and starts testing con-
nectivity and height conditions to determine whether they belong to a new (Figure 2.13d)
or to the current level (Figure 2.13e). Note that we consider the height of the centroid
of the regions. In case they belong to the current level (a step candidate is conside-
red the same height if it is within ±3cm), the step candidate regions fuse in one single
point cloud forming the level. If they have no connection to previous levels (e.g. a ho-
rizontal plane correspondent to a table) they are classified as obstacles (Figure 2.13f).
As a result, a set of connected regions corresponding to different levels is obtained (Fi-
gure 2.12). The algorithm is summarized in Algorithm 1. When all the candidates have
been checked and the number of levels is greater than one, the system proceeds with the
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FIGURE 2.13. Explicative sketches for the stair detection algorithm. (a) Select the candidates in order. (b)
First step must be in the valid range of heights. (c) First step must be connected to the floor if it is visible. (d)-
(e) The connectivity to previous levels is checked doing a neighbor search. (f) If the candidate is not connected
to the previous level, it is not part of the staircase.

Algorithm 1: Stair detection algorithm
1 Step candidates list S = {S1, S2, ..., Si, ...Sns−1, Sns};
2 Levels list L = {};
3 L0 = Rfloor; nL = 0;
4 S = SORTBYHEIGHT(S);
5 if (S1.height > Hmax) then stair = false;
6 else
7 stair = true;
8 for i = 1 : ns do
9 Si.is_connected = false;

10 for j = 0 : nL do
11 if (ARECONNECTED(Si, Lj)) then Si.is_connected = true;

12 if Si.is_connected then
13 if (Si.height ≈ LnL .height) then LnL .points ∪ Si.points;
14 else nL = nL + 1; LnL = Si;

15 return stair;
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FIGURE 2.14. Three examples of detections of curbs and floor at another level.

modeling of the staircase.
A special case occurs when there is only one step candidate. It might either actually

be the first step of a staircase, or be just a single curb on the way. Curbs are a singular
case, sometimes omitted by stair detection algorithms, but dangerous as well. Here,
more strict area and shape analysis can be applied in order to determine in which case
we are. In particular, we do not consider shape restrictions for the region like with
stairs, since the surface area beyond the curb can be of any size, and the regulations for
staircases do not apply. Thus, we consider there is a valid curb and thus there is floor
at another level if the surface area of the region is big enough to be walked over, or
an obstacle if it is small, like an object on the ground. In Figure 2.14 there are three
examples of positively detected curb.

2.4.2. STAIR MODELING

Not all staircases are equal, even if we just consider the rectangular case. For exam-
ple, they may or may not have risers, or the risers could be inclined or perpendicular to
the floor orientation. For the modeling of a staircase, we are going to consider a unified
model for all the possible cases, where the steps are defined by a horizontal rectangular
plane of lwidth × llength and a vertical rectangular plane of lwidth × lheight which links
the horizontal plane to the previous level. The line where two planes intersect is called
the edge of the step. Every staircase is also oriented according to three orthogonal di-
rections whose pose with respect to the user is relevant to guide the subject towards it.
In the modeling phase we are going to retrieve the lwidth, llength, lheight and CTS as
depicted in Figure 2.15. The model can be then drawn for the number of levels detected
in the previous stage (nL). If the traversal of the staircase is then performed, the final
number of levels can be obtained, with the procedure explained in Section 2.4.4.

The extraction of the measurements is correlated with the extraction of the CTS , for
which first we need to define the three main directions of the stair, (xS ,yS , zS). We
have developed two methods:

1. Manhattan World based method: Considering stairs are oriented according to
the Manhattan assumption, i.e. (xS , yS , zS) = (xM , yM , zM ).
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FIGURE 2.15. Parameters to compute for the modeling: lwidth, llength, lheight and CTS .

2. PCA based method: Method based on the Principal Component Analysis of the
step candidates.

The better option of the two depends on the type of scene: scenes populated with big
structural planes (coming from a side wall or the risers, for instance) work better with the
first one, whereas scenes with mainly horizontal planes (e.g. isolated stairs, no risers)
work better with the second. The Manhattan World option is used when there are enough
planes with normals in horizontal directions that allow us to call the scene "Manhattan
World scene". We determine this circumstance with a threshold empirically set at a
percentage of Manhattan points (i.e. points whose normal follows one of the Manhattan
directions, see Section 2.3.2.2) of the total number of points. The PCA option is more
time consuming, so only is used when there is not enough evidence of the Manhattan
directions of the scene. This method can always be applied, as it is based on the step
candidates already detected (i.e. if there is no step candidates the modeling does not
even start). However, when the observation of the steps is partial due to occlusions it
could lead to erroneous solutions (hence, it is the second choice). From here on the PCA
method is detailed as follows:

From the last stage we have a level-organized set of points corresponding to each
visible step. We can perform a Principal Component Analysis (PCA) in every set of
points to retrieve their main directions and initial estimate of their measurements by
defining the bounding rectangle which encloses all the points in these directions. From
this procedure we get a collection of principal components and measurements which
presents high variance (Figure 2.16a). To solve this we choose one step as best initial
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FIGURE 2.16. (a) Principal components for each step colored in order (blue-green-red) and bounding rec-
tangle in white. (b) Illustrative sketch of the different components involved in the PCA algorithm. (c) Example
of the rotation of the selected axis to minimize the area of the bounding box with the points of one single step.
It needs to be done with all the steps at the same time in order to obtain the final direction that fits best the
staircase.

guess: the one with greater extent. We define extent as the ratio of the area of the concave
hull and the area of the rectangle as defined in Figure 2.16b. The principal components
of this step are rotated twice:

1. To match the vertical direction (i.e. the normal of the floor plane).

2. Until the sum of areas of the bounding rectangles computed using these directions
of all steps at the same time is minimized.

With this last operation you make sure that the axis of the model fits the points of the
stair in the best way. In Figure 2.16c there is a visual example of how the directions are
rotated so the area of one step is minimized.

Once the directions of the staircase have been computed, either using Manhattan
World method or PCA, the bounding rectangles of each step present different dimensi-
ons, so the final stage consists in defining the global dimensions of the staircase. The
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(a)

(b)

(c)

FIGURE 2.17. (a) In the case of ascending (left) and descending stairs (right) the measured length from the
bounding rectangles of the steps, d, does not match the real length of our model,D (which assumes orthogonal
continuous steps). (b) Two stairs where this circumstance can be observed, i.e. non-existent risers in ascending
stair (left) or any descending stair (right). (c) Our results of the modeling after the correct length estimation.
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lwidth can be chosen as the largest value of all, whereas the lheight is considered the
average of vertical distances between the centroids of consecutive steps. The llength
cannot be computed as an average of the measured lengths of the steps, since the vertical
projection of the bounding rectangles of two consecutive steps usually overlaps in as-
cending staircases due to inclining or non-existent risers, or leaves a gap in descending
staircases due to self-occlusions (Figure 2.17). It causes that the length you see in ascen-
ding staircases is more than what we use for our model, whereas in descending staircases
some valid portion of the step is hidden. Thus, we compute the llength as the average
horizontal distance between the edges of every two consecutive steps (see model length
D in Figure 2.17a).

Once we have all the parameters, we can use them to validate the staircase detection
or discard false positives, as we know the appropriate dimensions steps must have by
regulations. The STC can be obtained using as rotation matrix the three stair directions
as described, and as translation vector the coordinate in the camera reference frame
of the center of the edge of the first step of the staircase (as depicted in Figure 2.15).
Alternatively, depending on the design of the assistive system, the translation part could
direct the subject to other desirable part of the stair, such as one of the ends of the edge
of the first step, where the handrails are expected to be.

2.4.3. VISUAL ODOMETRY

Odometry is the process of using the data from sensors to retrieve the change of po-
sition and orientation over time. When the sensors being used are cameras it is called
visual odometry. In this work we estimate the visual odometry using the information
from both RGB and depth cameras. Calling the initial reference frame of the camera C0,
and the reference frame in the instant k as Ck, we define the transformation provided by
the visual odometry as C0TCk

(Figure 2.7). In theory, this transformation could be used
to displace any feature captured at any given time to a common geometrical reference.
This information can be of great help, since it allow us to move on from single image
processing by adding some spatial memory to the system. In practice, the sensor locali-
zation typically has some drift issues that increase through iterations. As our goal is far
away from creating an accurate reconstruction of the environment, we use the odome-
try as a rough estimate of the position of past features that might be no longer visible,
such as the floor, or the stairs. For the visual odometry from RGB-D there are many
approaches [Raposo et al., 2013, Taguchi et al., 2013]. We use the method presented by
Gutierrez-Gomez et al. [Gutierrez-Gomez et al., 2015], where visual odometry is obtai-
ned in real time from the dense RGB and inverse depth maps by establishing pixel-wise
constraints through the flow equations. The method can be summarized as follows:

Let us denote two camera frames as A and B, at instants t and t + ∆t respectively.
Given the intensity images IA and IB , and inverse depth maps WA and WB defined
over the image domain Ω ⊂ P2, for an image point p = (u, v, 1)> ∈ Ω in frame A, the
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following photometric and geometric constraints hold:

IB(p + ∆p) = IA(p) (2.1)

WB(p + ∆p) =
1

e>z XB
(2.2)

where XB is the 3D point lifted from pixel p+∆p in frameB, ∆p = (∆u, ∆v, 0)> is
the displacement of one point from frame A to B, and e>z = (0, 0, 1). The photometric
constraint assumes constant illumination of one scene point over time. The geometric
constraint is the measurement model of the depth sensor at frame B in inverse depth
parametrization.

Assuming small pixel displacements between frames we compute the flow equations
from (2.1) and (2.2):

∇IA(p)∆p + IB(p) = IA(p) (2.3)

∇WA(p)∆p +WB(p) =
1

e>z XB
(2.4)

where the gradient operators∇I =
(
∂I
∂u ,

∂I
∂v , 0

)
and∇W =

(
∂W
∂u ,

∂W
∂v , 0

)
.

Using the camera projection and inverse projection models, p = π (X) = K X
e>z X

and X = π−1(p) = 1
W(p)K

−1p, with K being the conventional calibration matrix, and
with the same assumption of small pixel displacement we get (using first order Taylor
expansion):

1

e>z XB
=

1

e>z XA
− 1

(e>z XA)2
e>z ∆Xp +O

(∣∣∣∣∣∣e>z ∆Xp

∣∣∣∣∣∣2)
≈ WA(p)−W2

A(p)e>z ∆Xp (2.5)

∆p = K
XB

e>z XB
−K

XA

e>z XA

= KXB

(
WA(p)−W2

A(p)e>z ∆Xp

)
−KXAWA(p)

=WA(p)
(
K− pe>z

)
∆Xp (2.6)

where ∆Xp is the 3D flow associated to each pixel, ∆Xp
.
= XB −XA. Substituting

in (2.3) and (2.4), we get the linear constraints on this pixel-wise 3D flow.

WA(p)∇IA(p)
(
K− pe>z

)
∆Xp + IB(p)− IA(p) = 0 (2.7)

WA(p)
(
∇WA(p)

(
K− pe>z

)
+WA(p)e>z

)
∆Xp+

+WB(p)−WA(p) = 0 (2.8)
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Assuming that the scene is rigid, the 3D flow map ∆Xp is produced only by a small
interframe camera motion, described by the rotation translation pair ( RB A,

B tA) ∈
SE(3):

∆Xp = RB AXA +B tA −XA

=
(
I + [BθA]×

)
XA +B tA −XA +O

(∣∣∣∣∣∣[BθA]2×XA

∣∣∣∣∣∣)
≈B tA − [π−1(p)]×

BθA = M(p)BξA (2.9)

where [·]× denotes the antisymmetric matrix from a vector and BθA is the logarithmic
map of BRA. Note that BξA = (BtA;B θA) is not a twist, i.e. BξA 6∈ so(3), since
BtA is the translation part of the rigid motion. Eq. (2.9) leads to a well-posed problem
with 6 unknowns corresponding to the camera motion parameters for nearly WimHim

constraints (where Wim and Him are the width and height of the image respectively),
excluding pixels without depth measurements, with the following residuals:

rI(p, ξ) =WA(p)∇IA(p)(K−pe>z )M(p)ξ + IB(p)− IA(p) (2.10)

rW(p, ξ) =WA(p)
(
∇WA(p)(K−pe>z )+WA(p)e>z

)
M(p)ξ+

+WB(p)−WA(p) (2.11)

which can be straightforwardly minimized by standard Gauss-Newton least squares.
In practice we do not apply conventional least squares. Instead we use a robust

cost function by applying iteratively reweighted least squares algorithm [Holland and
Welsch, 1977]. We also follow a coarse-to-fine approach using a 3 level image pyramid,
performing a number of 10 iterations on a pyramid level before stepping down to the
next finer level. The incremental motion estimate at each iteration γ is computed as:

Bξ
(γ)
A = argmin

ξ

∑
p∈Ω

ω

(
r̆I(p)

σrI

)
r2
I(p, ξ)

σ2
rI

+ ω

(
r̆W(p)

σrW

)
r2
W(p, ξ)

σ2
rW

(2.12)

where r̆I(p) and r̆W(p) denote the initial residuals computed after warping intensity
and inverse depth maps in frame B towards frame A with the estimated camera motion
up to current iteration Tk

(γ+1)
k+1 . ω(x) = 6

5+x2 , since we use an estimator based on the
Student’s t-distribution with ν = 5 as in [Kerl et al., 2013], which shows in general better
performance than other candidates. The scaling parameters are fixed to σrI = 5 and
σrW = 0.0025m−1 based on tests on static sequences and the disparity measurement
model of RGB-D sensors [Konolige and Mihelich, 2015].

After each iteration, the motion estimation between frames k and k + 1 is updated
by the current incremental estimate:

Tk
(γ+1)
k+1 =

(
exp([Bθ

(γ)
A ]×) BtA

0 1

)−1

Tk
(γ)
k+1 (2.13)
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Camera motion at first iteration Tk
(0)
k+1 is initialized assuming a constant velocity,

i.e., Tk
(0)
k+1 = Tk−1

k.

2.4.4. STAIR TRAVERSAL

In the stair detection and modeling stage, all of the computations could be done on
one single image at a time. However, during the traversal, the context of the problem
changes, and thus the operations to perform need to be different. For instance, while
the user is traversing the staircase instead of searching for stairs, the application should
extract information about the current state of the traversal, e.g. in which step the user
stands, which and where is the next step or how many steps are left to reach the other end.
It is impossible to recover this kind of information in one single image analysis because
all the steps usually look the same. The stair traversal is a continuous process extended
in time. Hence, we introduce the visual odometry module described in Section 2.4.3 in
the process.

During normal execution of our algorithm, the stair detection and modeling should
be running normally. Assuming the user is approaching the staircase, there will be a
point when the user stands so close to the staircase that the edge from the first step is no
longer visible, and the transformation CTS cannot be computed as described. Then it
can be estimated using the visual odometry transformation. Calling k the last iteration
when the CkTS could be properly computed, it is possible to retrieve the Ck+nTS in the
iteration k + n with the transformations CkTS and C0TCk

:

Ck+nTS = (C0TCk+n)
−1 C0TCk

CkTS (2.14)

The current pose of the camera with respect to the stair can be computed at any time
and it shows the translation with respect to the initial point. Since lheight and llength of
the current staircase are known from the modeling (Section 2.4.2), the 3D position of
the centroid of every step in sight transformed to the stair reference frame would reveal
which step it is (Figure 2.18). With this information, every time a step of a level higher
than the current nL is detected, the number of levels of the staircase model is updated
(nL := nL + 1). Similarly, transforming the estimated centroid of the body of the user
to the stair reference frame can be used to know the step in which the user is, whether
by directly looking at the zS value or by computing the yS value minus the estimated
height of the camera (equal to the distance of the camera to the floor from previous
computations). For example, in Figure 2.18, the user currently stands on Step 2. When
the user step estimation using the height is higher than the one provided by the length, it
means that the user is currently climbing the step to the following one.

In practice, it does not work as well as expected, since the visual odometry has a
noticeable drift, especially in situations like this where the camera is constantly moving
and a few centimeters can cause mismatches. However, we can turn the drift problem
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FIGURE 2.18. The centroids of the steps and the estimated centroid of the body can be used to retrieve the
numbers of the steps and the step the user is on by transforming the points to the stair reference frame.

around by recognizing known structures in the image. In particular, we use online obser-
vations of the stair, whose 3D model is well known (Section 2.4.2), to correct the drift.
The transformation Ck+nTS reveals an estimation of how the user has moved, or looking
at it the other way, an estimation of how the stair is posed with respect to the user. The
pose correction problem lies in computing the rotation and translation needed to match
where the stair really is, i.e. as it is seen by the camera. Therefore, during the traversal
we simultaneously apply a drift correction to improve the recovery of the odometry. It
requires some slight changes of some previously commented algorithms. To compute
the vertical direction, instead of looking for the floor, all step planes are used to compute
the resulting normal as we can certainly say they are horizontal planes (Figure 2.19a).
The rotation in ys can be computed as described, either trusting Manhattan estimation
or the directions from the PCA (Figure 2.19b). The rotation needed to move the estima-
ted stair axes to the new ones is the correction in orientation. The translation part can
be calculated by looking at the height of the centroids of the steps in ys and the edge-
points of the steps can reveal the translation in zs (Figure 2.19c). In the xs direction the
translation cannot be retrieved and the odometry needs to be trusted.

Calling STS′ the drift correction transformation, the final transformation from the
current camera reference frame to the stair reference frame is:
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(a) (b) (c)

FIGURE 2.19. To correct the stair pose estimated by the odometry we use the live depth information, drawn
as the grey stair. (a) Correction of the orientation to match the vertical normal. (b) Correction of the orientation
to match the edges of the steps in sight. (c) Correction in the position to match the centroids and edges of the
steps.

Ck+nTS′ =Ck+n TS
STS′ (2.15)

Using the correction, the computation of the position of the subject is more reliable.
The dimensions of the last step found are computed in order to determine when they
are significantly larger than the step length, because that would mean that it is the last
step. Once these last step is detected, the model of the staircase is updated with the final
number of steps of the stair. Notice that, instants before the user is about to reach the
other end the stair is not in the view of the camera. This shows again how in traver-
sing situations single image is not useful, and thus the need of the visual odometry and
stair traversal algorithm. When the user finally stands on the floor at another level, the
stair traversal algorithm stops and the algorithm proceeds as usual by performing the
detection and modeling.

2.5. EXPERIMENTS

The experiments were carried out in a 3.4Ghz computer with a GPU Nvidia GeForce
GT730 running Ubuntu 12.04, ROS Hydro and the library PCL version 1.8. We use data
both collected by ourselves and from public datasets. In particular, Tang et al. compiled
a dataset in [Tang et al., 2012] which includes 148 captures acquired with a Microsoft
Kinect sensor. 90 of them include RGB and depth snapshots of a set of staircases from
different poses and the other 58 are normal indoor scenes to test for false positives.
We have also analyzed the quality of our modeling, the computation time of the whole
system and the stair traversal method.
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TABLE 2.1. Comparison of false negatives and false positives between our work and the one presented
in [Tang et al., 2012, Vlaminck et al., 2013]

Method False negative False positive
Tang [Tang et al., 2012] 5.07% 1.02%
Vlaminck QVGA [Vlaminck et al., 2013] 0.00% 8.62%
Vlaminck VGA [Vlaminck et al., 2013] 0.00% 3.45%
Our work 0.00% 0.00%

FIGURE 2.20. Four examples of images without staircases including deceiving parallel planes which are
detected and then discarded by our algorithm due to impossible stair models.

2.5.1. STAIRS DETECTION WITH PUBLIC DATASET

We tested for false positives and false negatives using this dataset and compared our
results with the ones from [Tang et al., 2012] and [Vlaminck et al., 2013] (Table 2.1).
The first thing that catches the attention of these results is the generally low percentage
of both false positives and false negatives. That shows how appropriate RGB-D cameras
are for the task. Our method achieves 0% of false negatives (FN) and false positives (FP),
being the method that stands out in both metrics. In FN, our results were equal to [Vla-
minck et al., 2013], meaning we detect all stairs from the dataset. However, [Vlaminck
et al., 2013] had the highest percentage of FP, meaning their method is less reliable and
detects stairs where there are none more often than the rest. On the other hand, [Tang
et al., 2012] has less FP than [Vlaminck et al., 2013] although having higher percentage
of FP, meaning their method is probably more conservative and less prone to affirm the
presence of stairs when there is margin of error. The main reason of us being completely
successful was that we include a modeling stage that allow us to add an extra validation
step that discard invalid staircases for reasons like being too narrow, or having too small
or too big steps. If we had not include the modeling in our method and the subsequent
validation step, circumstances such as a bad floor detection or structures composed by
parallel planes such as shelves would have caused the detection of a false positive. Some
examples of false positives that our method detects but discards afterwards are shown in
Figure 2.20. Some successful results of our stair detection and modeling from several
images of the dataset are shown in (Figure 2.21).

We studied the step detection ratio according to the position of the step in the stair-
case using Tang’s dataset (Figure 2.22). The behavior changes when we are facing an as-
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Descending staircases

Ascending staircases

FIGURE 2.21. Several examples of results obtained with Tang’s dataset [Tang et al., 2012]. The model of the
staircases retrieved is superimposed in the point cloud for visual verification.
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cending staircase or a descending one. Since the images from the dataset were collected
with a head-mounted camera, the viewpoint shifts from almost completely front-facing
to approximately looking halfway down. Thus, standing before a descending staircase
allows us to see the whole staircase. However, the self-occlusion of consecutive steps
and the quality of the measurements decreasing with the distance, harm the detection of
steps farther than the third position. The example from Figure 2.17 (right) shows this
circumstance with the whole stair model drawn for visualization: after the third step
there are fewer points and more noise. In ascending staircases the ratio of detection di-
minishes in a less prominent way, because the steps remain almost as close to the subject
as they rise, with the penalty of having less and less visual angle. Steps higher than the
seventh position are out of the field of view of the camera.

2.5.2. QUALITY OF THE MODELING

In general, the modeling usually provides qualitatively good results with rectangular
staircases unless there are severe occlusions, there is a strong influence of the sun or the
stairs present atypical constructions (e.g. Figure 2.23). We have quantitatively analyzed
the resemblance of the model to the real staircase. We have excluded the width from
the analysis as the view of the stairs may be partial and it is not as relevant as the other
measurements. After computing the height and length of a staircases, in both ascending
and descending perspectives, from different viewing angles, the results were compared
to the real measurements of the steps, as shown in the Table 2.2. Besides, half of the
experiments were conducted with a person going up and down the stairs, to evaluate the
robustness under natural occlusions of the stairway. As we can observe, the values do
not have strong deviation even though the model is computed with one single frame.
Considering the point cloud has been downsampled with a voxel size of 4cm, mean
errors and standard deviation of less than 2cm are within the expected margin, and in
any case accurate enough for our intended task. Several frames capturing the same
staircase could be potentially used to improve the retrieved dimensions, or even for an
online update of these dimensions during traversal. The presence of obstacles partially
occluding the view of the staircase does not adversely affect the quality of the model
and we get similar results in terms of average measurements. In fact, against all odds,
our experiment from Table 2.2 shows slightly better standard deviation in the presence
of occluding obstacles. Nevertheless, this circumstance is coincidental and not direct
consequence of our method. Some pictures of the experiments with people climbing
up/down the staircase can be seen in Figure 2.24.
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FIGURE 2.22. Step detection rate with the step position in the staircase.

FIGURE 2.23. Two examples of complex stairs where the modeling fails because of atypical shapes (left) or
non-Manhattan directions of the edges with respect to the wall (right).
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Ascending stair Descending stair

FIGURE 2.24. Example of a person partially blocking the view of the staircase during ascent or descent.
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TABLE 2.2. Average and standard deviation (in centimeters) of the length and height measured with and
without obstacles.

No obstacles Obstacles Real
x̄ σ x̄ σ xr

Length 29.003 2.013 29.389 1.887 30
Height 15.399 1.364 15.561 0.593 17

2.5.3. COMPUTATION TIME ANALYSIS

The computation time was also tested to analyze the performance of the system
in the current state of development in the computer described above. The four main
parts in which the algorithm is divided are the Visual Odometry estimation (VO), the
Segmentation and Classification (SC), the Stair Detection and Modeling (SDM) and the
Stair Traversal (ST); the yellow blocks from Figure 2.1b. The VO and SC part run every
iteration. When the SC raises the existence of a set of step candidates, the SDM part is
executed. The ST part runs when the user is climbing the stairs, instead of SDM (they
both never run in the same iteration). The VO stage has a detailed explanation about
the computation time depending on the configuration used in [Gutierrez-Gomez et al.,
2015]. In this implementation, we have removed the dense volumetric mapping, and we
manage to estimate the visual odometry in an average time of 15.397ms per iteration.
Unlike the VO part, SC stage’s runtime is scene dependent. It takes longer to compute
when the scene is bigger or more complex, as both the normal estimation and region-
growing algorithms need to iterate in a larger amount of points. The stair-related part is
also scene dependent, as the SDM stage is only executed when there is stair in the image
and the ST when the user is traversing. To cover all situations and provide results from
this part, we have performed an experiment where the user approaches the staircase from
far away (no visible stair) until he reaches the first step (during half of the time) and then
move upstairs it until the other end of the stair is in sight (the other half of the time).

The following numeric results come from using a voxel grid of size 4cm, which
provides a good compromise between accuracy and speed. Excluding the VO part from
the computation, each iteration takes a median time of 39ms (25Hz), with 46ms during
the first half and 29ms during the second half; and a maximum of 77ms. The second
half takes less time due to the simpler scene (points are close to the camera and among
themselves so the voxel grid returns fewer points to deal with) and to the execution of the
ST instead of the SDM algorithm (ST takes a median time of 1ms whereas SDM takes
7ms). In Figure 2.25 there is a box plot showing the median and quartiles of the different
stages. The segmentation part appears broken down in the four biggest time consumers
(voxel grid, normal estimation, region-growing and cluster extraction) discarding stages
which takes less than 1ms. Voxel grid is the slowest part but it presents lesser variability
than the others, where it is more noticeable. Cluster extraction is usually small as most
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FIGURE 2.25. Box plot of the computation time of the most relevant parts of our algorithm. For each column,
the box is limited by the 25th and 75th quartile with the median inside. The whiskers reach the most extreme
points and the outliers are marked with a cross.

points of the scene belong to planes already segmented in the region-growing stage.
The stair-related times are only represented when a stair is visible (otherwise time is
zero). In general, this timing should be considered fast enough for indoor navigation
assuming walking speeds around 1− 1.5m/s. Modern laptops or even smartphones and
tablets should have nowadays enough processing power to run this system. In case it
was necessary to improve the performance rates, some pre-processing parts could be
optimized by using more efficient algorithms (we used some standard implementations
included in widely common open source libraries) or by running them in GPU (at this
point only the visual odometry takes advantage of the GPU), but the optimization of the
system has not been subject of our research at this point.

2.5.4. EVALUATION OF THE TRAVERSAL ALGORITHM

For the stair traversal algorithm, we have tested several video sequences with and
without the drift correction implemented. A qualitative analysis consisted in visualizing
the 3D mapping obtained by fusing some intermediate key frames compared to the stair
template generated in the modeling. An example is shown in Figure 2.26. In (a) we can
see that, although the first step matches the model perfectly in both cases, as the camera
rises up the stair the 3D map diverges from the template, due to the drift. It is more
prominent in the last few steps, where the drift is big enough to cause the detection of
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(a) Without drift correction (b) With drift correction

FIGURE 2.26. Visual comparison of the 3D map composed by key frames obtained during the traversal with
the stair model without (a) and with the correction (b).
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one step more than the stair actually has. With the drift correction the 3D map succeed
in matching the stair template, recovering the correct number of steps of the stair.

A more quantitative analysis leads to the graphs in Figures 2.27, 2.28, and 2.29.
In Figure 2.27 there is the ys − zs trajectory of the user in the first seven steps and
the corresponding stair profile. The trajectories have a wave form during the traversal,
where each peak corresponds with the instant the user reaches the height to walk on
the following step. With the drift correction every peak is consistently paired with the
edge of every step. However, without it the peak is reached increasingly farther, being
more than a half step in the seventh step. In Figure 2.28 a closer look to this gap can be
observed in both cases compared to the ground truth. In the seventh step the trajectory
without odometry correction reaches the step with 16.6cm of gap, whereas with the
correction there is almost no deviation with respect to the expected trajectory. When the
stair is large enough that gap can provoke the misdetection of more steps than the stair
has. For instance, in Figure 2.26 the algorithm detects an extra 13th step non existent in
the real staircase. In Figure 2.29 it is displayed the three rotation angles of the camera
during the traversal, with and without the correction. As it occurs with the translation, the
orientation drift also increases through iterations, but it is corrected with our approach.

2.6. DISCUSSION

In this chapter, we have presented a stair-aimed perception module of a wearable
personal assistant oriented to visually impaired people, although it may have applications
in other fields such as robotics, especially in the case of humanoids. For this we have
developed an algorithm covering operations such as the detection of stairs, the retrieval
of the location and measurements of the stairs and the continuous self-localization during
the traversal. Our algorithm includes a visual odometry module which provides location
awareness to the system, enabling the possibility of going back to places not currently
visible and the traversal of staircases. Moreover, we use the information of the camera
during the traversal to correct the drift that the visual odometry has. The experiments
prove that the model quality and the computing time are good enough to be used in
real-time. The algorithm overcomes some limitations existing in related works, such as
the possibility of single step detection or full modeling with partial occlusions caused
mainly by other people traversing the staircases.

In this chapter we have made the first contribution towards a computer vision based
assistant for the visually impaired. We have particularly shown how effective RGB-D
cameras are for this kind of tasks. In the following chapter we explore the possibilities
of creating less conventional camera systems in order to increase the field of view and
enable us to see all the environment at once.
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FIGURE 2.27. Trajectory of the person during the climb with and without drift correction.
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FIGURE 2.28. Distance in zS the moment the user reaches the first seven steps.
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FIGURE 2.29. Rotation angles of the person with respect to the stair reference frame in the three stair directi-
ons.
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3
CALIBRATION OF HYBRID CAMERA SYSTEMS

RGB-D cameras are the main device we use to extract information from the environment, but
current conventional RGB-D sensors have problems such as limited range, noise, poor resolution
or small field of view. One of our endeavors during this thesis has been to enable the usage of
new unconventional camera systems able to overcome some of these limitations and augment the
concept of RGB-D. In this chapter, we introduce a novel hybrid camera configuration composed
by a fisheye camera attached to an RGB-D system, that allow us to take advantage of both devices,
i.e. large field of view and 3D scaled perception. To use this system we have developed a calibra-
tion procedure specifically designed for this configuration that lets the depth data be accurately
mapped to the wide angle image of the fisheye camera. To overcome the lack of generality of this
method, we later propose a new method that allows to estimate the relative poses between any
RGB and depth cameras without the requirement of an overlapping field of view, thus providing
flexibility to calibrate a large variety of sensor combinations. In this approach, we extract and
match lines of the scene in the RGB and depth cameras, and impose geometric constraints to find
the relative poses between the sensors. We have validated our method with systems as diverse
as our hybrid camera system or a camera rig with 8 RGB-D cameras arranged to achieve 360-
degree horizontal field of view, demonstrating that our approach achieves good accuracy and is
very simple to apply.
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3.1. INTRODUCTION

The development of cheap RGB-D cameras in the consumer market has been a breath
of fresh air in fields like robotics or assistive computer vision. With them it is possible to
retrieve the 3D of the scene simultaneously with the RGB image, with a single device and
no extra computational cost. However, the camera specifications of most of the RGB-
D cameras that dominate the market can fall a bit short depending on the application:
limited depth range that provides unusable data in very short or far distances, noise on
the depth camera, not high enough resolution or limited field of view. For example, this
kind of limitations led some researchers to enhance the system with an external camera
in order to get higher resolution images [Herrera et al., 2012].

In this chapter, our main concern is the small field of view (FOV). In the vast majo-
rity of vision-based applications related to mobility (e.g. autonomous driving, robotics,
assistive computer vision), having a large FOV is necessary or provides important ad-
vantages [Soheilian et al., 2013,Martins et al., 2015,Perez-Yus et al., 2016b]. It is parti-
cularly interesting when the information of the sensor is an RGB-D camera, since they
straightforwardly provide three-dimensional and scaled data alongside color. However,
given the limitations mentioned above, emerges the idea of using more sophisticated
systems, that may include other cameras, lenses, projectors, mirrors, etc. These kinds of
systems, which we may refer to as unconventional, are devised so they can retrieve more
information from the environment, or just different kind of information alongside each
other. For example, a system that includes several RGB-D cameras with different view-
points may be used to extend the FOV. Such system needs to be calibrated in order to
fuse all the data in the same reference frame. This process is called extrinsic calibration,
and consists in estimating the relative poses between the cameras.

Following this idea, we worked on the design of a new unconventional camera that
would allow us to extend the FOV of an RGB-D camera. In particular, we propose to
substitute the conventional RGB camera (Figure 3.1a) with a fisheye camera that has
much wider FOV, as can be observed in Figure 3.1b, forming a new hybrid camera sys-
tem. The images in Figure 3.1 have been taken simultaneously with the same device,
consisting of a fisheye camera rigidly attached to a conventional RGB-D camera (Fi-
gure 3.1c). To our knowledge, this is the first time this configuration has been used as a
single unity, since in most RGB-D cameras the FOVs of both components are intended
to be as coincident as possible. However, the interest in such sensor pairing is clear in the
recent Google’s Tango project: the so-called motion tracking camera is indeed a wide
angle camera. As a consequence of the novelty, currently there are no available tools to
calibrate this hybrid camera system: fisheye cameras require the usage of different pro-
jection models due to their extremely wide FOV and the distortion of the images. Thus,
existing approaches of extrinsic calibration between RGB and depth cameras are not ap-
plicable to this problem. In Section 3.3, we present a complete procedure to perform the
calibration of this new device, including the intrinsic and extrinsic calibration of both
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(a) View from RGB-D camera (b) View from fisheye camera

(c) Our proposed hybrid system (d) Depth mapped to the fisheye image

FIGURE 3.1. (a) Scene view from a conventional RGB-D camera. (b) Same scene view from a fisheye
camera. (c) Our proposal: hybrid camera system with Depth and Fisheye. (d) After the calibration we can
map the depth to the whole scene image.

fisheye and depth cameras. We present some experiments demonstrating the accuracy
of the method, and showing some examples with real images where the depth has been
mapped to the fisheye image (Figure 3.1d). In Chapter 4 we show an example of what
can be accomplished with this system.

While our calibration approach was functional with the hybrid system proposed, the
lack of applicability of the method to other camera systems encouraged us to develop
other algorithm that would provide us flexibility to calibrate this and other unconventio-
nal camera systems. In Section 3.4 we propose an original method to perform extrinsic
calibration of an RGB-D multi-camera system based on line observations. Our method
has important advantages with respect to other approaches in the literature:

• No overlapping fields of view are required among the sensors, and thus it is
perfectly suitable for extending FOV of the system.

• It can be used to calibrate different combinations of 3D range and image
sensors, as long as one of them is a depth camera.

• It avoids needing to build a calibration pattern: since it is based from line
observations, they can be extracted in daily life scenes from both imaging and
range sensors.
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We performed experiments in simulation and with real images with different camera
combinations. These experiments show the validity of our method and test the accuracy
and real-world usability of the approach. We demonstrate the calibration of: an RGB-
D sensor from a public dataset consisting on common indoor scenes, our novel hybrid
system with fisheye and depth, two non-overlapping RGB-D cameras, and a rig of 8
RGB-D cameras arranged in a radial configuration for omnidirectional FOV.

Before describing our two calibration methods, in the following section we comment
on the related works that led us to develop new alternatives.

3.2. RELATED WORK

Many calibration approaches for different type of camera systems have been pro-
posed in the literature. For conventional cameras, the most traditional methods use the
detection and matching of control points, generally with a checkerboard pattern as a
calibration device [Zhang, 1999], although other proposed the usage of circular control
points instead [Heikkilä, 2000]. The extrinsic calibration has been classically solved
as well through the detection and matching of control points that are detected in the
overlapping regions of the different cameras [Szeliski and Shum, 1997]. Line features
detected by conventional cameras have also been used in a similar way to recover the
essential matrices among uncalibrated cameras [Hartley, 1993], the relative poses of ca-
librated cameras [Lee, 2016,Přibyl et al., 2017], or the intrinsic and extrinsic parameters
of a number of them [Habib et al., 2002,Zhang et al., 2016]. However, the overlap requi-
rement constitutes a very strong constraint. Besides, even when some overlap exists, it is
generally more complicated to match features in range images than in intensity images.

The interest in fusing visual information with range data has been approached for
more than ten years now [Baltzakis et al., 2003]. Since the beginning, the most po-
pular sensors were the 2D laser range finder (LRF). For instance, the work of Zhang
and Pless [Zhang and Pless, 2004] presented a method of camera - 2D LRF extrinsic
calibration using several views of a checkerboard (at least five) and solving a minimi-
zation problem (Figure 3.2a). Recent similar approaches such as [Vasconcelos et al.,
2012, Zhou, 2014] propose minimal solutions for the same problem with outperforming
results and fewer needed correspondences. Apart from the checkerboard, the use of ot-
her calibration patterns as a resource has been employed as an ad hoc solution for very
specific problems [Ha, 2012, Dong and Isler, 2017], like the ones shown in Figure 3.2b
and Figure 3.2c. The lack of generality of these solutions for any configuration of ca-
meras is an important limitation. Also the need to create the 3D calibration pattern itself
means significant additional work.

There are some works that renounce to use calibration patterns and use common
features in man-made scenes instead. For example, in that line, [Scaramuzza et al.,
2007] proposed another method of extrinsic calibration of a 3D laser scanner (a 2D
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(a) [Zhang and Pless, 2004] (b) [Ha, 2012]

(c) [Dong and Isler, 2017] (d) [Gomez-Ojeda et al., 2015]

FIGURE 3.2. Several examples of calibration of cameras to laser range finders.

LRF mounted on a rotating platform already calibrated) and any central camera (per-
spective or omnidirectional). Though it does not require using any calibration pattern,
a set of at least four point correspondences between the two images (depth and color)
must be selected manually. Other works use particular arrangements or large geometric
features that occur systematically in man-made scenarios, such as perpendicular planes,
or trihedrons. That is the case of [Fernandez-Moral et al., 2015], that proposes a me-
thod to calibrate several LRF from perpendicular plane observations. Gomez-Ojeda et
al. [Gomez-Ojeda et al., 2015] use structural corners to perform extrinsic calibration
between a 2D LRF and a camera (Figure 3.2d). Briales and Gonzalez-Jimenez propo-
sed a similar method that produces a minimal solution instead [Briales and Gonzalez-
Jimenez, 2015]. More recently, Hu et al. [Hu et al., 2016] proposed another solution
able to work with a trihedron as well, but only requiring one shot at a trihedron instead
of three [Gomez-Ojeda et al., 2015].

The recent advent of consumer RGB-D cameras has caused the apparition of novel
methods for that configuration. Though most drivers for these cameras include pre-
calibrated parameters to map the information between both sensors, it is often recom-
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(a) (b)

FIGURE 3.3. (a) Depth camera calibration to a higher resolution color camera [Herrera et al., 2012]. (b)
Single-shot calibration of camera to range sensor [Geiger et al., 2012].

mended to calibrate the RGB-D camera due to small differences in the manufacturing
process [Zhang and Zhang, 2011]. To improve the quality of the color images, some re-
searchers use high resolution external cameras. In this vein Herrera et al. [Herrera et al.,
2012] proposed a method to calibrate both the intrinsic and extrinsic parameters of an
RGB-D plus external camera system (Figure 3.3a). They also noted the absence in other
methods of the correction of depth distortion not included in the default calibration and
they proposed a method using the observed disparity instead of the metric coordinates
as [Smisek et al., 2013] did. In [Geiger et al., 2012], a toolbox that calibrates both laser
range sensor or a Kinect to a color camera in one single shot is presented (Figure 3.3b).
Mikhelson et al. [Mikhelson et al., 2014] ease the process of calibrating the extrinsics
of a depth-color camera pair by proposing an online method which removes the need to
recalibrate the intrinsics once they are known.

Recently, some alternatives investigate extending the FOV of depth cameras using
additional elements. For example, [Endres et al., 2014] uses two planar mirrors as a
catadioptric extension of the RGB-D device to view to the front and to the back of the
robot (Figure 3.4a). More generally, [Iglesias et al., 2016] proposes a framework for
omnidirectional catadioptric RGB-D camera calibration. A consumer set of wide angle
lens is used in [Tomari et al., 2012]. Returning to the concept of using large geometric
features for extrinsic calibration, [Fernandez-Moral et al., 2014] proposed a solution
based on 3D plane observations which works with non-overlapping RGB-D cameras
(Figure 3.4b). This solution only requires the co-observation of planar surfaces by the
different sensors and it is easy to apply, but it does not allow to include color cameras
in the process. These approaches are either expensive to build, hard to calibrate [Endres
et al., 2014, Iglesias et al., 2016], or do not provide good enough depth maps [Tomari
et al., 2012]. There are commercial systems available, such as the Matterport camera,
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(a) (b)

FIGURE 3.4. (a) Catadioptric system to increase the FOV of a depth camera to look at the front and back of
the robot [Endres et al., 2014]. (b) Extrinsic calibration of depth cameras with planar observations [Fernandez-
Moral et al., 2014].

that have been used to create the large scale indoor dataset from [Armeni et al., 2017].
However, this camera system is too expensive and unpractical to be used in situations
that require mobility.

A more general approach not depending on the geometric configuration of the sen-
sors is based on ego-motion to match the camera trajectories, which are tracked inde-
pendently. For that, simultaneous localization and mapping (SLAM) or visual odometry
(VO) techniques are applied [Brookshire and Teller, 2013, Heng et al., 2013, Schneider
et al., 2013]. However, this kind of solution is laborious to apply, requiring robust SLAM
or VO in controlled environments. Besides, they may not be able to fully observe the
calibration parameters depending on the movement restrictions, e.g. the translation in
the vertical axis is unobservable in the case of planar motion, so common for a wheeled
robot or autonomous vehicle.

3.3. A NOVEL HYBRID CAMERA SYSTEM WITH

DEPTH AND FISHEYE

In this section we introduce a new camera system that includes a fisheye and a depth
camera. In order to fuse the information coming from both cameras it is necessary
to perform the calibration of the system. Given the absence of methods available for
such unconventional system, we developed a suitable method. In particular, using an
explicitly designed camera model to calibrate the fisheye camera alone is an important
prerequisite. We propose using the Scaramuzza’s omnidirectional calibration method
to this end [Scaramuzza et al., 2006]. To calibrate the whole system we propose and
evaluate two alternative methods. The first consists in calibrating the intrinsics of both
cameras separately, compute the extrinsics and finally perform the calibration of the
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depth measurements and distortion. In the second only the fisheye is required to be
calibrated on its own, and the depth camera is jointly calibrated with the relative pose
of both devices with a non-linear minimization of the reprojection error in both fisheye
and depth images. In Section 3.3.1 we describe the system and camera models and in
Section 3.3.2 the calibration procedure. Additionally, in Section 3.3.3 we present results
comparing both methods and showing their accuracy on real images.

3.3.1. SYSTEM DESCRIPTION

We have created a hybrid camera system by rigidly coupling a high resolution ca-
mera with a fisheye lens to an Asus Xtion Pro Live RGB-D sensor (Figure 3.1c). The
difference in field of view is large, as Figure 3.1 shows. On the one hand, the FOV of
the RGB-D camera may be too small for many applications, especially in close distan-
ces. Several works have shown the advantages of wide field of view (or omnidirectional)
cameras in robotics and computer vision applications [Rituerto et al., 2010, Bermudez-
Cameo et al., 2014]. On the other hand, the depth perception can help detecting obsta-
cles, providing scale or enhancing the recognition at least in one portion of the scene.
Next we describe the camera models used in this work before moving to the calibration.

3.3.1.1. FISHEYE CAMERA MODEL

We choose the parametric camera model described by Scaramuzza et al. in [Sca-
ramuzza et al., 2006], which considers the omnidirectional image as a highly distorted
image. The calibration consists in retrieving the parameters of the polynomial that des-
cribes this distortion. With this model it is not necessary to provide a specific model
of the sensor and works with all kind of projective, catadioptric or dioptric cameras.
Although in this work we focus on fisheye cameras, the usage of this model makes our
approach valid for the other types of cameras.

Using that model, the world points XF = (X,Y, Z) have the origin of coordinates
in the optical center of the camera OF , where the coordinate system have the zF com-
ponent following the axis of the (cata) dioptric system (Figure 3.5). Orthogonal to the
zF axis it is the sensor plane (xs, ys), a theoretical plane where the coordinates are still
metrical. The images are represented in the image plane u = (u, v), where the position
of the points is expressed in pixels. It is assumed that there is misalignment and defor-
mation between the image plane and the sensor plane, given by an affine transformation
xs = Au + t, where t = (u0, v0) is the image center. The vector p pointing at the
world point X from OF follows the equation:

λ · p = λg(Au + t) = P ·X, λ > 0 (3.1)

where P is the perspective projection matrix and the function g(xs, ys) is defined as
follows:

g(xs, ys) = (xs, ys, f(xs, ys))
> = (xs, ys, f(ρs))

> (3.2a)
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f(xs, ys) = a0 + a2ρ
2
s + ...+ aNρ

N
s (3.2b)

where the function f is modeled as a Taylor expansion defined by the polynomial whose
coefficients are a0, a2, ..., aN , and where ρs =

√
x2s + y2s . These coefficients along with

the matrix A and vector t are the parameters needed to calibrate the intrinsics.

3.3.1.2. DEPTH CAMERA MODEL

The proposed intrinsic model of the depth camera is based in [Herrera et al., 2012].
Basically, this is a standard projective camera model (as the depth camera works with
a conventional IR camera) with radial and tangential distortion correction. The images
captured by the depth sensor have in every pixel a value of disparity (in disparity units,
du) which increases with depth. Some drivers provide an automatic conversion of these
values to metric distances given an internal calibration of the camera during the manu-
facturing process. However, to increase the accuracy of the measurements, we do not
only compute the parameters mapping these pixels to the real world, but also recover the
metric distances per-pixel.

The IR camera model, based on [Heikkilä, 2000], transforms coordinates from the
Image Plane to the Sensor Plane via the focal distances fDx and fDy , the position of
the center CDI = (uD0 , v

D
0 ) and some distortion coefficients kD = {k1, k2, k3, k4, k5}
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(Figure 3.5). If we have a metric value of depth per-pixel zD, the metric 3D coordinates
of the point XD = (XD, Y D, ZD) in the world with respect to the optical center OD
are:

XD = (XD, Y D, ZD) = (xDs z
D, yDs z

D, zD) (3.3)

However, we must transform the disparity values of the images received from the
camera to the metric values, which is done in two phases. First, in [Herrera et al., 2012]
it is mentioned the existence of a fixed error pattern that distorts the depth image with a
per-pixel offset which is obtained from the intrinsic calibration. In the case of the sensor
we use, it follows the function:

du = dd + Dδ(ud, vd) · exp(α0 − α1dd) (3.4)

where du is the resulting undistorted disparity and dd the distorted disparity. Second, to
convert the values of the pixels given in disparity units (du) to metric units, it is necessary
to get the following coefficients c1 and c0 which forms the following equation:

zD =
1

c1 · du + c0
(3.5)

The set of parameters obtained from the intrinsic calibration of the depth camera are:
the focal lengths (fDx , fDy ), the image center (uD0 , vD0 ), the distortion coefficients kD,
the disparity-depth transformation coefficients (c1, c0), the matrix Dδ(u

D
d , v

D
d ) and the

exponential decay parameters (α0, α1).

3.3.2. DEPTH-FISHEYE CAMERA CALIBRATION

Our algorithm needs a checkerboard on a flat surface as the main calibration pattern.
The calibration requires the capture of several images of the planar checkerboard from
different points of view, watching carefully that both the checkerboard in the external ca-
mera and the planar surface supporting the checkerboard in the depth image are observed
at the same time. That is not a trivial issue: to calibrate properly the intrinsic parameters
of the fisheye camera it is necessary to fill the fisheye images with the checkerboard as
much as possible (e.g. Figure 3.6a) but doing that requires to pose the camera too close
to the board and the depth sensor cannot retrieve information. Placing the camera pair
at a reasonable distance makes the system prone to fail in the estimation of the intrinsic
parameters of the fisheye camera because the distortion cannot be properly perceived
(Figure 3.6b).

To handle this situation, the intrinsic calibration of the fisheye is performed separa-
tely from the rest of the algorithm, with their own set of close-range images (similar to
Figure 3.6a). The fisheye camera can be easily calibrated by using the toolbox released
by [Scaramuzza et al., 2006]. For the rest of the process, an alternative set of mid and
long-range images have been collected. The dimensions of the pattern must be large
enough that the corners of the checkerboard can be detected in the fisheye image taking
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(a) (b)

FIGURE 3.6. Example of images from the sets of fisheye intrinsic calibration (a) and depth intrinsic/extrinsic
calibration (b).

into account the resolution of the camera. In our case, we used a DIN-A2 checkerboard.
The dimensions are known and used as input for the algorithm.

With this setup we have tackled this calibration problem from two alternative appro-
aches:

A) Calibrating the intrinsic parameters of the fisheye and then performing a joint
calibration of the rest of parameters involved in the system all at once.

B) Separating the process in stages, performing first the intrinsic calibration of the
cameras separately, then retrieve the extrinsic parameters and finally compute the
distortion correction and conversion from disparity to metric units.

The two alternate methods to perform the calibration of our system are described in
the following sections.

3.3.2.1. JOINT CALIBRATION OF FISHEYE AND DEPTH CAMERAS

The first calibration methods for structured light-based RGB-D systems used images
from the IR camera to perform traditional extrinsic calibration [Zhang, 1999]. However,
as [Herrera et al., 2012] pointed out, the depth images are not perfectly aligned with
the IR images. The work [Herrera et al., 2012] uses disparity images to calibrate the
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intrinsics of the depth camera as well as the extrinsics of the system. Our method is
inspired by this approach, introducing some modifications to make it suitable for our
system.

We assume that the checkerboard is on a planar surface to relate in each image pair
the pose of the fisheye camera from the checkerboard to its plane equation. As the
checkerboard is not observed by the depth camera, we manually select the vertices of the
polygon which contains the disparity pixel values of the board in each image. To relate
the pose of the checkerboard as seen by the fisheye camera to the depth measurements,
we need a rough estimation of the depth camera parameters. When the board has known
shape, e.g. rectangular, an initial estimate can be obtained selecting the corners from the
board and using homographies as explained in [Zhang and Pless, 2004]. The calibration
of the final values of the depth intrinsics will be done jointly with the extrinsics solving
the minimization problem, so the values set at this point facilitate the convergence. In
the following sections the main parts of the method are detailed:

3.3.2.1.1. RETRIEVING CAMERA POSE FROM FISHEYE IMAGES

This section describes how, for each calibration image Ii, we obtain the pose of the
pattern with respect to the fisheye camera FTIi ∈ R3×4 (Figure 3.5). It is formed
by the rotation matrix FRIi ∈ R3×3 = [r1, r2, r3] and the translation vector F tIi ∈
R3×1. Calling Xij = [Xij , Yij , Zij ] the 3D coordinate of every of the j points from the
pattern in the pattern coordinate system and uij = [uij , vij ]

> the correspondent pixel
coordinates in the Image Plane, from (3.1) we get the following equation:

λij · uij = λij ·

 uij
vij

a0 + ...+ aNρ
N
ij

 = [ri1, r
i
2, r

i
3, t

i] ·


Xij
Yij
Zij
1

 (3.6)

We can assume without loss of generality that Zij = 0 for all points in the pattern,
as they all belong to a planar surface in Xij − Yij . If we multiply both sides vectorially
by uij :

λij · uij ∧ uij =

 uij
vij

a0 + ...+ aNρ
N
ij

 ∧ [ri1, r
i
2, t

i] ·

 Xij
Yij
1

 = 0 (3.7)

Which gives the following system for every image Ii:

vj · (r31Xj + r32Yj + t3)− f(ρj) · (r21Xj + r22Yj + t2) = 0 (3.8a)

f(ρj) · (r11Xj + r12Yj + t1)− uj · (r31Xj + r32Yj + t3) = 0 (3.8b)

uj · (r21Xj + r22Yj + t2)− vj · (r11Xj + r12Yj + t1) = 0 (3.8c)
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In these equations we know the position of the points in both the world and the
image (Xj , Yj , uj , vj) and the function f(ρ) from the previous calibration of the fisheye
camera. Having these three equations for each of the n points uj in the pattern we
need at least n = 3 points to solve the system. The checkerboards always contain more
than three points, which generates an overdetermined system. To solve this system we
reformulate it as follows:

M ·H =


M1

..
Mj

..
ML

 ·H = 0 (3.9)

where
H = [r11, r12, r21, r22, r31, r32, t1, t2, t3]> (3.10a)

Mj =



0 f(ρj)Xj −vjXj
0 f(ρj)Yj −vjYj

−f(ρj)Xj 0 ujXj
−f(ρj)Yj 0 ujYj
vjXj −ujXj 0
vjYj −ujYj 0

0 f(ρj) −vj
−f(ρj) 0 uj
vj −uj 0



>

(3.10b)

whose solution can be computed using SVD. The rest of the elements of the matrix Ri,
i.e. r3 = [r13, r23, r33] are obtained with the cross product of r1 and r2. This is repeated
for each image Ii, computing all the transformations FTIi .

3.3.2.1.2. NON-LINEAR MINIMIZATION

The optimization is a minimization of the weighted sum of squares of the repro-
jection errors over all parameters, which we perform using a cost function similar to the
one from [Herrera et al., 2012]. The cost function has two terms, one for each camera.
The costs of the fisheye camera are the sum of the Reprojection Error REF , defined
as the Euclidean distance between the pixel position of the corner pij , and the position
of its reprojection p̂ij given the pose of the checkerboard in every image FTIi and the
intrinsic parameters of the fisheye:

REFij = ‖p̂ij − pij‖2 (3.11)

which is measured in pixels. Although the intrinsic parameters of the camera are pre-
computed, it is necessary to include this error because of the optimization of the poses
FTIi . The costs of the depth camera are the sum of the depth Reprojection Error RED,
defined as the L2-norm of the difference between the measured disparity from the image
dd and its predicted disparity d̂d for every board pixel k in image i:

REDik = ‖d̂ik − dik‖2 (3.12)
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which is measured in disparity units (du). To compute the predicted disparity, we know
from Section 3.3.2.1.1 the pose of the camera with respect to a group of points lying on
a plane for every fisheye image Ii. Introducing the extrinsic transformation DTF , we
get the poses of the points with respect to the depth camera, DTIi =D TF ·F TIi , and
therefore the plane the checkerboard is on. The normal ni and the distance to the origin
bi are:

ni = ri3 (3.13)

bi = ri3
>

ti (3.14)

where ri3 and ti are the third column of the rotation matrix DRIi and the translation
vector DtIi respectively. The plane equation from the fisheye camera frame is then:

ni
>X− bi = 0 (3.15)

for each image. With the rough initial estimate of the parameters we can compute the
predicted disparity and therefore the depth cost. To avoid including the whole matrix
Dδ(ud, vd) which adds many parameters to the optimization (in our case 640× 480), it
is optimized independently as done in [Herrera et al., 2012]. Because of that, the depth
cost is computed with the disparity values from the Undistorted Image Plane.

The main cost function is the following, weighted by the inverse of the measurement
variance due to the difference in the units of the terms:

J = β

∑
REFij
σ2
F

+

∑
REDik
σ2
D

(3.16)

where β is an additional weighting factor to give equal importance to both terms re-
gardless of the number of points in each of them. The optimization has two phases:
First, the main minimization, with the cost function from (3.16), where the parameters
to minimize are FTIi ,

DTF , c1, c0, fDx , fDy , CD
I and kD. Second, minimization of

the distortion offset given by [Herrera et al., 2012], where the parameters to minimize
are α0, α1 and Dδ(u, v). We have used an iterative non-linear minimization using the
Levenberg−Marquardt algorithm for both processes.

3.3.2.2. STEPWISE CALIBRATION OF FISHEYE AND DEPTH CAMERAS

The idea behind this approach is to separate the calibration of the whole system in
stages instead of performing a single global optimization of the parameters. Herrera et
al. [Herrera et al., 2012] mention the improvement of the results in the calibration when
both the intrinsic and extrinsic parameters are optimized simultaneously. However, the
optimization may get stuck in a local minimum if the estimation of the seed values of
some parameters is not good enough. We propose to perform following stages instead:

• Intrinsic calibration of the fisheye (f(ρ), A and t).
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• Intrinsic calibration of the IR camera (fD, CD
I and kD), which can be solved

using standard methods [Zhang, 1999].
• Obtain the poses of the checkerboard with respect to the cameras (FTIi ,

DTIi )
and with them, the extrinsic calibration (DTF ).

• Global optimization to compute disparity-depth correction parameters (c1, c0,
Dδ(u

D
d , v

D
d ), α0 and α1) and refine the previously computed parameters.

The stages not included in the description of the first approach are detailed as follows:

3.3.2.2.1. COMPUTATION OF THE EXTRINSICS OF THE SYSTEM

Having computed the relative poses of the checkerboard from both cameras (FTIi
from Section 3.3.2.1.1 and DTIi from [Zhang, 1999]), for each image pair we have:

DR
(Ii)
F =D RIi ·

Ii RF (3.17a)

Dt
(Ii)
F =D tIi −

D R
(Ii)
F ·F tIi (3.17b)

Averaging the rotations (turned into rotation vectors) and the translations provides
a good estimate of the extrinsics of the system. To refine the extrinsic parameters (6
DOF), we can minimize the reprojection error of the corner points from one reference
frame to the other backprojected to the image (p̂ij) with respect to the measured point
(pij), respectively:

arg min ‖p̂Fij − pFij‖+ ‖p̂Dij − pDij‖ (3.18)

where p̂caij = proj
(
cbTca ·X

cb
ij

)
, proj the projection function (which changes depen-

ding on the type of camera) and ca, cb note two different camera frames (in this case, F
and D).

3.3.2.2.2. GLOBAL OPTIMIZATION

The global optimization proposed in this approach has the same formulation (Section
3.3.2.1.2). In this case, we do not need to perform the calibration of the intrinsics of the
IR camera and the extrinsics of the system. These parameters can be fixed and ignored
in the optimization process, and only estimate the values of c1, c0, Dδ(u

D
d , v

D
d ), α0

and α1. However, if we include all the parameters as in Section 3.3.2.1.2 we can use
this optimization as a global refinement of the already estimated parameters, taking into
account the depth image instead of the IR image.

3.3.3. EXPERIMENTS

In the experiments, we use the proposed hybrid camera system shown in Figure 3.1b:
The RGB-D sensor is the Asus Xtion Live Pro, which provides a depth image resolution
of 640× 480 pixels at 30Hz. The fisheye camera is a uEye UI-3580CP of 2560× 1920
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TABLE 3.1. MRE in the fisheye and depth image for both sets of images A and B with four calibration results.

Evaluated Set A Evaluated Set B
Fisheye (px) Depth (du) Fisheye (px) Depth (du)

1) Joint calib. A 0.185 0.839 0.187 1.477
2) Step calib. A 0.185 0.806 0.187 1.514
3) Joint calib. B 0.165 1.322 0.183 0.856
4) Step calib. B 0.165 1.321 0.182 0.835

pixels at 15Hz with a fisheye lens Lensagon CF5M1414, with a field of view of 182◦.
The images have been captured synchronized using Robot Operating System (ROS).
The calibration pattern is a 9×7 checkerboard printed in a DIN-A2 sized paper attached
to a rectangular piece of wood. A set of fisheye images without depth information has
been used to calibrate the intrinsics of the fisheye, resulting in a mean reprojection error
of less than 0.2 pixels, which can be considered an accurate calibration for such high
resolution.

For the depth intrinsics and camera pair extrinsic calibration we used two sets of
images for comparison purposes. Set A has 25 image pairs and set B has 28. Both
datasets are similar in terms of variability of poses. We use the Mean Reprojection Error
(MRE) as quantifiable parameter to evaluate the results, defined by the arithmetic mean
of (3.11) and (3.12). In Table 3.1 it is shown the MRE for both sets of images using the
results from four calibration procedures:

1) Joint Calibration of Set A (Section 3.3.2.1).

2) Stepwise Calibration of Set A (Section 3.3.2.2).

3) Joint Calibration of Set B (Section 3.3.2.1).

4) Stepwise Calibration of Set B (Section 3.3.2.2).

The MRE for each set with its own calibration results is, in the fisheye camera, less
than 0.2 pixels, whereas in the depth camera it is less than 1du. Using the calibration va-
lues of extrinsics and depth intrinsics from the other set, the MRE of the depth increases
to 1.5du. These values can be considered highly satisfactory considering the complexity
of calibrating two cameras of such different kind. We can see how the difference among
the methods is marginal, making both approaches equally valid for the task. The step-
wise calibration would be preferable if the IR images are accessible as it is less prone to
fall in local minimum. However, the joint calibration procedure has less steps requiring
human supervision.

To measure the quality of the calibration we have also used a 3D pattern. It consists
of three metal plates screwed and secured at 90◦ with calibration patterns attached to
them (Figure 3.7a). We have accurate ground truth of the 3D position of the points of
these patterns from a photogrammetric reconstruction by bundle adjustment. Obtaining
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(a) (b)

FIGURE 3.7. (a) 3D pattern consisting of three orthogonal planes. (b) Point cloud obtained using the calibra-
tion.

TABLE 3.2. Angular difference between planes with respect to the ground truth in the fisheye and depth
image.

Fisheye Image Depth Image
α12 (deg) -0.3559 1.3715
α23 (deg) 1.7045 -0.3339
α31 (deg) 1.2229 0.1908

Mean (deg) 1.0944 0.6321

the pose of the camera from the fisheye image and computing the planes from the depth
image we can compare the angles between the metal plates to see how good the cali-
bration is. Table 3.2 shows the results of the experiment, with an error of ≈ 1◦ in the
fisheye image and ≈ 0.6◦ in the depth image. The quality of the mapping of the depth
information can also be qualitatively analyzed superposing the depth maps in the fisheye
image (Figure 3.8). It can be observed how the borders in the depth coincide with the
borders in the image, even at large distances. It is also possible to reconstruct the point
cloud with this data, where the high accuracy can also be appreciated (Figure 3.7b).

An application of the calibrated system is shown in Chapter 4, where the depth in-
formation is extended to the whole fisheye image via layout estimation.
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FIGURE 3.8. Semi-transparent depth map superimposed over the fisheye image to illustrate the quality of the
calibration.
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3.4. EXTRINSIC CALIBRATION OF MULTIPLE

RGB-D CAMERAS FROM LINES

In this section, we propose a method for flexible extrinsic calibration of RGB-D
cameras. Current solutions for this problem are time consuming and/or may require
building a specific calibration pattern. Besides, there are some additional challenges,
such as trying to combine different type of cameras, or finding the calibration when
the cameras have no overlap in their FOV. The approach presented here is inspired by
the kind of solutions that use common features in man-made scenes, such as planes
[Fernandez-Moral et al., 2014], or corners [Gomez-Ojeda et al., 2015]. In particular, it
is based on the observation and matching of lines in the scene from the different sensors,
which are used to formulate constraints on the relative poses of the cameras. Our method
allows to calibrate any system with:

1. One sensor able to extract the parameters to completely define a line in 3D space
(e.g. a depth camera).

2. One (or several) sensors able to extract the lines in the projective plane (e.g. a
standard camera, other depth camera).

Thus, our method calibrates Color-Depth pairs {C,D}, Depth-Depth pairs {D1, D2}
and larger systems withNC color cameras andND depth cameras {D1..DND , C1..CNC}
whenever ND ≥ 1 and ND +NC ≥ 2.

Before the calibration we describe our line extraction process in color images (from
both conventional and omnidirectional cameras) and from range data (Section 3.4.1). In
particular, from range data the lines are found as plane intersections. RGB-D sensors
are a special case where we can use line extraction in the RGB image, and then use the
depth to get the 3D line. This situation is illustrated in Figure 3.9, where the line with
sub-index 1 corresponds to the intersection of two planar surfaces (Πa and Πb) and thus,
its 3D parameters are observable by a depth camera, while the 3D parameters of the line
with sub-index 2 (which is contained in the plane Πa) are only observable by an RGB
sensor. After line extraction, we propose a robust method to find line matchings via a
RANSAC approach.

The main contribution of this work is a novel method for extrinsic calibration of an
RGB-D multi-camera system based on line observations, introduced in Section 3.4.2.
Our method has important advantages with respect to other approaches in the litera-
ture: i) no overlapping fields of view are required among the sensors; ii) it can be used
to calibrate different types of cameras; and iii) it avoids needing to build a calibration
pattern. We have additionally included an analysis of the observability of the problem,
where we discuss the minimum amount of line-matchings necessary and degenerate ca-
ses (Section 3.4.3). We performed experiments in simulation and with real images with
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FIGURE 3.9. Observation of lines in the scene by a pair of RGB-D and conventional cameras rigidly joined
with non-overlapping field of view. Line correspondences are used to formulate geometric restrictions to
compute the relative pose T between the cameras.

different camera combinations (Section 3.4.4). These experiments show the validity of
our method and test the accuracy and real-world usability of the approach. We demon-
strate the calibration of: an RGB-D sensor from a public dataset consisting on common
indoor scenes; a fisheye camera and a depth camera; two non-overlapping RGB-D came-
ras; and a rig of 8 RGB-D cameras arranged in a radial configuration for omnidirectional
FOV.

3.4.1. LINE EXTRACTION AND MATCHING

We use line to refer to the line in 3D space, and segment to refer to the set of collinear
points found in a conventional image. Mathematically, a line is the set of points p ∈ R3

that satisfy the following equation:

p = p0 + λv = (p0x, p0y, p0z) + λ (vx, vy, vz) , ∀λ ∈ R (3.19)

being p0 ∈ R3 a point in the line, and v ∈ R3 the direction vector of the line (see
Figure 3.9). We also define the projective plane of the line π as the 3D plane that
contains the line and the origin of the reference system (i.e. the optical center of the
camera). The normal n ∈ R3 of this plane (see Figure 3.9), also known as the moment
vector of the line, is the vector perpendicular to p0 and v, i.e. n = p0 × v. In the
following sections we describe how we extract lines in an image depending on the type
of camera used.

82



3.4. EXTRINSIC CALIBRATION OF MULTIPLE RGB-D CAMERAS FROM LINES

FIGURE 3.10. Examples of common indoor scenes used for calibration, like wall-wall and wall-ceil junctions.
The first row shows the RGB images with the lines extracted in green. The second row shows the corresponding
depth images with the planar surfaces colored in different colors. Images (1-4) belong to the NYU2 RGB-D
dataset [Silberman et al., 2012].

3.4.1.1. LINE EXTRACTION IN RGB CAMERA

Due to the projective nature of conventional cameras we cannot compute the di-
rection vector v, nor any 3D point p. Nonetheless, we can extract segments in the image
to retrieve the normal vectors n of their projective planes. For this, the camera must
be intrinsically calibrated in advance. The process of getting segments is a traditional
problem in computer vision, which can be solved using widespread algorithms. In par-
ticular, our approach goes as follows:

1. Apply a Canny filter [Canny, 1986] to extract edges in the intensity image.

2. The edge points are grouped in boundaries formed by consecutive points in the
image.

3. For each boundary, we apply a RANSAC procedure [Fischler and Bolles, 1981]
to get the lines in 2D. The 2D lines have a direction vector in the image l =
[lx, ly, 0]> and a set of k inlier edge points {u1..uk} where ui = (ui, vi).

4. The mean of the inlier points ū is used to compute the 3D ray:

r = [(ū− cx)/fx, (v̄ − cy)/fy, 1]> (3.20)

with camera’s optical center (cx, cy) and focal length (fx, fy).

5. The normal n is n = l× ri

Some examples of line extraction are shown in Figure 3.10. While this approach is
appropriate for standard cameras, we can substitute this method to a more suitable one
if we need to use a more complex type of camera. The work from Bermudez-Cameo
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(a) (b)

(c) (d)

FIGURE 3.11. (a) Lines extracted in a fisheye image (in green). The two relevant ones are selected in blue.
(b) View from the RGB-D camera. Top: the RGB image (not used for calibration). Bottom: the planar
segmentation in the depth image used to extract 3D line from plane intersections. (c) 3D planes projected to
the fisheye view with the corresponding lines in blue (from RGB) and red (from depth). (d) After calibration,
the projection of the 3D lines and the depth map fits the color image.

et al. [Bermudez-Cameo et al., 2015] presents a line extraction method for uncalibrated
omnidirectional cameras with revolution symmetry. With this method we can calibrate
a wide range of omnidirectional cameras like the fisheye shown in Figure 3.11a.

3.4.1.2. LINE EXTRACTION IN DEPTH CAMERA

A depth camera permits to obtain the 3D line parameters (i.e. we can extract p, v and
n from the lines in the image). The strategy to obtain the lines may depend on the sensor.
Using only depth information, the simplest way to retrieve 3D lines is by looking for 3D
plane intersections. For example, in Figure 3.9, the line {p1,v1} is the intersection of
the planes Πa and Πb (e.g. the intersection of two walls). We extract 3D planes using
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RANSAC for plane fitting. Some samples of real scenes with the planes extracted are
shown in Figure 3.10 and Figure 3.11b. A plane Πi has normal ni and distance to the
origin di so that all points X belonging to the plane satisfy ni ·X + di = 0. To compute
the 3D line between two planes Πa and Πb, we get the direction v as the cross product
of their normals, v = na×nb. A 3D point of the line p0 is obtained as the closest point
to the origin that fulfills the equations na · p0 + da = 0 and nb · p0 + db = 0.

In the case of an RGB-D camera already calibrated (with per-pixel correspondence
between color and depth), the easiest way to proceed is to use the segment extraction
described for an RGB camera, and use the depth information to transform the segment
points to 3D. RANSAC can be used to remove possible outliers in the 3D points that
define the line. This approach has the advantage of being able to extract lines on planes,
which is not possible only with depth data. That is the case of the line {p2,v2} contained
in the plane Πa in Figure 3.9, which can be detected from the color changes.

3.4.1.3. LINE CORRESPONDENCES BETWEEN CAMERAS

After line extraction, we create a set of NL line correspondences Li=1..NL
. In our

notation, we callD the camera with depth information andC the conventional one (color
or monochrome). Every correspondenceLi consists of a fully parametrized 3D line from
D and the normal of the projective plane fromC, i.e. Li = {pDi ,vDi ,nCi }. For example,
in Figure 3.9 we can observe L1 and L2, and a real case with two correspondences in
Figure 3.11c.

An automatic procedure to extract line correspondences based on RANSAC is im-
plemented as follows:

1. Extract all the lines in C and D for each image pair independently to create a
broad set of correspondence candidates L.

2. Filter L according to an initial estimate of the relative poses of the cameras and
their uncertainty by setting angular and/or distance thresholds to remove outliers.

3. Pull a minimal set (Section 3.4.3) of three random correspondences from L to
perform the calibration as described in Section 3.4.2, and count the number of
consistent correspondences in L.

4. Repeat the previous step using RANSAC to obtain the maximal consensus (i.e.
maximum number of inliers).

5. The final calibration is computed from the inlier correspondences.

Note that it is easier to perform the calibration from scenes without clutter, see Fi-
gure 3.11b, where a few lines can be robustly extracted. Cluttered scenes result in higher
number of outlier correspondences which may require a better initial approximation of
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the calibration to be filtered out. Nevertheless, since calibration should not be perfor-
med very often, the correspondences may also be selected with human supervision to
guarantee the correctness of the calibration.

3.4.2. EXTRINSIC CALIBRATION FROM LINE

OBSERVATIONS

In this section we address the problem of extrinsic calibration of a depth camera D
and a color camera C. Let CTD = [R|t] ∈ SE(3) be the relative pose between the
reference frame of D with respect to C. Our goal is to find the maximum likelihood
estimation (MLE) for CTD. Since rotation and translation can be decoupled, we sepa-
rate the process in two stages, computing first the rotation R and then the translation t.
We consider that our line observations are affected by unbiased Gaussian noise N(0, σ),
uncorrelated between different line correspondences. Under this assumption, the MLE
is equivalent to the solution of the least-squares minimization of the geometric errors of
the line correspondences for the rotation and the translation.

3.4.2.1. ROTATION ESTIMATION

From the definitions in the previous section, the direction vector of a line v is ortho-
gonal to the normal vector n. This condition holds between separate cameras C1 and C2

after applying the corresponding relative rotation to transform both vectors to the same
reference frame. Thus, we can use the condition of orthogonality to retrieve the rotation
by computing the matrix R ∈ SO(3) that satisfies:

(nC2)
> ·RvC1 = 0 (3.21)

where in our problem, C1 = D and C2 = C (we drop these super-indexes for readabi-
lity). We need at least three line correspondences Li to estimate the rotation R, which
has three degrees of freedom. A more extended discussion about the observability of
this problem is provided in Section 3.4.3.

The MLE of the relative rotation is equivalent to the solution of the following non-
linear least squares minimization, with the relative rotation R represented in a minimal
parametrization with the exponential map from Lie algebra:

arg min
µ

NL∑
i=1

(n>i · eµRvi)
2 (3.22)

where eµ is the exponential map of the increment of rotation µ on R. The vector µ has
three dimensions and it is the axis-angle representation of the rotation on a manifold
space of SO(3). We solve this non-linear least squares problem iteratively with Gauss-
Newton. The increment vector µ is computed as:

µ = −H−1g (3.23)
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where H and g are the Hessian and the Gradient of the error function, computed as:

H =

NL∑
i=1

J>i Ji , g =

NL∑
i=1

J>i ri (3.24)

with the Jacobians and residuals given by

Ji = (Rvi × ni)
> , ri = ni ·Rvi (3.25)

3.4.2.2. TRANSLATION ESTIMATION

Following a similar reasoning, the vector p representing any point on the 3D line is
perpendicular to the normal vector n. Therefore, the relative pose CTD = [R|t] must
satisfy:

(nC)
> · (RpD + t) = 0 (3.26)

Assuming that the rotation is already known, we require at least three line correspon-
dences to find a valid solution for t (see Section 3.4.3 for special degenerate cases). The
MLE of the relative translation is equivalent to the solution of the following non-linear
least squares minimization:

arg min
t

NL∑
i=1

(
n>i ·

Tpi
‖Tpi‖

)2

= arg min
t

NL∑
i=1

(
n>i ·

Rpi + t

‖Rpi + t‖

)2

(3.27)

Note that the point pi, after rotated and translated, must be normalized since, otherwise,
points situated farther away from the origin of coordinates would have more influence in
the optimization. We also solve the problem with Gauss-Newton, where the Jacobians
and residuals are computed as:

Ji = n> ·
I− Tp

‖Tp‖

(
Tp
‖Tp‖

)>
‖Tp‖ , ri = n>i ·

Tpi
‖Tpi‖

(3.28)

3.4.2.3. CALIBRATION OF MULTIPLE CAMERAS

Let us assume we have a rig of N = NC + ND sensors, with NC conventional
cameras {C1, C2, .., CNC} and ND depth cameras {D1, D2, .., DND}, if we perform
pair-wise calibration for all the combinations Ci − Dj , the global solution will be in-
consistent generally. The solution is to perform a complete non-linear optimization with
all the parameters. We can set the global reference frame to one of the sensors without
loss of generality, for instance C1. Thus, we need to find the MLE for (N − 1) rigid
transformations.

The problem is formulated as follows, for the rotation:

arg min
µ2..µN

NC∑
j=1

ND∑
k=1

N
jk
L∑
i=1

((eµjRjnji)
> · eµkRkvki)

2 (3.29)
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where µx is the increment of rotation to Rx for each camera. N jk
L stands for the number

of line correspondences between cameras Cj and Dk. The Hessian and gradient, with
dimensions (3 · (N − 1)× 3 · (N − 1)) and (3 · (N − 1)× 1) respectively, are computed
following (3.24), where the Jacobians are given by

J
(j)
i = ((Rjnji)× (Rkvki))

>

J
(k)
i = ((Rkvki)× (Rjnji))

>
(3.30)

and the super-indexes (j) and (k) represent the three-column block corresponding to the
parameters µj or µk. For the translation, the formulation of the minimization problem
is:

arg min
t2..tN

NC∑
j=1

ND∑
k=1

N
jk
L∑
i=1

(
n>ji ·

T−1
j Tkpki

‖T−1
j Tkpki‖

)2

(3.31)

where the operation T−1j Tkpki transforms the point pki to the reference frame of Cj
(note that we have employed homogeneous notation for simplicity, and the transformed
points are used in its compact form afterwards). Again, instead of using the coordinates
of the transformed point, we normalize to have the direction vector of such point. The
resulting Jacobians are:

J
(j)
i = n>ij ·

−R>j −
T−1

j Tkpki

‖T−1
j Tkpki‖

(
T−1

j Tkpki

‖T−1
j Tkpki‖

)>
‖T−1

j Tkpki‖

J
(k)
i = n>ij ·

R>j −
T−1

j Tkpki

‖T−1
j Tkpki‖

(
T−1

j Tkpki

‖T−1
j Tkpki‖

)>
‖T−1

j Tkpki‖

(3.32)

3.4.3. OBSERVABILITY

In this section we present the analysis of minimal solutions and possible degenerate
cases of our calibration problem. For that, we analyze the shape of the Fisher Informa-
tion Matrix (FIM) for the parameters of the maximum likelihood estimator (MLE) of
the calibration presented in the previous section. The FIM coincides with the Hessian
of the least squares problem resulting from the MLE, and its inverse is the covariance
of the resulting calibration (which corresponds in turn to the Cramér-Rao lower bound
when the MLE is given by an unbiased Gaussian distribution [Fernandez-Madrigal and
Claraco, 2013]). When the FIM is singular, the information provided is not sufficient
and the MLE does not exist, therefore, the calibration problem has a solution only when
the FIM has full rank.

Let us analyze first the rotation estimation problem. From the error function and its
Jacobian (eqs. (3.22) and (3.25)), we have that each line correspondence imposes a new
constraint between a pair of sensors. Thus, we need at least 3 measurements to compute
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the relative rotation. These constraints must be linearly independent, which is the case
when the direction vectors vD of the 3D lines as seen by the depth camera are not all
parallel (i.e. two of the three can be parallel). Notice that two parallel lines in 3D are not
necessarily parallel in the image, as they may intersect in a vanishing point.

Regarding the estimation of the translation, assuming that the rotation is known, each
line correspondence imposes a new constraint between the pair of sensors. In order to get
a full rank FIM, the Jacobians of the 3 constraints (3.28) must be linearly independent.
For that, at least 2 normal vectors nC must be linearly independent, which is true for
any pair of different lines in the projected image (even for parallel lines in the image).
This condition is trivially fulfilled for any three constraints for which the rotation’s FIM
has full rank. Also, the lines used for calibrating the translation cannot intersect all in
the same 3D point (e.g. a trihedron), because the translation along the projection ray
which contains the optical center of the camera and the line’s intersection would not be
observable. Hence, the observation of the three non-parallel lines which do not intersect
in the same point provides enough information to localize a conventional camera with
respect to a depth camera.

The required line correspondences may be observed in several views or in a single
one (e.g. the rightmost image pair of Figure 3.10). Note that the 3 direction vectors do
not have to form an orthogonal base, as it was required in other works [Gomez-Ojeda
et al., 2015], nor any other special configuration. For a rig with N sensors, the number
of line correspondences will depend on the type of sensors of the system. Again, by
analyzing the FIM of both rotation and translation estimation, we can guarantee that the
system has a solution if there are at least 3(N − 1) correspondences which fulfill the
rotation and translation conditions between pairs of cameras. Depending on the type
of sensors in the system, a solution may exist even with less line correspondences, but
such analysis is out of the scope of this paper. Note also that we will be interested to
obtain considerably more line correspondences than the minimal set in order to improve
the accuracy. Nevertheless, the minimal solution is of interest to remove outlier line
correspondences using RANSAC (Section 3.4.1.3).

3.4.4. EXPERIMENTAL VALIDATION

We have performed experiments in simulation and with real multi-camera systems.
With the former we provide an analysis of performance and robustness to noise with
regard to the number of line correspondences. Next, the real case scenarios show the
validity and applicability of our method to the real world.

3.4.4.1. SIMULATION

We present the results of calibration of a pair of depth and RGB cameras with a
relative pose T from D to C given by a rotation of (0.2,−π/4 − 0.2, 0.1) in Euler
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FIGURE 3.12. Simulation results of the calibration accuracy for the rotation (left) and translation (right),
given by the mean error with respect to the ground truth, over the number of line correspondences at three
different noise levels.

angles and a translation of (−0.06, 0.03, 0.1) in meters, for different numbers of line
correspondences and different noise levels in their observations. We have also tested
different ground truth poses with similar results. For each experiment, we generate
randomly NL = 5..200 lines in 3D space and obtain their observation parameters in
both cameras. For the analysis of the rotation we add unbiased Gaussian noise to the
vectors v and n to rotate them slightly. We analyze the calibration accuracy for three
noise levels with standard deviation σ = {0.1, 0.5, 1} degrees. For the analysis of the
translation, the point p is also translated with Gaussian noise σ = {0.001, 0.005, 0.01}
meters. We find these values to be realistic for the case of RGB-D sensors like Asus
Xtion Pro Live.

We show the accuracy of the rotation and the translation separately in Figure 3.12,
with the accuracy of the calibration measured by the angular error of our estimated
rotation (left), and the translation error measured in meters as the norm of the difference
with respect to the ground truth (right). The mean errors decrease asymptotically with
the number of line correspondences. This behavior was expected, since having more data
should improve the performance when the noise in the measurements is Gaussian. We
see how the translation error is more sensitive to noise in comparison with the rotation
error. This experiment shows promising results, since the mean error values remain
small with a reasonably low number of correspondences.

3.4.4.2. REAL CASE SCENARIOS

Four sensor combinations are tested to show the successful performance of our me-
thod under different challenging situations:
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(a) (b)

FIGURE 3.13. (a) Fisheye with RGB-D camera system. (b) Omnidirectional camera rig composed by 8 Asus
Xtion Pro Live arranged to achieve 360 degree field of view.

3.4.4.2.1. FISHEYE TO DEPTH

This experiment describes the extrinsic calibration of a regular fisheye camera with
FOV over 180◦ and the depth sensor of an Asus XPL, shown in Figure 3.13a. This
system is useful to combine the large FOV of the fisheye camera with the real scale
provided by the depth [Perez-Yus et al., 2016b]. We compare our calibration results to
the ones obtained using the method from [Perez-Yus et al., 2016a] (Section 3.3), based
on a traditional planar checkerboard calibration which we use as ground truth. Note that
we do not make use of the color information from the Asus XPL in this experiment in
order to be consistent with our comparison with [Perez-Yus et al., 2016a].

We have recorded a set of 65 image pairs from our office desktop which contain
a good number of lines, thus constituting a good source of information for our me-
thod, (see Figure 3.11). We selected manually 77 line matches to perform calibration
and test its accuracy. From the set of line correspondences, we extract random sets of
NL = {10, 20, 30, 40, 50} and measure the average angular and translational errors with
respect to the ground truth from 100 calibration runs for each set, using the same metrics
of the simulation results. The error values in Table 3.3 seem to corroborate the results
from simulation, since the error decreases as number of line correspondences rises. The
residuals from the optimization are also quite low, as we could expect since no outliers
are introduced with the manual selection of correspondences. In Figure 3.11d there is
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TABLE 3.3. Mean rotation and translation errors with respect to the ground truth and residuals in the calibra-
tion case of fisheye and depth cameras. Results for both manual and automatic (via RANSAC) matching of
lines. The accuracy is analyzed respectively with the number of lines (NL) or iterations (Niter).

Mean error with GT Mean residual error
M

A
N

U
A

L

NL
Rotation
(degrees)

Translation
(meters)

Rotation
(degrees)

Translation
(meters)

10 1.9796 0.0483 0.0132 0.0053
20 1.2006 0.0288 0.0158 0.0050
30 0.8901 0.0216 0.0169 0.0051
40 0.7103 0.0179 0.0172 0.0050
50 0.5741 0.0150 0.0176 0.0051

R
A

N
SA

C Niter
Rotation
(degrees)

Translation
(meters)

Rotation
(degrees)

Translation
(meters)

100 1.1922 0.0376 0.0009 0.0007
1000 0.7270 0.0202 0.0009 0.0008
10000 0.5545 0.0127 0.0010 0.0008

the reprojection of the 3D planes and lines on the fisheye image after the calibration.
We also test the performance of the automatic line-matching via RANSAC (Section

3.4.1.3) compared to manual matchings. For that, we only consider as correspondence
candidates those pairs of lines with a relative rotation below 5◦ (i.e.: |n ·v| < cos((90−
5) ∗π/180)) and a relative translation of 10 cm (i.e.: |n ·p| < 0.1), where we have used
the identity as the initial estimation of the relative pose, obtaining a total of NL = 152
candidate line matches. Notice that this type of heuristic filtering of candidate corre-
spondences may be applied to any system where we have some rough information about
the sensor set-up. We apply RANSAC to remove outliers and perform the calibration,
whose results are shown in the lower part of the Table 3.3. We can see that the automa-
tic approach achieves better accuracy in comparison to the case with manually selected
correspondences.

3.4.4.2.2. KINECT CALIBRATION: RGB TO DEPTH

In this case we show the performance of our calibration system using images from
the NYU2 RGB-D public dataset [Silberman et al., 2012]. This dataset is thought to
be used in segmentation tasks instead of calibration, so all images are from common
indoor scenes (e.g. living rooms, kitchens, offices). A few examples of the line and
plane extractions are shown in Figure 3.10. We use the provided parameters of extrinsic
calibration of the camera Kinect as ground truth to compare our results. The Kinect has
a relative pose from the depth camera to the RGB camera close to the identity, with a
translation in the X axis of around 2.5 cm. We use the identity as initial rotation matrix,
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with initial translation equal to zero.
For the experiment we use a recorded sequence in a study room, which was one of

the less cluttered (third image in Figure 3.10). We use the automatic line-matching with
prefiltering of 0.5◦ for the rotation and 5 cm for the translation, obtaining an initial set
of 2229 line-matchings. The RANSAC returns 328 inliers, for which in the optimization
we got a rotation error of 0.7578◦ and a translation error of 1.27 cm (the translation
result in X is 3.16 cm). The residuals of the optimization are very low (under 10−5 for
the rotation and the translation).

We can consider these results satisfactory considering the difficulty of using images
from an external dataset which was thought for another task. In particular, this dataset
has very high levels of clutter which introduces many outliers in the set of line corre-
spondences. Besides, many of the useful line correspondences are from far distances,
where the plane extraction is less accurate due to the higher levels of noise from the
depth camera. Other methods achieve better accuracy (such as [Herrera et al., 2012]),
but they need to build a calibration pattern and capture images for this specific purpose.

3.4.4.2.3. RGB TO DEPTH WITH NON-OVERLAPPING FOVS

In this experiment we have used an omnidirectional camera rig formed by 8 Asus
Xtion Pro Live cameras arranged in a radial configuration, see Figure 3.13b. For this
particular experiment we only use two adjacent cameras from the rig to calibrate the
RGB of one of the cameras to the Depth of the other. Adjacent cameras have a relative
rotation of 45◦, which we use as initial estimate of relative pose, and a relative translation
of less than 10 cm.

The average value of the residuals after the optimization for different numbers of
line correspondences (NL) are shown in Table 3.4 (columns 2-3). As in simulation, we
observe that a higher number of line correspondences generally improve the results in
both rotation and translation. Such improvement stabilizes after a few tens of lines, with
a similar trend as the simulation above.

In order to evaluate the accuracy of the system it is desirable to have the ground truth
of the calibration of our camera rig. Since this is not available, we employ a big planar
checkerboard in a way that each camera observes the portion of the checkerboard not
visible by the other camera to evaluate the accuracy of our calibration. First we perform
a qualitative evaluation by visualizing the image stitching together with the point cloud
reconstructed after calibration from different perspectives (Figure 3.14), showing the
consistency of the different views. For a quantitative evaluation, we extract the 3D points
of the square corners from the checkerboard and place them into the same reference
frame given by the calibration (as it is commonly done for intrinsic calibration [Herrera
et al., 2012, Perez-Yus et al., 2016a]). Then, we measure the distance of the corners
between both cameras to compare them to the real measurements. We compute the
average distance between the most distant corners for each row. The average size of the
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FIGURE 3.14. Above: Visual evaluation of the RGB to depth camera calibration with a checkerboard with
the point clouds reprojected to a common reference frame (general and lateral views). Below: a panoramic
reprojection of the 3D points where we can see the checkerboard’s pattern continuity.

checkerboard squares is of 118.3 mm in the calibrated images, which is similar to the
real dimension of 120 mm. We can also estimate the plane equations from each side
and compare angles of their normals and the differences in distances to the origin. We
obtained an angular difference of 1.7◦ and a distance difference of 2.4 mm.

3.4.4.2.4. OMNIDIRECTIONAL RIG OF 8 RGB-D CAMERAS

In this experiment we calibrate the relative positions among all cameras from the
camera rig shown in Figure 3.13b. Since the cameras have an approximate vertical
FOV of 45◦, the eight camera rig achieves an horizontal FOV of 360◦. We calibrate
this rig following Section 3.4.2.3. Table 3.4 (columns 4-5) shows the residuals of the
optimization according to the number of correspondences extracted between pairs of
adjacent cameras (e.g. NL = 10 corresponds to 10 correspondences per pair and 80
for the full rig). A comparison with the two-camera case reveals that the residuals are
smaller because of the global optimization.

In this case we cannot obtain any ground truth, so we evaluate the accuracy quali-
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TABLE 3.4. Residual errors in the extrinsic calibration of an RGB camera to a depth camera experiment and
the omnidirectional RGB-D camera rig for different number of line correspondences.

RGB to Depth no overlap Omnidirectional RGB-D rig

NL

Rotation
residual
(degrees)

Translation
residual
(meters)

Rotation
residual
(degrees)

Translation
residual
(degrees)

10 0.0882 0.0319 0.0378 0.0557
20 0.0849 0.0336 0.0354 0.0405
30 0.0632 0.0271 0.0267 0.0160
40 0.0553 0.0229 0.0205 0.0110
50 0.0489 0.0193 0.0211 0.0193

FIGURE 3.15. Panoramic views from two different scenes obtained with the 8 RGB-D camera rig. The views
have been obtained by reprojecting the 3D points transformed to a common reference frame with the relative
poses obtained following our multi-camera calibration method.

tatively by visual verification. The different RGB images are stitched into a panorama
by projecting the individual 3D point clouds transformed to a common reference frame.
Ideally, the images should merge seamlessly for a good calibration. In Figure 3.15 there
are two examples of our image stitching, where it can be observed that the relative po-
sitions are well recovered. Compared to [Fernandez-Moral et al., 2014], which uses the
same camera rig, we got better results in the image stitching. The main reason for that
is that we use information coming from the color camera and not only depth.
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3.5. DISCUSSION

In this chapter, we have addressed one of the main limitations that conventional
RGB-D cameras usually have: the narrow field of view. To overcome this limitation,
first we presented a new hybrid camera system composed of a depth sensor and a fisheye
camera. Many applications could benefit from such configuration, including navigation,
SLAM or object detection. The fisheye provides wide field of view while depth provides
certainty and scale. However, as a consequence of its novelty, none of the existing
methods of calibration can be directly applied to this system. Thus, we have proposed a
method which combines state-of-the-art works for this purpose. The method was tested
with real images showing promising results in terms of accuracy.

Additionally, in order to provide a more general solution, we developed a novel
procedure to calibrate different combinations of range and conventional cameras based
on lines. In contrast to previous alternatives, we solve the problem for sensors systems
without overlapping FOVs, our solution is considerably easier to apply, it does not have
unobservable parameters and it allows to calibrate different sensor combinations with
reasonable accuracy. We also present an observability analysis of the problem, providing
relevant information regarding the number of observations necessary for our method to
perform properly. Our experiments in simulation and real multi-camera systems prove
the validity of the method and its applicability to real cases. In particular, we successfully
calibrate the aforementioned hybrid camera system with fisheye and depth camera, and
a camera rig with 8 conventional RGB-D cameras.

In the following section we introduce the first method that takes advantage of the
hybrid camera system presented in this chapter. In particular, the combination of large
field of view and 3D perception is used to extract full-scaled models of the layout of the
room.
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4
SCALED LAYOUT RECOVERY WITH WIDE FIELD

OF VIEW RGB-D

In this chapter, we propose a method that integrates depth and fisheye cameras to obtain a
wide 3D scene reconstruction with scale in one single shot. With this system, whose calibration
has been addressed in previous chapter, we have a portion of the scene with shared field of view
that provides simultaneously color and depth. In the rest of the color image we estimate the depth
by recovering the structural information of the scene. Our method finds and ranks corners in
the scene combining the extraction of lines in the color image and the depth information. These
corners are used to generate plausible layout hypotheses, which have real-world scale due to the
usage of depth. The wide angle camera captures more information from the environment (e.g.
the ceiling), which helps to overcome severe occlusions. After an automatic evaluation of the
hypotheses, we obtain a scaled 3D model expanding the original depth information with the wide
scene reconstruction. We show in our experiments with real images from both homemade and
commercial systems that our method achieves high success ratio in different scenarios and that
our hybrid camera system outperforms the single color camera set-up while additionally providing
scale in one single shot.
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4.1. INTRODUCTION

One of the most important topics in computer vision and robotics has been to per-
ceive the 3D information from the scene. The recent advent of consumer RGB-D ca-
meras has caused a great impact in the field, since having color and depth information
synchronized in one single shot is very appealing. Unfortunately, these devices usu-
ally have a field of view (FOV) too narrow for certain applications, and it is necessary
to move the camera in order to capture different views of the scene. That is often not
easy to achieve when cameras are attached to systems with limited mobility and requires
using SLAM algorithms or additional sensors to maintain the system well localized.

Here, we propose to use a color camera with wide FOV to extend the depth informa-
tion in a hybrid camera configuration composed by a depth and a fisheye camera. The
FOV of a fisheye is over 180◦, in contrast with the usual FOV of 43◦× 57◦ of consumer
depth cameras (Figure 4.1a). Once the cameras are calibrated, the system is capable
of viewing over a hemisphere of color information where the central part of the image
has also depth data (about 8.7% of the total number of pixels, as shown in Figure 4.1b).
One can think of this configuration inspired in the vision of the human eye, where the
central part (fovea) provides richer information than the periphery, and the field of view
is slightly over 180◦. To our knowledge, this is the first time this configuration has been
used, although the interest in such sensor pairing is clear in the recent Google’s Tango
project. Notice that, although our work uses a fisheye camera, the approach could be
extended to other kinds of omnidirectional systems.

In particular, we propose to extend the 3D information in one single shot via spatial
layout estimation. Our layout estimation method is based on line segments from the
fisheye image, and provides scaled solutions rooted on the depth information. As a
result, a final 3D scene reconstruction is provided (see Figure 4.1c). The 3D room
layout can be seamlessly merged with the original depth information to generate a 3D
image with the periphery providing an estimation of the spatial context to the central
part of the image, where the depth is known with good certainty. The collaboration
between cameras is bidirectional, since the extension of the scene layout to the periphery
is performed with the fisheye, but the depth information is used both to enhance the
layout estimation algorithm and to scale the solution.

A scheme of the whole algorithm is shown in Figure 4.2. In detail, the depth ca-
mera provides a region of the image with 3D data, from which an initial estimate of the
Vanishing Points (VPs) and 3D planes can be recovered. The VPs are used to retrieve
the scene orientation necessary to generate layout proposals. Here, we assume scenes
are from a Manhattan World [Coughlan and Yuille, 1999], meaning the world is orga-
nized according to three orthogonal main directions. This assumption holds for most
human-made scenarios, especially indoors. The 3D planes extracted are used to provide
scale, impossible to get otherwise with one single shot and no previous knowledge of
the scene. The layout is scaled by detecting the floor plane, however, we include a final
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RGB-D camera

Fisheye camera

(a)

(b) (c)

FIGURE 4.1. (a) Field of view of our proposed system composed by a Fisheye and an RGB-D camera. (b)
The depth information in the center is extended to the periphery combining information with the line segments
that we use to extract the spatial layout of the scene. (c) As a result we obtain a full-scaled 3D reconstruction
of the scene.

Line Extraction

Depth processing

Line classification

Vanishing point estimation

Corner extraction

Hypotheses generation

Evaluation and Scaling

Fisheye image

Depth image

Calibration

FIGURE 4.2. Block diagram of the main stages of the algorithm, starting with the initial Fisheye and Depth
images and finishing with the result of the scaled layout.
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scaling procedure whenever it is not in the image. Having scale has many advantages in
this type of methods which usually require several heuristics. For instance, tuning pa-
rameters can be grounded in reality. Depth information is also used to filter hypotheses
and reward line segments corresponding to intersections of planes.

The line segments from the wide image are classified according to the three Manhat-
tan directions. The horizontal lines are projected either to the floor plane or the estimated
ceiling plane to have the 3D segment position in the real world. Structural corners are
then looked for, by considering plausible and simple cases of line distribution. The
corners of the map are evaluated by our scoring function, and layout hypotheses are pro-
posed by the probability of these corners to occur in the real world, proportional to these
scores. Then, layout hypotheses are generated based on geometrically coherent wall dis-
tributions that do not contradict the initial depth information and the visible segments.
The algorithm is able to work even under high clutter circumstances due to the combina-
tion of lines from both floor and ceiling (visible because of using a large FOV camera),
but also because of our generation of Manhattan hypotheses that can estimate hidden
corners to complete the layout. For the evaluation stage we propose three alternative
methods whose performance is comparable to a well known state of the art method [Lee
et al., 2009] while being faster and more efficient.

Experimental evaluation is also provided, for which real images from two camera
systems have been used. In particular, we use our hybrid camera system from Figure 4.1
as well as a Google Tango device, showing also the potential of the method with com-
mercial devices. With both systems our proposal shows promising results about the
algorithm and the camera configuration. Our method gets good results even when only
a few hypotheses are drawn thanks to our corner detection approach. We also show how
having depth information helps notably in the layout extraction. In the following section
we provide a brief analysis of the state of the art before introducing our method.

4.2. RELATED WORK

One of the first attempts to recover 3D layout information of indoor environments
with single images was [Delage et al., 2006], which uses a Bayesian network model to
find the floor-wall boundary. In contrast, Lee et al. [Lee et al., 2009] use line segments to
generate layout hypotheses evaluating their fitness to an Orientation Map (OM). Using
lines has the advantage of producing results without relying on scene-specific properties
such as colors and image gradients. However, while some lines can actually include
structural information of the environment (e.g. intersections wall-wall or wall-floor),
usually most of them belong to clutter or are useless and misleading. To help with this
problem, some assumptions and some set of rules are usually proposed based on geome-
tric coherence. Usually the main assumptions are that all structures in indoor environ-
ments are composed by planar surfaces and that these surfaces are oriented according

100



4.2. RELATED WORK

to three orthogonal directions [Coughlan and Yuille, 1999]. This assumption holds for
most indoor environments, and it is almost unanimously used in the literature.

Other works try to simplify the problem by making assumptions about the structure,
e.g. assuming that the room is a 3D box, like Hedau et al. in [Hedau et al., 2009]. This
work uses a modified version of Geometric Context (GC) [Hoiem et al., 2007] instead of
the OM for evaluation of hypotheses which includes a separate clutter category. Similar
examples are [Schwing et al., 2012], which applies efficient structured prediction; [Ra-
malingam et al., 2013], which defines a catalogue of scene corners; and [Chang et al.,
2015], whose method is based on line consistency. Some other works perform this type
of ‘3D box’ reasoning while performing object detection [Hedau et al., 2010, Lee et al.,
2010,Del Pero et al., 2011,Del Pero et al., 2012,Choi et al., 2013,Schwing et al., 2013].
Doing so can have both tasks help each other (e.g, it is impossible for this room to have
a certain layout if there is a bed across the wall, or vice versa). However, using the ‘3D
box’ assumption does not generalize well in real world scenes, e.g. in corridors or en-
trances. Other approaches make use of video sequences instead of single images [Flint
et al., 2011, Furlan et al., 2013]. While introducing temporal consistency may be bene-
ficial in this task, we focus on getting better layout estimation with single image.

Deep learning has exploded in popularity in the last few years, and recently new
interesting approaches in layout estimation are appearing and dominating in challenges
such as LSUN Room Layout Estimation1. That is the case of [Mallya and Lazebnik,
2015], which has trained a fully convolutional neural network (FCNN) to extract the
informative edges of the scene (i.e. those corresponding to structural boundaries and not
coming from clutter), and then use those edges to extract the layout. Another similar
proposal with better results is shown in [Zhang et al., 2017]. Dasgupta et al. [Dasgupta
et al., 2016] propose an alternative method that trains a FCNN which returns the heat
maps of each surface class (walls, ceiling, floor). RoomNet [Lee et al., 2017] is an end-
to-end neural network which infers the type of room and the main keypoints to build
a layout (i.e. corners). These approaches show a great potential of these data-driven
techniques. On the other hand, the results are too tied to specific room configurations,
not being able to work on complex structures.

The methods mentioned up to this point have in common that all of them use images
from conventional cameras. As opposed to that, some recent works use omnidirectional
cameras such as catadioptric systems or fisheye cameras. Having greater field of view
has many advantages for this task:

• Larger view of the line segments appear in the image, so it is more likely to extract
the relevant lines of the scene.

• Allows to perceive better the orientation of the scene and thus a more robust va-
nishing point estimation.

• Provides better view of the ceiling areas, which usually have less clutter than the

1http://lsun.cs.princeton.edu/
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lower parts in indoor scenes.
• Larger portion of the room is captured at once, which provides wider or even

complete room reconstructions.

For example, in [Jia and Li, 2013], they use a fisheye camera to perform layout
retrieval, essentially extending the work from [Lee et al., 2009], but with wider FOV.
Lopez-Nicolas et al. in [Lopez-Nicolas et al., 2014] perform the closed layout reco-
very using a catadioptric system mounted in a helmet. Jia and Li [Jia and Li, 2015] use
360◦ panorama full-view images, which allows them to recover the layout of the whole
scene at once. Fukano et al. [Fukano et al., 2016] propose another method with pano-
ramas, solving the problem as a high order energy minimization. Similarly, PanoCon-
text [Zhang et al., 2014b] uses the same type of images to perform layout retrieval along
with a whole-room context model in 3D including bounding boxes of the main objects
inside the room. Pano2CAD [Xu et al., 2017] enhances PanoContext by considering not
only box-shaped types of room. In [Yang and Zhang, 2016] they propose an alternative
graph-based method for panoramas, combining superpixels and line segments. Cabral et
al. [Cabral and Furukawa, 2014] gets 3D information from structure from motion with a
panoramic image, and then generates the best fitting floor plan reconstruction.

In these approaches the recovered 3D layout is obtained up to a scale, unless previ-
ous knowledge about the scene is provided. Modern RGB-D cameras are able to provide
depth alongside color, which provides scale information in a single shot. However, most
of these cameras have a FOV too narrow for layout estimation. Recently, some alterna-
tives investigate extending the FOV of depth cameras using additional elements [Endres
et al., 2014, Iglesias et al., 2016, Tomari et al., 2012, Fernandez-Moral et al., 2014]. Ex-
tended discussion about these methods was provided in Section 3.2. Here, we propose
to use a depth camera alongside a fisheye in the same calibrated system, and perform
the depth extension via spatial layout estimation. Our proposal combines the advanta-
ges of omnidirectional cameras (recover wider information) and depth cameras (provide
3D certainty and scale). This is also a camera system that already exists in the market
(e.g. Google Tango) or can be easily reproduced with state-of-the-art calibration met-
hods [Perez-Yus et al., 2016a, Perez-Yus et al., 2018a] (see Chapter 3). No restrictions
about the shape of the room are considered, i.e. not only ‘3D box’ room shapes or layout
estimations tied to specific room configurations. No rigid assumption about the camera
pose in the scene is considered, since it is found automatically. Besides, no sequences
of images or complex machine learning algorithms are used in our method.

4.3. DEPTH AND FISHEYE IMAGES PROCESSING

In this section, we address the initial stages of our method, describing how we extract
the information we need to perform the layout recovery (Figure 4.2). First we explain
the calibration of the system, needed to map information from the depth camera to the

102



4.3. DEPTH AND FISHEYE IMAGES PROCESSING

fisheye camera (Section 4.3.1). Then we describe the line segment extraction algorithm
in the fisheye image (Section 4.3.2). To recover the Manhattan directions we use infor-
mation from depth (for an initial estimate) and lines (for the final values), as described
in Section 4.3.3. Then we perform plane extraction in the depth image to find 3D line
intersections and to enable scaled layout extraction (Section 4.3.4). At the end, the line
segments are classified according to its orientation (Section 4.3.5).

4.3.1. SYSTEM CALIBRATION

To map world points X from the depth camera reference frame D to the fisheye
camera reference frame F , it is necessary to calibrate the extrinsic parameters (R, t) and
the intrinsic parameters of both cameras (Figure 4.3). The extrinsic calibration of range
sensors to cameras is not a new issue, but most related works require manual selection
of correspondences or do not support omnidirectional cameras [Zhang and Pless, 2004,
Scaramuzza et al., 2007, Geiger et al., 2012]. To obtain the intrinsic parameters of the
fisheye camera, we need a specific method with an appropriate camera model [Puig et al.,
2012]. In particular, we choose the parametric camera model described by Scaramuzza
et al. in [Scaramuzza et al., 2006], which considers the omnidirectional image as a highly
distorted image with the distortion modeled as a polynomial. Using this polynomial it
is not necessary to provide a specific model of projection and works with all kind of
perspective, catadioptric or dioptric cameras. The points in the image x̂i = [ui, vi] and
the vector xi = [x, y, z] which points to the world point Xi are related following:

xi =

 x
y
z

 =

 ui
vi

f(ρi)

 =

 ui
vi

a0 + a2ρ
2
i + ...+ aNρ

N
i

 (4.1)

where the function f is the polynomial that models the distortion with coefficients
a0..aN and ρi =

√
u2i + v2i .

For the extrinsic calibration we have recently proposed two alternative methods suit-
able for our system [Perez-Yus et al., 2018a, Perez-Yus et al., 2016a]. While the one
in [Perez-Yus et al., 2018a] has the advantages of being more generalizable to other
camera systems and does not require to build a calibration device, we use [Perez-Yus
et al., 2016a] since it is more accurate for our camera system. This method is inspired
by [Herrera et al., 2012], adapted to the fisheye camera model from [Scaramuzza et al.,
2006]. During the calibration process, the intrinsic parameters of the depth camera are
also computed as defined in [Herrera et al., 2012] to improve the default parameters of
the system. The depth images as captured by the sensor are transformed to point clouds
using these parameters, and they are rotated and translated to the fisheye camera refe-
rence frame, following XF = R · XD + t. From now on, every computation is done
in that frame unless specified. A more detailed analysis of our calibration procedure is
presented in Section 3.3.
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FIGURE 4.3. Scheme of the system in a 3D world scene with the extrinsic calibration parameters R and t
and the correspondent depth and fisheye images.

4.3.2. LINE EXTRACTION IN THE FISHEYE IMAGE

For the line extraction in the fisheye camera we use the work from [Bermudez-
Cameo et al., 2015], which is compatible with central catadioptric and dioptric systems
with revolution symmetry. Unlike conventional cameras, 3D lines in space do not ap-
pear as straight lines in the omnidirectional images, but they are projected to curves
called line-images. In the schematic scene from Figure 4.3 we highlight a vertical line
segment on the sphere model and its projection in the fisheye image. The shape of these
line-images changes with the type of omnidirectional camera and its specific camera
configuration.

The projection of a line li in the 3D space can be represented by the normal of
the plane Πi defined by the line itself and the viewpoint of the system, with normal
nli = (nx, ny, nz)

>. The direction vector x of the points X lying on a 3D line l
satisfies the condition n>l x = 0. From [Bermudez-Cameo et al., 2015] and with (4.1),
the constraint for points on the line projection in image coordinates is:

nxu+ nyv + nzf(ρ) = 0 (4.2)

The line-images are non-polynomial and do not have conic shape. To extract them
is necessary to solve a minimization problem [Bermudez-Cameo et al., 2015]. In the
process, each line li is associated to a set of contour points, denoted by c(li), which are
the inliers of the constraint (4.2).
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4.3.3. ESTIMATION OF THE VANISHING POINTS

As mentioned before, we assume the scenes are organized according to three ortho-
gonal directions, {mx,my,mz}, that define the Manhattan reference frameM . Parallel
lines in the 3D world intersect in one single point in perspective images, called Vanishing
Point (VP). In omnidirectional images, line projections result in curved line-images, and
parallel lines intersect in two VPs. The directions M are correlated to the VPs in regard
that lines along these directions intersect in their corresponding VPs. Thus, we refer
indistinctly to the computation of M and the VPs from now on. We estimate the VPs
to classify lines and planar surfaces from the depth information according to the three
Manhattan directions.

There are previous approaches to obtain the VPs from omnidirectional images [Bazin
et al., 2008]. However, we propose a method to extract the VPs taking advantage of
both cameras with a two step optimization problem. Depth information is usually more
robust, but less accurate than RGB information. Using fisheye images typically obtain
a more accurate VP solution, but the problem may be unable to converge if the initial
solution is not good enough. Besides that, a joint optimization is problematic as it needs
to weight both terms appropriately. Experiments showed that our two-stage optimization
procedure performs well without significant extra computational cost.

To compute M , we define a 3 × 3 matrix M that has the three Manhattan directi-
ons by columns, i.e. M = [mx,my,mz]. The initial solution of M is set as a tri-
vial three orthogonal vector base (M = I3×3). The variables to optimize are the roll-
pitch-yaw angles (α, β and γ) that form the rotation matrix Rα,β,γ that after the opti-
mization process should orient the vector base according to the Manhattan directions,
M = Rα,β,γ · I = Rα,β,γ . All optimizations are performed with the Levenberg-
Marquardt algorithm.

4.3.3.1. INITIAL ESTIMATE WITH DEPTH INFORMATION

The first step is to get the 3D normals of the points in the cloud. The normals nXi
of

every point Xi (Figure 4.3) can be estimated using the method from [Rusu and Cousins,
2011]. To reduce computation time, the cloud can be previously down-sampled (e.g.
with a voxel grid filter). In Manhattan scenes, it is likely for a large amount of points to
have normals oriented in these directions. Based on this, the vector base is rotated until
the angle between the normals of as many points as possible and one of the three vectors
from the base is minimized. The minimization problem to retrieve M is formulated as
follows:

arg min
α,β,γ

Nx∑
i=1

min
(∣∣∣arccos(R>α,β,γ · nXi)

∣∣∣) (4.3)
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(a) (b)

FIGURE 4.4. (a) Planes from depth classified according to the Manhattan directions (red in mx, green in
my , blue in mz), initial extracted vanishing points, horizon line (white dotted line), and 3D intersections in
yellow lines. (b) Line-images classified with their contours in white and the vanishing points after the second
optimization.

where Nx is the number of points from the cloud. The product (R>α,β,γ · nXi
) gives

the cosine of the normal with respect to each one of the directions, from which the min
function only takes the smallest one of the angles in absolute value. The columns of the
final rotation matrix Rα,β,γ are the three Manhattan directions M. An example where
the points have been classified according to their normals and with the correspondent
VPs is shown in Figure 4.4a.

4.3.3.2. FINAL ESTIMATE WITH LINES IN THE FISHEYE IMAGE

In this second stage, we use as seed the current value M from the previous optimiza-
tion. The vector base is now rotated until the angle between the normals of as many lines
as possible and one of the three vectors from the base is as close of being orthogonal as
possible. This is based in that, by definition, the normal nl of every line li is orthogonal
to the direction of the line in the 3D world, and therefore, if a line follows the Manhattan
direction mj , then n>li ·mj = 0. The optimization problem is formulated as follows:

arg min
α,β,γ

Nl∑
i=1

min
(∣∣∣R>α,β,γ · nli

∣∣∣) (4.4)

where the initial values of α, β and γ are the values returned from the first minimization
and Nl is the number of lines in the fisheye image. In Figure 4.4b there is an example
where the line-images that support each direction have been colored accordingly.

Our convention is to denote my the column whose vector is closest to the gravity
vector given an intuition of how the camera is posed (pointing to the front, slightly down-
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wards). We choose mz to be the column pointing to the front and leaving mx orthogonal
to the previous two. The VPs are the points in the image that result of projecting rays
following the Manhattan directions according to the intrinsic parameters (Section 4.3.1).

4.3.4. DEPTH INFORMATION PROCESSING

In this stage we start from the registered point cloud and extract planes (Section 4.3.4.1)
and we determine if the floor is present in the image and provide a final transformation
from camera pose to oriented scene pose (Section 4.3.4.2).

4.3.4.1. PLANE EXTRACTION

The points from the point cloud X are classified depending on the orientation of their
normals nX in the three orthogonal classes, given a certain angular threshold. For each
class we perform a RANSAC for planes to recover its plane equations. It can happen that
some of these plane equations have inliers in different surfaces separated in space (e.g.
wall planes at each side of an open door). To avoid that and recover each separate planar
patch instead, a 3D clustering is then performed for each plane to recover the planes P
in the image (Figure 4.3). Each plane is defined by its normal nP and distance to the
origin X0 so that any point X belongs to a plane if n>P ·X +X0 = 0.

4.3.4.2. FLOOR DETECTION AND SCENE POSE

In this work we assume the floor and ceiling are unique and symmetric. Among
the horizontal planes (i.e. with normal nP = my), the lowest one (i.e. highest X0

value below the horizon) is initially chosen as floor plane (Pfloor). Then we verify if
there are a significant amount of points below that plane (considering a threshold due to
noise): if there are points below the Pfloor then it is not a valid floor plane, but other
structure (such as a table). When the floor plane is discarded or not found, a virtual
P ∗floor with normal equal to my and distance to the origin X0 = 1 is created to continue
the execution of the algorithm normally. At the end, the rest of the planes are used for
scaling (see Section 4.4.4).

We compute the transformation matrix MTF ∈ SE(3) that transforms 3D points
from the fisheye reference frame to the Manhattan reference frame. To compute MTF

we create its counterpart FTM with rotation part the Manhattan directions (M) and the
translation vector

[
0, XF

0 , 0
]>

, where XF
0 is the height of the camera with respect to the

floor. Then, MTF =F T−1M .
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4.3.5. CLASSIFICATION OF LINES

Those lines li whose minimum angular distance to their closest Manhattan direction
mj is below a threshold θth are classified as lines in that direction Lj :∣∣∣](nli ,mj)−

π

2

∣∣∣ < θth → li ∈ Lj j = {x, y, z} (4.5)

where ] indicates the angle between its two vector arguments. An example of lines
classified is shown in (Figure 4.4b).

The horizon line is the line-image lH corresponding to the normal nlH = my (drawn
in dotted white line in Figure 4.4). Lines oriented in mx and mz are classified as upper
lines (L) when they are above horizon, and lower lines (L) when they are below. Lines
oriented in my (Ly) are classified as long lines when they have contour points above and
below the horizon.

Some lines correspond to intersections of 3D planes extracted from the depth image.
In order to detect such correspondences, we compute the 3D intersection lines of wall
planes with the floor plane and between walls, that we callL3D. When there are two con-
secutive wall planes of the same orientation, the line of the border is computed instead.
An example is shown in Figure 4.4a, where all L3D have been drawn in yellow. Every
3D intersection line l3Dj can be projected to the fisheye image and have its line normal
computed (n3D

j ). To perform the association, we evaluate the angular distance between
their normals, and choose the closest if the angular distance is below a small threshold
θth: ∣∣∣](nli ,n

3D
j )
∣∣∣ < θth → li ∈ L3D (4.6)

Those lines supported by 3D evidence have more relevance when generating layout
hypotheses. To refer to these lines we use the boolean function λ(li) defined as:

λ(li) =

{
1 if li ∈ L3D

0 otherwise
(4.7)

4.4. LAYOUT ESTIMATION

To extend the depth information to the periphery, we look for features in the fisheye
image that allow us to draw coherent layout hypotheses. We choose corners, i.e. points
of intersection of three alternatively oriented structural planes in the 3D world, manifes-
ted in the image as intersections of lines. In Section 4.4.1 we describe how the corners
are detected and scored for the next stage: the generation of layout hypotheses, explai-
ned in Section 4.4.2. Finally, we deal with the evaluation process in Section 4.4.3 and
the final global scaling (which is to be applied when the floor has not been found) in
Section 4.4.4.
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4.4.1. CORNER EXTRACTION

We call corner (C) in this context to the physical intersection of two walls and floor
or ceiling. The junctions between these structural planes often produce detectable line
segments in an image, whose intersection produces a corner detection. However, not
all line intersections are actual corners, and not all actual corners have detectable line
segments (e.g. occlusions or not enough contrast in the image).

To address this issue, first we translate the data from pixel space to 2D metric space
by creating a floor plan projection of the lower lines (Section 4.4.1.1). Then we estimate
the height of the ceiling and do a similar procedure with the upper lines (Section 4.4.1.2).
We define the types of corners we detect in Section 4.4.1.3, covering all plausible ca-
ses with a minimum set of lines. At the end we describe how we score the corners in
Section 4.4.1.4 to reward corners formed by more lines, longer lines, less distance from
the lines to the intersection point and lines coming from 3D plane intersections.

4.4.1.1. FLOOR PLAN PROJECTION

The line segments from Section 4.3.5 represent just a projection, whose depth is
unknown (except for those li ∈ L3D). From previous steps, we have the 3D location
of at least one structural plane from the depth data (the floor plane Pfloor). We use
that plane to project all the lower lines and place them in a scaled 2D floor plan of the
scene, we call XZ-plane. Notice that, in the cases the floor plane has not been found
the algorithm continues with the virtual floor plane P ∗floor normally. In those cases, the
scale is lost in the process and it is recovered afterwards (Section 4.4.4).

We can get the ray emanating from the optical center to every contour point of every
lower line Lx and Lz and intersect them with the Pfloor in 3D (Figure 4.5). With the
transformation MTF , we can transform these points from the camera reference frame F
to M , with the Manhattan directions and origin at the floor level. If we plot the transfor-
med points in the axis x − z, we can get a 2D floor plan of the contours with scale (the
XZ-plane in Figure 4.5). Notice also that we naively projected all lower lines, unaware
if they actually belong to the wall-floor junction or to clutter, since it is impossible to
know with the information we have. Further stages will choose the lines which most
likely belong to the real junctions.

With the points now in this 2D projection, we define the angle of a point, α(Xi), as
the central angle of the arc between−z and the radius from the origin to Xi, as shown in
Figure 4.5. Similarly, we compute the angle of a line, α(li), as the central angle between
its end points. In the Figure 4.5, α(l1) = α(X2) − α(X1). Note that these angles are
defined not only by the value of the angle itself, but also by their starting and ending
points. To extract the value of the angles we define the operation 〈•〉 that returns a
numeric value. For instance, 〈α(X1)〉 = 100◦ and 〈α(l1)〉 = 40◦ in Figure 4.5. Vertical
lines Ly are a special case only defined by a single angle α(Ly) and thus 〈α(Ly)〉 = 0.
These definitions will be helpful in next stages.
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FIGURE 4.5. Projection of the lower line segments of the image to the Pfloor in schematic 3D view and the
resulting XZ-plane. Definition of angles of a point, α(X), and angle of a line, α(l).

4.4.1.2. CEILING PLANE PROJECTION

Similarly to the previous section, to get the ceiling plane projection, the rays traced
from the optical center to the contour points of the upper lines must be intersected with
the Pceil. Since we consider floor and ceiling unique and symmetric, we know that the
normal of the ceiling plane will be the same as the floor normal, but the distance to the
origin is still unknown. To estimate the height of the ceiling (Hceil) we assume that,
in the XZ-plane view, wall-floor (lj) and wall-ceiling (li) intersection segments of the
same wall must be coincident. We can generate a Pceil at an arbitrary height, compute
the 3D intersections of the projection rays and evaluate how well the contours from upper
segments c(li) coincide with contours from lower segments c(lj) in the XZ-plane. In
Figure 4.6 there is an example with three different Hceil. H1 is too small and H3 too
big, so the segments of the floor do not match the segments of the ceiling in the XZ-
plane. H2 is the best one as contours from both planes match perfectly. Mathematically,
∀li ∈ L and ∀lj ∈ L, we express the overlap in two ways:

• Contour overlap. Denoted by c(li) ∩ c(lj), determines the number of contours
overlapping (i.e. in the 2D plane, contour points from ceiling and floor that are
closer than a certain threshold).

• Angular overlap. Denoted by α(li) ∩ α(lj), determines the shared angle of the
two lines given the definitions from Section 4.4.1.1.
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FIGURE 4.6. Projection of the upper line segments to three virtual ceiling planes (Pceil) at different Hceil.
The chosenHceil is the one with highest angle coverage of overlapping line segments in the XZ-plane (H2 in
the example).

Then we propose the following optimization problem:

arg max
Hceil

〈A(Hceil)〉 (4.8)

where A(Hceil) is the Angular Coverage (AC) of the overlapping contours as a function
of Hceil. Here we introduce the concept of Angular Coverage (AC), denoted by the
function A(•), which returns the union of central angles around the origin that satisfy
certain condition. In this case, the condition is having contour overlap of ceiling and
floor line pairs, and A(•) is a function of Hceil. Mathematically:

A(Hceil) =
⋃

(α(li) ∩ α(lj)) · (c(li) ∩ c(lj) > 0) (4.9)

∀li ∈ L,∀lj ∈ L, where (c(li) ∩ c(lj) > 0) returns 1 when there is contour overlap and
zero otherwise. Higher 〈A(Hceil)〉 means that the lines whose contours are overlapping
in the XZ-plane cover a greater angular area. In Figure 4.6, we can see the value of A of
the three different Hceil, where it can be visually appreciated why H2 is the best result.

In [Perez-Yus et al., 2016b] we proposed an alternative method considering uniquely
the number of contours overlapping. However, we found that the angular coverage
method produces better results since they reward a consensus distributed in the scene
instead of concentrated areas with many contours.
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FIGURE 4.7. Real example of contour projection of lower lines (blue) and upper lines (red) to the XZ-plane
(a) and 3D point cloud (b). The small circle represents the position of the camera system.

One of the advantages of working with scaled distances is that we can set reasonable
valid ranges of heights to constrain the values of Hceil. For example, we can set a
default Hceil of 2.5 meters and a span of 2 to 3 meters to look for the Pceil, which is
very reasonable for indoor environments. If the problem has no solution between the
valid range it could be due to clutter, undetected lines or absence of ceiling in the image.
Then the algorithm goes on considering the default Hceil. When the floor plane has
not been found, the range of height values will not be constrained to the default values,
which makes the system more prone to mismatches. In Figure 4.7a the XZ-plane with
the contours of both lower and upper lines from the case from Figure 4.4b is shown.
Those lines are plotted in 3D in Figure 4.7b over the initial point cloud, so we can see
how the lines extend beyond the FOV of the RGB-D camera.

4.4.1.3. CORNER DEFINITIONS

Line segments are the main piece of information we use to create layout hypothe-
ses. However, we do not know whether they come from actual wall-ceiling or wall-wall
intersections, or from other elements of the scene. In the literature there are many ap-
proaches to tackle this problem. For instance, [Lee et al., 2009] defines a corner when
a minimal set of three or four line segments in certain orientations are detected. This
requires having uncluttered environments where most line segments can be perfectly de-
tected. However, in the real world, occlusions or bad lighting conditions may cause some
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FIGURE 4.8. (a) Graphical definition of a corner C: the corner point C, its line segments (lx, ly , lz) and the
dist and leng functions used in our scoring method. (b) Four different types of corners we consider. Detected
line segments as black thick lines and corresponding extracted corners as yellow circles.

contours to remain undetected. Other works such as [Lopez-Nicolas et al., 2014, Jia and
Li, 2015] tend to give more emphasis to vertical lines and the extension of their segments
in their corner definition, which may be problematic for the same reason as before. In a
Manhattan World, two line segments are enough to define a corner.

An example of a corner is shown in Figure 4.8a, where the corner’s 3D point, de-
noted as C, is the intersection of the floor plane (Pfloor) and two walls (Wx, Wz) with
respective planes PWx and PWz . The corner from Figure 4.8a represents a fully visible
corner, since all three line segments and corner point can be extracted. However, there
are some corners which are partially visible, meaning one of the walls and thus its in-
tersection line segments are occluded by the other visible wall. There are also hidden
corners, which have the corner point hidden by own occlusions of the walls from the
room. All box-shape methods consider that all corners in the scene are fully visible
corners (if they are inside the image). Our method aims to find all type of corners. We
propose to use more relaxed requirements to define corners, using just one or two line
segments, and then use a scoring function to select the most salient ones and favor their
appearance in the layout hypotheses generation. In this section we detect the visible
ones, and the hidden ones will be estimated while drawing hypotheses.

For the detection of visible corners, we consider four cases depending on the classi-
fication of the segments involved (Figure 4.8b):

1. Horizontal intersections (Lx−Lz): These are by definition fully visible corners,
formed by two lines in x and z respectively. If there is a ly passing through the
intersection point C, the contour points of ly are scaled by assuming they share
the same wall as lx (i.e. 3D plane PWx ) or lz (PWz ). If the scaled 3D contours of
ly have heights between 0 and Hceil the vertical is included to improve the score
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of the corner.

2. Vertical intersections (Lx−Ly or Ly−Lz): These intersections could represent
partially visible corners or fully visible corners with an undetected line. As with
the previous case, the segment ly is scaled to verify plausibility.

3. Long vertical lines (Ly): These are added to include cases of misdetections of
horizontal lines. Only the ones crossing the horizon are considered as they are
more likely to be wall to wall intersections instead of clutter. The projection of
their topmost contour point to the Pceil or the bottommost one to the Pfloor is
considered, depending on which one makes the scaled ly not exceed the height of
the ceiling.

4. Long horizontal lines (Lx or Lz): These are added since sometimes there is
no visible or detected corner at the farther end of a corridor or a big room. We
consider the possibility of long horizontal lines to intersect with the horizon. Ho-
rizontal lines are considered long if their length is over a threshold (we set 0.5
meters). To keep layouts of reasonable size we restrict the distance of intersection
to a maximum of DH (in particular we set DH = 10 m).

These simple types of corner intersections include all necessary cases to build a
layout of any shape. We call direction (d) of the corner the position of their horizontal
segments in the XZ-plane with respect to the corner point. For example, in the x axis,
a direction dx(Ci) = +1 means that the corner Ci has the lx defined from the corner
point to the positive direction of the x axis. A corner with no lx has dx(Ci) = 0.
Similar definitions for dz(Ci). We also define the angle of a corner as the angle of
the corner point α(Ci) as well as the angle coverage of a corner α(Ci) as the central
angle of the arc between the minimum and the maximum angle of the contour points
from lx or lz , i.e. α(Ci) = max(α(c(lx, lz))−min(α(c(lx, lz)). Two simple examples
of corners showing these parameter values are shown in Figure 4.9a. In the case of
horizontal intersections, to evaluate if a line ly belongs to the corner, we check if the
angle difference |〈α(Ci)〉 − 〈α(ly)〉| < θth.

4.4.1.4. CORNER SCORING

In a natural scene highly populated with line segments, the amount of line intersecti-
ons and thus corner detections can be very high. Therefore, when generating hypotheses
it will be difficult to find the best ones. To avoid excessive amount of corners, a solution
is applying thresholds, but it is hard to tune the parameters correctly to make it work in
all cases. Instead, we perform a scoring of corners to keep those with positive score and
make high scored corners more relevant in the generation of hypotheses.

In particular we want to reward corners formed by line segments of great length and
low distance from the segments to the corner point. To examine length and the proximity
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FIGURE 4.9. (a) XZ-plane view of two example corners showing their angles α(Ci), angle coverage α(Ci)
and directions dx and dz regarding the position of their line segments with respect to the plane axis. (b)
Relevant corners in the scene plotted over the fisheye image as yellow circles with diameter proportional to
their score.

between segment points, instead of using pixel distances, we reason in the 3D world with
metric distances. Pixel distance is misleading, as it is affected by how far the points are
from the camera, the perspective and the heavy distortion of the fisheye camera. Note
that it is also difficult to deal with distances in the 3D world when there is no scale
information available. With our system we integrate scale information in the process.

A corner C is defined by a set of Nl line segments, and its score SCj depends on the
number of lines and their respective score value Sli :

SCj = Nlj ·
Nlj∑
i=1

Sli (4.10)

Sli = (leng(li)− dist(li,C)) · (1 + λ(li)) (4.11)

where λ(li) is defined in (4.7), leng(li) measures the length of the line segment in me-
ters, dist(li,C) measures the distance of the closest point of the segment to the actual
intersection point C in meters (Figure 4.8a). Note that SCj computation includes a mul-
tiplication byNl to increase the score of corners supported by more lines. The line score
for the corners in the horizon case is modified:

Sli = leng(li) · (1 + λ(li)) · (DH > dist(li, c)) (4.12)

After the extraction of corners we keep those with SC > 0. To avoid redundant
corners, we merge those which are close to each other, have similar angle coverage and
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(a) Horizontal intersections (b) Vertical intersections

(c) Long vertical lines (d) Long horizontal lines

FIGURE 4.10. Projection of the corners to the 3D point cloud as pink spheres with the line segments that form
them, for each intersection case defined. Most relevant corners for the layout are outside the depth information
range.

116



4.4. LAYOUT ESTIMATION

the same corner directions. When doing the merging we pick the maximum score among
all corners involved. In [Perez-Yus et al., 2016b] we took the summation of the scores
instead. However, we found that it rewarded too much specific areas crowded with line
segments with no necessarily relevant corners. Finally, we assign a probability P to
corners C of occurring in the real world:

P(Ci) =
SCi∑NC
j=1 SCj

(4.13)

In Figure 4.9b there is an example of the 100 most probable corners represented
as yellow circles with radius proportional to their probability. In Figure 4.10 there are
corner results of a similar scene in a 3D point cloud, separated by the corner cases
defined in Section 4.4.1.3.

4.4.2. LAYOUT HYPOTHESES GENERATION

We define completely a layout with their corners and the height of the ceiling, L =
{C1..CNC

, Hceil}. The walls of the layout, W , are implicitly defined as the planes
connecting two consecutive corners with a height Hceil (thus, there are NC walls). Each
individual wall is noted as wj ∈ W and they are in practice used as virtual lines with
similar properties. Since we have made a floor and ceiling projection, we reason with the
position of the corners only in the 2D floor plan: corners are considered equally whether
they have been detected on the floor or the ceiling. As in most indoor environments the
level of clutter is higher in the lower part of the scene, having corners from the ceiling
allows to provide results in difficult environments.

To get our layout solution, we generate a set of hypotheses from where a last eva-
luation process will select the better one. To generate a layout hypothesis, we already
have Hceil and we just need to select the corners among the extracted set of corners
with SC > 0. Once a hypothesis L has been generated, with the relative position of the
camera to the scene MTF and the calibration of the system we have enough information
to build the complete 3D reconstruction of the scene.

In this section, first we present in Section 4.4.2.1 the conditions for a layout to be
geometrically valid. Then, we generate the layouts as described in Section 4.4.2.2. Ad-
ditionally, we introduce a pre-filtering procedure of corner connections to verify its plau-
sible association before start generating layouts (Section 4.4.2.3).

4.4.2.1. CONDITIONS FOR A VALID LAYOUT

To generate hypotheses we do not impose any condition about the shape of the scene
in order to provide valid solutions to any kind of indoor environment. However, we
consider a layout valid when it satisfies the next conditions:
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FIGURE 4.11. Examples of layouts that do not satisfy our conditions for a valid layout described in
Section 4.4.2.1. In each case, corners are numbered blue crosses and the camera viewpoint is the green circled
cross. In E the depth points and field of view in pink. In F1 and F2, line segments of the corners in red. In F2,
the view of the segments of corner 3 in yellow.

A. The walls must follow the Manhattan World convention: a wall directed in mx,
must be followed by a wall directed in mz , and vice versa.

A1. There must be no walls following other directions.

A2. Two consecutive walls must not have the same direction.

B. The layout must not have any non-consecutive wall intersecting another.

C. The layout must be closed, i.e. the wall sequence must end in the same point it
begins.

D. The camera must be inside the layout.

E. The layout must not contradict the information from the depth camera, i.e. there
cannot be a wall in front of the given depth map.

F. The layout must not contradict the information given by the line segments of the
corners, since they are considered directly visible.

F1. Each wall connecting two corners must be on their corresponding line seg-
ments, if any.
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FIGURE 4.12. Example of layout generation in the XZ-plane given pre-selected corners from our set (in blue,
with their respective red horizontal contours and a green circle when there is a vertical line). The camera
position is the green circled cross. Detailed explanation of the procedure is provided in the text.

F2. Walls are opaque, so they must not be in front of any line segment since that
would mean it is visible through the wall.

Note that, in Figure 4.11 we show respective examples of layout proposals that do not
satisfy each condition.

4.4.2.2. GENERATION OF LAYOUT HYPOTHESES

In the general case, our algorithm looks for a number of hypotheses by iterating
following these steps (note that the explanation of this section can be followed using the
graphical sample case from Figure 4.12):

1. Using the probability from (4.13), we randomly choose a number of corners from
the set to generate a hypothesis. As the view of the scene is not complete and we
do not impose any condition about the shape of the room, the number of corners
to select cannot be fixed, and therefore it must be randomly chosen every time a
hypothesis is generated. We believe a reasonable number of corners to draw is
between 2 and 5. In the example, we draw four corners.

2. The selected corners are ordered clockwise considering their angle α(C) as shown
in the Figure 4.12 (1).
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3. The walls from the layout are going to be created joining every corner with the
following one. The angle β between corners is observed to verify if the walls are
oriented according to the Manhattan convention (Figure 4.12 (2)):

• If it is closer than an angular threshold to 0, π2 , −π2 or π, then it is accep-
ted as valid as it is (case between corners 1 and 2 and corners 2 and 3 in
Figure 4.12).

• Else (angle between corners 3 and 4 in Figure 4.12), two additional corners
(a and b) are created as shown in Figure 4.12 (3).

4. In case two additional corners are defined, the generation of layout goes on with
consecutive corners in separate branches, as the cases (4a) and (4b) in Figure 4.12.

5. At any point the line segments composing a corner can invalidate a layout gene-
ration branch (condition F). For instance, in (4b) the wall from corner 3 to corner
b goes in direction −x, but there is a line segment that defines corner 3 in di-
rection −x as well that goes in opposite direction. Solution (4a) matches the line
segments from corner 3 perfectly.

6. Continue in every branch until the layout is closed (Figure 4.12 (5a)) or the solu-
tion is invalid (Figure 4.12 (5b)). It can be seen how the layout is completed by
defining an additional corner c as performed before, and no line segments contra-
dict the wall distribution.

A generated hypothesis has to satisfy the conditions mentioned in Section 4.4.2.1 or
could be discarded. To verify conditions D and E we can treat the set of corners as a
polygon and verify if the camera and depth points are inside it. For the depth points we
set a threshold to determine the minimum percentage of points to be inside the polygon.
To verify condition B we check the polygon does not self-intersect.

One of the keypoints of this method is that hidden corners can be estimated using the
Manhattan assumption, even if there is no visible evidence of the presence of the corner
in the image (e.g. in Figure 4.12 corners a and c were not detected but its definition
provides a valid closed Manhattan layout). This means that the algorithm can handle
heavy occlusions and still provide coherent results. Besides, whenever the information
from behind the camera point is not enough to provide closing points, we can assume
the walls extend beyond the field of view towards the rear vanishing point (following
−z) in order to keep our layout closed (condition C). For this operation we need to place
additional corners at the horizon, at a previously determined distance (DH = 10m in
our experiments), and watch if these solution do not break other rules. Note that when
we introduce additional corners to perform the rear extension it is to keep the model
consistent, but the final reconstruction only extends to where the field of view of the
fisheye camera reaches.

In Figure 4.13 there is an example of a layout hypothesis from the scene from Fi-
gure 4.9, similar to the one from Figure 4.12. In Figure 4.13a the original corners (in
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(a) Lines and corners found (b) Labeled result image
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(c) XZ-plane with layout (d) Depth image

(e) 3D views of the scaled reconstruction

FIGURE 4.13. (a) Layout hypotheses example with its original corners in yellow with their line segments
shown and the additional corners in light blue. (b) Colored wall-floor-ceiling distribution of the hypotheses.
(c) XZ-plane with the layout overlaid. (d) Corresponding depth map of the hypotheses with scale in meters.
(e) Different views of the corresponding 3D point cloud.
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yellow) and the line segments that define them have been displayed in the image along
with the additional corners (in light blue). The resulting wall distribution colored is
shown in Figure 4.13b. In these labeled images each surface orientation is colored dis-
tinctly (Red-Green-Blue for surfaces with normals in x-y-z). In Figure 4.13c the solution
has been plotted over the XZ-plane. As the XZ-plane is scaled and the Hceil have been
estimated we can generate a 3D depth map of the scene (Figure 4.13d). The depth map
can be used to recover the 3D point cloud of the complete layout, as it can be seen in
Figure 4.13e.

4.4.2.3. PRE-FILTERING OF CORNER CONNECTIONS

Given the considerations from Section 4.4.2.1, before start drawing hypotheses we
pre-filter the corners that can go with each other in the same layout. This process was not
performed in [Perez-Yus et al., 2016b], but has proven to help reducing the computation
time and providing better hypotheses. At the end of this process we obtain a matrix
M of NC × NC which relates every corner to each other and indicates if they can be
connected to each other with one wall, two walls (and thus introducing an additional
corner) or cannot be connected by any mean. Besides, if they can be connected with
two walls, we compute where should be the additional corner and if there is more than
one option. Since we enforce closed layouts, we also verify if a closing strategy in the
rear vanishing point can be created between two corners. Our filtering steps are the
following:

• Considering the quadrant the corners are located on the XZ-plane, there are some
detectable cases of impossible corners. For instance, a corner Ci in the {+x,+z}
quadrant cannot have dx(Ci) = −1 and dz(Ci) = +1 since that would mean lz
would be occluded by the wall of lx, which makes impossible for the segment lz to
be visible and therefore detected. Corners 1 and 3 in Figure 4.11 (F1) are impos-
sible corners by this reasoning, and should not have been considered to generate
hypotheses.
• Filter those corners close to each other, since we consider rooms with walls rela-

tively large. To check this we compute distances between corner points and apply
a threshold (we choose Hceil/10).
• Verify if they can be connected clockwise. This is the order we use to generate the

hypotheses, so it is only necessary to check corner connections one way.
• Compute the orientation of the walls with respect to the Manhattan directions to

verify if they can be connected with a single wall or two (condition 1).

– Single wall: if line segments are in the wall’s direction, they must be facing
each other (condition F1).

– Two walls: no shared angle coverage between corners (condition F2). Get
the two positions of the additional corners and discard those cases whose
walls do not satisfy conditions F1 and F2.
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• Look if there are closing strategies in case they are the first and last corners once
ordered with α. Check if their corner points have different signs in the x coordi-
nate (otherwise it would not satisfy condition D).

After the pre-filtering process, there might be some corners that cannot be connected
to any other, which are discarded. With matrixM, right after performing step 1 from
the generation of hypotheses we can quickly discard those cases of pseudo-randomly
chosen corners and pick other ones, instead of going through all the process avoiding
useless steps until finding that some condition is not met.

4.4.3. EVALUATION OF THE HYPOTHESES

To evaluate hypotheses we present three new methods and another adapted from
the state of the art (Orientation Map [Lee et al., 2009]). Using the orientation map
usually provides better results, but it requires the previous computation of the map itself,
which can be very time consuming compared to the other alternatives. In this work we
introduce an additional method not included in [Perez-Yus et al., 2016b] based on the
Angle Coverage concept introduced in Section 4.4.1.2. It clearly outperforms our other
two alternatives, being comparable to [Lee et al., 2009] while much faster. The following
sections will describe each separate method.

4.4.3.1. SUM OF SCORES (SS)

We define the score of a hypothesis as the sum of scores of the corners that have been
used to generate it. The additional corners defined to generate Manhattan layouts have a
score of zero.

4.4.3.2. SUM OF EDGES (SE)

The polygon defined by the corners of the hypotheses as vertices can be drawn on the
XZ-plane in order to choose the hypotheses which overlaps the most with the observed
contours, i.e. the layout Lk with a set of walls W k such that the value of c(li)i ∩ c(wj)
is maximum ∀li ∈ L,∀wj ∈W k.

4.4.3.3. ANGLE COVERAGE (AC)

In this case we draw the polygon in the XZ-plane and we compute the angular co-
verage of the layout (A(L)) similar to the process of Section 4.4.1.2, but considering all
line segments and wall lines instead of floor and ceiling lines. Mathematically:

A(Lk) =
⋃

(α(li) ∩ α(wj)) · (c(li) ∩ c(wj) > 0) (4.14)
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∀li ∈ L,∀wj ∈ W k, where w are the individual walls of the set W k of the layout Lk.
The hypothesis Lk with the highest angular coverage value 〈A(Lk)〉 is selected.

4.4.3.4. ORIENTATION MAP (OM)

It requires to build a reference image called orientation map [Lee et al., 2009], which
is an image whose pixels encode the believed orientation given the line segments for per-
spective cameras. To build that image we create a set of overlapping perspective images
from the fisheye image, apply the orientation map algorithm from [Lee et al., 2009] in
each one of them and finally stitch them back together to form an omnidirectional orien-
tation map. The evaluation consists in selecting the layout hypothesis that has better
fitness between pixels with the same orientation. To compute that fitness, we generate
for each hypothesis a labeled image such as the one Figure 4.13c.

4.4.4. SCALING OF HYPOTHESES

The layouts can be generated and evaluated as described above with no scale in-
formation. However, then the thresholds and parameters are harder to tune (e.g. no
valid height of the room estimation), and depth cannot be used to discard incoherent
layouts. Thus, the normal execution should include floor detection and scaling from the
beginning in order to obtain better results. Nevertheless, in the cases the floor cannot
be detected, we include a method to scale the layouts once generated, so that the height
range and depth information conditions can be verified.

To perform layout scaling from a hypothesis, we should have the hypotheses defi-
ned (L = {C1..CNC

, Hceil}). Then we can get a labeled image as the one shown in
Figure 4.13c. If we compare that image to the labeled image with the areas of the planes
obtained in the beginning, we should have an overlap between both labeled images in
wall surfaces with equal orientation. The labeled wall/labeled plane pair with highest
overlap would be used to provide the scale. The quotient between the distances to the
origin of the corresponding planes will reveal the scale. Thus, the corner points or obtai-
ned point cloud can be simply multiplied to that scale in order to get the whole scaled
3D reconstruction.

4.5. EXPERIMENTS

In this work, we use a novel camera system with fisheye and depth image. Many
datasets for indoor layout retrieval are usually based on conventional images, but not so
many on omni-images, and none combining them with depth. For the experimental eva-
luation we have collected our own set of images with two different devices (Figure 4.14):
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FIGURE 4.14. The two devices used to collect the data for our experiments. On the left, an RGB-D camera
(ASUS Xtion Pro Live) with an adjacent fisheye camera. On the right, the Google Tango Development Kit.

• Conventional RGB-D system with fisheye camera: A hybrid camera system
built and calibrated by ourselves [Perez-Yus et al., 2016a]. With this system we
have a dataset with 70 image pairs from indoor scenarios, including 23 from corri-
dors/entrances, 15 from four different bedrooms, 4 from a bathroom, 12 from two
living rooms, 4 from a kitchen and 12 from two small cluttered rooms. We have
manually labeled the 70 images of the dataset to provide a per pixel label of the
three main classes (walls in mx or mz and floor/ceiling).

• Google Tango: A tablet for developers with built-in depth sensor and fisheye. The
Tango technology is now available in commercial phones from well known brands
(e.g. Lenovo, Asus). We have taken several images from similar environments as
the previous device to test applicability of the method with commercial systems.

Quantitative detailed analysis is provided with the larger dataset from the first device.
Unless noted, this is the dataset we use in our experiments. In the following sections, we
analyze the performance of the corner extraction (Section 4.5.1) and the layout estima-
tion (Section 4.5.2), which are the most important parts of our algorithm. Additionally,
we provide some insight about using the proposed camera configuration in Section 4.5.3,
and more results using the Google Tango dataset in Section 4.5.4.

4.5.1. CORNER EXTRACTION

In this section we analyze the capacity of the method to extract the relevant corners
for the layout estimation, but also its limitations. Ultimately, the success of the system
depends on the good extraction of corners. While our layout estimation process allows to
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FIGURE 4.15. Examples of corner detections, represented by yellow circles, in four different scenes. In these
examples all the important corners have been found, plus some outliers.

introduce additional undetected corners, they are placed between corners that had been
extracted beforehand.

4.5.1.1. PERFORMANCE ANALYSIS OF CORNER EXTRACTION

In our method, we extract and rank the corners depending on their score, but for the
layout extraction we only keep the 100 better ranked corners. The first experiment analy-
zes how well the corners found with our method correspond to the real world corners. To
perform this experiment we have annotated the number of corners that should be found
in the image in order to provide the best layout solution (206 corners in total). Then, we
visually inspected if these corners are actually among the 100 best ranked corners. The
ratio of number of corners found over number of corners to find is of 191/206→ 92.7%.
All the important corners were found in 58 of the 70 images. This numbers are highly
satisfactory, since some of the corners not found can also be estimated during layout
hypotheses generation. In Figure 4.15 there are some cases where all the important
corners have been detected. We can also see how very often several corner detections
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appear around the same real world corner. This multiplicity is due to similar detections
from close lines corresponding to different objects (e.g. embellishments). There are also
some outliers (i.e. corner detections not corresponding to real world corners) that the
layout estimation process has to overcome.

Next, we analyze the main difficulties and causes of failure that the corner extraction
problem has, also showing some examples. Given that the basic elements to find corners
are the lines, missing some of them may be critical. The line extraction method requires
edges to be detected properly, which may not happen when there is low contrast in the
image, e.g. because of non-existent color shift, bad lighting conditions or motion blur.
Some of the reasons that harmed the results in some experiments are the following: in
Figure 4.16 (a-c) most lines in the ceiling were not detected and thus, the height of the
ceiling could not be obtained properly and some relevant corners are missing. Particu-
larly, in Figure 4.16c the illumination from the lamp itself casts a shadow that resembles
a wall-ceiling intersection. The opposite problem arises sometimes as well, i.e. lines
coming from textures (Figure 4.16d) or objects irrelevant for the task (Figure 4.16e)
provoke accumulation of misleading corners.

The ceiling plane may be wrongly obtained when fortuitous scene configurations and
line distributions occur. For example, in Figure 4.16f the rectangular rug resembles the
rectangular shape of the ceiling and thus the Hceil is such that makes the contour of the
ceiling and the rug overlap in the XZ-plane. In Figure 4.16g the wardrobe has parallel
lines that deceive the ceiling plane extraction as well. This is a problematic issue, since
it affects the layout proposals that combine corners from floor and ceiling (i.e. if the
ceiling plane is not right the corner intersection in the ceiling will not be exactly on top
of the intersection in the floor). Since we introduce depth information of the process,
the ranges for a valid Hceil are restricted to common ones (e.g. from 2 to 3 meters). In
Figure 4.16h we can see the previous case by removing the input from the depth camera:
the lines from the furniture and posters create a situation where the best ceiling plane
solution is very inaccurate. Providing scale and restricting the measurements to natural
ranges produces that even when the ceiling plane is not properly found, the value it takes
is not very far off the real solution. In average, the ratio of success of finding a ceiling
plane within a few centimeters error is about 80%.

Despite the aforementioned cases, most important corners are generally well ex-
tracted in our experiments. The majority of these problems are derived from the line
extraction method of our current implementation and not the method itself. More sophi-
sticated approaches of line detection in the vein of [Von Gioi et al., 2010] could be used
to improve the results. Additionally, some filtering methods could be used to remove
textures and highlight borders (e.g. [Zhang et al., 2014a]), even deep learning methods
have been used to detect only structural edges and ignore those from other objects or
clutter [Mallya and Lazebnik, 2015]. However, this line of research was out of scope for
this work, and instead we focus on developing a layout estimation method robust enough
to overcome the fact that not all corners are always detected.

127



4. SCALED LAYOUT RECOVERY WITH WIDE FIELD OF VIEW RGB-D

(a) Bad lighting (b) No color shift/bad lighting

(c) Misleading shadow (d) Highly textured surface

(e) Lines from objects (f) Bad ceiling detection with object

(g) Bad ceiling detection with (h) No depth information
parallel lines producing bad ceiling detection

FIGURE 4.16. Examples of corner detections damaged by scene conditions. The pink rectangle points at the
region where failure happens.
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4.5.1.2. TIME ANALYSIS OF CORNER EXTRACTION

In this work, the experiments were performed offline, in single-image and without
major effort in optimizing the implementation to make it able to run in real-time. Conse-
quently, we used the images at full resolution: fisheye image of 2560× 1920 and depth
image of 640 × 480. We annotated the time spent to perform all the operations inclu-
ding reading the images and the processes that ended up with a set of corners with the
pre-filtering of connections between them already computed. The times range from 8.17
to 24.58 seconds depending on the complexity of the scene (i.e. amount of lines and
planes) with an average of 15.45 seconds. However, testing the behavior on the Google
Tango dataset (fisheye image of 640×480 and depth image of 320×180) the times range
from 1.25 to 2.4 seconds, with an average of 1.63 seconds. We believe our system could
be implemented in real time by using smaller images and a more efficient programming
language for the task (e.g. C++ instead of Matlab).

4.5.2. LAYOUT ESTIMATION

In this section, we analyze quantitatively the results of the system regarding layout
estimation: from hypotheses generation to the evaluation and the final result. For this
we use the dataset of 70 images for which we have labeled the ground truth. Our ground
truth is the labeled images such as the one from Figure 4.13c, where each color repre-
sents a layout surface of different orientation. Since only the structural information of
the scene is to be extracted, in the tagging we ignore all the objects unless they co-
ver entire walls (e.g. wardrobes or bookshelves). We only extract single room layouts,
meaning that open doors are ignored during tagging phase as well. The measure em-
ployed is the percentage of pixels correctly tagged over the totality of pixels from the
ground truth, which we call Pixel Accuracy (PA). With that metric, we analyze the qua-
lity of our solution depending on the number of hypotheses drawn and the evaluation
method.

4.5.2.1. NUMBER OF HYPOTHESES

This experiment analyzes how the PA changes depending on the number of hypothe-
ses to draw with the four evaluation methods presented. The objective of this experiment
is to observe the behavior and determine how many hypotheses we need to have the best
results. We have registered the mean PA obtained from 5 to 50 hypotheses by intervals of
5 and from 50 to 200 by intervals of 10. The resulting graph is shown in Figure 4.17. At
a glance we can see two distinct trends: The Sum of Scores (SS) and Sum of Edges (SE)
evaluation methods present lower score and a small decline through iterations, whereas
Angular Coverage (AC) and Orientation Map (OM) rise briefly at the beginning until
they reach a steady maximum.
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FIGURE 4.17. Pixel accuracy over the number of hypotheses generated.

However, in all four cases we can note that the variation of PA through iterations
is negligible. This is a consequence of the good performance of the detection and sco-
ring of the corners, which makes higher scored corners more likely to appear in layout
hypotheses. In many cases the highest scored corners are the real world corners that we
are looking for. Thus, a small number of hypotheses is likely to already provide a good
result. Other cases may have a more complex corner distribution, which leads to more
variety of layout hypotheses among which the SS and SE evaluation methods may find
one that fits better their criterion. On the other hand, AC and OM prove to be better for
the task, since they look for the best distributed consensus in the scene. Therefore, these
methods tend to improve with a larger variety of hypotheses.

The best number of hypotheses to draw will depend on the method. For SS and SE,
lower number of hypotheses improves the results, but at least a few should be required
(otherwise there is a risk of getting oddly-shaped layouts). Thus, 5-10 hypotheses seem
reasonable. For AC and OM, on the other hand, the PA rises until 30-40 hypotheses,
and the improvements afterwards are marginal. In all cases, we choose a very reduced
number of hypotheses, substantially less than other similar works [Zhang et al., 2014b].
In the following experiment we continue discussing the evaluation methods.
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FIGURE 4.18. Boxplot of the results using the four evaluation methods with the set of 70 images. The graph
is divided in results using depth (on the left, in green) and without depth (on the right, in red). For all cases the
black line marks the mean value, the black dotted line the median value, the dark rectangles are the standard
error of the mean (SEM) with 95% of confidence and the bright rectangles the standard deviation (SD). The
individual values per image are also scattered over each column.

4.5.2.2. COMPARISON OF EVALUATION METHODS

To provide a more meaningful discussion about the evaluation methods, the mean
PA displayed in Figure 4.17 is not enough. In Figure 4.18, there is another boxplot-
type graph showing the distribution of pixel accuracy in the 70 images with the four
evaluation methods at 50 hypotheses. For each column we show the mean (black line),
median (black dotted line), standard error of the mean (SEM) at 95% of confidence (dark
rectangle), and standard deviation (SD) (bright rectangle). The values of the mean and
median are shown in the Table 4.1. Additionally, each individual result of the 70 images
is also scattered on the graph for visualization purposes. Analyzing only the left part
of the graph (the general case, with depth information), we can see how the SS and SE
evaluation methods are able to tag correctly a median of 86% and 85.7% of the pixels in
the image respectively. Both the AC and OM reach over 90%, particularly 90.3% and
91.5% of PA. While all methods perform well, the AC and OM are clearly the best. The
OM has the better scoring overall, but the AC has smaller standard deviation and less
outliers.

However, accuracy is not the only factor to compare methods, so we extend the
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TABLE 4.1. Mean pixel accuracy of the system with and without depth information (%).

Method With depth No depth
Mean Median Mean Median

SS 84.96 86.05 81.62 85.13
SE 84.59 85.73 81.00 81.70
AC 89.63 90.34 85.90 87.43
OM 90.38 91.53 87.97 89.38

TABLE 4.2. Comparison of computation time of each stage of the evaluation for each method in our current
implementation (in milliseconds).

Stage of evaluation SS SE AC OM
Generate orientation map − − − 18000
Generate 1 labeled image − − − 50
Evaluate 1 hypotheses 0.05 0.4 1.8 2.5
Total (1 hypotheses) 0.05 0.4 1.8 18052.5
Total (50 hypotheses) 2 20 90 20625

experiments to test efficiency in terms of computation time. In the Table 4.2 there is a
breakdown of the mean times in our current implementation. The first three methods
(SS, SE and AC) only require simple operations, and thus, are extremely fast (less than
2 milliseconds). On the other hand, the OM is very slow in comparison. Just to generate
the map, assuming we have the lines and vanishing points extracted, it takes around
18 seconds. Then it needs to compute the corresponding labeled image per hypothesis,
in order to find the best fitting one. To save time we resize the orientation map and
labeled images by a scale of 0.25. Then, generating labeled images takes about 0.05
second/hypothesis and selecting the better one takes 2.5 millisecond/hypothesis. Thus,
for example, evaluating 50 hypotheses would take about 0.002 seconds to the SS, 0.02
seconds to the SE and 0.09 seconds the AC. The OM method would take 18 + 0.05 ×
50 + 0.0025 × 50 = 20.625 seconds. The difference between OM and the other three
methods is of several levels of magnitude. Thus, considering the small PA value shift
between AC and OM, when time is a requirement, AC is much better for the task.

4.5.2.3. PERFORMANCE UNDER DIFFERENT TYPES OF SCENES

A breakdown of the results depending on the type of room is provided in Table 4.3.
In general we have experienced better performance in environments where structural
lines can be easily seen. For example, corridors have often less objects occluding the
important lines. On the other hand, corridors have often more complex shapes. Our
method is able to overcome complex shapes in most cases as the high scores in corridors
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TABLE 4.3. Mean pixel accuracy depending on the type of scene tested (%).

Room SS SE AC OM
Corridor 89.52 85.92 93.53 91.8
Bedroom 84.63 85.57 87.64 90.74
Bathroom 80.10 83.87 86.84 86.42
Living Room 85.03 85.70 89.03 90.18
Kitchen 73.02 79.77 82.87 87.61
Other 82.52 82.13 88.29 89.78

show.
In contrast, bathrooms and kitchens are the most problematic. They are usually

crowded with objects and cabinets, even mirrors in the case of the bathroom, which are
often problematic in any computer vision algorithm. The rest of the rooms are very scene
dependent, and it is harder to establish any correlation in type of room and results. As
mentioned in Section 4.5.1.1, the results depend on the specifics of each scene, including
parameters such as illumination.

4.5.2.4. SCALED RECONSTRUCTION OF SCENES

In Figure 4.19 there are some examples of 3D reconstructions obtained with our
method. We show the fisheye with the depth information that we use as input of the
system to visualize how much the depth has been extended. It can be seen that the
system is able to reconstruct not only ‘box-shaped’ rooms, looking at the corridor or
bedroom scenes. These results are scaled with the depth information provided, so in a
single shot our system is able to get the whole scene at once. We believe this information
could be valuable for many tasks.

We have to note that in all cases this is an estimation of the layout, but the only
information that is fully reliable all the time is the one that comes from the depth infor-
mation. Our layout solution can be merged with the initial depth so we can actually use
both sources of data at the same time to our advantage. The depth image provides a safe
zone where we know for certain what is in front of the camera, but we also have spatial
context of the room we are in, enabling many possibilities of higher level reasoning that
extends what a conventional depth camera can do, without diminishing its advantages.
We additionally provide a video2 which, besides a brief description of the method, shows
more examples of scaled room reconstructions and visual comparison with the original
point clouds.

2http://webdiis.unizar.es/~jguerrer/Publicaciones_archivos/2016_ECCV_
video_PeripheralExpansion.mp4
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Image with depth map 3D Layout Image with depth map 3D Layout

Corridor Bedrooms

Living Room Other

FIGURE 4.19. Pair of images of fisheye images with the depth information from the depth camera overlaid
and the 3D layouts we are able to retrieve corresponding to each case.
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4.5.3. ADVANTAGES OF THE CAMERA PAIRING

We explore the benefits of using our camera system compared to merely using a
fisheye camera. The main one is that the scale of the scene would be lost without the
depth camera. Additionally, we repeated the experiments removing all depth information
throughout the system in order to numerically observe how the results are affected. The
absence of depth affects the computation of the VPs, the scoring of lines, the retrieval of
the Hceil and the elimination of contradictory hypotheses. In particular, in Figure 4.16h
there is an example of corner extraction without depth failing at getting the ceiling plane.

A comparison of results with 50 hypotheses with and without depth information is
shown in the Figure 4.18 and Table 4.1. It can be observed that the standard deviation
of PA increases since many cases result in much lower scores. Consequently, the mean
pixel accuracy decreases about 4%. However, observing the per-image values on the
Figure 4.18, in many cases the results are not affected by the lack of depth, but in some
others the results are so bad that it is very noticeable in the mean value. This is also
observable on the median value, which does not experiment so much decrease in com-
parison. Thus, the depth not only provides scale, but it also helps in many individual
cases.

4.5.4. RESULTS WITH GOOGLE TANGO

We want to show the applicability of the method with commercial devices, such as
the Google Tango (Figure 4.14). Even though the device at our disposal is a Development
Kit, there are several phones with the same technology already in the market. Among
other sensors, this device includes: a depth camera which is similar to the other camera
system but with less resolution (320× 180 instead of 640× 480), and a motion-tracking
camera which basically is a fisheye of about 170◦ of field of view and resolution of
640 × 480. The simultaneous depth and fisheye image pairs have been captured using
Tango ROS Streamer3.

The decrease in the resolution does not affect the quality of the results notably. Note
that one of the first operations with the depth information consists on downsizing the
point cloud. In the fisheye camera the loss of information is not significant and it ac-
tually helps speeding up the algorithm. However, the decrease in field of view is quite
relevant for the task, since the lesser spatial view of the environment we have, the lesser
likelihood of finding the most useful corners. In order to increase the amount of lines
from the ceiling (which usually belong to less cluttered areas) the camera could be poin-
ting slightly upwards than the previous device. This may result in loss of floor plane
view, and thus scaled layout recovery. However, we can proceed with the non-scaled
layout recovery and apply the scaling procedure presented in Section 4.4.4 to recover
the scaled layout.

3http://wiki.ros.org/tango_ros_streamer
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In Figure 4.20 we show several examples with images from the Tango device in si-
milar type of views to the first dataset, where the non-scaled layout recovery with Angle
Coverage method and final scaling have been applied. This shows that our method is
able to estimate the scaled layout when the floor is not in the image, and thus with no
restrictions about how the camera is posed in the scene. With the previous dataset most
images had views of the floor and we could not show this feature. While this alternative
approach to solve the problem works for most scenes, it is still useful to have the floor
and thus the scale since the beginning. For example, the second example include depth
points out of the room through the open door, which breaks condition E (Section 4.4.2.1).
However, since when generating hypotheses we have no scale, we cannot use that condi-
tion to discard the hypotheses. Apart from these types of exceptional cases, our method
is able to extend the depth information by extracting the correct layout.

4.6. DISCUSSION

In this chapter, we have presented a new method to extend the 3D information of
a depth camera to a field of view of over 180 degrees. In particular, we propose a
novel spatial layout retrieval algorithm, whose main novelty is combining a fisheye and
a depth camera. The large field of view helps to use information from both the ceiling
and the floor, which is helpful when there is clutter in the scene. The depth information
helps by providing scale, necessary for the final 3D reconstruction, and by enhancing
the performance of the method. Experimental evaluation with real images of indoor
environments shows good results in terms of accuracy, improving the state of the art
in functionality: our method has less layout shape restrictions, needs fewer hypotheses
and provides full-scaled 3D models of the scene in a single shot. One of the advantages
of returning a full-scaled reconstruction is that it complements the information coming
from the depth camera: besides the small part of the scene reliably captured by the depth
camera, now it is possible to have a good estimation of the surroundings to over 180
degrees. This kind of information could be useful in fields such as robotics, augmented
reality and assistive computer vision. Additionally, the method has been tested with data
from a portable consumer device successfully, showing great potential for the future,
especially regarding the possibility of using it in a wearable configuration.
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FIGURE 4.20. Twelve examples of application of our method with Google Tango device. On the left of each
case the fisheye image with the depth points projected in colors (variable color with depth). On the right, the
resulting 3D point cloud. For visualization purposes, the initial 3D point cloud is also displayed in color to
show how the resulting cloud has been scaled and fits accordingly.

137



4. SCALED LAYOUT RECOVERY WITH WIDE FIELD OF VIEW RGB-D

138



5
ICONIC REPRESENTATION FOR NAVIGATION

WITH PROSTHETIC VISION

In the last part of this thesis we address the communication of perceived information to the
visually impaired people. Recent research demonstrates that visual prostheses are able to provide
visual perception to people with some kind of blindness. In visual prostheses, image information
from the scene is transformed to a phosphene pattern to be sent to the implant. This is a complex
problem where the main challenge is the very limited spatial and intensity resolution of the phos-
phene patterns. Moreover, depth perception, which is relevant to perform agile navigation, is lost,
and codifying the semantic information to phosphene patterns remains an open problem. In this
chapter, we consider the framework of perception for navigation where aspects such as obstacle
avoidance are critical. We propose using a head-mounted RGB-D camera to detect free-space,
obstacles and scene direction in front of the user. The main contribution is a new approach to
represent depth information and provide motion cues by using particular phosphene patterns. The
effectiveness of this approach is tested in simulation with real data from indoor environments.

139



5. ICONIC REPRESENTATION FOR NAVIGATION WITH PROSTHETIC VISION

5.1. INTRODUCTION

The ability to navigate and move around complex or unfamiliar environments is
essential for people, and this is a non-trivial task to be automated. People solve these
tasks primarily through vision, combined with their ability to memorize and learn. These
tasks are even more critical for visually impaired people since additional personal safety
issues appear. While mobility aids such as the white cane are helpful in short-range
navigation, the usage of cameras enable the recovery of mid- and long-range information
from the environment and thus, a more effective navigation. A key issue in Navigation
Assistance for Visually Impaired (NAVI) is obstacle avoidance. Different approaches for
NAVI have been developed based on vision sensors such as in [Wong et al., 2003,Peasley
and Birchfield, 2013, Schafer et al., 2008, Aladren et al., 2016], or with other types of
sensors [Dakopoulos and Bourbakis, 2010, Oktem et al., 2008, Guimaraes et al., 2013].
In the context of prosthetic vision, different visual processing techniques were proposed
for obstacle avoidance [Stacey et al., 2011,Weiland et al., 2012,McCarthy et al., 2011,Li
et al., 2012].

In the following sections we provide some background on the topic of prosthetic
vision. Then, we describe the main aspects of phosphene mapping techniques and how
they are usually tested with users. Finally, we describe the problem of depth and motion
perception considered and the proposed contributions.

5.1.1. BACKGROUND ON PROSTHETIC VISION

Since 1968, different research works have found that electrical stimulation of the
visual cortex or other parts of the visual pathway (such as retina) caused patients to per-
ceive bright dots of light called phosphenes [Brindley and Lewin, 1968]. Thus, visual
prostheses generally consist of retinal or cortical implants that apply electrical stimula-
tion using an electrode array to generate a grid of phosphenes similar to a low resolution
dot image [Dagnelie, 2006].

The typical components of this technology are as follows: A small camera mounted
on the eyeglasses is used for image acquisition. The images are then processed by a por-
table computer to convert the image data into an electronic coded signal. This signal is
transferred to the implant via wireless communication and the signal finally reaches the
microelectrode array causing the grid of phosphenes. Experimental results demonstrate
that patients with this kind of devices can detect phosphenes at individual electrodes and
they were able to develop coordination using their visual prosthetic device [Ahuja et al.,
2011].
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5.1.2. MODELS OF PHOSPHENE PATTERNS

Unfortunately, the resolution of the phosphene grid produced by visual prostheses is
constrained by biology, technology and safety [Meffin, 2013]. Current devices provide a
few dozens of phosphenes, like the Argus II system from Second Sight, which achieves a
60 phosphene array (Figure 1.6). Therefore, implanted visual prostheses provide bionic
vision with very limited spatial and intensity resolution when compared against healthy
vision. According to [Cha et al., 1992] a pattern of 25×25 phosphenes allows to recog-
nize text in a reading speed of 100 words per minute for stationary text and 170 words
per minute for text moving automatically. Other related works also study performance
in the task of reading [Fornos et al., 2011], or finding text [Denis et al., 2014]. Howe-
ver, other tasks like face recognition require hundreds of phosphenes [Thompson et al.,
2003, Wang et al., 2014a]. Nevertheless, the technology is in constant evolution and
experimental systems with hundreds of phosphenes already exist, and the perspective
for the future promises to keep increasing that number [Ha et al., 2016]. However, such
advanced technologies are still in trials, and for the moment we consider a moderate
phosphene map resolutions, ranging from around 200 to 2000 phosphenes.

Moreover, traditional works generally assume regular phosphene patterns to be cre-
ated with the prosthetic vision device. However, there is clinical and biological proofs
that phosphene patterns are irregular and patient-specific [Srivastava, 2011, Li, 2015].
Still, regular patterns are usually assumed, and works that cope with irregular phos-
phene maps generally consider close to regular patterns where small spatial shifts in
phosphene locations and electrode dropouts are modeled [van Rheede et al., 2010], or
only irregular phosphene shapes are considered over a regular grid [Kiral-Kornek et al.,
2013]. Regarding the particular shape of the visual phosphenes, there is a large variety
of profiles described in the literature. For simplicity most works choose either perfectly
circular or square shaped phosphenes for their simulation studies [Chen et al., 2009a].
However, neither perfectly circular nor square phosphenes capture the exact shape of
real phosphenes.

Given the highly limited resolution, important efforts have been performed on the
application of vision algorithms to improve the phosphene patterns for prosthetic vi-
sion [Barnes, 2013]. For example, vision processing can make better use of the limited
resolution by highlighting salient features such as edges [Lui et al., 2012, McCarthy
et al., 2013, Feng and McCarthy, 2013]. Currently, the way to process and code the
image information to the low resolution device to be useful and meaningful is still an
open issue.

5.1.3. SIMULATED PROSTHETIC VISION

In order to avoid complex and costly trials on patients, a non-invasive method to
evaluate the efficacy of visual prostheses is by means of Simulated Prosthetic Vision
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(a) [Lui et al., 2012] (b) [Bermudez-Cameo et al., 2017]

FIGURE 5.1. Examples of Simulated Prosthetic Vision setups from the literature. Both consist of an RGB-D
camera (Kinect and Kinect 2 respectively) and a head mounted display (e.g. Oculus Rift in (b)).

(SPV). Most SPV systems make use of a head mounted display with a forward facing
camera, which allows fast testing of a great variety of methods while constraining the
user to a particular model of bionic vision such as visual angle or resolution. A thorough
discussion about different SPV is provided in [Chen et al., 2009a, Chen et al., 2009b].
Two examples of experimental setups for SPV are shown in Figure 5.1.

Most of the current approaches used in prosthetic vision and SPV are based on basic
image processing techniques [Ayton et al., 2013, Barnes, 2013]. However, this vision-
based configuration allows exploring more advanced computer vision techniques to en-
hance the semantics and the relevance of the information displayed to the patient. Many
researchers, inspired by a line of reasoning similar to the one we follow in this thesis,
have use RGB-D instead of conventional cameras, since the rich structural information
they provide has a lot of advantages compared to intensity-based representations. For
example, as shown in Figure 5.2a, [Lui et al., 2012] compare the visual representation
of a common scene by using a simple phosphene representation based on the intensity
of the image with a representation of the depth edges from an RGB-D camera, being
the latter the one where the information provided is much more useful and informative.
There are many examples of depth processing in the literature whose output can be re-
levant for mobility. In Figure 5.2b there is an example from [Lui et al., 2012], where
ground segmentation is applied to detect obstacle-free areas where the user can walk,
outperforming traditional vision methods. In Figure 5.2c, the approach from [McCarthy
et al., 2014] shows an augmented depth representation, where the intensity of the phos-
phenes maps the distance to the objects and the segmented floor is dimmed down to
make obstacles more salient.

More complex computer vision algorithms can also be used, e.g. visual recognition
can be used for enhancing the saliency of meaningful objects [Jung et al., 2015]. Besides,
clarity of symbolic information can be improved with image segmentation techniques
[Horne et al., 2012]. A relevant example for mobility is the semantic segmentation
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(a) (b)

(c)

FIGURE 5.2. (a) Comparison of a visual representation based on intensity and traditional image processing
(top) and an edge-based representation from a range image (bottom) from [Lui et al., 2012]. (b) Same com-
parison between traditional vision processing (top) and depth processing after floor segmentation (bottom),
from [Lui et al., 2012]. (c) Proposal of an augmented depth representation from [McCarthy et al., 2014], that
combines floor segmentation with depth representation, compared to simple intensity based representation and
depth based representation.

based on conditional random fields from [Horne et al., 2016], where with the input of
just a color image, it produces a segmentation among road, sidewalk and obstacles, that
is used to generate a phosphenic representation (Figure 5.3a). With depth information, a
neural network is trained in [Feng et al., 2017] to detect structural edge information that
is appropriately mapped to SPV representation (Figure 5.3b). Face and body detection
can be used for human interaction [Lui et al., 2012, Bermudez-Cameo et al., 2017], as
shown in Figure 5.3 (c) and (d). Other works take a different approach and use virtual-
reality-based environments to evaluate the user response with different models of visual
representation [Josh et al., 2013,Vergnieux et al., 2014,Zapf et al., 2016]. This procedure
allows to try new representations and perform extensive tests with people in a realistic
manner but at the same time reducing the complexity of the experiment.
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(a) (b)

(c) (d)

FIGURE 5.3. (a) Semantic segmentation of a color image for SPV representation, from [Horne et al., 2016].
(b) Structure retrieval using Convolutional Neural Networks (CNN) for relevant structure representation in
SPV, from [Feng et al., 2017]. (c) Face and body detection with depth compared to traditional image proces-
sing, from [Lui et al., 2012]. (d) Face expression recognition and body skeleton extraction from [Bermudez-
Cameo et al., 2017].
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5.1.4. PROBLEM DEFINITION

As previously said, in prosthetic vision a visual scene is composed of relatively large
and isolated spots of light called phosphenes. However, very low resolution images are
frequently meaningless to the user. Moreover, representing depth in phosphene maps
is very relevant to achieve adequate navigation, but its implementation is particularly
challenging. Notice that depth perception cannot be transmitted using stereo effect be-
cause of intrinsic technical limitations of prosthetic vision. Thus, it requires alternative
strategies to transmit depth such as using an iconic representation.

Our proposal consists of a perception system module (Section 5.2) and the iconic
representation module (Section 5.3) for the camera-computer configuration in prosthetic
vision. The goal of our perception module is to retrieve:

• The relative movement of the user in the scene.
• The orientation of the scene.
• A collision-free walkable path.

The type of camera we choose for information acquisition is an RGB-D camera, carried
by the user mounted in the head. In our framework, this type of information is parti-
cularly useful to reliably detect obstacles and, for example, warn of other potentially
dangerous situations such as the presence of curbs or stairs [Perez-Yus et al., 2017b],
or detect the location of an empty chair [Wang et al., 2017]. Usually, it is assumed that
man-made environments are essentially composed of three main directions orthogonal
to each other. Taking this assumption into account, denoted as Manhattan world as-
sumption, some works have been proposed for recovering the scene layout [Lee et al.,
2009,Hedau et al., 2009,Flint et al., 2011], or just the orientation of the scene [Coughlan
and Yuille, 1999] as we do in this work.

In the proposed iconic representation module we code the information perceived to
the phosphene map. This task is challenging, since our approach tries to accommo-
date to the current state of technology of prosthetic visual devices. Despite the recent
progress in the field, the resolution and dynamic range are still low. Moreover, related
works focus on 2D information neglecting the three-dimensional nature of the world,
and depth perception is lost to the user. Systems displaying depth and contrast edges
in a phosphene-based display are described in [Li, 2013, Lui et al., 2012] and more re-
cently in [McCarthy et al., 2014]. In [Horne et al., 2016], a semantic labeling of the
image provides a representation for obstacle avoidance. Here we aim to the ambitious
goal of providing depth information by designing appropriate processing algorithms to
be used on the vision-based input information.

In this chapter, we present a novel phosphene map coding for navigation tasks based
on a ground representation of the obstacle-free space as a polygon and a ceiling repre-
sentation based on vanishing lines pointing towards a previously determined moving
direction. The ground polygon is codified with a chess pattern to provide the effect of
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displacement over the ground with the relative pose obtained with the odometry. This
pattern additionally produces visual cues about the distance of the objects and the orien-
tation of the scene. The effectiveness of the proposed representation is illustrated in a
simulated environment and with real data from indoor scenes in Section 5.4.

5.1.5. GEOMETRY AND NOTATION DETAILS

Consider a set of points, planes and lines in a given reference. We denote X ∈ P3 a
3D point in homogeneous coordinates. We denote U =

(
uT, u0

)T
a plane in homogene-

ous coordinates. We denote L ∈ P5 a 3D line in Plücker coordinates composed by two
vectors L =

(
lT, l̄T

)T
being l ∈ R3 a vector describing the direction of the line, l̄ ∈ R3

is a vector representing the normal to a plane passing through the 3D line and the origin
of the reference system O, and the ratio between its norms dl = ‖̄l‖

‖l‖ is the minimum
distance from the line to the origin of the reference system (see Fig. 5.4). To allow L
being a 3D line lT̄l = 0. Rays are also codified as Plücker coordinates but denoted with

Ξ =
(
ξT, ξ̄

T
)T

.

Consider a reference system composed of a rotation R ∈ SO(3) and a translation
t ∈ R3. A change of reference of points is performed by using the linear transformation
T ∈ SE(3) such that:

T =

(
R t
0T 1

)
(5.1)

A change of reference of a plane is done through T−>. Finally, a change of reference
of a line or a ray is described by the linear transformation:

G =

(
R 0

[t]×R R

)
(5.2)

where [t]× denotes the construction of an antisymmetric matrix from the vector t.

5.2. PERCEPTION OF FREE SPACE AND SCENE POSE

The proposed system includes an RGB-D camera for the perception part. In this
section we describe the main sub-tasks as defined in the introduction: to obtain the
relative movement of the user in the scene (Section 5.2.1), to get the orientation of the
scene (Section 5.2.2), and to retrieve the zone of free moving space (Section 5.2.3).
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FIGURE 5.4. Components of a Plücker description of a 3D line. The direction vector l and the moment
vector l̄. Under Manhattan World assumption a main direction vvp is coincident with the direction li of lines
following this direction and orthogonal with their moment vectors l̄i.

5.2.1. RELATIVE MOVEMENT OF THE USER IN THE SCENE

In robotics, the estimation of the position of the robot with respect to the starting lo-
cation is called odometry. When the information to compute the odometry comes from
a camera, it is called visual odometry. This is a classic topic in computer vision, which
recently has been enhanced with the advent of RGB-D cameras. We use the algorithm
from [Gutierrez-Gomez et al., 2015], which is a method for dense visual odometry esti-
mation performed by minimizing photometric (in the RGB image) and geometric (in the
inverse depth map) errors, and therefore takes advantage of the RGB-D camera. More
extended explanation of the algorithm is provided in Section 2.4.3.

With this method, for each frame we compute the pose 0Tk ∈ SE(3) that transforms
the reference frame from k to 0, being 0 the initial reference frame. This transformation
0Tk consists of a rotation matrix 0Rk ∈ SO(3) and a translation vector 0tk. These
transformation is necessary for our method to provide sense of movement in the envi-
ronment.

5.2.2. ORIENTATION OF THE SCENE

In our work we assume scenes satisfy the Manhattan World assumption [Coughlan
and Yuille, 1999], meaning the world is organized according to three orthogonal directi-
ons, we call Manhattan directions or main directions. In order to get these directions,
we perform a vanishing point extraction, since all lines directed in one of the Manhattan
directions intersect in one of the three main vanishing points.

First, from the distribution of the normals of the point cloud we obtain a set of rough
candidates for being the main three directions. This can be performed following the
approach from Section 4.3.3 for depth information. However, since we do not have
omnidirectional view of the scene, the refinement with lines in the color image needs
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to be performed differently. In particular, lines are extracted from the RGB-image and
clustered in main directions following a Random Sample Consensus (RANSAC) appro-
ach [Fischler and Bolles, 1981]. Assuming Manhattan directions, we can assemble the
direction vectors to create the rotation matrix AbsRk ∈ SO(3), being Abs the reference
of the system with the axis aligned with the Manhattan directions, called absolute refe-
rence. To enforce the obtained directions to be orthogonal we optimize Absωk ∈ so(3)

such that AbsRk = exp
([
Absωk

]
×

)
. The distance of the minimization dopt = vT

vp̄li

exploits the constraint that the direction vector of a 3D line Li must be orthogonal to its
corresponding projection plane (see Fig. 5.4). For considering that the original clusters
could contain some misclassified lines we use a L1-norm as loss function. Finally, the
result is fine-tuned with a L2-norm using only a selected collection of well conditioned
lines.

In practice, this procedure needs to be performed only once and then carried over
by the odometry (although periodic computations of the orientation may be performed
if there is accumulation of drift on the pose estimation). For example, let us consi-
der we obtain AbsR0 at first frame. At frame k we can compute the pose AbsTk with
Abstk =0 tk and AbsRk =Abs R0 ·0 Rk. We choose the axis in Abs to be as follows:
zAbs pointing upwards (to where the ceiling should be), xAbs to the front of the user in
that moment and yAbs to its left.

5.2.3. PERCEPTION OF FREE SPACE

The free space around the user is retrieved using the information from the depth
camera, specifically the point cloud data. A point cloud is a set of 3D points Xi =

(xi, yi, zi, 1)
T, each one corresponding to a pixel in the depth camera. To speed up the

algorithm, instead of making operations to the whole cloud we perform downsampling
via voxel grid filter. For example, applying a voxel size of 0.10 meters could reduce the
cloud approximately 100 times (it depends on the scene) without major loss of relevant
data for this task. The point cloud can be transformed to the absolute reference frame by
XAbs =Abs Tk ·Xk.

Once we have our data pre-processed and in the absolute reference frame, we com-
pute the floor plane. To do so, we have a tentative orientation of the normal of the floor
plane, since it should align with the main direction corresponding to zAbs. Thus, we
proceed by computing the normals of the points via principal component analysis, and
selecting the points whose normal is near zAbs. Then, a RANSAC procedure for planes
is applied to that subset of points, and among the resulting plane candidates computes
their distance to the origin u0 and chooses as solution that with highest value of u0.
Note that we are assuming that the floor is visible and that there is no other horizontal
plane below it. Again, like with the main directions, the floor plane does not need to be
retrieved every frame, and it can be carried over by the odometry. This has an important
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advantage, since then the floor does not need to be in the image all the time and the user
can be looking elsewhere.

The points of the cloud that are not classified as floor points are considered obstacles
unless they are considerably higher than the person (e.g. ceiling). Since the camera is
designed to be on the head, we choose z = 0.5 meters over the head as a safe maximum
threshold to consider points out of reach. The points are then grouped in planes and
clusters combining a RANSAC approach with Euclidean cluster extraction (i.e. points
that are close to each other under certain threshold are grouped in clusters). The seg-
mentation process resembles what was described in Section 2.3.1. Each plane or cluster
is considered obstacle, meaning that no further classification or semantic reasoning has
been performed.

To determine the area of free space we project the points to the floor plane to reason
in 2D (i.e. ignore the component in z). The area of free space will be the polygon on the
floor plane whose edges are given by the bounding boxes of the obstacles and the rays
from the camera. The procedure to build the floor polygon goes as follows (see Fig. 5.5
for graphical explanation):

(a) We look for visible vertices in the corners of the bounding boxes of the floor pro-
jections of the obstacles. Visibility is checked by the intersection of the segments
from the origin to the vertices and the segments of the bounding boxes. Also,
intersection points between bounding boxes are considered.

(b) We project rays from the origin to the previous vertices to verify if they intersect
with their bounding boxes in other point than the vertices themselves or not. Those
who do not intersect are extended until intersection with other bounding box or to
a maximum distance (e.g. 10 meters).

(c) We remove those vertices outside the field of view (FOV) of the camera, and
include the origin as vertex.

(d) We sort the vertices clockwise with the angle α, sorting accordingly vertices with
same angle (i.e. coming from (b)).

The output of the proposed procedure is a 2D polygon in the floor plane that we can
transform in 3D since we know the plane equation (see Fig. 5.5 (d)). Notice that,
for simplicity, bounding boxes of the obstacles have been represented so that they are
oriented with the main directions of the scene. This is the fastest approximation for
getting an enclosing rectangle of an obstacle, but in some cases may not be a good
approximation (e.g. circular shape or diagonal wall). The pipeline of the method holds
for any other computed enclosing polygon, such as the convex hull, whose retrieval is
widely implemented in many programming libraries. The convex hull produces more
accurate obstacle representation at the expense of introducing more vertices in the floor
polygon and, in general, more computation time. Therefore, if the algorithm is able to
perform fast enough with convex hull, that is usually preferable.
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FIGURE 5.5. Four basic steps for the construction of the floor polygon following the explanation from Section
5.2.3. Four obstacles are drawn with the projection to the floor in different colors and bounding boxes. Valid
vertices are colored in green while invalid vertices are dark red. In (d) the floor polygon is drawn in green.

5.3. ICONIC REPRESENTATION OF FREE SPACE

Even when the environment is known, the lack of dynamic range and resolution in
prosthetic visual devices complicates the perception of depth. On the one hand, the
quantification given by the low resolution hinders the possibility of stereographic vision.
On the other hand, the low dynamic range dilutes the texture of landmarks that humans
use for locating themselves.

In order to tackle with these perception problems, we consider using an iconic re-
presentation of the scene capable of giving support for navigation tasks. Our proposal
consists of a polygonal representation of the ground describing the free space and a sim-
plified representation of the ceiling suggesting the motion direction to be planned in a
higher level. The displacement with respect the ground is evoked by using a chess pat-
tern in the ground map. This representation, inspired by old low-resolution 3D games,
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FIGURE 5.6. Screenshot from Sonic the Hedgehog video game, where the floor was represented as a check-
erboard to provide sense of movement and perspective.

is useful as an iconic description of perspective projection. An example of a classic vi-
deo game where this technique was utilized is shown in Figure 5.6. The motivation for
using this representation is threefold: it helps to transmit depth and sense of movement
when walking, but also provides an estimate of the distance to an obstacle since the size
of the tiles is fixed. This also provides cues of the orientation of the scene, since the
checkerboard is oriented according to the main directions.

As introduced in Section 5.2, we estimate the obstacle-free ground and represent it
with a polygon. This polygon is defined in a global reference we have obtained from the
main directions of the scene and the odometry we get from an RGB-D SLAM system
[Gutierrez-Gomez et al., 2015]. The phosphene map has an associated projective ray
for each phosphene. For representing the ground, we first estimate which rays intersect
with the floor polygon. For this we use the Plücker polygon-ray intersection approach
which works with convex polygons. Since the floor polygon is in general non-convex,
we estimate the rays intersecting the convex hull of the polygon, which quickly provides
information about the phosphenes that are likely to be turned on. Then, we evaluate if
the points that intersect in the convex hull actually lie inside the non-convex polygon or
they are outliers by performing a point in polygon test.
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FIGURE 5.7. The sign of the distances from ray A
(
ξA, ξ̄A

)
to the sides (si, s̄i) are (−,−,−,−,−). By

contrast, the sign of the distances from ray B
(
ξB , ξ̄B

)
to the sides (si, s̄i) are (−,+,−,−,−).

5.3.1. PLUCKER POLYGON-RAY INTERSECTION METHOD

Given a line L =
(
lT, l̄T

)T
and a ray Ξ =

(
ξT, ξ̄

T
)T

represented in Plücker coor-
dinates, the side operator

side (L,Ξ) = lTξ̄ + l̄Tξ (5.3)

returns a signed distance. The sign of this distance depends on the side where a line is
located with respect to the other (clockwise or counterclockwise) (see Fig. 5.7). If we
define the sides of a convex polygon with their corresponding Plücker coordinates and
we follow a clockwise sense in this definition we can determine if a ray intersects the
interior of the polygon or not by using the following rule.

(a) Estimate the sign of the side between the ray and each side.

(b) If all the side distances have the same sign the ray intersects the interior of the
polygon.

(c) If this sign is positive we are looking to the front of the polygon, if negative we
are looking to the back.

Once we know the rays intersecting the convex hull of the polygon we compute the
corresponding projected points. Then, we collect the projected points which are inside
the polygon and mark them with the chess pattern. This texture is parametrically defined
by quantizing X and Y coordinates. Since the points are computed in the global reference
(which is aligned with the vanishing points) the chess pattern follows the main directions
of the scene.
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5.4. EXPERIMENTS OF THE ICONIC REPRESEN-
TATION

What we have proposed in this chapter is an algorithm that extracts information from
the environment and translates it to a limited representation that will be interpreted by a
human afterwards. Therefore, the experiments need to evaluate both parts: the extraction
of the information from the environment, and the quality of the iconic representation. We
have tested our method in two experimental frameworks: simulation in a realistic virtual
environment and with real images taken with a head mounted RGB-D system. With
the simulation framework, we have built a platform to test different iconic representati-
ons and to easily perform numerous experiments with people, being able to collect all
the data and thus evaluate numerically the quality of the representations. On the other
hand, the experiments with real images show that our method is applicable to the real
world. The following sections detail the experiments from each framework, providing
qualitative insight about the method, its limitations and possibilities.

5.4.1. EXPERIMENTS IN SIMULATED ENVIRONMENTS

Performing experiments in simulation or in virtual experiments is a common way
to proceed in computer vision and robotics. Usually it is used as the previous step
before experiments in real situations, since it should indicate whether the method works
abstracting the performance of the method itself from other problems that may come
up in the real world. However, the more realistic the simulation is, the closer it will be
to translate the implementation to a real system. In the next section we introduce our
simulation framework, and then we provide some qualitative results of our proposal.

5.4.1.1. SIMULATION FRAMEWORK

For our framework, we need a realistic physics engine to simulate a real world en-
vironment and the means of capturing information from it via virtual data acquisition
devices. Besides, the software needs to allow us to develop an intuitive user interface
and to manage all communications of the system. Particularly, we have used ROS (Robot
Operating System1) and Gazebo2. ROS is a set of software libraries especially conve-
nient to manage communication in robotic tasks. The information flows via messages,
such as the commands to move a robot, or the perceptual information retrieved by it.
Gazebo is a robotics simulator that includes realistic robot and sensor models that was
designed to test algorithm implementations. The combination of ROS with Gazebo is
perfectly suitable for our needs: we can use a simulated RGB-D camera in Gazebo

1http://www.ros.org/
2http://gazebosim.org/
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(a) (b)

FIGURE 5.8. (a) Example of virtual map used in our experiments. (b) Close up of the robot navigating inside
the map. The camera sensor is over the robotic platform, virtually attached to provide a point of view similar
to humans.

(e.g. an Asus Xtion Pro Live), and transmit the information captured in the virtual en-
vironment to our perception module using the message system from ROS. The same
implementation would be compatible straight away when a real camera is used instead
of a Gazebo simulation, since they use the same type of messages.

Using simulated environments has other advantages, such as being able to quickly
create many different types of environments and evaluate the performance of the method
under specific situations without needing to find or create particular scenarios in the real
world. It also provides ground truth, allowing to analyze results more accurately, but also
to decouple the separate problems of the full system. For our application, we can retrieve
the pose of the robot at any time with respect to the absolute reference of the virtual
environment, removing the need of a visual odometry module and the computation of
the orientation of the scene, and thus allow us to focus on the perception of free space.

In our simulation framework, a simulated robot with a mounted RGB-D camera
can be intuitively moved with a game controller by an external subject. We consider
simple robot movements: left-right rotation, forward-backward movement, and upward-
downward camera tilt. In the experiments with simulation, the subject that controls the
robot can only see the phosphene map representation, and needs to move around without
hitting any obstacle. Having a working simulation framework allow us to test different
representations, with a considerable amount of experimental subjects, without having to
create complex experimental setups (just a computer is needed). An advantage of using
simulated environments is that we can collect all the data from the experiments to ana-
lyze the results quantitatively, including trajectories, velocities or number of collisions.
The latter can be performed reading the information of the bumpers that many robots
usually have. Last but not least, simulation test are free of safety issues, since the user
can evaluate different configurations without the risk of crashing with a wall or falling
down the stairs.
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FIGURE 5.9. Two frames extracted from our free space perception algorithm running in a Gazebo simulation.
RGB and depth images are shown at the left and the center respectively, and the resulting map of free space
is at the right. The depth image has been scaled so that warmer colors mean farther distances, and dark blue
means no depth measurement (in this case, because points are very far). The free space polygon is depicted in
green in the map, confined between the two lines that enclose the FOV of the system.

5.4.1.2. EVALUATION OF THE METHOD IN SIMULATION

For the experiments we have created several maps such as the one shown in Fi-
gure 5.8a, that represents a small house. The movement inside the map is achieved by
adding a Turtlebot robot, that includes basic mobility, an Asus Xtion Pro Live camera,
and bumper measurements. It is completely modeled in Gazebo, although we have mo-
dified it to have the camera at a height that would resemble human vision, also with the
addition of a tilting movement to the camera so the view can be modulated to watch out
long distances or closer ranges (Figure 5.8b).

In the Figure 5.9 there are two examples of how our free space perception method
performs in a virtual environment. In particular, we can observe how the images from
the depth camera are very accurate and, therefore, it makes these kind of data the best
to test our algorithm in initial stages of development. The free space polygon obtained,
as seen at the right in Figure 5.9, adapts well to the environment, being able to show the
area which is free of obstacles. A simple floor plane segmentation would have returned
some space below the table, where obviously the user cannot access by just walking.
Some of the obstacle shown are a person, walls or a table, being successful at detecting
all of them.

It is also interesting to observe the phosphene map iconic representation of the free
space polygon. Since we are working in the framework of SPV, we can choose the phos-
phene representation parameters. In order to pick some, our goal is to remain as faithful
as possible to the current state of technology. Nevertheless, the continuous advances

155



5. ICONIC REPRESENTATION FOR NAVIGATION WITH PROSTHETIC VISION

(a) Np = 216 (b) Np = 484 (c) Np = 1862 (d) Np = 1862, no chess

FIGURE 5.10. Four phosphene representations considered in the virtual experiments, in this case showing an
open space free of obstacles. (a-c) are the proposed checkerboard-based representation at three resolutions,
and (d) is the simple representation of the walking polygon without the chess pattern.

in the field made us consider a flexible approach and test several amount of phosphe-
nes (Np), ranging from low resolution representation (Np = 216 phosphenes), medium
resolution representation (Np = 484 phosphenes), and high resolution (Np = 1862
phosphenes). The intensity values of the phosphenes have been restricted to a minimum,
to ensure the representation would be functional in reality, and thus we consider at max-
imum three levels of intensity: black (turned off phosphene), gray (phosphene turned on
at intermediate intensity) and white (phosphene turned on at maximum intensity). We
can also choose the field of view of the representation. Large field of view would imply
more information to fit in an already small display, whereas small field of view would
provide more detail. In our simulation experiments we choose a focal length f so that
the field of view of the representation is similar to the one of the camera (f = 525 pixel).

Our proposal of iconic representation of the free space in phosphene maps is to use a
chess pattern to provide depth and motion cues for navigation. The pattern is displayed
by using gray and white levels on the phosphenes whose direction points towards the
free space polygon, whereas turned off phosphenes mean no free space, therefore im-
plicitly suggesting where the obstacles are. The ceiling, which would be empty in this
floor-based representation, shows two lines pointing to the vanishing point at the front,
which was selected as a direction to follow. Note that more advanced algorithms could
have been used to determine the suggested direction to follow, but we consider these
possibilities out of scope in this work.

In Figure 5.10 there are four possible representations of the floor space when there
are no obstacles: the first three with our proposed representation at three resolutions,
and the last one with no chess pattern displayed. As it could be intuitively expected, the
higher the resolution, the better representation of the chess pattern. With low resolution,
the black and white tiles are not so clearly observed like in the other two. However,
medium resolution produces quite usable representation, thus showing it is not necessary
to have very high resolution to benefit from this iconic representation. Notice that the
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size of the black and white tiles could be increased to improve visualization in low
and medium resolution (here it is fixed at 0.5 meters). In an open space such as this
one, we can observe how the chess pattern displaces as the user moves, thus providing
comfortable depth and perspective cues. Removing the pattern like in Figure 5.10d
removes all that intuitive information.

We show several results of our iconic representation in the presence of obstacles
in Figure 5.11. For each result, apart from our iconic representation proposal at the
three levels of resolution, we include the highest resolution without gray level, and thus,
using only one level of intensity. The first row shows how an structure that resembles
an open door appears in this representation, where the path seems to continue in the
middle but blocked at the sides. Second and third row shows examples where complex-
shaped rooms with several objects appear. We can see how the representation without
gray level is useless, since it is hard to tell when the phosphenes are turned off because
of an obstacle or because the tile is black. If the system was limited to only one level of
intensity, we could overcome this limitation by drawing the borders of the floor polygon.
However, this representation would be more jarring and less intuitive when complex
polygons are detected. Regarding the resolution, we can see how the lowest resolution
does not clearly shows a path through the door at the left in row 2, whereas medium and
high resolution show it perfectly. The fourth row show the behavior of the system with
thin objects. In this case, the leg of a table is only observable in high resolution. The
fifth row shows the view at the same position when the user tilts the head up and sees
the table: the region of floor below the table is removed from the free space. In reality,
moving the head around helps notably to understand the scene, since one single view is
often not enough to see all the hazards.

It is interesting to observe the algorithm performing in a sequence in order to see how
the checkerboard representation works compared to the plain floor view in just single
level of intensity. We choose a corridor sequence, shown in Figure 5.12. At the bottom,
we can observe how adding a chess texture to the floor helps providing that effect of
being actually moving. In contrast, at the middle there is a mere floor representation
without any texture, where it is more difficult to tell the differences between consecutive
frames. Therefore, the sense of depth and movement is loss by removing the chess
texture. In both cases, the presence of doors along the corridor can be perceived by
looking at the ramifications at the sides that indicate that the floor extends further in that
direction.

5.4.2. EXPERIMENTS WITH REAL IMAGES

Apart from simulated environments, we evaluate the performance of the method
with real sequences. For these experiments, we used an Asus Xtion Pro Live RGB-D
camera mounted in a helmet to capture video sequences. We used a laptop to record the
sequences, but no direct feedback to the user (e.g. via virtual reality glasses) was tested
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RGB Image Np = 216 Np = 484 Np = 1862 No gray level

FIGURE 5.11. Five examples of phosphene representations when obstacles appear in virtual environments.
Each example includes the RGB image, our proposed iconic representation at three resolutions and the high
resolution without gray level.
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FIGURE 5.12. Corridor sequence (top), where the effect of progressing through the user movement is provi-
ded by the chess pattern in the floor (bottom). In the middle the same results where the chess pattern is not
display, and thus, the feedback provided to the user is less comfortable and intuitive.

159



5. ICONIC REPRESENTATION FOR NAVIGATION WITH PROSTHETIC VISION

FIGURE 5.13. Each row shows an example of the perception of free moving space. The first two columns
show the RGB and depth image, which has been scaled so warmer colors mean farther distances. Column 3
shows the floor plan view of the moving polygon and in column 4 the chess pattern has been overlaid to the
RGB image for visualization.

yet at this early stage. However, this approach allows us try different ways of encoding
the data in phosphenic representation and analyze the problems that may emerge in a
real scenario.

5.4.2.1. EVALUATION OF FREE SPACE PERCEPTION

First, it is important to have a reliable perception module to create a safe and useful
assistive aid. The recovery of the main orientation of the scene works well considering
the Manhattan World assumption holds for a vast majority of indoor environments. On
the other hand, the visual odometry has a slight drift that is more noticeable the longer
the algorithm is running. However, by re-computing the vanishing points and floor plane
from time to time the effect of the drift can be minimized.

The most important part about the perception module is the obstacle detection, since
this is what warns the user when he is close to have an accident. Its proper functioning
depends mostly on the sensor and its limitations. Conventional RGB-D cameras are well
known for not working well at direct sunlight, which should not be problematic when
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staying indoors. In this situation most obstacles are detectable, with the exception of
certain materials that absorb or reflect the infrared light emitted by the camera [Perez-
Yus et al., 2018c]. In our experiments, the only type of surface that remains always
undetected was glass, which is also undetectable with conventional cameras.

We show some examples in Figure 5.13, including RGB and depth captures, along
with a 2D floor projection of the scene, where the obstacles are drawn as blue points
and the free moving space is the green polygon. It is also depicted the overlay of the
corresponding chess pattern to the color image. The first two rows correspond to a
corridor scenario: a successful case and an unsuccessful one. The former not only is
able to recover the main path to follow the corridor, but it also shows the beginning of
new paths on the left, that the user may like to know to explore the environment. The
second example shows the opposite: a misdetection on the left wall and the glass surface
on the right, showing some misleading free space, which could be problematic. The third
and fourth row in Figure 5.13 show another environment, in this case an office place full
of tables and other obstacles. In both cases the algorithm is able to show the main path
to follow and some additional sidetracks. The last row finds a traversable path through
the door. However, it leaves some actual free space undetected at the left, next to the
door.

5.4.2.2. EVALUATION OF PHOSPHENIC REPRESENTATION

Regarding the phosphenic representation, we show some examples in Figure 5.14.
We have tested different parameters of the codification, including the number of phos-
phenes and the field of view of the representation. About the first, we can observe in
Figure 5.14 the differences among columns (1) and (2), where different values of num-
ber of phosphenes Np = 1862 and Np = 484 phosphenes. While still useful, it is less
intuitive the representation with fewer phosphenes: the chess pattern is not so easily ob-
served, and the bigger discretization in the representation produces sudden jumps in the
representation in the borders of the obstacles. When the amount of phosphenes increa-
ses, the changes in the phosphene map are usually less aggressive and the chess pattern
can be clearly observed. We have to note that this is a simulation to show how our ap-
proach works for several levels of detail. In a real-world prosthetic system the number
of phosphenes would be limited by the current state of technology.

The field of view of the representation is another parameter we can tune since we
are turning 3D information into a 2D representation. Column (2) shows a representation
considering a focal length similar to the RGB-D camera (f = 525 mm). This has the
advantage of representing only what is actually viewed by the camera, and provides
more accurate delimitation of the obstacles and therefore how to avoid them. However,
the field of view of conventional RGB-D cameras is limited, less than normal human
vision. An alternative is shown in column (4), where the field of view selected is very
high (f = 200 pixels). This has the advantage of showing the information in shorter
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RGB Image (1) (2) (3) (4)
f = 525px f = 525px f = 400px f = 200px
Np = 484 Np = 1862 Np = 1862 Np = 1862

FIGURE 5.14. Four real examples of our phosphene-based representation including different parameters. In
particular, we wanted to show the difference of using different number of phosphenes (Np) and field of view
of simulated phosphene camera (given by its focal length f ). By columns, RGB Image and four alternative
phosphenic representations (1–4) with different parameters.
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ranges. For example, when looking at a wall, a low-FOV representation turns all the
phosphenes to black (since no floor is seen). With a high-FOV representation, a portion
of the floor still appears in the image showing the user that he still has some space to
move (see third row in Figure 5.14). The high-FOV representation has an important
drawback, since it needs to encode more information in an already limited display. Note
that, in the fourth phosphene map column in Figure 5.14, the path seems narrower than
with larger values of f . This is because we limit the extension of the free space polygon
to the field of view of the sensor (since it is our only cue to detect obstacles), and it
represents less extension relative to the large field of view of the phosphene camera
(f = 200 pixels). In column (3) we show a middle ground (f = 400 pixels), where
the information at mid-distance is informative enough and also gives more information
about the free space in short distances. In general, having the FOV closer to the camera
represents better the information captured, with more detail and less unused space. In
order to see free space at closer range in front, tilting the head down should suffice the
issue.

5.4.2.3. VIDEO DEMONSTRATION

We have included two videos to show the algorithm running in real case scenarios,
that can be found online3. Two screenshots from the videos are shown in Figure 5.15. In
particular, we show a video where the user moves in a corridor, and another where the
user moves inside an office. In these sequences we use Np = 1862 and f = 525px. We
can see how the phosphenic representation shows clearly the moving area over which
the user can walk safely.

Unlike other works, our representation includes a checkerboard floor which shows
the movement of the user in the scene providing a comfortable sense of depth. This is
more noticeable in the corridor sequence. In that sequence, the windows at the right part
of the corridor sometimes show absence of obstacles since glass remains undetected,
returning erroneous floor polygons. Note that the floor gives few valid depth points.
However, we can maintain its position with respect to the user with the odometry.

The office sequence, on the other hand, presents a cluttered environment with many
obstacles. Our method shows the free space in front of the user, removing the tables
and other objects from the floor polygon. This scenario is particularly challenging, and
thus some frames show undetected portions of obstacles, producing inaccurate polygons.
However, these situations occur mostly in isolated frames, producing an effect similar to
flickering. Ongoing work solves and improves the algorithm for obstacle detection. In
fact, an updated implementation that solves these issues and that also works close to real
time was used in the simulation framework. Since the software we use for simulation
uses the same type of information that the real camera does, the developments of the
algorithm in virtual environments should translate seamlessly to real world images.

3http://webdiis.unizar.es/%7Eglopez/spv.html
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(a) Corridor sequence

(b) Office sequence

FIGURE 5.15. Two screenshots from the video demonstration, where the RGB and depth images are shown
on the left, the odometry map with free space in green at the center, and the chess pattern overlaid in the image
and the corresponding phosphene map on the right.
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5.5. DISCUSSION

Visual prostheses are able to evoke visual perception in blind people by using elec-
trical stimuli. However, these prototypes suffer from a lack of spatial and intensity re-
solution that in practice prevents from transmitting depth perception. In this chapter we
present an approach to represent depth and motion cues with phosphene patterns in the
context of safe navigation of blind people in complex or unfamiliar environments. This
approach takes advantage of computer vision algorithms for evoking phosphenes-based
stimuli with semantic meaning. In particular, we propose a free-space and obstacles de-
tection algorithm for depicting an iconic representation of a safe navigation area. The
effectiveness of this approach is tested in simulation with real data from indoor environ-
ments.
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6
CONCLUSIONS AND FUTURE WORK

In this thesis, we presented some contributions to the state of the art regarding the
recovery of relevant information from the scene in the context of assistive computer vi-
sion. We have proposed several methods that attempt to extract useful cues from the en-
vironment that may be utilized to enhance the navigation in man-made scenarios among
other tasks. For this, we have developed computer vision algorithms that work with
non-conventional camera systems such as RGB-D cameras, omnidirectional cameras, or
combination of both. To summarize our contributions, we have divided our research in
four big blocks:

• We developed a perception system that is able to segment and orient the scene,
find the floor and obstacles, and detect stairs and curbs. The latter is the main
contribution of this block, considering this is one of the first methods to perform
stair detection with RGB-D cameras, improving existing methods in results and
functionality. The main advantage of our approach is the recovery of the staircase
model, with full measurements and orientation with respect to the user, which can
be used for validation of the detection and to provide navigational cues. Further-
more, with a visual odometry algorithm running in parallel, we also dealt with the
problem of stair traversal, achieving complete models of the staircases, continu-
ous recovery of the user’s pose, and detection of the end of the stair. Additionally,
online detections of the staircase during traversal were used to reduce the drift of
the visual odometry.

• In order to reason about the whole scene and not only the small part in front
of the user, we explored the possibility of enhance current RGB-D cameras by
extending their field of view. In this line, our two major contributions were the
introduction of a novel hybrid camera system with depth and fisheye cameras and
its calibration, and the proposal of another calibration technique based on line
observations. This novel technique is a more general alternative, able to calibrate
multiple combinations of camera systems. An important advantage is that it does
not require that cameras have overlapping field of view, which makes the approach
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perfectly suitable to expand fields of view. Besides, since it works by extracting
and matching lines that can be easily found in man-made environments, there is
no need to build any calibration device as in many alternatives.

• Following this idea of taking advantage of unconventional camera systems to cap-
ture large field of view, we propose the first application that uses our novel hybrid
camera system with fisheye and depth. We used it to develop an algorithm to
estimate the 3D scaled reconstruction of the room the user is in, being able to re-
cover complex-shaped spaces and not merely box-shaped rooms. The advantage
of combining both cameras is clear, since the fisheye views larger portion of the
room that allows to see even the usually less cluttered ceiling, and the depth pro-
vides scale and enhances the performance of the method. Our layout estimation
method is even able to overcome the hidden and occluded corners that may be
invisible for any camera.

• Given that our contributions were focused on the framework of visually impaired
assistance, we also deal with the communication of the information perceived to
the user. We center our attention on the current state of visual prostheses, which
allow the users of such technologies to perceive certain visual information in the
form of dots of light, called phosphenes. The low spatial and dynamic range reso-
lution of these kinds of systems make the problem of conveying the information
with such systems to the people quite challenging. We worked in simulation, en-
coding the information in a type of image that emulates what patients with visual
prostheses can see. To tackle the problem with the resolution, we proposed an ico-
nic representation of the environment informative enough to navigate comfortably
avoiding obstacles and with some notions about the orientation of the scene. In
particular, our chess-pattern ground plane representation provides, with minimal
number of levels of intensities of the phosphenes, a sense of depth that is usually
misrepresented in other attempts of iconic representations for prosthetic vision.

All this research has been proposed in the framework of assistive computer vision,
especially considering the problem of visually impaired assistance. However, most of
the work presented here is general enough to be useful for other applications. For exam-
ple, the stairs detection algorithm from Chapter 2 has obvious connections with robotics,
where RGB-D cameras are often used to perceive the environment in a similar way. Not
only that, but stairs are a standard construction whose detection and modeling could be
used to add some semantic information to 3D mapping operations of entire buildings,
where only geometrical relations between points and shapes are often used. The Chap-
ter 2 itself mentions how it can use the shape of the staircases to reduce the drift of visual
odometry algorithms by using the known shapes of stairs and continuous detections du-
ring traversal. The calibration approaches presented in Chapter 3 are also not specific to
visually impaired aids. Extrinsic calibration of multiple cameras is often dealt with in
areas like robotics, autonomous driving or manufacturing processes. Our method based
on line observations is especially useful for these problems, since not requiring cali-
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bration patterns enables a potential automatic re-calibration, often necessary in systems
where the mechanical links between cameras may deteriorate over time. The 3D full-
scaled layouts estimated in Chapter 4 can be of interest in mapping, scene recognition,
and augmented reality, among many others.

On the other hand, the work presented in Chapter 5 is clearly tied to the visually
impaired assistance problem. The determination of free space could be applied to navi-
gation or robotics, but everything else is completely related to visual prostheses. More-
over, it is in this block where we directly focus on the communication interface with the
user. This lead us to one of the main problems that we wish to address in the future: the
lack of experiments with real people with visual impairment. This is, however, a very
difficult task, for many reasons. Particularly, in the case of visual prostheses, the access
to people with such systems is very complicated due to medical and economic reasons.
The process of installing an implant entails surgical procedures, user specific customi-
zations, and, afterwards, supervision and training. The current state of development
is still quite experimental and controlled, and the cost is still considerably high. Even
with commercial systems such as the Argus II Retinal Prostheses System, from Second
Sight, which is probably the most popular visual prostheses commercially available, the
amount of users of the system is still rather reduced. To throw some numbers, in 2017,
only 75 implants were installed worldwide. This is, however, a big improvement with
respect to the previous year, when there were only 42 people implanted, which shows
that the interest of such systems is increasing. The price at this time is about $150,000
US dollars, excluding the cost of the implantation surgery and training to learn the use
of the device. Nevertheless, we believe it is still important to keep researching on how
to codify the environment to the type of information that those prostheses are able to
provide, since medical enhancements are happening fast and the number of people using
such aids could be much higher in the following years. Therefore, the technology to
extract that information from the real world should be ready when the time comes and
both lines of research converge. In our case, given the difficulty of working with real
patients, we are currently working with SPV (Simulated Prosthetic Vision) [Bermudez-
Cameo et al., 2017]. The idea is to try different iconic representations and let people
with normal vision make some trials only watching phosphene images to evaluate how
well a representation is helpful to understand the environment. For this, immersive vir-
tual reality glasses could be used to get more realistic results. In what concerns this
thesis, we have started to develop virtual environments to study the mobility in indoor
environments without colliding with walls or any obstacles.

Nevertheless, visual prostheses are not the only way to communicate with the user.
Another line of future work is to explore other possibilities of communication of infor-
mation. For example, in many works, audio signals and haptic feedback is typically
used. Our group has worked in the past with audio signals [Aladren et al., 2016], with
voice messages and a continuous audio signal that intensifies as the obstacle approaches,
on the left or right headphone depending on from where the hazard comes. But while

169



6. CONCLUSIONS AND FUTURE WORK

this approach is functional and can be tested with blindfolded people, again, the collabo-
ration of actual visually impaired would be desirable, since they are the best to express
how the communication is more effective. For its daily life, it has been expressed that the
constant audio signals could be overwhelming and uncomfortable if they are not imple-
mented properly. Thus, it is necessary to include them in the process when developing
an assistive device in order to not commit common mistakes. They could provide additi-
onal valuable input, such as other features they would want to have detected that we may
not have think of. In general, a closer collaboration with visually impaired collectives is
something we will seek in the future.

As announced in the introduction, we have predominantly used RGB-D cameras in
this thesis. The motivations of this selection were clear, and the results deliver the ex-
pectations we had on these systems. However, this extensive usage of RGB-D cameras
causes that our experimental evaluation has the limitations of the sensor. The most no-
table one is the poor performance under the influence of the sun, mostly outdoors. Our
response to this problem has been to restrict our experimental evaluation to indoor en-
vironments. In the future, we would like to extend our study to outdoor environments
as well. That would require using appropriate sensors. Most of the existing alternatives
pose some other problems, such as poorer performance and accuracy on certain textures
of stereo cameras, or heavy weight and power consumption of laser scanners. Recently,
due to the increase interest on vision-based systems in areas such as autonomous vehi-
cles or even optical developments in smartphones and similar devices, we think in the
near future the state of technology would allow us to retrieve accurate 3D information
very robustly. Nevertheless, switching most of our methods here presented to outdoor
operation should be almost seamless for any sensor able to provide range images, at
least in urban environments. In such environments, assumptions made such as Manhat-
tan World [Coughlan and Yuille, 1999] and that most surfaces are planes should usually
hold. However, the likelihood of facing irregularities is certainly higher than indoors,
and if we consider non-urban environments even basic assumptions could not hold (e.g.
the ground is a plane). Thus, some methods would require being adapted to such cir-
cumstances.

In the future we would like to explore novel techniques that are lately almost ta-
king over the world of computer vision, namely deep learning. In the last few years,
deep learning has exploded, beating old traditional methods of the state of the art in
many tasks, such as object detection, segmentation or human pose tracking, among many
others. Part of the reason why this is happening is due to technological advancements
that arise from the exploitation of new and powerful GPUs for parallel computation.
Before that, training a neural network with many layers was very costly, and thus these
methods remained stagnant. The new and huge datasets that have been published also
help to develop these approaches, considering deep learning methods are mainly data-
driven.

For assistive computer vision, the applications that deep learning techniques could
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have are endless. For example, object detection and recognition could be extremely use-
ful for blind people, as well as facial recognition. Applications here presented could
benefit from deep learning too, such as layout estimation or stair detection. It could be
used for tasks not treated in this thesis but also relevant, such as door detection. The
depth estimation from monocular images of works such as [Eigen and Fergus, 2015]
could potentially be used to extract range images without a depth camera in the future.
However, while deep learning produces good results in many tasks with a higher level
of abstraction compared to what is achievable with traditional methods, it has still some
limitations. For example, the performance depends on the amount and variability of the
data used to train, and it may produce inaccurate results if it is the first time certain in-
stance is viewed. Moreover, methods that work on 2D images usually lose the scale and
3D pose of the objects with respect to the user, which is crucial when giving indications
to a person. Nowadays, deep learning is a great tool that solves specific tasks producing
astonishing results, but in order to be functional in a complex and multi-tasking system
moving in the 3D world it still needs the usage of geometric methods and reasoning
as a part of it to integrate all the information. Besides, multi-layered neural networks
often need powerful machines with large GPUs in order to run in real-time, which is a
pre-requisite still hard to meet in a wearable system.

To conclude, we could say that the development of assistive devices it is still an open
problem with many considerations to take into account, and many possible lines of re-
search to move forward. This thesis proposes a collection of new methods that address
some of the most important tasks related to mobility, but there are certainly others. The
current climate of profound interest in computer vision along with the progressive enhan-
cements in technology to expect in the near future are very promising and encouraging
to keep working in this important topic.
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