000075392 001__ 75392
000075392 005__ 20200616135722.0
000075392 0247_ $$2doi$$a10.1016/j.cej.2018.08.150
000075392 0248_ $$2sideral$$a107836
000075392 037__ $$aART-2018-107836
000075392 041__ $$aeng
000075392 100__ $$0(orcid)0000-0003-3211-0485$$aJulian, Ignacio
000075392 245__ $$aNon-oxidative methane conversion in microwave-assisted structured reactors
000075392 260__ $$c2018
000075392 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075392 5203_ $$aThe main problem to be addressed in the valorization of methane under non-oxidative conditions (MNOC) is to reduce or even avoid coke formation. In this work we report the use of microwave-assisted heating for MNOC. We have developed a system able to heat-up a Mo-ZSM5 catalyst coated on silicon carbide monolith that could operate stable for at least 19¿h at reaction conditions, 700°C. We demonstrate that under MW-heating the selectivity shifts to C2s and benzene. In contrast, the operation under conventional heating (CH) produces more coke and polyaromatics. The selective microwave heating has two effects in this reaction: i) during the activation of the catalyst the formation of the active catalytic species of Mo2C inside the microporous support is different affecting the selectivity and product distribution; ii) a gas-solid temperature gradient is established that prevents the formation of coke from PAHs in the gas phase. The MNOC process under controlled MW heating at high space velocity (3000¿mL/gcat·h) gives a hydrocarbon yield of around 6% with a very low deactivation rate. These results open up new possibilities for process intensification using alternative sources of energy, as is the case of microwaves, for heating structured catalytic reactors.
000075392 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 680777-ADREM$$9info:eu-repo/grantAgreement/EC/H2020/680777/EU/Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation/ADREM
000075392 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075392 590__ $$a8.355$$b2018
000075392 591__ $$aENGINEERING, ENVIRONMENTAL$$b2 / 52 = 0.038$$c2018$$dQ1$$eT1
000075392 591__ $$aENGINEERING, CHEMICAL$$b6 / 138 = 0.043$$c2018$$dQ1$$eT1
000075392 592__ $$a2.066$$b2018
000075392 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000075392 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000075392 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000075392 593__ $$aEnvironmental Chemistry$$c2018$$dQ1
000075392 593__ $$aEngineering (miscellaneous)$$c2018$$dQ4
000075392 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075392 700__ $$aRamirez, Heidy
000075392 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.
000075392 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000075392 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000075392 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000075392 773__ $$g377, 119764 (2018), [12 pp.]$$pChem. eng. j.$$tCHEMICAL ENGINEERING JOURNAL$$x1385-8947
000075392 8564_ $$s3570191$$uhttps://zaguan.unizar.es/record/75392/files/texto_completo.pdf$$yPostprint
000075392 8564_ $$s85190$$uhttps://zaguan.unizar.es/record/75392/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075392 909CO $$ooai:zaguan.unizar.es:75392$$particulos$$pdriver
000075392 951__ $$a2020-06-16-13:50:49
000075392 980__ $$aARTICLE