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Abstract 15 

Cistus ladanifer L. and Erica arborea L. are the two most representative shrub species from16 

the Iberian Peninsula. With a view to their valorization, their biomass hydrolysate components, 17 

obtained from microwave-assisted treatments with choline chloride/urea - HNO3 10 %, N,N-18 

dimethylacetamide/NaHCO3 and N,N-dimethylacetamide/CH3OK as solvents, have been 19 

measured using a spectrophotometric method. Concentrations of furfural and 5-20 

(hydroxymethyl)furfural (5-HMF) in the filtrate have been determined after reduction with 21 

NaBH4. The production of total sugars, reducing sugars and non-reducing sugars contents has 22 

also been assessed. The obtained results support the choice of MW-assisted choline 23 

chloride/urea deep eutectic solvent in acid media as the preferred method (over the polar aprotic 24 

solvent-based solvents) for the extraction of lignin, furfural, 5-HMF and sugars from C. 25 

ladanifer and E. arborea biomass, attaining the best production yields for 60 min exposure 26 

times. Another is the case if the aim of the treatments is to recovery sugars from both shrubs for 27 
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subsequent enzymatic saccharification: the very low 5-HMF contents resulting from the 28 

dimetylacetamide systems (especially is association with CH3OK) make them highly 29 

advantageous as compared to the traditional method using NaOH.  30 

 31 

Keywords: deep eutectic solvents; furan compounds; hydrolysis; microwave; polar aprotic 32 

solvents; sugars. 33 

 34 

1. Introduction 35 

Lignin, interlaced with cellulose and hemicellulose, forms a complex crystal structure called 36 

lignocellulose that provides support and protection to plant cells [1]. This matrix is difficult to 37 

degrade, requiring treatments that break down its structure, hydrolyze the hemicellulose and 38 

increase the exposed surface to favor the enzymatic hydrolysis of cellulose [2]. For this purpose, 39 

different approaches may be used: physical processes, such as grinding or heating; chemical 40 

methods, such as the addition of acids or bases; physical-chemical treatments, such as self-41 

hydrolysis or thermo-hydrolysis; and biological ones, such as the use of enzymes capable of 42 

degrading lignin (ligninases or lignin-modifying enzymes, LMEs).  43 

In conventional biomass treatments, thermochemical pretreatments are generally carried out 44 

at high temperatures or high operating pressures in order to achieve high cellulose conversion. 45 

An alternative to conventional heating is the application of microwave radiation [3-5], in which 46 

the direct contact between the product and the electromagnetic field generated by the 47 

microwaves results in a volumetric heating that causes an instantaneous temperature increase [6, 48 

7], resulting in an acceleration of the process and higher yields under milder reaction conditions 49 

with significant energy-savings [8]. 50 

The composition of the liquid phase of the treatments includes organic acids (mainly acetic 51 

acid, formic acid and levulinic acid), furan derivatives (2-furfuraldehyde, furfural and 5-52 

(hydroxymethyl)-2-furaldehyde), and phenolic compounds (mainly coumaric acid, 53 

syringaldehyde and vanillin) [9, 10]. Under acidic conditions, and especially at high 54 
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temperatures, furfural is readily produced from pentoses and 5-HMF is formed from hexoses. 55 

Because both furfural and 5-HMF are formed from carbohydrates, they interfere with the 56 

accuracy of sugar analysis of any biomass materials. Furthermore, both are harmful to the 57 

fermentation of sugars if their concentrations exceed certain thresholds [11]. 58 

In the study presented herein, the suitability of various MW-assisted treatments in different 59 

eco-friendly reaction media has been investigated with a view to breaking the intricate structure 60 

of the lignocellulosic biomass obtained from two Mediterranean shrubs (viz. C. ladanifer and E. 61 

arborea). One of the proposed treatments involves an innovative solvent category: the so-called 62 

deep eutectic solvents (DESs), which consist of a hydrogen bond donor and a hydrogen bond 63 

acceptor, associated with each other by means of hydrogen bond interactions, resulting in a 64 

eutectic mixture with a melting temperature much lower than that of its constituents. DESs have 65 

advantages over conventional ionic liquids (ILs), characterized by the formation of strong ionic 66 

bonds, since the later are more expensive and toxic [12]. The other two assayed solvents have 67 

been mixtures of a polar aprotic solvent (N,N-dimethylacetamide, DMAc) with weak and strong 68 

bases (namely sodium bicarbonate (NaHCO3) and potassium methoxide (CH3OK), 69 

respectively). Both categories of solvents can be used as environmentally friendly replacements 70 

of conventional solvents and processes with a view to optimizing biorefineries, aiming at a 71 

greener and more sustainable industry. The efficiencies of these three reaction media (a DES 72 

mixture of choline chloride:urea and HNO3 10 %, DMAc/NaHCO3 and DMAc/CH3OK) have 73 

been compared in terms of lignin, furfural, 5-HMF and sugars extraction.  74 

 75 

2. Materials and methods 76 

2.1. Samples and reagents 77 

The study was carried out on a plot located in the municipality of Ayoó de Vidriales (42° 07' 78 

10" N, 6° 06' 59" W), in the province of Zamora, Castilla y Leon, Spain. The chosen area (>1.2 79 

ha) is a mixed shrubland in which the dominant shrub species are Erica arborea L. subsp. 80 

angustifolius (Daveau) Sennen & Pau, and Cistus ladanifer L. cultivar 'Spanish Lime'. Details 81 
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on the sampling procedure, analogous to that described by Ruiz-Peinado, et al. [13], have been 82 

reported in a previous paper [14]. There were no size fractionation processes, which are 83 

common in annual and perennial species. Selected samples corresponded to healthy individuals 84 

and featured similar characteristics to the rest of the population. 85 

Samples of biomass (mainly from the stem) were dried in a stove and crushed in a knife mill. 86 

Their chemical composition (elemental analysis, summative constituent analysis, and moisture 87 

content) can be found in Table 1: 88 

 89 

[Table 1 here] 90 

 91 

Furfural (CAS No. 98-01-1), 5-HMF (CAS No. 67-47-0), lignin (CAS No. 8068-05-1) and 92 

D-(+)-glucose analytical standards (CAS No. 50-99-7) were purchased from Sigma-Aldrich 93 

Quimica SL (Madrid, Spain). The standard solutions were prepared with deionized water. 94 

Sodium borohydride (CAS No. 16940-66-2), 3-amino-5-nitrosalicylic acid (DNS, CAS No. 95 

831-51-6), phenol (CAS No. 108-95-2), choline chloride (ChCl, CAS No. 67-48-1), urea (CAS 96 

No. 57-13-6), titanium dioxide (CAS No. 13463-67-7), N,N´-dimethylacetamide (DMAc, CAS 97 

No. 127-19-5), sodium bicarbonate (CAS No. 144-55-8), potassium methoxide (CAS No. 865-98 

33-8), sodium hydroxide (CAS No. 1310-73-2) and potassium sodium tartrate (CAS No. 6381-99 

59-5) were also supplied by Sigma Aldrich.  100 

 101 

2.2. Methods 102 

2.2.1. Microwave-assisted deep eutectic solvent 103 

A deep eutectic solvent system based on choline chloride-urea (Figure 1) was assessed for 104 

the hydrolysis of C. ladanifer and E. arborea biomass. Choline chloride/urea DES was prepared 105 

by stirring the mixture of choline chloride and urea (mole ratio 1:2) at 80 °C until a 106 

homogeneous colorless liquid was formed, which was then stored in a vacuum dryer. 107 

Subsequently, biomass samples (200 mg) were treated by a mixture (1 cm3) of choline 108 
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chloride/urea and HNO3 10 %, with TiO2 (20 mg) as a catalyst, in a microwave digestion system 109 

–a Milestone (Sorisole, BG, Italy) Ethos-One microwave oven equipped with a magnetic stirrer 110 

system– at 120 ºC for an “effective time” (isothermal treatment time) between 1 and of 60 min 111 

(viz., 1, 5, 10, 20, 30, 40, 50 and 60 min), plus the heating and cooling ramps, which also 112 

contributed to the thermal budget. The heating up to 120 ºC started with a ramp set to 19 113 

ºC·min-1 during the first 5 min, followed by a second ramp at a rate of 2.5 ºC·min-1 for 10 min. 114 

The cooling down to room temperature took 25 minutes, at a rate of ~4.8 ºC·min-1. The DES 115 

was finally removed by washing with water and was recovered by crystallization. 116 

 117 

[Figure 1 here] 118 

 119 

2.2.2. Microwave-assisted DMAc-sodium bicarbonate polar aprotic solvent 120 

Alternatively to the DES-based method, 8 cm3 of a colorless, water-miscible, high boiling 121 

liquid –viz. N,N´-dimethylacetamide (DMAc) with formula CH3C(O)N(CH3)2– was used, in the 122 

presence of 40 mg of sodium hydrogen carbonate (NaHCO3), as a treatment agent for C. 123 

ladanifer and E. arborea wooden samples (200 mg of biomass samples). The same procedure 124 

explained above for the microwave-assisted DES treatment was followed for the polar aprotic 125 

solvent-based treatment. DMAc was removed by washing with water and recovered by 126 

distillation. 127 

 128 

2.2.3. Microwave-assisted DMAc-potassium methoxide system 129 

The third approach investigated for the hydrolytic treatment of C. ladanifer and E. arborea 130 

biomass (200 mg) was based on a mixture of 8 cm3 of DMAc with 40 mg of potassium 131 

methoxide (commonly used as a catalyst for transesterification in the production of biodiesel). 132 

The solution was then treated as in the previously discussed methods. 133 

 134 

2.2.4. Alkaline treatment 135 
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Solutions were prepared with 200 mg of each sample and 2 cm3 of NaOH (4 kg m-3), which 136 

were stirred for 24 h. From these solutions, 0.3 cm3 of each sample were isolated and then 137 

diluted to 25 cm3 (to keep the concentration within the spectrophotometer measurement range 138 

and to avoid absorption flattening due to saturation). When necessary, HCl was used to keep a 139 

neutral pH. 140 

 141 

2.2.5. Acid-soluble lignin, furfural and 5-HMF contents 142 

The acid-soluble lignin (ASL), furfural and 5-(hydroxymethyl)-furfural contents were 143 

determined according to the methodology proposed by Chi, et al. [15], based on the 144 

measurement of their respective maximum absorbance at 205 nm, 277 nm and 285 nm, and 145 

which makes use of the effect of the reduction with borohydride on the furfural and 5-HMF 146 

maxima mentioned above. For these latter two chemical species, their initial absorbance in the 147 

UV-vis spectrum was measured and, after the addition of 30 mg of sodium borohydride to 148 

eliminate the interference of furanic compounds (followed, after 5 min, by the addition of a 149 

small amount of HCl) [16], absorbance measurements were repeated. Their associated 150 

absorption maxima at 277 and 285 nm completely disappeared upon reduction with NaBH4. 151 

Therefore, the furfural and 5-HMF contents could be readily calculated from the absorbance 152 

difference before and after reduction (ΔAR) at their respective wavelengths. 153 

All determinations were performed with three replications, except for the kinetic studies, and 154 

all results are in average. 155 

 156 

2.2.6. Sugars content 157 

The quantification of reducing sugars was conducted according to Miller [17], using DNS as 158 

the most specific reagent in a solution containing sodium hydroxide and potassium sodium 159 

tartrate. The solution was prepared by mixing 0.8 g of NaOH, 15 g of sodium potassium tartrate 160 

and 0.5 g of DNS, completing up to 50 cm3 with distilled water. To ensure the homogeneity of 161 

the mixture, it was boiled for 5 minutes. It was then cooled with water and ice, 5 cm3 of water 162 
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were added to compensate for the evaporated volume, and it was allowed to rest for 15 min. 163 

With this solution, which will be referred to as ‘DNS’, 1:1 mixtures with the samples or the 164 

standard solutions to be analyzed were prepared (0.5 cm3 of DNS and 0.5 cm3 of either the 165 

sample or the standard solution). The determination of reducing sugars in these mixtures was 166 

conducted by measuring their absorbance at 540 nm. 167 

The total sugars determination was carried out in agreement with the method proposed by 168 

DuBois, et al. [18]. This method is usually called ‘phenol-sulfuric acid method’ because in the 169 

preparation of the measuring solutions, 1-2 cm3 of sample, 1 cm3 of phenol (5 %) and 5 cm3 of 170 

concentrated sulfuric acid (95.5 %) are mixed in the test tubes. The test tubes containing these 171 

solutions were placed in a rack which was kept in a thermostatic bath, between 25 and 30 °C, 172 

for 10-15 min. Glucose at various concentrations was used as a standard. The 173 

spectrophotometric measurement of the total sugars was carried out at 490 nm, that is, at the 174 

wavelength at which hexoses and their methylated derivatives exhibit their maximum 175 

absorption. Non-reducing sugars content was calculated by difference between the total sugars 176 

and the reducing sugars percentages. 177 

All determinations were performed in triplicate biological replications, except for the kinetic 178 

studies, and all results are in average. 179 

 180 

2.2.7. Calibration curves 181 

In order to obtain the calibration curves for each component under study (shown in Figure 182 

2), dissolutions with different concentrations of the analytical standards used as a reference (viz. 183 

furfural, lignin, 5-HMF and glucose) were prepared. Absorption values for increasing 184 

concentrations of the analytical standards were plotted and data was fitted with a straight line, in 185 

agreement with Beer’s Law.  186 

Apropos of ASL, furfural and 5-HMF, excellent linear relationships (Eq. 1-3) were obtained 187 

at their three respective wavelengths (at λ=280 nm for ASL, at λ=277 nm for furfural and at 188 

λ=285 nm for 5-HMF), with Pearson coefficients (R2 values) above 0.95 in all cases.  189 
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 𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴 = 109.11𝑥𝑥 + 0.0841;𝑅𝑅² = 0.9802 Eq. 1 190 

 𝑦𝑦𝐹𝐹 = 270.76𝑥𝑥 + 0.2236;𝑅𝑅² = 0.9534 Eq. 2 191 

 𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻 = 10.56𝑥𝑥 + 0.017;𝑅𝑅2 = 0.9921 Eq. 3 192 

As regards the calibration curves for glucose (depicted in Figure 2b), the equation of the 193 

calibration curve of total sugars (TS) (Eq. 4) was built by applying the methodology proposed 194 

by DuBois, et al. [18], measuring the absorbance at 490 nm. On the other hand, the method by 195 

Miller [17] was used for the calibration for reducing sugars (RS) (Eq. 5), measuring the 196 

absorbance at 540 nm. R2 values were close to 1. Eq. 6 for non-reducing sugars (NRS) is the 197 

difference between the calibration curves of total and reducing sugars. 198 

  𝑦𝑦𝑇𝑇𝑇𝑇 = 5.0694𝑥𝑥 + 0.0525;  𝑅𝑅² = 0.9807 Eq. 4 199 

 𝑦𝑦𝑅𝑅𝑅𝑅 = 17.867𝑥𝑥 + 0.0442;𝑅𝑅² = 0.9946 Eq. 5 200 

 𝑦𝑦𝑁𝑁𝑁𝑁 = 𝑦𝑦490–𝑦𝑦540 = −12.7976𝑥𝑥 + 0.0083 Eq. 6 201 

 202 

[Figure 2 here] 203 

 204 

2.2.8. Kinetic studies 205 

The processing of lignocellulosic biomass follows complex kinetic mechanisms involving 206 

productive reactions (for instance, taking the case of furfural and 5-HMF production, the 207 

conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of isomers 208 

and/or intermediates and the subsequent production of furanic compounds) and parasitic 209 

reactions (taking the same example, substrate fragmentation and/or reversion, furanic 210 

compounds consumption by reactions with themselves and/or with reactive species present in 211 

the reaction media, furanic compounds rehydration to yield levulinic and formic acids, etc.). 212 

The overall mechanism is still subjected to debate, as noted by [19], and –to the best of the 213 

authors’ knowledge– there is no information available on the kinetic modelling of furanic 214 

compounds generation from lignocellulose in ionic liquids or DES, only a few studies on 5-215 

HMF production from glucose in ILs. For practical reasons, given the variety of products 216 

studied herein, simplifications to the above model are necessary for performing the kinetic 217 
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studies, and a single lumped reaction –without considering the individual reactions yielding 218 

various products– has been chosen in this case, interpreting the processes on the basis of first-219 

order (or pseudo-first-order) kinetics. The aim of this (over)simplification was to gain basic 220 

insight into the speed of the chemical reactions and yields for each of the solvents under study. 221 

 222 

2.2.9. Statistical analyses 223 

Data were subjected to analysis of variance (ANOVA). For post hoc comparison of means, 224 

Tukey’s multiple range test at 0.05 probability level (p<0.05) was used. All tests were made 225 

using IBM SPSS Statistics v.25 software. 226 

 227 

3. Results and discussion 228 

3.1. Furfural, 5-HMF and ASL 229 

The highest values of ASL, furfural and 5-HMF were generally obtained after 60 min of 230 

microwave-assisted treatment, both for E. arborea and C. ladanifer-derived biomass (see Table 231 

2). As noted above, furfural and 5-HMF values, obtained by the difference in the absorption 232 

values before and after the reduction with borohydride, were not influenced by the lignin 233 

content. 234 

According to Table 3, and as depicted in Figure 3, both for E. arborea and C. ladanifer, the 235 

choline chloride/urea treatment was significantly more effective in the production of ASL, 236 

furfural and 5-HMF than the treatment with DMAc/sodium bicarbonate, which –in turn– 237 

showed better or similar performance than the DMAc/potassium methoxide alternative in 238 

almost all cases (the latter only performed better in ASL production from E. arborea). 239 

It is worth noting that after the choline chloride/urea treatment, E. arborea samples led to 240 

higher contents in furan-derived products than those of C. ladanifer, although the differences 241 

were not significant from a statistical point of view in all cases (see Table 3). However, 242 

treatment times below 10 min showed a higher production of furfural and 5-HMF from C. 243 

ladanifer than from E. arborea. As regards the lignin content in the liquid phase after the MW-244 
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assisted treatments, it was significantly higher in E. arborea than in C. ladanifer in the three 245 

media. 246 

 247 

[Table 2 here] 248 

[Table 3 here] 249 

[Figure 3 here] 250 

 251 

For the choline chloride/urea treated shrubs biomass, the values for soluble lignin content 252 

(1.26-1.80 %), furfural content (2.33-2.74 %) and 5-HMF content (0.77-0.82 %) were in 253 

agreement with those reported by Chi, et al. [15] for the acid hydrolysis of Pinus taeda L. 254 

(ASL: 1.43 %; furfural: 2.02 %; and 5-HMF: 1.05 %). Da Silva et al. found furfural+5-HMF 255 

contents ranging from 0.57 % for macauba shell and up to 7.28 % for native cellulose in one of 256 

their works [20], and furfural and 5-HMF values of 5.25 % and 0.87 %, respectively, for native 257 

cellulose in another study [21] (Table 4). 258 

Non MW-assisted alkaline treatments (with NaOH), used for comparison purposes, gave 259 

soluble lignin contents twice as high for E. arborea (2.25 %) as those for C. ladanifer (1.31 %), 260 

and both were higher than those obtained for the other treatments. However, furfural contents 261 

for the alkaline procedure were 0.40 % for E. arborea and 0.19 % for C. ladanifer, significantly 262 

lower than those obtained in the MW-assisted treatments. 5-HMF contents (0.52 % and 0.47 % 263 

for E. arborea and C. ladanifer, respectively) were similar to those obtained after 20 min of 264 

MW-assisted DES treatment and higher than those obtained in the other two polar aprotic 265 

solvent-based alternatives (Table 4). 266 

 267 

[Table 4 here] 268 

 269 

3.2. Sugar content 270 

 271 
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From the data summarized in Table 5, it may be observed that the concentration of reducing 272 

sugars in the hydrolysates obtained from both species was low (wB = 0.23-0.44 %), and that E. 273 

arborea biomass led to significantly higher values than that from C. ladanifer for all treatment media 274 

(see Table 3). On the other hand, the production of non-reducing sugars was high, close to that of 275 

total sugars (provided that they were determined by subtracting the reducing sugars from the total 276 

ones). In this case, significant differences were only found for the polar aprotic solvents, not for the 277 

ChCl:urea DES (Table 3).  278 

It may also be noted that the greatest increase in the production of total sugars –and therefore 279 

in the production of non-reducing sugars– occurred for MW-treatment times ranging from 10 to 280 

20 min, both for C. ladanifer and E. arborea. For reducing sugars this only occurred for the 281 

DMAc-based treatments in the case of C. ladanifer. The greatest increase in the production of 282 

reducing sugars for E. arborea took place between 5 and 10 min for all the treatments.  283 

Both for E. arborea and C. ladanifer hydrolysates, the DES treatment was found to be 284 

significantly more effective in terms of sugar production than the treatments based on the polar 285 

aprotic solvent (Table 3), although it is worth noting the DMAc/CH3OK solvent showed a similar 286 

performance to the DES in the reducing sugars production. No significant differences were 287 

observed between the results of the microwave-assisted DMAc-potassium methoxide and the 288 

DMAc-sodium hydrogen carbonate systems for TS and NRS, only for RS (in which –as noted 289 

above- DMAc/CH3OK performed better). 290 

Upon application of the choline chloride/urea treatment, E. arborea samples produced more 291 

total sugars and non-reducing sugars than C. ladanifer ones, but the differences were not 292 

significant. On the other hand, the reducing sugars content was significantly higher for the 293 

former in the three media.  294 

Upon alkaline treatment for 24 h (Table 4), the obtained total sugar values (wB = 4.63 % for 295 

E. arborea and 5.64 % for C. ladanifer) were similar to those obtained for a 10-20 min MW-296 

assisted treatment in choline ChCl/urea and higher than those in DMAc-based solvents. 297 

Reducing sugars production (wB = 1.29 % for E. arborea and 1 % for C. ladanifer) were three 298 
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times higher than those attained with the microwave treatments. Non-reducing sugars for the 299 

NaOH treatment (wB = 3.34 % and 4.64 %, respectively) would be similar to those obtained for 300 

a 5 min treatment with choline ChCl/urea, for a 40-50 min treatment with DMAc/NaHCO3 and 301 

for a 50-60 min treatment with DMAc/CH3OK in the case of E. arborea; and for a 10 min 302 

treatment with choline ChCl/urea in the case of C. ladanifer (wB = 4.64 % was much higher than 303 

the values resulting from the polar aprotic solvent-based treatments). 304 

For comparison purposes, Table 6 shows the concentration of total sugars and reducing 305 

sugars for corncob (twice higher) and bamboo (ten times higher) [22]. 306 

 307 

[Table 5 here] 308 

[Table 6 here] 309 

 310 

3.3. Analysis of kinetic data 311 

The kinetic coefficients (k) calculated for the different treatments are reported in Table 7. It 312 

may be observed that, in general terms, the highest constants agree with the highest rates of 313 

production. That is, for the ChCl/urea treatment, in addition to the highest concentrations of 314 

lignin and furfural, the highest kinetic constants were also obtained –both for E. arborea and C. 315 

ladanifer–: klignin values of 0.296 and 0.175, respectively; and kfurfural values of 0.319 and 0.065, 316 

respectively. Another is the case of 5-HMF and total and reducing sugars, for which the highest 317 

formation kinetics were obtained for the DMAc/CH3OK solvent (kHMF values of 0.488 for E. 318 

arborea and 0.779 for C. ladanifer; kTS values of 1.404 and 1.778, respectively; and kRS values 319 

of 0.435 and 0.952, respectively). The difference in the kinetic behavior between furfural and 5-320 

HMF has to be referred to the different percentages of pentose in the raw materials [23]. 321 

 322 

[Table 7 here] 323 

 324 

3.4. On treatment methods and mechanisms  325 
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It is known that the use of oxidant acids (HNO3) for pretreating lignocellulosic biomass 326 

allows the disruption of the association between carbohydrates and lignin [20, 21]. On the other 327 

hand, alkaline treatments (NaOH, CH3OK) can also be used to remove lignin and thereby 328 

increase the digestibility of cellulose. Compared to acid and hydrothermal processes, mild 329 

alkaline pretreatments (NaHCO3) lead to less solubilization of hemicelluloses and less 330 

formation of inhibitory compounds, and they can be operated at lower temperatures [24].  331 

Although the solvents under study have the ability to disrupt the hydrogen bond network of 332 

biopolymers, their different mechanisms result in different efficiencies. Further, the lower 333 

performance of DMAc-based systems can be explained by fact that they are disturbed by water 334 

impurities [25].  335 

In the DES system, ChCl may act as a bridge between the urea and the biomass biopolymers 336 

units to, subsequently, weaken and break the specific linkages into the biopolymer (e.g., the 337 

ether linkages between the phenylpropane units present in lignin, as reported by Alvarez-Vasco, 338 

et al. [26]). Another possibility would be that, instead of ChCl and urea, the intermediate agents 339 

were choline cation and [Cl(urea)2]− anion (Figure 1).  340 

In the case of DMAc-based systems, the hydroxyl groups of lignocellulosic materials may 341 

interact with a sodium- or potassium-DMAc macrocation via hydrogen bonding bridged by the 342 

bicarbonate or methoxide anions (Figure 4). Sodium or potassium can interact with the carbonyl 343 

oxygen via ion-dipole interaction [27], but for this interaction to take place no biopolymer 344 

bound water can be present. On the contrary, such problem does not occur in the case of the 345 

DES system: since water is linked to urea through hydrogen bonding, the deleterious water 346 

effect is suppressed [28]. 347 

 348 

[Figure 4 here] 349 

 350 

Regardless of the chosen method, acid-soluble lignin should be removed to increase 351 

subsequent fermentation process. In agreement to Schwartz and Lawoko [29], a suitable and 352 
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economical approach would be to use Amberlite XAD-4 resin, which was shown to remove 353 

90% of ASL. Subsequent fermentation of the resin-treated hydrolyzates gave ethanol yields as 354 

high as 97% of theoretical and showed a marked increase in the fermentation rate. 355 

The results of this study provide further evidence on the efficiency of microwave-assisted 356 

DES treatment for biomass conversion, previously claimed by other authors: both strategies 357 

exhibit a strong synergism, result in improvements in biomass digestibility and appear to require 358 

much less energy to achieve a satisfactory treatment effectiveness within a very short period 359 

[30]. As compared to common solvents used for biomass conversion, DESs clearly offer notable 360 

advantages, apart from their low cost and low environmental impact, owing to their ability to 361 

produce highly concentrated solutions of HMF or furfural [31]. Moreover, their high H-bond 362 

accepting ability and polarity facilitates lignin degradation and/or extraction from wood fibers 363 

[26]. As regards the concurrent use of microwave irradiation, it can maximize ionic 364 

characteristics and increase molecular polarity of DES [32] and, thus, it can significantly 365 

shorten the reaction time for DES treatment while achieving a similar or even higher degree of 366 

effectiveness compared to DES pretreatment alone [33-35]. 367 

 368 

4. Conclusions 369 

The results suggest that the deep eutectic solvent-based treatment offers an efficient, safe, 370 

sustainable, and cost-effective alternative to conventional methods for the extraction of 371 

bioactive compounds from C. ladanifer and E. arborea biomass. Samples of these shrubs may 372 

be easily dissolved by a MW-assisted procedure in a ChCl/urea DES to give lignin, furfural, 5-373 

(hydroxymethyl)furfural and sugars with reasonable yields. Conversely, the DMAc/NaHCO3 374 

and DMAc/CH3OK solvent exchange systems would be less appropriate due the disruptive 375 

effect of water impurities. Nevertheless, if the aim of treating C. ladanifer and E. arborea 376 

biomass is to recover sugars for subsequent enzymatic saccharification, the very low 5-HMF 377 

contents attained with the dimetylacetamide systems (especially the CH3OK one) make them 378 

highly advantageous as compared to the traditional method using NaOH.  379 
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A peculiarity of the present work is that the operating conditions led to higher contents of 380 

non-reducing sugars than of reducing sugars. This finding can be useful to modify cured phenol-381 

formaldehyde resins: whereas reduced sugars cannot be used to modify these resins, non-382 

reducing sugars can be used to replace a major portion of the adhesive resin. These non-383 

reducing sugars may also be advantageously used as a starting material in bioprocesses to 384 

produce succinic acid (one of the chemical platforms suggested by the DOE), farnesene 385 

(sesquiterpenes) and sucralose.  386 
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Table 1. Overall chemical composition of E. arborea and C. ladanifer [14, 36]. Values are given as an 513 

average of 25 repetitions, followed by the minimum and maximum values in brackets. 514 

 Erica arborea Cistus ladanifer 
Elemental analysis: 
C (%) 51.0 (49.3-52.8) 47.8 (47.5-50.1) 
H (%) 6.2 (6.0-6.4) 6.4 (6.0-6.8) 
N (%) 1.0 (0.3-1.1) 0.8 (0.3-1.9) 
O (by diff., %) ~41.8 ~45.0 
Vegetal components: 
Cellulose (%) 40.0 (37.3-41.1) 55.0 (54.9-55.7)† 
Lignin (%) 39.5 (39.3-40.1) 25.3 (24.5-34.2) 
Hemi-cellulose 
(%) 11.0 (9.7-13.8)‡ 10.2 (10.1-10.9)‡ 

Extractive (%) 9.5 (5.7-11.0) 9.5 (9.4-9.6) 
Moisture (wt.%) 26.0 26.8 

 † This cellulose content is higher than that of most woods, which is usually in the 35-50% range.  515 
‡ These hemicellulose contents are lower than those of most woods, which usually range from 20% to 30%.  516 
 517 

Table 2. Mass fraction (wB, in %) for lignin, furfural and 5-HMF in hydrolysates after MW-assisted deep 518 

eutectic solvent or polar aprotic solvent extraction. The tests were performed in triplicate, and 519 

standard deviations were <5 %, except in those cases in which the furan compounds yields were below 520 

1.5 % (in which the standard deviations were higher, up to 10 %). 521 

Treatment Time (min)† Erica arborea Cistus ladanifer 
wlignin wfurfural w5HMF wlignin wfurfural w5HMF 

MW-assisted ChCl/urea DES extraction 

1 0.52 1.00 0.25 0.48 1.05 0.23 
5 0.82 1.13 0.34 0.69 1.38 0.33 

10 1.25 1.30 0.39 0.93 1.45 0.36 
20 1.35 1.73 0.59 1.03 1.58 0.45 
30 1.63 2.59 0.65 1.22 1.94 0.49 
40 1.67 2.70 0.65 1.28 2.13 0.58 
50 1.79 2.69 0.75 1.40 2.26 0.63 
60 1.80 2.74 0.82 1.26 2.33 0.77 

MW-assisted DMAc/NaHCO3 extraction 

1 0.33 0.97 0.22 0.42 0.92 0.20 
5 0.45 1.02 0.23 0.58 1.06 0.21 

10 0.47 1.08 0.24 0.59 1.16 0.24 
20 0.55 1.18 0.25 0.61 1.20 0.26 
30 0.69 1.26 0.27 0.62 1.23 0.28 
40 0.80 1.37 0.28 0.70 1.25 0.28 
50 0.85 1.43 0.33 0.79 1.29 0.29 
60 0.90 1.46 0.34 0.78 1.30 0.29 

MW-assisted DMAc/CH3OK extraction 

1 0.52 0.62 0.00 0.46 0.62 0.05 
5 0.69 0.93 0.02 0.64 0.80 0.05 

10 0.90 1.08 0.02 0.68 1.06 0.07 
20 0.98 1.43 0.06 0.73 1.29 0.09 
30 0.99 1.42 0.11 0.76 1.25 0.09 
40 1.04 1.37 0.12 0.77 1.16 0.10 
50 1.07 1.36 0.15 0.80 1.30 0.11 
60 1.10 1.35 0.18 0.82 1.23 0.13 

† This time refers to the isothermal treatment time. It should be noticed that the heating and cooling ramps also 522 
contribute to the thermal budget (i.e., for t=0 min, there would be a non-zero production of lignin, furfural and 5-523 
HMF due to heating and cooling ramps). 524 
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Table 3. Mass fractions (wB, in %) for acid soluble lignin (ASL), furfural, 5-HMF, total sugars (TS), 525 

reducing sugars (RS) and non-reducing sugars (NRS) in the hydrolysates after a 60 min treatment for the 526 

MW-assisted ChCl/urea, DMAc/NaHCO3 and DMAc/CH3OK media. 527 

Treatment Erica arborea Cistus ladanifer 
ASL Furfural 5-HMF TS RS NRS ASL Furfural 5-HMF TS RS NRS 

ChCl:urea DES 1.80 aA 2.74 aA 0.82 aA 9.19 aA 0.41 aA 8.78 aA 1.26 aB 2.33 aB 0.77 aA 8.45 aA 0.33 aB 8.13 aA 
DMAc/NaHCO3 0.90 bA 1.46 bA 0.34 bA 3.74 bA 0.34 bA 3.40 bA 0.78 bB 1.30 bB 0.29 bB 3.22 bB 0.23 bB 2.99 bB 
DMAc/CH3OK 1.10 cA 1.35 bA 0.18 cA 3.80 bA 0.44 aA 3.36 bA 0.82 bB 1.23 bA 0.13 cB 2.90 bB 0.36 aB 2.54 bB 

* Means followed by the same lowercase letter within each column are not significantly different at p<0.05 by 528 
Tukey’s test. Means of the same product (viz. ASL, furfural, 5-HMF, TS, RS or NRS) followed by the same 529 
uppercase letter for E. arborea and C. ladanifer are not significantly different at p<0.05 by Tukey’s test. All values 530 
are presented as the average of three repetitions. 531 
 532 

Table 4. Comparative measurements of soluble lignin, furfural and 5-HMF in the hydrolysates (wB, in %). 533 

Tests were performed in triplicate, and standard deviations were <10 % in all cases. 534 

Component Solvent Shrubs Native cellulose Hardwoods References E. arborea C. ladanifer 

Lignin 

ChCl/urea 0.52-1.80 0.48-1.4    
DMAc/NaHCO3 0.33-0.90 0.42-0.79  1.43 Chi, et al. [15] 
DMAc/CH3OK 0.52-1.10 0.46-0.82    

NaOH 2.25 1.31    

Furfural 

ChCl/urea 1.00-2.74 1.05-2.33 2.30-5.25  da Silva et al. [20] 
DMAc/NaHCO3 0.97-1.46 0.92-1-30    
DMAc/CH3OK 0.62-1.43 0.62-1.30    

NaOH 0.40 0.19    

5-HMF 

ChCl/urea 0.25-0.82 0.23-0.77 0.23-0.87  da Silva et al. [21] 
DMAc/NaHCO3 0.22-0.34 0.20-0.29    
DMAc/CH3OK 0.00-0.18 0.05-0.13    

NaOH 0.52 0.47    
 535 
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 537 

Table 5. Total sugars (TS), reducing sugars (RS) and non-reducing sugars (NRS) mass fractions (wB, in 538 

%) for the MW-assisted ChCl/urea, DMAc/NaHCO3 and DMAc/CH3OK treatments as a function of 539 

exposure times. Tests were performed in triplicate, and standard deviations were <5 %. 540 

Treatment Time (min)† Erica arborea Cistus ladanifer 
wTS wRS wNRS wTS wRS wNRS 

MW-assisted ChCl:urea DES extraction 

1 2.94 0.17 2.76 3.33 0.12 3.21 
5 3.54 0.20 3.34 3.97 0.14 3.84 

10 4.04 0.27 3.78 4.86 0.23 4.63 
20 6.45 0.28 6.17 6.36 0.23 6.13 
30 8.15 0.31 7.84 7.03 0.28 6.75 
40 8.44 0.35 8.09 8.06 0.29 7.77 
50 8.83 0.40 8.43 8.09 0.30 7.79 
60 9.19 0.41 8.78 8.45 0.33 8.13 

MW-assisted DMAc/NaHCO3 extraction 

1 0.45 0.17 0.29 0.39 0.11 0.29 
5 0.61 0.18 0.43 0.40 0.11 0.28 

10 0.75 0.22 0.53 0.57 0.12 0.45 
20 2.46 0.25 2.21 2.44 0.19 2.25 
30 3.29 0.28 3.01 2.44 0.19 2.25 
40 3.33 0.28 3.05 2.60 0.20 2.40 
50 3.68 0.30 3.37 2.70 0.23 2.47 
60 3.74 0.34 3.40 3.22 0.23 2.99 

MW-assisted DMAc/CH3OK extraction 

1 0.28 0.16 0.11 0.12 0.12 0.00 
5 0.71 0.19 0.52 0.26 0.13 0.13 

10 1.05 0.28 0.77 0.63 0.16 0.47 
20 2.63 0.30 2.33 2.21 0.26 1.94 
30 3.27 0.36 2.91 2.39 0.28 2.11 
40 3.32 0.37 2.95 2.64 0.29 2.35 
50 3.48 0.42 3.06 2.82 0.33 2.49 
60 3.80 0.44 3.36 2.90 0.36 2.54 

† This time refers to the isothermal treatment time. It should be noticed that the heating and cooling ramps also 541 
contribute to the thermal budget (i.e., for t=0 min, there would be a non-zero production of TS, RS and NRS due to 542 
heating and cooling ramps). 543 
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 545 

Table 6. Comparison of the sugar mass fractions (wB, in %) in the lignocellulosic biomass hydrolysates 546 

from E. arborea and C. ladanifer studied herein with values reported by other authors for corncob and 547 

bamboo. 548 

Component Solvent Shrubs Corncob Bamboo References E. arborea C. ladanifer 

Total sugars  
(wTS) 

ChCl/urea 2.94-9.19 3.33-8.45 18.6-20.9  Procentese, et al. [37] 
DMAc/NaHCO3 0.45-3.74 0.39-2.70    
DMAc/CH3OK 0.28-3.80 0.12-2.90    

NaOH 4.63 5.64    

Reducing sugars  
(wRS) 

ChCl/urea 0.17-0.41 0.12-0.33    
DMAc/NaHCO3 0.17-0.34 0.11-0.23  3.4 Wu, et al. [38] 
DMAc/CH3OK 0.16-0.44 0.12-0.36    

NaOH 1.29 1.00    

Non-reducing sugars 
(wNRS) 

ChCl/urea 2.76-8.75 3.21-8.13    
DMAc/NaHCO3 0.29-3.40 0.28-2.99    
DMAc/CH3OK 0.11-3.36 0.00-2.54    

NaOH 3.34 4.64    
 549 

 550 

Table 7. Kinetic coefficients (k), correlation coefficients (r2) and initial concentration of each sample (Ho) 551 

determined from the concentration as a function of time for lignin, furfural, 5-HMF, total sugars and 552 

reducing sugars production from the hydrolysis of E. arborea and C. ladanifer lignocellulosic biomass. 553 

Component Solvent E. arborea C. ladanifer References k r2 H0 k r2 H0 

Soluble 
lignin 

ChCl/urea 0.2959 0.9707 0.0320 0.1752 0.9479 0.0321  
DMAc/NaHCO3 0.2118 0.8583 0.0321 0.0088 0.8646 0.0321  
DMAc/CH3OK 0.0348 0.9745 0.0321 0.0042 0.9831 0.0320  

Furfural 
ChCl/urea 0.3192 0.8214 0.0320 0.0649 0.8900 0.0321 0.2712 (macauba pulp) [21] 
DMAc/NaHCO3 0.0011 0.8500 0.0321 0.0001 0.9905 0.0321  
DMAc/CH3OK 0.0433 0.8908 0.0321 0.0309 0.8782 0.0320  

5-HMF 
ChCl/urea 0.3844 0.9025 0.0320 0.3296 0.8365 0.0321  0.2729 (macauba pulp), 

0.0810 (macauba shell) [21] 
DMAc/NaHCO3 0.0025 0.6806 0.0321 0.0013 0.9240 0.0321  
DMAc/CH3OK 0.4883 0.8024 0.0321 0.7798 0.8367 0.0320  

Total sugars 
ChCl/urea 0.3778 0.8704 0.0100 0.1605 0.9149 0.0100  
DMAc/NaHCO3 1.4143 0.8309 0.0100 1.3890 0.8024 0.0100  
DMAc/CH3OK 1.4044 0.8928 0.0100 1.7780 0.8634 0.0100  

Reducing 
sugars 

ChCl/urea 0.3005 0.8780 0.0667 0.5469 0.9137 0.0668  
DMAc/NaHCO3 0.1600 0.8976 0.0668 0.6234 0.8339 0.0668  
DMAc/CH3OK 0.4351 0.9132 0.0668 0.9528 0.8690 0.0668  

 554 

  555 



Prep
rin

t

24 

OH
N+

Cl
-

H2N

O

NH2 2

OH

N

N
O

N

H
H

H
H

N
O

N

H
H

H
H

Cl

 556 

Figure 1. DES of ChCl and urea where a [choline]+ cation is energetically competitive with [Cl(urea)2]−. 557 
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Figure 2. (a) Calibration curves for furfural (F), acid-soluble lignin (ASL) and 5-(hydroxymethyl)-560 

furfural (5-HMF) concentrations. (b) Calibration curves for glucose concentration. Each data point was 561 

the mean of three determinations. Standard deviation bars were omitted for clarity. 562 
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Figure 3. Lignin, furfural and 5-HMF yields for the E. arborea and C. ladanifer lignocellulosic biomass 564 

hydrolysates after: (a) MW-assisted ChCl/urea extraction; (b) MW-assisted DMAc/NaHCO3 extraction; 565 

and (c) MW-assisted DMAc/CH3OK extraction. Total, reducing and non-reducing sugars in the 566 

hydrolysates after: (d) MW-assisted ChCl/urea treatment; (e) MW-assisted DMAc/NaHCO3 treatment; 567 

and (f) MW-assisted DMAc/CH3OK treatment. 568 
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Figure 4. Proposed interaction between DMAc-NaHCO3 and DMAc-CH3OK solvents and sugar polymer 571 
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