
On the Uncertainty in Active SLAM:

Representation, Propagation and

Monotonicity

Maŕıa Luisa Rodŕıguez Arévalo

Ph.D. Dissertation

Advisor: José Ángel Castellanos Gómez

Departamento de Informática e Ingenieŕıa de Sistemas

Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza, Spain

April 2018

Acknowledgments

The research work reported in this PhD thesis was supported by the “Minis-
terio de Economı́a, Industria y Competitividad” (MINECO) of the Govern-
ment of Spain under projects, “Life-long Active Spatial Cooperative Mapping
and Understanding” (DPI2012 – 36070) and “Active Robot Exploration for
Dense 3D Mapping” (DPI2015 – 68905P).

Generous funding from the “Subprograma Estatal de Formación, Ayudas
para contratos predoctorales para la formación de doctores” and “Subpro-
grama Estatal de Movilidad, Ayudas a la movilidad predoctoral para la real-
ización de estancias breves en centros de I+D” of the Government of Spain
under grants BES2013-064129, EEBB-I-16-11543 and EEBB-I-17-12078 was
also received.

Resumen

La localización y mapeo simultáneo activo (SLAM activo) ha recibido mu-
cha atención por parte de la comunidad de robótica por su relevancia en
aplicaciones de robot móviles. El objetivo de un algoritmo de SLAM activo
es planificar la trayectoria del robot para maximizar el área explorada y mi-
nimizar la incertidumbre asociada con la estimación de la posición del robot.
Durante la fase de exploración de un algoritmo de SLAM, donde el robot
navega en una región previamente desconocida, la incertidumbre asociada
con la localización del robot crece sin ĺımites. Solo después de volver a visitar
regiones previamente conocidas, se espera una reducción en la incertidum-
bre asociada con la localización del robot mediante la detección de cierres de
bucle. Esta tesis doctoral se centra en la importancia de representar y cuanti-
ficar la incertidumbre para calcular correctamente la confianza asociada con
la estimación de la localización del robot en cada paso de tiempo a lo largo
de su recorrido y, por lo tanto, decidir la trayectoria correcta de acuerdo con
el objetivo de SLAM activo.

En la literatura, se han propuesto fundamentalemente dos tipos de mo-
delos de representación de la incertidumbre: absoluta y diferencial. En re-
presentación absoluta, la información sobre la incertidumbre asociada con la
localización del robot está representada por una función de distribución de
probabilidad, generalmente gausiana, sobre las variables de localización abso-
luta con respecto a una referencia base elegida. La estimación de la posición
del robot está dada por la esperanza de las variables asociadas con la loca-
lización y la incertidumbre por su matriz de covarianza asociada. La repre-
sentación diferencial utiliza una representación local de la incertidumbre, la
posición estimada del robot se representa mediante la mejor aproximación de
la posición absoluta y el error de estimación se representa localmente median-
te un vector diferencial. Este vector generalmente también está representado
por una función de distribución de probabilidad gausiana. Representaciones
equivalentes al modelo diferencial han utilizado las herramientas de Grupos
de Lie y Álgebras de Lie para representar la incertidumbre. Además de estos
modelos, existen diferentes formas de representar la posición y orientación
de la posición del robot, ángulos de Euler, cuaterniones y transformaciones
homogéneas.

Los enfoques más comunes para cuantificar la incertidumbre en SLAM
se basan en criterios de optimalidad con el objetivo de cuantificar el mapa
y la incertidumbre de la posición del robot: A-opt (traza de la matriz de
covarianza, o suma de sus autovalores), D-opt (determinante de la matriz
de covarianza, o producto de sus autovalores) y E-opt (criterio del mayor
autovalor). Alternativamente, otros algoritmos de SLAM activo, basados en
la Teoŕıa de la Información, se basan en el uso de la entroṕıa de Shannon
para seleccionar acciones que lleven al robot al objetivo seleccionado. En un
escenario de SLAM activo, garantizar la monotonicidad de estos criterios en
la toma de decisiones durante la exploración, es decir, cuantificar correcta-
mente que la incertidumbre encapsulada en una matriz de covarianza está
aumentando, es un paso esencial para tomar decisiones correctas. Como ya se
ha mencionado, durante la fase de exploración la incertidumbre asociada con
la localización del robot aumenta. Por lo tanto, si no se preserva la monotoni-
cidad de los criterios considerados, el sistema puede seleccionar trayectorias
o caminos que creen falsamente que conducen a una menor incertidumbre de
la localización del robot.

En esta tesis, revisamos el trabajo relacionado sobre representación y
propagación de la incertidumbre de la posición del robot en los diferentes
modelos propuestos en la literatura. Además, se lleva a cabo un análisis de la
incertidumbre representada localmente con un vector diferencial y la incerti-
dumbre representada usando grupos de Lie. Investigamos la monotonicidad
de diferentes criterios para la toma de decisiones, tanto en 2D como en 3D,
dependiendo de la representación de la incertidumbre y de la representa-
ción de la orientación del robot. Nuestra conclusión fundamental es que la
representación de la incertidumbre sobre grupos de Lie y usando un vector di-
ferencial son similares e independientes de la representación utilizada para la
parte rotacional de la posición del robot. Esto se debe a que la incertidumbre
se representa localmente en el espacio de las transformaciones diferenciales
que se corresponde con el álgebra de Lie del grupo euclidiano especial SE(n).
Sin embargo, en el espacio tridimensional, la estimación de la localización
del robot depende de las diferentes formas de representación de la parte ro-
tacional. Por lo tanto, una forma adecuada de manipular conjuntamente la
estimación y la incertidumbre del robot es utilizando la teoŕıa de grupos
de Lie debido a que es una representación que garantiza propiedades tales
como una representación mı́nima y libre de singularidades en los ángulos
de rotación. Anaĺıticamente, demostramos que, utilizando representaciones
diferenciales para la propagación de la incertidumbre, la monotonicidad se
conserva para todos los criterios de optimalidad, A-opt, D-opt y E-opt y para
la entroṕıa de Shannon. También demostramos que la monotonicidad no se

cumple para ninguno de ellos en representaciones absolutas usando ángu-
los Roll-Pitch-Yaw y Euler. Finalmente, mostramos que al usar cuaterniones
unitarios en representaciones absolutas, los únicos criterios que preservan la
monotonicidad son D-opt y la entroṕıa de Shannon.

Estos hallazgos pueden guiar a los investigadores de SLAM activo a se-
leccionar adecuadamente un modelo de representación de la incertidumbre,
de modo que la planificación de trayectorias y los algoritmos de exploración
puedan evaluar correctamente la evolución de la incertidumbre asociada a la
posición del robot.

Abstract

Active Simultaneous Localization and Mapping (Active SLAM) has received
a lot of attention from the robotics community for its relevance in mobile
robotics applications. The objective of an active SLAM algorithm is to plan
ahead the robot motion in order to maximize the area explored and minimize
the uncertainty associated with the estimation, all within a time and com-
putation budget. During the exploration phase of a SLAM algorithm, where
the robot navigates in a previously unknown region, the uncertainty asso-
ciated with the robot’s localization grows unbounded. Only after revisiting
previously known regions a reduction in the robot’s localization uncertainty
is expected by detecting loop-closures. This doctoral thesis focuses on the
paramount importance of representing and quantifying uncertainty to cor-
rectly report the associated confidence of the robot’s location estimate at
each time step along its trajectory and therefore deciding the correct course
of action in an active SLAM mission.

Two fundamental types of models of probabilistic representation of the
uncertainty have been proposed in the literature: absolute and differential.
In absolute representations, the information about the uncertainty in the loc-
ation of the robot’s pose is represented by a probability distribution function,
usually Gaussian, over the variables of the absolute location with respect to
a chosen base reference. The estimated location is given by the expected
location variables and the uncertainty by its associated covariance matrix.
Differential representations use a local representation of the uncertainty, the
estimated location of the robot is represented by the best approximation
of the absolute location and the estimation error is represented locally by
a differential location vector. This vector is usually also represented by a
Gaussian probability distribution function. Equivalent representations to
differential models have used the tools of Lie groups and Lie algebras to
represent uncertainties. In addition to uncertainty models, there are differ-
ent ways to represent the position and orientation of the robot’s pose, Euler
angles, quaternions and homogeneous transformations.

The most common approaches to quantifying uncertainty in SLAM are
based on optimality criteria which aim at quantifying the map and robot’s
pose uncertainty, namely A-opt (trace of the covariance matrix, or sum of
its eigenvalues), D-opt (determinant of the covariance matrix, or product of

its eigenvalues) and E-opt (largest eigenvalue) criteria. Alternatively, other
active SLAM algorithms, based on Information Theory, rely on the use of
the Shannon’s entropy to select courses of action for the robot to reach the
commanded goal location. In an active SLAM scenario, guaranteeing mono-
tonicity of these decision making criteria during exploration, i.e. quantifying
correctly that the uncertainty encapsulated in a covariance matrix is in-
creasing, is an essential step towards making correct decisions. As already
mentioned, during exploration the uncertainty associated with the robot’s
localization increases. Therefore, if monotonicity of the criteria considered
is not preserved, the system might select courses of action or paths that it
falsely believes lead to less uncertainty in the robot.

In this thesis, we review related work about representation and propaga-
tion of the uncertainty of robot’s pose and present a survey of different types
of models proposed in the literature. Additionally, an analysis of the uncer-
tainty represented with a differential uncertainty vector and the uncertainty
represented on Lie groups is carried out. We investigate the monotonicity
of different decision making criteria, both in 2D and 3D, depending on the
representation of uncertainty and the orientation of the robot’s pose. Our
fundamental conclusion is that uncertainty representation over Lie groups
and using differential location vectors are similar and independent of the
representation used for rotational part of the robot’s pose. This is due to
the uncertainty is represented locally in the space of differential transform-
ations for translation and rotation that correspond with the Lie algebra of
special Euclidean group SE(n). However, in 3-dimensional space, the homo-
geneous transformation associated to the approximation of the real location
depend on the different ways of representation the rotational part. Therefore,
a proper way to jointly manipulating the estimation and uncertainty of the
pose is to use the theory of Lie groups due to it is a representation to guar-
antee properties such as a minimal representation and free of singularities in
rotation angles. We analytically show that, using differential representations
to propagate spatial uncertainties, monotonicity is preserved for all optim-
ality criteria, A-opt, D-opt and E-opt and for Shannon’s entropy. We also
show that monotonicity does not hold for any of them in absolute represent-
ations using Roll-Pitch-Yaw and Euler angles. Finally, we show that using
unit quaternions in absolute representations, the only criteria that preserve
monotonicity are D-opt and Shannon’s entropy.

These findings can guide active SLAM researchers to adequately select a
representation model for uncertainty, so that path planning and exploration
algorithms can correctly assess the evolution of location uncertainty.

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Structure . 6

1.3 Publications . 6

2 Active SLAM 9

2.1 Active SLAM definition . 10

2.2 Active SLAM related work . 11

2.3 Active SLAM algorithm . 14

2.3.1 Step 1: Selecting vantage points 15

2.3.2 Step 2: Computing the utility of an action 16

2.3.3 Step 3: Executing actions or terminating exploration . 19

3 Robot’s Pose Representation 21

3.1 Location vectors and homogeneous transformations 21

3.1.1 General definition . 21

3.1.2 Transformation and Jacobian Matrices in 2D space . . 23

3.1.3 Transformation and Jacobian Matrices in 3D space . . 25

ii Contents

3.2 Lie Groups . 32

3.2.1 General definitions . 32

3.2.2 SO(2): Rotations in 2D space 36

3.2.3 SE(2): Rigid transformations in 2D space 37

3.2.4 SO(3): Rotations in 3D space 39

3.2.5 SE(3): Rigid transformations in 3D space 40

4 Uncertainty Representation and its Propagation 43

4.1 Literature review . 44

4.2 Absolute Representation of Uncertainty 48

4.3 Differential Representation of Uncertainty 50

4.4 Uncertainty Representation and Propagation over Lie Groups 53

4.5 Differential Uncertainty vs. Lie Algebra Uncertainty 59

4.5.1 2-dimensional space . 60

4.5.2 3-dimensional space . 61

4.6 Conclusions . 64

5 Utility Function Monotonicity: the Importance of Uncer-
tainty Representation 67

5.1 Introduction . 68

5.2 Monotonicity in Absolute Representations of Uncertainty . . . 70

5.2.1 A-optimality . 70

5.2.2 D-optimality . 75

5.2.3 E-optimality . 78

5.3 Monnotonicity in Differential Representations of Uncertainty . 80

Contents iii

5.4 Monotonicity of the Shannon’s Entropy 83

5.5 Simulations . 86

5.5.1 2-dimensional experiment 86

5.5.2 3-dimensional experiment 89

5.6 Conclusions . 93

6 Conclusions 95

A A review of Partially Observable Markov Decision Processes 99

A.1 Introduction . 99

A.2 Sequential decision processes 100

A.2.1 Markov decision process framework 100

A.2.2 Partially observable Markov decision processes frame-
work . 101

A.3 Basic concepts . 102

A.3.1 History . 102

A.3.2 Value function . 103

A.3.3 Policy representations 104

A.4 Exact solution algorithms . 116

A.4.1 Value iteration . 116

A.4.2 Policy iteration . 117

A.5 POMDP algorithms . 121

A.6 POMDP related frameworks 122

A.6.1 Constrained POMDPs framework 122

A.6.2 Mixed observability MDPs framework 123

iv Contents

B Deep Learning SLAM 125

B.1 Literature review . 125

B.2 Deep Learning . 128

B.2.1 Motivation to study Deep Learning 128

B.2.2 Introduction . 129

B.2.3 Neural networks . 130

B.2.4 Learning neural networks 131

B.2.5 Autoencoders . 134

B.2.6 Supervised learning and Deep Learning 135

B.2.7 Alternatives . 136

B.3 Reinforcement Learning . 136

Bibliography 139

CHAPTER 1

Introduction

To perform a task, a robot needs an operative model of the environment.
If the desired task has to be done without human intervention, i.e. full
autonomy, the robot should at least be endowed with the capability of solv-
ing three problems: localization, mapping and motion control (Jefferies and
Yeap, 2008), (Siegwart et al., 2011). Solving these three problems jointly
in order to obtain the most accurate representation of the environment in
a finite time is known as Active Simultaneous Localization and Mapping
(Active SLAM) (Feder et al., 1999), (Leung et al., 2006), and it is the main
theme of this doctoral thesis. This problem is considered as one of the most
challenging problems of mobile robotics (Cadena et al., 2016).

Active SLAM refers to a solution of the robotic exploration problem in
which the main concern of the robot performing the exploration task is to
obtain the most accurate representation of the environment, i.e. uncertain
as well as unknown parts of the environment are of the utmost interest. In
other words, the objective of Active SLAM is to plan ahead the motion of
the vehicle in order to maximize the explored areas and minimize the uncer-
tainty associated with the estimation. In this setting, the robot must make a
trade-off between exploring new area to complete the task and exploiting the
existing information to maintain good localization, i.e. solving the so-called
exploration-exploitation dilemma.

Selecting actions that decrease the map uncertainty whilst not signific-
antly increasing the robot’s localization uncertainty is challenging. Active
SLAM algorithms select the next robot’s action based on its utility to solve
the exploration-exploitation dilemma. The exploration involves moving in
previously unvisited parts with the objective of increasing the overall know-

2 1. Introduction

ledge of the environment, while the latter is exploitation, i.e., it involves
revisiting areas to maximize the information gain. Therefore, a definition of
Active SLAM can be stated as a problem of controlling the movements of
a robot performing SLAM so as to maximize the accuracy of its map rep-
resentation and localization. This definition involves both Bajcsy’s active
perception (Bajcsy, 1988) and Thrun’s robotic exploration (Thrun et al.,
2005) paradigms.

An active SLAM algorithm usually starts by identifying and picking po-
tential destinations that help a robot to solve the exploration-exploitation di-
lemma. Ideally a robot executing an active SLAM algorithm should evaluate
every possible action in the robot and map space, but this has an exponen-
tial growth that proves to be computationally intractable in real applications
(Burgard et al., 2005), (Martinez-Cantin et al., 2009). In concordance with
the literature, an active SLAM algorithm can be divided in three steps (Bour-
gault et al., 2002), (Makarenko et al., 2002), (Smith et al., 2003):

• The robot identifies and select possible locations to explore or exploit,
i.e. vantage locations, in its current estimate of the map.

• The robot computes the utility of taking every action available to it
and selects the action with the highest utility.

• The robot carries out the selected action and decide if it is necessary
to continue or to terminate the task.

In practice, a small subset of locations in the map is selected based on
the information of its neighborhood, using techniques such as frontier-based
exploration (Yamauchi, 1997) where robots seek known areas in the map that
are adjacent to unexplored space. In the second step, the robot computes a
utility or cost function to evaluate the effect of each candidate action. The
two most common approaches to quantify utility are based in the Information
Theory (Cover and Thomas, 2012) and the Theory of Optimal Experimental
Design (Pukelsheim, 2006). The third step deals with the execution of the se-
lected action and the decision of continuing with the active SLAM algorithm
or terminate it.

1.1. Contributions 3

1.1 Contributions

In this thesis the focus is on the paramount importance of representing and
quantifying uncertainty to correctly report the associated confidence of the
robot’s location estimate at each time step along its trajectory and therefore
deciding the correct course of action in an active SLAM mission. While
the action set generation is critical since it determines which actions are
finally executed, the evaluation of the actions is also important since a good
evaluation is useless if the system select courses of action or paths that it
falsely believes lead to less uncertainty in the robot.

Estimating uncertain spatial relationship is fundamentally important prob-
lem and its representation and estimation are complicated in practice because
the location of one object relative to another may be known only indirectly
through a sequence of relative frames of reference with uncertainty. There-
fore, to reason the effects of uncertainties, uncertainties must be properly
represented such as their manipulation can be performed. Two fundamental
types of models of probabilistic representation of the uncertainty have been
proposed in the literature: absolute and differential. In absolute representa-
tions (Bolle and Cooper, 1986), (Smith and Cheeseman, 1986), the informa-
tion about the uncertainty in the location of the robot’s pose is represented
by a probability distribution function, usually Gaussian, over the variables of
the absolute location with respect to a chosen base reference. The estimated
location is given by the expected location variables and the uncertainty by
its associated covariance matrix.

Differential representations use a local representation of the uncertainty
(Durrant-Whyte, 1987), (Su and Lee, 1992), (Castellanos et al., 1999); the es-
timated location of the robot is represented by the best approximation of the
absolute location and the estimation error is represented locally by a differ-
ential location vector. This vector is usually also represented by a Gaussian
probability distribution function. Recently, equivalent representations on the
Lie groups have also been considered in recent works (Smith et al., 2003),
(Wang and Chirikjian, 2006), (Barfoot and Furgale, 2014) where transform-
ations are represented by homogeneous matrices and uncertainties in a pose
or motion correspond to probability density functions over Lie groups. How
to propagate the local uncertainty has been studied by different arguments,
such as differential homogeneous transforms (Su and Lee, 1992), representing
probability density functions over Euclidean transformations (Smith et al.,
2003), propagating error densities over Lie groups (Wang and Chirikjian,

4 1. Introduction

2006) and using the representation of uncertain geometric information by
means of the Symmetries and Perturbations Model (SPmodel) (Castellanos
et al., 1999), reaching the same conclusion.

The most common approaches to quantifying uncertainty in SLAM are
based on real scalar functions of the covariance matrix. Some active SLAM
algorithms rely on optimality criteria which aim at quantifying the map and
robot’s pose uncertainty, namely A-opt (trace of the covariance matrix, or
sum of its eigenvalues) (Chernoff, 1953), (Leung et al., 2006), (Kollar and
Roy, 2008), (Meger et al., 2008), D-opt (determinant of the covariance matrix,
or product of its eigenvalues) (Wald, 1943), (Vidal-Calleja et al., 2006), (Kim
and Eustice, 2013) and E-opt (largest eigenvalue) (Ehrenfeld, 1955) criteria.
Alternatively, other active SLAM algorithms, based on Information Theory
(Stachniss et al., 2005), (Blanco et al., 2008), rely on the use of the Shannon’s
entropy to select courses of action for the robot to reach the commanded goal
location.

In an active SLAM scenario, guaranteeing monotonicity of these decision
making criteria during exploration, i.e. quantifying correctly that the un-
certainty encapsulated in a covariance matrix is increasing, is an essential
step towards making correct decisions. During the exploration phase of a
SLAM algorithm, where the robot navigates in a previously unknown region,
the uncertainty associated with the robot’s localization grows unbounded
(Kelly, 2004). Only after revisiting previously known regions a reduction
in the robot’s localization uncertainty is expected by detecting loop-closures
(Durrant-Whyte and Bailey, 2006). Therefore, if monotonicity of the cri-
teria considered is not preserved, the system might select courses of action
or paths that it falsely believes lead to less uncertainty in the robot.

The results of this investigation are the utmost importance to adequately
select a representation model for uncertainty with the aim to correctly as-
sess the evolution of location uncertainty in an path planning or exploration
algorithms.

In addition, in order to continue our future research on the active SLAM
topic, other areas related such as Partially Observable Markov Decision Pro-
cess (POMDPs) and Deep Learning have been studied to develop novel al-
gorithms with real applications.

POMDPs have been studied because Active SLAM is an instance of a
POMDPs framework. POMDP describes the process of making decisions
when both the actions and the sensing are uncertain, i.e. the state of interest

1.1. Contributions 5

is not directly observable. As future work, based on the knowledge acquired,
the development of an active SLAM algorithm with restrictions is pursuit.

Currently, one of the new research lines is Deep Learning. Therefore,
a review of the state of the art on the field of action of Deep Learning in
SLAM was carried out and the study of Deep Learning and the techniques
developed in this area for possible future research.

In summary, the main contributions of the thesis are encompassed under
the topic of active SLAM, and in particular are:

• We review related work about representation and propagation of the
uncertainty and present a survey of different types of models proposed
in the literature.

• We show that uncertainty represented using differential representation
and the uncertainty representation based on Lie groups are similar and
independent of the representation used for rotational part of the robot’s
pose. The analysis is carried out taking into account the similarities
between both models of representations. We conclude that, a proper
way to jointly manipulation the estimation of the robot’s and its un-
certainty is to use the theory of Lie groups due to, in 3-dimensional
space, it is a representation that guarantees relevant properties such
as a minimal representation and absence of singularities in rotation
angles.

• We investigate the monotonicity of different decision making criteria,
both in 2-dimensional and 3-dimensional space, depending on the rep-
resentation of uncertainty and orientation of the robot’s pose. We
analytically show that, using differential representations to propagate
spatial uncertainties, monotonicity is preserved for all optimality cri-
teria, A-opt, D-opt and E-opt and for Shannon’s entropy. We also show
that monotonicity does not hold for any of them in absolute represent-
ations using Roll-Pitch-Yaw and Euler angles. Finally, we show that
using unit quaternions in absolute representations, the only criteria
that preserve monotonicity are D-opt and Shannon’s entropy.

• We present a review of the mathematical formulation about Partially
Observable Markov Decision Process framework that has been studied
during the research stay in The Robotics, Vision and Control Group of
the department Ingenieŕıa de Sistemas y Automática of Escuela Técnica
Superior de Ingenieros (Universidad de Sevilla).

6 1. Introduction

• We present a review of the state of the art on the field of Deep Learning
in SLAM and an introduction of the basic definitions of Deep Learn-
ing framework and the techniques developed in this area for possible
future research. This work was perform during a research stay at the
Australian Center for Robotic Vision of the University of Adelaide.

1.2 Thesis Structure

The structure of the rest of this thesis is as follows:

In chapter 2, we present the active SLAM definition and general algorithm
and review the related work in the literature. In chapter 3, we provide an
overview of mathematical notation about the different ways to represent the
robot’s pose in 2-dimensional and 3-dimensional space used throughout the
thesis. Among others, we review the representation of the position and ori-
entation in homogeneous transformations matrices and location vectors and
their fundamental properties. Additionally, we provide enough information
about Lie group representing spatial transformations and derives useful for-
mulae for working with the Lie groups that represent transformations in
2-dimensional and 3-dimensional space. In chapter 4, we review the different
types of models proposed to uncertainty representation and present a sur-
vey of absolute, differential and over Lie groups uncertainty representation.
Additionally, we look into the similarities and differences between the uncer-
tainty represented with a differential error and the uncertainty represented
over Lie groups theory. In chapter 5, we investigate the monotonicity of op-
timality criteria and the Shannon’s entropy taking into account the different
types of models proposed to uncertainty representation. We present the con-
clusions of this thesis in chapter 6. Finally, in Appendix A and Appendix B,
we present the research carried out during research visit other groups.

1.3 Publications

The work described in this thesis resulted in the following publications:

• Carrillo, H., Latif, Y., Rodriguez-Arevalo, M. L., Neira, J., and Castel-
lanos, J. A. (2015). On the monotonicity of optimality criteria during

1.3. Publications 7

exploration in active SLAM. In IEEE International Conference In Ro-
botics and Automation (ICRA), pages 1476-1483. Nominated for the
Best Student Paper Awards. Conference Rank: CORE2018 B.

• Rodriguez-Arevalo, M. L., Neira, J., and Castellanos, J. A. (2018).
On the Importance of Uncertainty Representation in Active SLAM. In
IEEE Transactions on Robotics. (Early Access)
DOI: 10.1109/TRO.2018.2808902. Journal Rank: Q1.

• Rodriguez-Arevalo, M. L., Neira, J., and Castellanos, J. A. Uncertainty
Representation and Propagation Review: Differential vs Lie algebra.
IEEE Transactions on Robotics (In preparation). Journal Rank: Q1.

8 1. Introduction

CHAPTER 2

Active SLAM

True autonomy and safe, intelligent, and purposeful behaviour of a mobile
system in uncontrolled, time-changing scenarios requires a precise under-
standing of the environment where the system operates and the awareness of
its place and the place of other entities of interest within it at all times. In
mobile robotics, this problem is classically known as Simultaneous Location
and Mapping (SLAM). SLAM initially referred to the problem of determin-
ing the position and heading of a moving sensor in an unknown environment
and, concurrently, computing a map from the perceived surroundings, taking
into account sensor and vehicle errors. A closely related and also classical
problem in Computer Vision is Structure from Motion (SfM), the computa-
tion of the structure of a static object perceived from a camera in motion (or
vice-versa).

Significant scientific contributions have populated both the robotics and
computer vision literature and are helping to pave the way towards real ap-
plications. Currently, challenging open problems include the computation of
truly dense geometric environment models of large environments, the inclu-
sion of semantic information such as the identification of objects and places
in the environment, the fusion of heterogeneous information sources such as
a priori models obtained from large databases such as aerial photography
or geographical information systems, the development of collaborative active
exploration strategies that can consider diverse types of vehicles and other
potentially independent mobile agents such as humans wearing sensors.

However, one of the most challenging problems of mobile robotics in an
unknown environment is the decision making to improve the quality of the
SLAM results and is referred as Active SLAM (Cadena et al., 2016). The

10 2. Active SLAM

objective of an active SLAM algorithm is to plan ahead the robot motion
in order to maximize the area explored and minimize the uncertainty associ-
ated with the estimation, all within a time and computation budget. Active
SLAM is non-trivial due to the robot must trade-off the benefits of exploring
new areas and exploiting visited areas to close loops (Yamauchi, 1997). New
findings in active SLAM implies advances in real applications with autonom-
ous operations under uncertainty that are essential in numerous problem do-
mains, including autonomous navigation, object manipulation, multi-robot
localization and tracking, and robotic surgery.

2.1 Active SLAM definition

The problem of active SLAM, often referred to as SPLAM (Simultaneous
Planning Localisation and Mapping), focuses on designing robot trajectories
to actively explore an environment and minimize the map error. The defin-
ition stems from the Bajcsy’s active perception (Bajcsy, 1988) and Thrun’s
robotic exploration (Thrun et al., 2005) paradigms.

The concept of exploration addresses with the process of information
gathering (Thrun et al., 2005). In robotics, the exploration refers to the
autonomous construction of a model of the operative environment by a ro-
bot. To solve the problem of robotic exploration is necessary to solve three
fundamental problems in mobile robot, namely localization, mapping and
motion control. Localization is the problem of determining the position of
the robot within a given map. Mapping refers to the problem of integrating
robot’s sensor information into a coherent representation. Motion control
is the problem of how to steer the robot to a particular location, therefore
giving the robot the capacity of performing active behavior.

Active perception is defined as a problem of an intelligent data acquisition
process (Bajcsy, 1988) and can be applied to several important problems in
mobile robotics. Active perception applied to localization address the prob-
lem to determine the movement of robot in order to localize itself with respect
to a map, given that the robot knows the truth map of the environment. Spe-
cifically, this problem is called active localization and focuses on finding the
joint solution of motion control and localization. Some studies on this topic
are, for example, performed by Burgard et al. (1997) and Fox et al. (1998)
who proposed an active localization approach based on Markov localization.
In (Borghi and Caglioti, 1998), the self-localization of a mobile robot within

2.2. Active SLAM related work 11

a known environment, by means of an orientable range finder, is considered.
A probabilistic approach for mobile robot localization using an incomplete
topological world model is presented by Jensfelt and Kristensen (2001).

Active perception applied to mapping refers to the problem of finding
the sequence of movements that represents the most accurate representation
of the environment. This problem is called active mapping and focuses on
solving the motion control problem and the mapping problem. One of the
first approaches of active mapping is the next best view problem (Reed et al.,
1997), (Massios et al., 1998), (Pito, 1999). The next best view problem seeks
a single additional sensor placement in order to improve an existing scene re-
construction derived from the current imaging configuration. Other authors
used different techniques as Barratt (2017) who proposed an approach to
learning agents for active robotic mapping based in reinforcement learning,
where the goal is to map the environment as quickly as possible.

As it is well known, solving simultaneously the localization and mapping
problem is the well known SLAM problem (Thrun et al., 2005). The joint
solution of the three problems, active localization, active mapping and SLAM
problem is named active SLAM and can be stated as a problem of controlling
the movements of a robot performing SLAM so as to maximize the accuracy
of its map representation and localization. The uncertainties of the robot,
map and sensor measurements, and the dynamic and motion constraints
need to be considered in the planning process. In this setting, the robot
must make a trade-off between exploring new area to complete the task and
exploiting the existing information to maintain good localization, i.e. solving
the so-called exploration-exploitation dilemma.

2.2 Active SLAM related work

Several works have focused on the active SLAM problem. The first proposal
and implementation of an active SLAM algorithm can be traced back to Feder
et al. (1999). They addresses the problem of how to perform concurrent
mapping and localization adaptively, i.e. active SLAM, using sonar data
and an EKF-based SLAM algorithm. The algorithm proposed is a greedy
approach where an action is chosen given the current knowledge to maximise
the information gain in the next measurement.

Other similar approaches have been proposed by Bourgault et al. (2002)

12 2. Active SLAM

and Makarenko et al. (2002). In (Bourgault et al., 2002), the problem of max-
imizing the accuracy of the map process during exploration by adaptively
selecting control actions that maximize localisation accuracy is addressed.
The contribution of this paper is the combination of simultaneously maxim-
izing the information gain on the Occupancy Grid map and minimizing the
uncertainty of the pose and map feature uncertainty in the SLAM process.
Makarenko et al. (2002) considered an exploration strategy which balanced
evaluation of alternative motion actions from the point of view of informa-
tion gain, localization quality, and navigation cost as a form of utility. This
factors are only considered at the destination.

There are authors who have done several works on active SLAM as Sim
(2005b) who demonstrated that information optimal approaches to active ex-
ploration can be detrimental to map quality, particularly when coupled with
approximating assumptions that are common in SLAM approaches. Also,
the authors presented an alternative approach to exploration that optimizes
a map’s accuracy by taking a policy that emphasizes the conditioning of the
map update step. Sim (2005a) examined the problem of information driven
exploration for the purposes of SLAM and demonstrated that simple outlier
removal does not significantly improve the performance of an information-
driven exploration policy. Sim and Roy (2005) showed that conventional
exploration algorithms for collecting map data are sub-optimal in both the
objective function and choice of optimization procedure and that optimizing
the A-optimal information measure results in a more accurate map than ex-
isting approaches, using a greedy, closed-loop strategy. Similarity to Feder
et al. (1999), who used Fisher information as a metric in the objective func-
tion to construct an adaptive control action, Sim (2005b) and Sim and Roy
(2005) used Fisher Information to improve exploration, reporting the need
to consider the path in localization and mapping.

Other information metrics within a similar framework, such as the Cauchy-
Schwarz quadratic mutual information (Charrow et al., 2015), the D-optimality
criterion (Carrillo et al., 2012), and the Kullback-Leibler divergence (Carlone
et al., 2010) have also been used. Recently, (Carrillo et al., 2018) presents
a novel information theoretic utility function using Shannon and the Rényi
entropy for selecting actions in a robot based autonomous exploration task.

Other studies as (Stachniss et al., 2004) conducted an active loop-closing
with frontier based exploration in SLAM using occupancy grid and topolo-
gical maps. The loop-closing approach is based in the entropy to select the
best action. However, maximisation of information gain along the path is

2.2. Active SLAM related work 13

not considered. Then, the same authors in (Stachniss et al., 2005) presen-
ted an integrated approach to exploration, mapping, and localization using
a efficient Rao-Blackwellized particle filter to represent the poses and the
maps. In contrast to the previous work (Stachniss et al., 2004), the approach
presented in (Stachniss et al., 2005) is based on the expected uncertainty
reduction about the trajectory of the robot as well as about maps.

The active SLAM problem is formulated as an optimal trajectory planning
problem in (Leung et al., 2006) and (Leung et al., 2008). These works intro-
duced an attractor combined with local planning strategies such as Model
Predictive Control. The attractor is used to facilitate the local strategy in
optimal trajectory planning. More information of Model Predictive Control
can be found in (Morari and Lee, 1999) and (Rawlings, 2000). The active
SLAM algorithm proposed in (Leung et al., 2006) and (Leung et al., 2008) is
similar to the one of Feder et al. (1999) but with the difference of considering
multiples steps in order to make the decision of where to go next. To solve
the decision-making problem about efficient area coverage and good SLAM
navigation, Kim and Eustice (2015) introduced perception-driven navigation
algorithm that automatically balances between exploration and revisitation
using a reward framework. Fairfield and Wettergreen (2010) investigated a
realtime method for Active SLAM with an approach to SLAM problem that
divides the environment up into segments, or submaps, using heuristic meth-
ods. In this work actions are selected in order to reduce uncertainty in both
the local metric submap and the global topological map.

Recently, Carlone et al. (2014) addressed the problem of active SLAM
and exploration with Rao-Blackwellized Particle Filters. They proposed an
application of Kullback-Leibler divergence for the purpose of evaluating the
particle-based SLAM posterior approximation. They applied this metric in
the definition of the expected information from a policy, which allows the ro-
bot to autonomously decide between exploration and place revisiting actions.
Mu et al. (2016) proposed one of the first active SLAM approach that plans
robot paths to directly optimize a global feature based representation. The
authors presented a graphical models which utilize independences between
variables, and enables a unified quantification of exploration and exploita-
tion gains with a single entropy metric to facilitate a balance between map
exploration and refinement. Maurović et al. (2017) proposed a path planning
algorithm that is able to continuously improve localization without interrupt-
ing the main task based on the modified D* path planning algorithm (see
Stentz (1994) for details about D* path planning algorithm).

14 2. Active SLAM

2.3 Active SLAM algorithm

Autonomous robots performing tasks such as monitoring, surveillance or ex-
ploration must be able to plan their future information-gathering actions in
environments partially observable and stochastic where planning of the tra-
jectory requires to reason over uncertain outcomes in the presence of sensor
noise. Such problems are instances of Partially Observable Markov decision
processes (Kaelbling et al., 1998), or POMDPs. Specifically, POMDP is
the mathematical framework for modeling the active SLAM problem (Thrun
et al., 2005). A POMDP models the process of making decisions when both
the actions and the sensing are uncertain to achieve goal.

Formally, a POMDP is a tuple (S,A,O, T, Z,R, γ), where S, A and
O denote a robot’s state space, action space and observation space, re-
spectively. At each time step, the robot takes an action a ∈ A to move
from a state s ∈ S to s

′ ∈ S and receives an observation o ∈ O. The
model for the system dynamics is specified by a conditional probability func-
tion T (s, a, s

′
) = p(s

′ |s, a), which accounts for uncertainty in robot con-
trol. The observation model is specified by a conditional probability function
Z(s

′
, a, o) = p(o|s′ , a), which accounts for sensing uncertainty. The function

R(s, a) specifies a real-valued reward for the robot if it takes action a in state
s. The robot’s goal is to choose a sequence of actions that maximizes the
expected total E(

∑∞
t=0 γ

tR(st, at)), where st and at denote the system’s state
and action at time t. The discount factor γ ∈ [0, 1) ensures that the total
reward is finite, even when a planning task has an infinite horizon.

POMDP is a principled approach for planning and making decision under
uncertainty but it is hard to solve. Some examples works related to autonom-
ous robots are (Bai et al., 2014), (Seiler et al., 2015), (Lauri and Ritala, 2016),
(Lauri and Ritala, 2016). Details about POMDPs and different approaches
can be found in Appendix A.

In broad terms, an active SLAM algorithm usually starts by identifying
and picking potential destinations that help a robot to solve the exploration-
exploitation dilemma and then selecting actions based on its utility that
decrease the map uncertainty whilst not significantly increasing the robot’s
localization uncertainty. An active SLAM algorithm can be divided in three
steps (Bourgault et al., 2002), (Makarenko et al., 2002), (Smith et al., 2003):

• The robot identifies and select possible locations to explore or exploit,

2.3. Active SLAM algorithm 15

i.e. vantage locations, in its current estimate of the map.

• The robot computes the utility of taking every action available to it
and selects the action with the highest utility.

• The robot carries out the selected action and decide if it is necessary
to continue or to terminate the task.

2.3.1 Step 1: Selecting vantage points

In an active SLAM algorithm, vantage points selection is the process to
identifying and picking potential destinations that help the robot to solve the
exploration-exploitation dilemma. A selected vantage points is a destination
that should be reached by the robot after executing an action. Ideally, the
robot should evaluate every possible destination in the map space, but this
process has an exponential growth which proves to be computationally in-
tractable in real applications (Burgard et al., 2005), (Martinez-Cantin et al.,
2009). In practice, a small subset of locations in the map is selected based on
the information of its neighborhood. In the following, different selection and
identification techniques related to active SLAM algorithms are described.

One of the most widespread techniques in the active SLAM community
to selecting vantage points is the frontier-based exploration technique. A
frontier is the border between known and unknown area in the environment.
This concept was developed by Yamauchi (1997). An advantage of using this
technique is that selecting frontier points allows covering the entire environ-
ment quickly. However, using only frontiers is not generally a good option
by itself because actions towards frontier points only perform the task of
exploration and not exploitation, in addition, if the robot does not have a
perfect location, the estimated map can become inconsistent (Sim, 2005b),
(Sim, 2005a).

Surface-based exploration is one of the first techniques used in active
SLAM. The idea underlying this method is look just the vicinity of the cur-
rent pose of the robot at every decision time. This technique is equivalent to
make a local optimization (Feder et al., 1999). The advantage of this vantage
points selection scheme is that the horizon of prediction tends to be short,
hence the select decision could be optimal but only locally. In contrast to
frontier-based exploration, surface-based has the risk of not performing the
exploration task.

16 2. Active SLAM

Another techniques of vantage points selection is the random selection
that consider all the destinations in the environment equally good but does
not identify possible useful destinations to solve the exploration-exploitation
dilemma. Another useful approach is to select as vantage points distinctive
characteristic of the environment that have been visited previously. Doing
only revisits leads to a slow converge in the area covered by a robot doing
robotic exploration. A good idea for SLAM algorithms is the combination
of the above techniques for identifying and selecting advantage points. A
popular approach is to combine frontiers and revisits method for active SLAM
(Stachniss et al., 2004), (Stachniss et al., 2005).

2.3.2 Step 2: Computing the utility of an action

In the second step, the robot computes the utility of performing each action
available to it. An action in active SLAM implies navigating to one or several
points of interest in the environment selected as explained in step 1. The
process of assessing the payoff of a particular action to a vantage points is
done through a so-called utility function and the reward’s value or utility of
an action is obtained by evaluating jointly the action under consideration
and the state of the world.

The actions in active SLAM are robot motions and the state of the world is
given by the environment representation and past robot locations.Therefore,
the utility function in this case depend on the uncertainty of both the map
representation and the robot’s localization and its purpose is to help in
achieving the active SLAM objectives, i.e. solving the exploration-exploitation
dilemma in a robotic exploration scenario.

Again, ideally the active SLAM algorithm should to consider the com-
plete universe of possibilities, i.e. search over the full joint distribution of the
map and robot poses before and after taking the control action and receiving
measurements. However, one major problem is that computing the aforemen-
tioned joint probability analytically is difficult and, in general, computation-
ally intractable (Cadena et al., 2016). In practice, an approximation of the
joint probability is computed. Previous work in active SLAM often consider
the uncertainty of the map and robot to be independent (Valencia Carreño
et al., 2012) or conditionally independent (Stachniss et al., 2005). Most of
these approaches rely on a linear combination of the robot and map uncer-
tainties (Bourgault et al., 2002), (Blanco et al., 2008), (Carlone et al., 2010),
(Kim and Eustice, 2013). One drawback of this approach is that the scale

2.3. Active SLAM algorithm 17

of the numerical values of the two uncertainties is not comparable, i.e. the
uncertainty of the map is often orders of magnitude larger than the uncer-
tainty of the robot, so manual tuning is required to correct for this (Blanco
et al., 2008), (Carlone et al., 2014).

Given that the robot’s pose and map representation are considered as
random variables with an associated probability distribution in SLAM, a
utility function for active SLAM must ultimately deal with the quantific-
ation of the uncertainty encompassed in a random variable product of an
estimation process. The two most common approaches to quantify uncer-
tainty in the estimation of random variables are the Information Theory
(Cover and Thomas, 2012) and the Theory of Optimal Experimental Design
(Pukelsheim, 2006).

The two most common approaches to quantify uncertainty in the estim-
ation of random variables are the Theory of Optimal Experimental Design
(Pukelsheim, 2006) and the Information Theory (Cover and Thomas, 2012).

In the design of experiments, optimal designs are a class of experimental
designs that are optimal with respect to some statistical criterion or some
real-valued function which assesses the information gained through the design.
Such a function is called a criterion function and are related to the variance
matrix of the estimator. Specifically, this theory bases its process of quanti-
fying the uncertainty on the second moment of the probability distribution
associated to the estimated random variable, the covariance matrix. First
papers of Theory of Optimal Experimental Design date back to the middle
of the 19th century, as Wald (1943).

The traditional optimality-criteria commonly used to quantify the uncer-
tainty, for a covariance matrix Σ with size l × l and eigenvalues λl, are,

• A-optimality criterion (A-opt) (Chernoff, 1953): This criterion targets
the minimization of the average variance and it is defined as follows:

trace(Σ) =
l∑

k=1

λk (2.1)

• D-optimality criterion (D-opt) (Wald, 1943): This criterion aims at
capturing the full dimension of the covariance matrix and it can be
defined as:

det(Σ) =
l∏

k=1

λk (2.2)

18 2. Active SLAM

• E-optimality criterion (E-opt) (Ehrenfeld, 1955): This criterion intends
to minimize the maximum eigenvalue of the covariance matrix and it
is defined as follows:

max1≤k≤l(λk) (2.3)

Information theory is the branch of mathematics that describes how un-
certainty should be quantified, manipulated and represented. Ever since the
fundamental premises of information theory were laid down by Claude Shan-
non in 1949 (Shannon and Weaver, 1949). The most fundamental quantity
in information theory is entropy (Shannon and Weaver, 1949) that measures
the amount of uncertainty of an unknown or random quantity. The entropy
of a random variable X is defined to be:

H(X) = −
∑
allx

p(x) log2 p(x) (2.4)

where the sum is over all values x that the variable X can take, and p(x) is
the probability of each of these values occurring. Entropy is measured in bits
and can be generalised to continuous variables as well, although care must
be taken to specify the precision level at which we would like to represent
the continuous variable.

In literature of active SLAM, the utility functions are classified in task-
driven or information-driven, depending on if they are based on Theory of
Optimal Experimental Design or Information Theory.

Task-driven utility functions are functionals of the eigenvalues of the in-
verse matrix of the variance-matrix called information matrix. In active
SLAM these functions quantify the map and robot’s pose uncertainty and
allow the direct assessment of the task’s improvement after an action is per-
formed due to the uncertainty of the estimated parameters from the SLAM
algorithm is encoded in the covariance matrix (Pázman, 1986), (Pukelsheim,
2006).

Active SLAM utility function based on the determinant of the covari-
ance matrix of its state vector represents the n-dimensional volume of the
n-dimensional parallelepiped spanned by its n column vectors. In particular
for a covariance matrix from a Gaussian distribution, the determinant can
be interpreted as the volume of the uncertainty encapsulated by the covari-
ance matrix. Utility functions based in the trace is used a replacement of
the determinant because the trace is computationally cheaper to compute.
On the down side, it is an approximation of the volume of the uncertainty

2.3. Active SLAM algorithm 19

encapsulated by the covariance matrix, i.e. an approximation of the use of
the determinant.

The A-opt, D-opt and E-opt have been used in many active SLAM related
works. In Kollar and Roy (2006), Leung et al. (2006), Kollar and Roy (2008),
Meger et al. (2008) and Martinez-Cantin et al. (2009), the criteria used was
A-opt. D-opt has been used as a measure of navigation uncertainty in Vidal-
Calleja et al. (2006) and Kim and Eustice (2013).

Information-driven utility functions are designed to measure the reduction
of entropy that is a general measure for the uncertainty of the posterior
distribution of a random variable (Shannon and Weaver, 1949), (Rényi, 1961)
(Kreucher et al., 2005). In active SLAM, these utility functions evaluate the
improvement of the task indirectly by checking the so-called information flow
of the measurements acquired.

2.3.3 Step 3: Executing actions or terminating explor-
ation

The process of selecting the best action is an optimization problem (No-
cedal and Wright, 2006) where the aim is maximize the given utility function
subject to the set of actions available. There are many approaches to optim-
ization and most of them could be applied in the context of active SLAM.
A common approach is consider the set of actions discrete and apply a dis-
crete optimization technique. Continuous optimization techniques can be
used if the set of actions is considered continuous. For example, Indelman
et al. (2014) or Van Den Berg et al. (2012) used least squares methods to
select the next action, Jadidi et al. (2014), Maffei et al. (2014) or Vallvé and
Andrade-Cetto (2014) used gradient-based techniques and Martinez-Cantin
et al. (2009) or Souza et al. (2014) applied Bayesian Optimization methods.

Active SLAM is a computationally expensive task therefore the stopping
criteria, i.e., the decision on whether or not the exploration task is com-
plete, is a necessity. Uncertainty metrics from Theory of Optimal Experi-
mental Design seem promising as stopping criteria, compared to information-
theoretic metrics which are difficult to compare across systems. However, this
decision is currently an open challenge (Cadena et al., 2016).

20 2. Active SLAM

CHAPTER 3

Robot’s Pose Representation

In computer vision and robotics, a typical task is to represent the position
and orientation of objects in an environment. Such objects include robots,
cameras, workpieces, obstacles and paths. This information can then be used,
for example, to allow a robot to manipulate an object or to avoid moving
into the object. The combination of position and orientation is referred to
as the pose of an object and can be described by means of a rotation and
translation transformation which brings the object from a reference pose to
the observed pose.

In an attempt to make this document as self-contained as possible, and
also to clarify notation, in this chapter we provide an overview of math-
ematical notation about the different ways to represent the robot’s pose in
2-dimensional and 3-dimensional space used throughout this thesis.

3.1 Location vectors and homogeneous trans-

formations

3.1.1 General definition

The pose of a robot, i.e. its position and orientation at any given time,
can be represented for two alternative representations for transformations:
homogeneous matrices and location vectors. In these section we summarize
their fundamental properties and laws of transformation between the two

22 3. Robot’s Pose Representation

representations.

A homogeneous matrix H is n×n matrix, with n = 3 in the 2-dimensional
space and n = 4 in 3-dimensional space, of the form,

H =

(
R p
0 1

)
(3.1)

where R is a (n−1)×(n−1) orthogonal rotation matrix and p is a translation
vector of dimension n− 1.

A location vector is composed of two Cartesian coordinates and one angle
in 2-dimensional space and three Cartesian coordinates and three orientation
angles in 3-dimensional space.

The conversions between location vectors and homogeneous matrices are
given by the function Loc(·) and Hom(·). The closed-formulaes of these
functions are described in following sections.

The composition and inversion of location vectors can be represented by
means of operators ⊕ and 	, respectively, following Smith’s notation (Smith
et al., 1990),

xAC = xAB ⊕ xBC = Loc(Hom(xAB)Hom(xBC)) (3.2)

	xAB = Loc(Hom(xAB)−1) (3.3)

To calculate them, location vector shall be converted to homogeneous
matrices. Transformations composition and inversion is equivalent to ho-
mogeneous matrix product and inversion. Due to the special form of these
matrices, these operations can be carried out as follows,

HAC = HABHBC =

(
RABRBC pAB + RABpBC

0 1

)
(3.4)

H−1 =

(
RT −RTp
0 1

)
(3.5)

Another useful expression to have at hand is the Jacobian matrix. The
Jacobian is useful among others things to do linear approximation of func-

3.1. Location vectors and homogeneous transformations 23

tions over a point of operation. The Jacobians of the composition of location
vectors, with respect to the first and second operand are given by,

J1⊕{xAB,xBC} =
∂(y ⊕ z)

∂y

∣∣∣∣
y=xAB ,z=xBC

(3.6)

J2⊕{xAB,xBC} =
∂(y ⊕ z)

∂z

∣∣∣∣
y=xAB ,z=xBC

(3.7)

The calculation of the inverse of the Jacobians of the composition can
also be carried out in a simple way, without the need of inverting matrices,
making use of the following equalities,

J−1
1⊕{x1,x2} =

[
∂(y ⊕ z)

∂y

∣∣∣∣
y=x1,z=x2

]−1

=
∂y

∂(y ⊕ z)

∣∣∣∣
y=x1,z=x2

=
∂(y ⊕ z)⊕ (z)

∂(y ⊕ z)

∣∣∣∣
y⊕z=x1⊕x2,	z=x2

= J1⊕{x1 ⊕ x2,	x2} (3.8)

J−1
2⊕{x1,x2} =

[
∂(y ⊕ z)

∂z

∣∣∣∣
y=x1,z=x2

]−1

=
∂z

∂(y ⊕ z)

∣∣∣∣
y=x1,z=x2

=
∂(y)⊕ (y ⊕ z)

∂(y ⊕ z)

∣∣∣∣
	y=	x1,y⊕z=x1⊕x2

= J2⊕{	x1,x1 ⊕ x2} (3.9)

3.1.2 Transformation and Jacobian Matrices in 2D space

A location vector in 2-dimensional space is composed of two Cartesian co-
ordinates (x, y) and one angle φ. The form of this vector and the transform-

24 3. Robot’s Pose Representation

ation are represented as follows,

x =(x, y, φ)T (3.10)

t =Trans(x, y)Rot(Z, φ) (3.11)

where the representation of the elementary transformations using homogen-
eous matrices is the following,

Trans(x, y) =

1 0 x
0 1 y
0 0 1

 (3.12)

Rot(z, φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (3.13)

The conversions between location vectors and homogeneous matrices are
given by,

H = Hom(x) =

cosφ − sinφ x
sinφ cosφ y

0 0 1

 (3.14)

x = Loc(H) =

xy
φ

 =

 x
y

atan2(sinφ, cosφ)

 (3.15)

The Jacobians of the composition of location vectors xAB = (xAB, yAB, φAB)
and xBC = (xBC , yBC , φBC), with respect to the first and second operand are
given by (Smith et al., 1990),

J1⊕{xAB,xBC} =

1 0 yAB − yAC
0 1 xAC − xAB
0 0 1

 (3.16)

J2⊕{xAB,xBC} =

cosφAB − sinφAB 0
sinφAB cosφAB 0

0 0 1

 (3.17)

3.1. Location vectors and homogeneous transformations 25

3.1.3 Transformation and Jacobian Matrices in 3D space

A location vector in 3-dimensinal space is composed of three Cartesian co-
ordinates (x, y, z) and three angles (φ, θ, ψ).

The representation of the elementary transformations using homogeneous
matrices is the following,

Trans(x, y, z) =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 (3.18)

Rot(X,ψ) =


1 0 0 0
0 cosψ − sinψ 0
0 sinψ cosψ 0
0 0 0 1

 (3.19)

Rot(Y, θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (3.20)

Rot(Z, φ) =


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 1 0
0 0 0 1

 (3.21)

Euler’s rotation theorem states that any rotation can be represented by
not more than three rotations about coordinate axes. This means that in
general an arbitrary rotation can be decomposed into a sequence of three
elementary rotations while guaranteeing that two successive rotations are not
made about parallel axes. This implies that distinct set of angles are allowed
out of all 27 possible combinations. In common usage all these sequences
are called Euler angles. The particular angle sequence is often a convention
within a particular technological field. In the following sections, two sets of
Euler angles are analyzed, namely, ZYX (or Roll-Pitch-Yaw) angles and the
ZYZ angles.

26 3. Robot’s Pose Representation

A fundamental problem with the three-angle representations just de-
scribed is singularity. This occurs when the rotational axis of the middle
term in the sequence becomes parallel to the rotation axis of the first or
third term. Singularities are an unfortunate consequence of using a minimal
representation. To eliminate this problem it is necessary to adopt different
representations of orientation.

A non-minimal representation of orientation can be obtained by resort-
ing to four parameters expressing a rotation of a given angle about an axis
in space, called axis-angle representation. A simple way to encode this
axis–angle representation in four numbers is unit quaternions. Unit qua-
ternions, also known as versors, provide a convenient mathematical notation
for representing orientations and rotations of objects in three dimensions.
Compared to Euler angles they are simpler to compose and avoid the prob-
lem of gimbal lock.

Converting from angle and vector to a rotation matrix is achieved using
Rodrigues’rotation formula. Details about this representation are provided
in the Lie groups section.

To simplify the notation, a homogeneous transformation H is a 4 × 4
matrix of the form,

H =

(
R p
0 1

)
=


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (3.22)

where n,o, a are three column vectors that form the rotation matrix R.

Relationships using Roll-Pitch-Yaw Euler Angles

A widely used convention is the roll-pitch-yaw sequence angle which are in-
tuitive when describing the attitude of vehicles such as ships, aircraft and
cars. Roll, pitch and yaw (also called bank, attitude and heading) refer to
rotations about the Z-, Y-, X-axes, respectively.

An Roll-Pitch-Yaw location vector is composed of three cartesian coordin-
ates and three Roll-Pitch-Yaw angles. The form of this vector is,

3.1. Location vectors and homogeneous transformations 27

x = (x, y, z, ψ, θ, φ)T (3.23)

φ : Roll, θ : Pitch, ψ : Yaw (3.24)

t = Trans(x, y, z)Rot(Z, φ)Rot(Y, θ)Rot(X,ψ) (3.25)

The conversion between location vector and homogeneous matrices are
given by,

H = Hom(x) =
cosφ cos θ cosφ sin θ sinψ − sinφ cosψ cosφ sin θ cosψ + sinφ sinψ x
sinφ cos θ sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ − cosφ sinψ y
− sinφ cos θ sinψ cos θ cosψ z

0 0 0 1


(3.26)

x = Loc(H) =


x
y
z
ψ
θ
φ

 =


px
py
pz

atan2(oz, az)
atan2(−nz, nx cosφ+ ny sinφ)

atan2(ny, nx)

 (3.27)

The submatrix of Hom(x) corresponding to the rotation matrix will be
represented by R = Mrot(x).

The Jacobians of the composition of location vectors, with respect to the
first and second operand are given by (Smith et al., 1990),

J1⊕{x1,x2} =

(
I3×3 M
03×3 K1

)
(3.28)

J1⊕{x1,x2} =

(
R1 03×3

03×3 K2

)
(3.29)

where, taking x3 = x1 ⊕ x2,

28 3. Robot’s Pose Representation

M =

y2az1 − z2oz1 −x2 cos θ1 − y2 sin θ1 sinψ1 − z2 sin θ1 cosψ1 0
y2ay1 − z2oy1 (z3 − z1) sinφ1 x3 − x1

y2ax1 − z2ox1 (z3 − z1) cosφ1 y1 − y3


(3.30)

K1 =

 cos θ1 cos(φ3 − φ1)/ cos θ3 sin(φ3 − φ1)/ cos θ3 0
− cos θ1 sin(φ3 − φ1) cos(φ3 − φ1) 0

(ox2 sinψ3 + ax2 cosψ3)/ cos θ3 sin θ3 sin(φ3 − φ1)/ cos θ3 1


(3.31)

K2 =

1 sin θ3 sin(ψ3 − ψ2)/ cos θ3 (ax1 cosφ3 + ay1 sinφ3)/ cos θ3

0 cos(ψ3 − ψ2) − cos θ2 sin(ψ3 − ψ2)
0 sin(ψ3 − ψ2)/ cos θ3 cos θ2 cos(ψ3 − ψ2)/ cos θ3


(3.32)

R1 = Mrot(x1) (3.33)

It can be seen that the expression of the formulas given above has been
simplified using terms of x3 = x1 ⊕ x2 and terms of the rotation matrix
corresponding to x1 and x2. In the case where the value of θ3 be −π/2 or
π/2, the Jacobians would be undefined. These values correspond to singular
configurations of Roll-Pitch-Yaw angles.

Relationships using ZYZ Euler Angles

The ZYZ sequence is commonly used in aeronautics and mechanical dynamics
and it refers to rotations about the Z-, Y-, Z-axes, respectively.

A location vector using ZYZ Euler angles is defined by,

x = (x, y, z, ψ, θ, φ)T (3.34)

t = Trans(x, y, z)Rot(z, φ)Rot(y, θ)Rot(z, ψ) (3.35)

3.1. Location vectors and homogeneous transformations 29

The conversion between location vector and homogeneous matrices are
given by,

H = Hom(x) =
cosφ cos θ cosψ − sinφ sinψ − cosφ cos θ sinψ − sinφ cosψ cosφ sin θ x
sinφ cos θ cosψ + cosφ sinψ − sinφ cos θ sinψ + cosφ cosψ sinφ sin θ y

− sin θ cosψ sin θ sinψ cos θ z
0 0 0 1


(3.36)

x = Loc(H) =


x
y
z
ψ
θ
φ

 =


px
py
pz

atan2(−nx sinφ+ ny cosφ,−ox sinφ+ oy cosφ)
atan2(ax cos θ + ay sin θ, az)

atan2(ay, ax)


(3.37)

The submatrix of Hom(x) corresponding to the rotation matrix will be
represented by R = Mrot(x).

The Jacobians of the composition of location vectors, with respect to the
first and second operand are given by (Smith et al., 1990),

J1⊕{x1,x2} =

(
I3×3 M
03×3 K1

)
J1⊕{x1,x2} =

(
R1 03×3

03×3 K2

)
(3.38)

where, taking x3 = x1 ⊕ x2, where x1 = (x1, y1, z1, ψ1, θ1, φ1)T and x2 =
(x2, y2, z2, ψ2, θ2, φ2)T ,

M =

x2oz1 − y2nz1 −x2 cos θ1 cosψ + y2 sin θ1 sinψ1 − z2 sin θ1 0
x2oy1 − y2ny1 (z3 − z1) sinφ1 x3 − x1

x2ox1 − y2nx1 (z3 − z1) cosφ1 y1 − y3


(3.39)

30 3. Robot’s Pose Representation

K1 =

sin θ1 cos(φ3 − φ1)/ sin θ3 sin(ψ3 − ψ1)/ sin θ3 0
sin θ2 sin(ψ3 − ψ2) cos(φ3 − φ1) 0

sin θ2 cos(ψ3 − ψ2)/ sin θ3 cos θ3 sin(ψ3 − ψ1)/ sin θ3 1

 (3.40)

K2 =

1 (cos θ3 sin(ψ3 − ψ2))/ sin θ3 (sin θ1 sin(φ3 − φ1))/ sin θ3

0 cos(ψ3 − ψ2) sin θ2 sin(ψ3 − ψ2)
0 sin(ψ3 − ψ2)/ sin θ3 (sin θ1 sin(φ3 − φ1))/ sin θ3


(3.41)

R1 = Mrot(x1) (3.42)

Again, it can be seen that the expression of the formulas given above has
been simplified using terms of x3 = x1⊕x2 and terms of the rotation matrix
corresponding to x1 and x2.

Relationships using unit quaternions

The quaternion is an extension of the complex number – a hyper-complex
number – and is written as a scalar plus a vector. Quaternions are elegant,
powerful and computationally straightforward and widely used for robotics,
computer vision, computer graphics and aerospace inertial navigation applic-
ations.

A pose can be also described with a displacement in 3-dimensional space
plus a rotation defined by a unit quaternion as,

x = (x, y, z, qr, qx, qy, qz)
T (3.43)

where the quaternion elements are [qr, (qx, qy, qz)].

The transformation matrix associated to a pose is given by,

3.1. Location vectors and homogeneous transformations 31

H = Hom(x) = (3.44)
q2
r + q2

x − q2
y − q2

z 2(qxqy − qrqz) 2(qzqx − qrqy) x
2(qxqy + qrqz) q2

r − q2
x + q2

y − q2
z 2(qyqz − qrqx) y

2(qzqx − qrqy) 2(qyqz + qrqx) q2
r − q2

x − q2
y + q2

z z
0 0 0 1

 (3.45)

A numerically stable method to convert a 4 × 4 matrix into a unit qua-
ternions pose is described in (Bar-Itzhack, 2000).

The Jacobians of the composition of location vectors, with respect to the
first and second operand are given by (Blanco, 2010),

J1⊕{x1,x2} =

(
I3×3 M
04×3 K1

)
(3.46)

J2⊕{x1,x2} =

(
R1 03×4

04×3 K2

)
(3.47)

where,

M = 2M1
1

(q2
r1

+ q2
x1

+ q2
y1

+ q2
z1

)3/2
M2 (3.48)

with,

M1 =

(
−qz1y2 + qy1z2 qy1y2 + qz1z2 −2qy1x2 + qx1y2 + qr1z2 −2qz1x2 − qr1y2 + qx1z2
qz1x2 − qx1z2 qy1x2 − 2qx1y2 − qr1z2 qx1x2 + qz1z2 qr1x2 − 2qz1y2 + qy1z2
−qy1x2 + qx1y2 qz1x2 + qr1y2 − 2qx1z2 −qr1x2 + qz1y2 − 2qy1z2 qx1x2 + qy1y2

)
(3.49)

M2 =


q2
x1

+ q2
y1

+ q2
z1

−qr1qx1 −qr1qy1 −qr1qz1
−qx1qr1 q2

r1
+ q2

y1
+ q2

z1
−qx1qy1 −qx1qz1

−qy1qr1 −qy1qx1 q2
r1

+ q2
x1

+ q2
z1

−qy1qz1
−qz1qr1 −qz1qx1 −qz1qy1 q2

r1
+ q2

x1
+ q2

y1


(3.50)

32 3. Robot’s Pose Representation

K1 =


qr2 −qx2 −qy2 −qz2
qx2 qr2 qz2 −qy2
qy2 −qz2 qr2 qx2
qz2 qy2 −qx2 qr2

 (3.51)

K2 =


qr1 −qx1 −qy1 −qz1
qx1 qr1 −qz1 qy1
qy1 qz1 qr1 −qx1
qz1 −qy1 qx1 qr1

 (3.52)

R1 = Mrot(x1) (3.53)

3.2 Lie Groups

Lie groups theory is a coherent and robust framework for representing and
working with homogeneous transformations. Lie groups and their associated
machinery address with operations related to transformations as composed,
inverted, differentiated and interpolated.

This section to provide enough information about Lie groups representing
spatial transformations can be employed usefully in robotics and computer
vision and derives useful formulae for working with the Lie groups that rep-
resent transformations in 2-dimensional and 3-dimensional space.

3.2.1 General definitions

Lie Groups

A Lie group is a group that is also a differentiable manifold, with the property
that the group operations are compatible with the smooth structure. More
information about Lie groups and the concepts covered in this chapter can
be found in (Gallier, 2011), (Varadarajan, 2013) and (Hall, 2015).

A robot’s pose can be defined with Lie groups using the special Euclidean
group that represents rotation and translation, for 2D and 3D cases (n = 2, 3,
respectively) as,

3.2. Lie Groups 33

SE(n) =

{(
R p
0 1

)
∈ R(n+1)×(n+1)|R ∈ SO(n),p ∈ Rn

}
(3.54)

where SO(n) is the special orthogonal group defined as,

SO(n) = {C ∈ Rn×n|CCT = I, det(C) = 1} (3.55)

Lie algebra

To every Lie group can be associated a Lie algebra whose underlying vector
space is the space of differential transformation (tangent space) around the
identity element of the Lie group and which completely captures the local
structure of the group. Informally, we can think of elements of the Lie algebra
as elements of the group that are “infinitesimally close” to the identity.

Consider a Lie group G represented in Rn×n, with k degrees of freedom.
Then, the Lie algebra g is a k-dimensional vector space with basis elements
{G1, · · · ,Gk} called generator. Elements of g are represented as matrices in
Rn×n.

For such Lie algebra g, a vector representation is associated with the
hat-operator ·̂,

·̂ : Rk → Rn×n

x̂ =
k∑
i=1

xiGi (3.56)

which maps a k -vector tangent representation onto an (n × n) matrix rep-
resentation.

Exponential Map

A way to associate elements of the Lie algebra to elements of the underlying
Lie group is using the exponential map. Let us consider the formal definition
of the standard exponential function,

34 3. Robot’s Pose Representation

ex : R→ R+

ex =
∞∑
k=0

xn

n!
(3.57)

This expression can be generalized for squared matrices as follows,

exp(X) : Rn×n → Rn×n (3.58)

exp(X) =
∞∑
k=0

Xn

n!
(3.59)

with X0 = I. Not without reason, this function is called exponential map
since it has similar properties to the exponential function including,

∂

∂t
exp(tX) = X exp(tX) = exp(tX)X (3.60)

XY = YX⇒ exp(X) exp(Y) = exp(X + Y) (3.61)

Furthermore, it can be shown that,

exp(AXA−1) = A exp(X)A−1 (3.62)

exp(X)−1 = exp(−X) (3.63)

The inverse of the exponential map is the logarithm,

exp (log X) = X (3.64)

The logarithm is usually not continuous everywhere, but is always con-
tinuous near the identity.

3.2. Lie Groups 35

Adjoint Map

Other concept of the Lie groups theory is the adjoint representation (or
adjoint action) of a Lie group. The adjoint representation is a way of repres-
enting the elements of the group as linear transformations of the group’s Lie
algebra, i.e., transforms a tangent vector from the tangent space around one
element to tangent space of another.

AdjX : g→ g

AdjX(A) = X ·A ·X−1 (3.65)

Elements of the adjoint representation are usually written as k×k matrices
acting on the coefficient vectors of elements in the Lie algebra g by multi-
plication.

The adjoint representation preserves the group structure of the Lie group
G,

X,Y ∈ G (3.66)

AdjX·Y = AdjX · AdjY (3.67)

AdjX−1 = Adj−1
X (3.68)

To get a better understanding of the usefulness of the adjoint, let us to
consider,

X ∈ G,A ∈ g (3.69)

exp(AdjX(A)) =X · exp(A) ·X−1 (3.70)

exp(AdjX(A)) ·X =X · exp(A) (3.71)

Therefore, the adjoint allows us to move the matrix exponential from the
right-hand side to the left-hand side of A. Thus, the adjoint is the Jacobian
of the transformation of tangent vectors through elements of the group.

36 3. Robot’s Pose Representation

3.2.2 SO(2): Rotations in 2D space

Lie group definition

SO(2) is the group of rotations in the 2-dimensional plane. Elements of the
rotation group in two dimensions are represented by 2D rotation matrices
with one degree of freedom: angle of rotation.

SO(2) =

{
R =

(
cos θ − sin θ
sin θ cos θ

)
∈ R2×2|RRT = I, det(R) = 1

}
(3.72)

Composition and inversion in the group correspond to matrix multiplic-
ation and inversion. Because rotation matrices are orthogonal, inversion is
equivalent to transposition.

Lie Algebra

The Lie algebra so(2) is the set of 2×2 skew-symmetric matrices and is gen-
erated by one antisymmetric element, corresponding to a differential rotation
in 2D,

G =

(
0 −1
1 0

)
(3.73)

Exponential Map

The exponential map from so(2) to SO(2) is simply a 2D rotation,

exp (θ̂) = exp

(
0 −θ
θ 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
(3.74)

Adjoint Representation

The adjoint representation of SO(2) is,

3.2. Lie Groups 37

X =

(
a −b
b a

)
∈ SO(2), a2 + b2 = 1 (3.75)

AdjX(θ̂) = Xθ̂X−1 =

(
0 −θ
θ 0

)
= θ̂ (3.76)

AdjX = I (3.77)

3.2.3 SE(2): Rigid transformations in 2D space

Lie group definition

SE(2) is the group of rigid transformations in the 2D plane. The group has
three dimensions, corresponding to translation and rotation in the plane.

SE(2) =

{(
R t
0 1

)
,R ∈ SO(2), t ∈ R2

}
(3.78)

Transformation composition and inversion are coincident with matrix
multiplication and inversion,

X1,X2 ∈ SE(2) (3.79)

X1X2 =

(
R1 t1

0 1

)(
R2 t2

0 1

)
=

(
R1R2 R1t2 + t1

0 1

)
(3.80)

X−1 =

(
RT

1 −RT
1 t1

0 1

)
(3.81)

Lie Algebra

The Lie algebra se(2) is the set of 3×3 matrices corresponding to differential
translations and rotation around the identity. The three generators of the
algebra are,

38 3. Robot’s Pose Representation

G1 =

0 0 1
0 0 0
0 0 0

 ; G2 =

0 0 0
0 0 1
0 0 0

 ; G3 =

0 −1 0
1 0 0
0 0 0

 (3.82)

Exponential Map

The exponential map from se(2) to SE(2) is the matrix exponential on a
linear combination of the generators,

x = (x, y, θ)T (3.83)

exp(x̂) = exp

 exp(θ̂)
x
y

0 0

 =

 R V

(
x
y

)
0 1

 (3.84)

where R ∈ SO(2) and the elements of V is calculated with Taylor series
when θ is small,

V =

(
sin θ
θ

−1−cos θ
θ

1−cos θ
θ

sin θ
θ

)
(3.85)

Adjoint representation

The adjoint in SE(2) has a closed form,

X =

(
R t
0 1

)
∈ SE(2) (3.86)

AdjX =

 R
y
−x

0 1

 (3.87)

3.2. Lie Groups 39

3.2.4 SO(3): Rotations in 3D space

Lie group definition

SO(3) is the group of rotations in 3-dimensional space, represented by 3× 3
orthogonal matrices with unit determinant. It has three degree of freedom,
one for each differential rotation axis.

SO(3) = {R ∈ R3×3|RRT = I, det(R) = 1} (3.88)

Composition and inversion in the group correspond to a matrix multi-
plication and inversion.

Lie Algebra

The Lie algebra so(3) is the set of antisymmetric 3 × 3 matrices, generated
by the differential rotations about each axis,

G1 =

0 0 0
0 0 −1
0 1 0

 ; G2 =

 0 0 1
0 0 0
−1 0 0

 ; G3 =

0 −1 0
1 0 0
0 0 0

 (3.89)

The mapping ·̂ : R3 → so(3) sends 3-vectors to their skew matrix,

ω̂ =

 0 −c b
c 0 −a
−b a 0

 ,ω = (a, b, c)T (3.90)

Exponential map

The exponential map from so(3) to SO(3) has a closed form called the
Rodrigues formula. The tangent vector ω ∈ R3 can be interpreted as an
axis-angles representation of rotation, its exponential is the rotation around
the axis ω/||ω|| by ||ω|| radians,

40 3. Robot’s Pose Representation

exp
(
ω̂so(3)

)
= exp([ω]x) = I +

sin θ

θ
[ω]x +

1− cos θ

θ2
[ω]2x (3.91)

where θ =
√
ωTω.

Adjoint representation

The adjoint representation of SO(3) is actually identical to the rotation mat-
rix representation due to properties of the cross product,

R ∈ SO(3), a,b ∈ R3 (3.92)

(R · a× ·RT) · b =R · (a×RT) · b)

=(R · a)× b

=(R · a)×b (3.93)

R · a× ·RT = (R · a)× (3.94)

AdjR = R (3.95)

3.2.5 SE(3): Rigid transformations in 3D space

Lie group definition

SE(3) is the group of rigid transformations in the 3D plane and is well
represented by linear transformations on homogeneous four-vectors. The
group has six dimensions, corresponding three for translation and three for
rotation.

SE(3) =

{(
R t
0 1

)
,R ∈ SO(3), t ∈ R3

}
(3.96)

3.2. Lie Groups 41

Transformation composition and inversion are coincident with matrix
multiplication and inversion,

X1,X2 ∈ SE(3) (3.97)

X1X2 =

(
R1 t1

0 1

)(
R2 t2

0 1

)
=

(
R1R2 R1t2 + t1

0 1

)
(3.98)

X−1 =

(
RT

1 −RT
1 t1

0 1

)
(3.99)

Lie Algebra

The Lie algebra se(3) is the set of 4×4 matrices corresponding to differential
translations and rotations around the identity. The six generators of the
algebra are,

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ; G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ; G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


(3.100)

G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ; G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ; G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


(3.101)

These generators represent the derivatives of x, y and z translations and
x, y and z axis rotations respectively.

The mapping ·̂ : R6 → se(3) is,

(̂
v
w

)
se(3)

=

(
[w]x v
01×3 0

)
(3.102)

42 3. Robot’s Pose Representation

where v,ω ∈ R3 and [w]x is the hat-operator of so(3).

Exponential map

The exponential map se(3) to SE(3) has closed form,

exp : se(3)→ SE(3) (3.103)

exp

((̂
v
w

))
=

(
exp([w]x) V u

0 1

)
(3.104)

with θ = ‖w‖2 and V = I if θ → 0 and V = I + 1−cos(θ)
θ2

[w]x + θ−sin(θ)
θ3

[w]2x in
other case.

Adjoint representation

The adjoint in SE(3) has a closed form:

X =

(
R t
0 1

)
∈ SE(3) (3.105)

AdjX =

(
R t×R
0 R

)
(3.106)

CHAPTER 4

Uncertainty Representation
and its Propagation

In robotics, it has been well established that estimating uncertain spatial
relationship is fundamentally important problem and its representation and
estimation has received attention for years. In many applications dealing with
the real-world assembly task, such as industrial automation, and autonomous
mobility, there is a need to represent and reason about spatial uncertainty
arising from object representation, robot motion and sensory information.
This problem is complicated in practice because the location of one object
relative to another may be known only indirectly through a sequence of re-
lative frames of reference with uncertainty. Therefore, to reason the effects
of uncertainties, uncertainties must be properly represented such as their
manipulation can be performed. Different types of models to represent un-
certainty and its propagation have been proposed in the literature.

Two fundamental types of models of probabilistic representation of the
uncertainty have been proposed: absolute and differential. In absolute rep-
resentations (Bolle and Cooper, 1986), (Smith and Cheeseman, 1986), the
information about the uncertainty in the location of the robot’s pose is rep-
resented by a probability distribution function, usually Gaussian, over the
variables of the absolute location with respect to a chosen base reference.
The estimated location is given by the expected location variables and the
uncertainty by its associated covariance matrix. Differential representations
use a local representation of the uncertainty (Durrant-Whyte, 1987), (Su
and Lee, 1992), (Castellanos et al., 1999). The estimated location of the
robot is represented by the best approximation of the absolute location and

44 4. Uncertainty Representation and its Propagation

the estimation error is represented locally by a differential location vector.
This vector is usually also represented by a Gaussian probability distribution
function.

Equivalent representations on the Lie group have also been considered
in recent works (Smith et al., 2003), (Wang and Chirikjian, 2006), (Barfoot
and Furgale, 2014) where transformations are represented by homogeneous
matrices and uncertainties in a pose or motion correspond to probability
density functions over Lie groups. By adopting this geometric framework,
many of the ad hoc definitions and notational conventions found in existing
dynamics algorithms can provide other advantages as they avoid singularities
when representing state spaces with either redundant degrees of freedom or
constraint issues (Barfoot and Furgale, 2014), (Hertzberg et al., 2013).

In this chapter, we review related work about representation and propaga-
tion of the uncertainty and present a survey of different types of models pro-
posed in the literature. Additionally, an analysis of the uncertainty repres-
ented with a differential error and the uncertainty propagation on Lie groups
is carried out taking into account the similarities between both models of
representations.

4.1 Literature review

In the literature, two competing approaches for representing spatial un-
certainty have been studied, the set-oriented representation and the prob-
abilistic representation. The set-oriented representation basically uses the
worst-case bounds which include all possible errors to represent the real
location of an object (Taylor, 1976), (Brooks, 1982), (Brooks, 1984), (Erd-
mann, 1984), (Grimson and Lozano-Perez, 1984), (Pertin-Troccaz and Pu-
get, 1988), (Taylor and Rajan, 1988), (Xiao et al., 1989). The probabilistic
representation, however, assigns probabilities to all possible locations of an
object, thus the real location of an object becomes a probability distribution
over the space (Chatila and Laumond, 1985), (Smith and Cheeseman, 1986),
(Durrant-Whyte, 1987), (Durrant-Whyte, 1988), (Mazon and Alami, 1989),
(Su and Lee, 1991), (Su and Lee, 1992).

Most of the previous work on uncertainties focused on the fine-motion
planning problem (Lozano-Perez et al., 1984), (Juan and Paul, 1986), (Erd-
mann, 1986), (Donald, 1986), (Natarajan, 1988), (Xiao et al., 1989), (Desai

4.1. Literature review 45

et al., 1989), (Donald, 1990), and the task-level planning problem (Taylor,
1976), (Brooks, 1982), (Pertin-Troccaz and Puget, 1988) using set-oriented
representation. In the fine-motion planning problem, the existing techniques
reduce uncertainties from the local point of view by combining sensory activ-
ities with incremental robot motions aiming at progressively achieving the
desired goal. In the task-level planning problem, Taylor (1976) estimated
the compound error from the bounds of each individual object involved in
a task. Brooks (1982) considered symbolic constraints in computing errors.
By manipulating the constraint dependencies between successive plan steps,
his system can be used both to provide error estimates and to identify plan
variables whose values should be constrained for successful task execution.

Because of using worst-case bounds, the set-oriented representation usu-
ally results in conservative estimates that limit their use in the decision-
making process and lead to highly restricted planning strategies. Hence,
research work on the uncertainty representation focused more on the prob-
abilistic representation. This representation is used to represent spatial un-
certainties that arise from object modeling, robot motion, and sensory in-
formation. Furthermore, the probabilistic representation can provide more
systematic propagation methodologies than the set-oriented representation,
and it can be easily transformed to the set-oriented representation with a
small percentage of error.

Smith and Cheeseman (1986) characterized the uncertainties of motion
parameters by a mean vector and a covariance matrix, and developed for-
mulas for compounding the uncertainties and for merging two estimates of
the same location of an object. One of the drawbacks of this models is due
to the singularities that suffer some angles for representing rotation matrix.
A appropriate way to avoid this inconvenient is describe the rigid motion
using the twist theory for describing rigid body kinematics because it does
not suffer from singularities due to the use of local coordinates.

Paul (1981) presented a way of manipulation of differential relation-
ships and how to transform differential changes in one coordinate frame into
changes in another. He showed that differential rotations is independent
of the order of rotation and are equivalent to a differential rotation made
about a unit magnitude vector. Durrant-Whyte (1987) represented spatial
uncertainties by differential transforms in the homogeneous transformation
representation. However, Durrant-Whyte only proposed error models for
homogeneous transforms and did not present any manipulation formula in
terms of homogeneous transforms and in a probabilistic sense. Since it is in-

46 4. Uncertainty Representation and its Propagation

sufficient to only consider uncertainties locally, methodologies for uncertainty
propagation for various actions and for verifying the success of an action or
a plan are required.

Su and Lee (1991) and Su and Lee (1992) presented a systematic meth-
odology of manipulation and propagating spatial uncertainties in the task-
level planning verifying the applicability of actions in an assembly task using
differential transform. The spatial uncertainties of motion parameters are
characterized by mean vectors and covariance matrices and expressed in the
form of homogeneous transforms. The manipulations of uncertainties focuses
on compounding the uncertainties and fusing the estimates of the same loc-
ation of an object. They proposed an approach of handling the problem of
uncertainty fusion based on the first-order approximation, which do not re-
quire to extract six motion parameters from the homogeneous transforms in
3-dimensional space.

Papers aforementioned provide approaches for representing spatial uncer-
tainty using the differential transformation of homogeneous transformation
with Euler angles for representing rotation matrix, but as already mentioned,
these approaches have difficulties because the solid angle swept out by a
given change in Euler angles depends on the current pose. Euler angles are
commonly used to constrain the rotation matrix, but they suffer from singu-
larities and lead not to a simple formulation in the optimization procedure
(for example Basu et al. (1996) propose a 3D ellipsoidal tracker based on
Euler angles).

An appropriate way to avoid this inconvenient is describe the rigid mo-
tion using the twist and product of exponential map formalism for kinematic
chains. There are two main advantages to using screws, twists, and wrenches
for describing rigid body kinematics. The first is that they allow a global
description of rigid body motion which does not suffer from singularities due
to the use of local coordinates (such singularities are inevitable when one
chooses to represent rotation via Euler angles, for example). The second
advantage is that screw theory provides a very geometric description of rigid
motion which greatly simplifies the analysis of mechanisms (Murray et al.,
1994). This theory is built using the tools of matrix Lie groups and Lie algeb-
ras. Several distinct research fields relate to this theory. These include the
theory of Lie groups, probability and statistics, robot kinematics, methods
for describing spatial uncertainty, and state estimation.

The Lie-group-theoretic notation and terminology to the robotics com-
munity, which has now become standard vocabulary, is presented by Murray

4.1. Literature review 47

et al. (1994) and Selig (1996). Blackmore and Leu (1992) showed that prob-
lems in manufacturing associated with swept volumes can be cast within a
Lie-group setting. Park and Brockett (1994) showed how dexterity measures
can be viewed in a Lie-group setting, and how this coordinate-free approach
can be used in robot design. Kyatkin and Chirikjian (1998) showed that
many problems in robot kinematics and motion planning can be formulated
as the convolution of functions on the Euclidean group. Wang and Chirikjian
(2004) showed that the workspace densities of manipulators with many de-
grees of freedom can be generated by solving a diffusion equation on the
Euclidean group.

Recently, equivalent representations to differential representations of un-
certainty have used the tools of Lie groups and Lie algebras to represent
uncertainties using the twist and product of exponential map formalism for
kinematic chains. How errors propagate on the Euclidean motion group, spe-
cifically in the Lie group SE(3), is shown in Smith et al. (2003) and Wang
and Chirikjian (2006). In theses papers, poses and motions are represented
as coordinate frame transformations. This transformations are represented
by matrices which form the Lie Group and hence uncertainties in a pose or
motion correspond to probability density functions over Lie group. Smith
et al. (2003) showed how the exponential map can be used to represent prob-
ability distributions over a group, and how these can be correctly propagated
along a trajectory.

In all previous studies about representing uncertainties with probabilities,
errors are assumed to be small enough that covariances can be propagated by
Jacobian-based methods or first-order error propagation theories. However,
Wang and Chirikjian (2008) and Barfoot and Furgale (2014) addressed the
problem of the propagation of large errors in rigid-body poses. Wang and
Chirikjian (2008) showed how errors propagated by convolution on the Euc-
lidean motion group, SE(3), can be approximated to second order using the
theory of Lie algebras and Lie groups. Barfoot and Furgale (2014) propagat-
ing uncertainty through a compounding of two transformation matrices fus-
ing multiple uncertain measurements of a pose into a single estimate and
propagating uncertainty through a nonlinear model to second order in the
associated covariances.

48 4. Uncertainty Representation and its Propagation

4.2 Absolute Representation of Uncertainty

In classical probabilistic models (Bolle and Cooper, 1986), (Smith and Cheese-
man, 1986), the information about the location of the element B with re-
spect to A is represented by a probability distribution function assumed to
be Gaussian. The estimated location is given by the expected value of the
vector xAB, and the uncertainty by its associated covariance matrix,

x̄AB = E[xAB]

ΣAB = E[(xAB − x̄AB)(xAB − x̄AB)T] (4.1)

where, in the 2D case, xAB = (xAB, yAB, θAB)T whilst in the 3D case, xAB =
(xAB, yAB, zAB,ωAB)T where the components of ωAB depend on the rota-
tion’s representation as detailed in chapter 3.

Let us consider two spatial relations xAB and xBC with their associated
uncertainties ΣAB and ΣBC as is showed in Figure 4.1.

The compounding pose xAC is computed by the nonlinear transformation,

xAC = xAB ⊕ xBC (4.2)

The uncertainty propagation is obtained by means of a first order Taylor
expansion Smith and Cheeseman (1986) of Equation 4.2, thus,

xAC ' x̄AC + J1⊕(xAB − x̄AB) + J2⊕(xBC − x̄BC) (4.3)

where J1⊕ and J2⊕ are the Jacobians of the composition of locations vectors
with respect to the first and second operand respectively, expressed in the
2D case by,

J1⊕ =
∂(xAB ⊕ xBC)

∂xAB
=

1 0 yAB − yAC
0 1 xAC − xAB
0 0 1

 (4.4)

4.2. Absolute Representation of Uncertainty 49

Figure 4.1: Composition using absolute representation.

J2⊕ =
∂(xAB ⊕ xBC)

∂xAB
=

cos θAB − sin θAB 0
sin θAB cos θAB 0

0 0 1

 (4.5)

and, in the 3D case, by,

J1⊕ =
∂(xAB ⊕ xBC)

∂xAB
=

(
I M
0 K1

)
(4.6)

J2⊕ =
∂(xAB ⊕ xBC)

∂xBC
=

(
R 0
0 K2

)
(4.7)

where M, R, K1 and K2 are defined in Smith et al. (1990) for relationships
using Roll-Pitch-Yaw and Euler angles and in Blanco (2010) for relationships
using unit quaternions. In chapter 3 expressions for the components of the
Jacobians, required in subsequent sections, are detailed.

Finally, the estimated covariance matrix of xAC , assuming uncorrelated
noise sequences, is computed from Equation 4.3 as,

ΣAC '
(
J1⊕ J2⊕

)(ΣAB 0
0 ΣBC

)(
JT1⊕
JT2⊕

)
(4.8)

Therefore, we can obtain,

50 4. Uncertainty Representation and its Propagation

ΣAC ' J1⊕ΣABJT1⊕ + J2⊕ΣBCJT2⊕ (4.9)

If the two relationships being compounded are not independent, then the
covariance matrix of the compounding poses is,

ΣAC '
(
J1⊕ J2⊕

)(ΣAB ΣAB,BC

ΣBC,AB ΣBC

)(
JT1⊕
JT2⊕

)
(4.10)

In this case, we can obtained,

ΣAC ' J1⊕ΣABJT1⊕+J2⊕ΣBCJT2⊕+J2⊕ΣBC,ABJT1⊕+J1⊕ΣAB,BCJT2⊕ (4.11)

where ΣAB,BC is the correlation between the spatial relations xAB and xBC .

4.3 Differential Representation of Uncertainty

Differential models use a local representation of uncertainty (Durrant-Whyte,
1987), (Paul, 1981), (Castellanos et al., 1999). The estimated location of the
robot with respect to a base reference A is denoted by x̄AB representing the
best approximation of the real location. Additionally, the estimation error
is represented locally by a differential location vector dB with respect to the
reference frame B,

xAB = x̄AB ⊕ dB (4.12)

where dB = (dx, dy, dθ)T in 2D case and dB = (dx, dy, dz, dωx, dωy, dωz)
T

in 3D case, is a differential location vectors being normally distributed with
mean and covariance matrix given by,

d̄B = E[dB]

ΣB = E[(dB − d̄B)(dB − d̄B)T] (4.13)

that represents location uncertainty. The elements of dB represents the dif-
ferential translational and rotational along the axis, independently from the
base reference frame A.

4.3. Differential Representation of Uncertainty 51

Additionally, the differential location vector can be represented with re-
spect to the reference frame A,

xAB′ = dA ⊕ xAB (4.14)

where dA = (dx, dy, dθ)T in 2D case and dA = (dx, dy, dz, dωx, dωy, dωz)
T

in 3D case, is a differential location vectors being normally distributed with
mean and covariance matrix given by,

d̄A = E[dA]

ΣA = E[(dA − d̄A)(dA − d̄A)T] (4.15)

The differential location vectors expressed in reference A and B are differ-
ent, in general, and are related by the Jacobian of the relative transformation
(Paul, 1981),

dA = JABdB (4.16)

dB = JBAdA = J−1
ABdA (4.17)

where JAB is the Jacobian (Paul, 1981) of the relative transformation x̄AB,
expressed in the 2D case as,

JAB =

 RAB RAB

(
yAB
−xAB

)
0 1

 (4.18)

and, in the 3D case, as,

JAB =

(
RAB DABRAB

0 RAB

)
(4.19)

where RAB is an orthogonal rotation matrix and DAB is the 3 × 3 skew
symmetric matrix related to the translational part of x̄AB,

52 4. Uncertainty Representation and its Propagation

Figure 4.2: Composition using differential representation.

DAB =

 0 −z y
z 0 −x
−y x 0

 (4.20)

In Figure 4.2, the composition of two spatial relations xAB and xBC with
their corresponding differential location vectors dB and dC with associated
covariance matrices ΣB and ΣC is illustrated.

The compounding pose xAC is obtained by composition of two spatial
relations xAB and xBC as,

xAC =xAB ⊕ xBC

=x̄AB ⊕ dB ⊕ x̄BC ⊕ dC

'x̄AB ⊕ x̄BC ⊕ JCBdB ⊕ dC

=x̄AC ⊕ d′C (4.21)

Assuming small errors, we can obtain,

d′C ' JCBdB + dC (4.22)

Assuming uncorrelated noise sequences, i.e., if dB and dC are uncorrelated
variable, the covariance matrix of d′C with respect to the coordinate frame
C is given by,

4.4. Uncertainty Representation and Propagation over Lie Groups 53

Σ′C ' JCBΣBJTCB + ΣC (4.23)

where JCB is the Jacobian, Paul (1981), of the relative transformation x̄CB,
expressed in the 2D case as,

JCB =

 RT
BC RT

BC

(
−yBC
xBC

)
0 1

 (4.24)

and, in the 3D case, as,

JCB =

(
RT
BC RT

BCDT
BC

0 RT
BC

)
(4.25)

where RBC is an orthogonal rotation matrix and DBC is the 3 × 3 skew
symmetric matrix related to the translational part of x̄BC ,

DBC =

 0 −z y
z 0 −x
−y x 0

 (4.26)

If the independence assumption between the error vectors is not true,
then the covariance matrix of the compounding poses is,

Σ′C ' JCBΣBJTCB + ΣC + JCBΣB,C + ΣC,BJTCB (4.27)

where ΣB,C is the correlation between the differential error dB and dC .

4.4 Uncertainty Representation and Propaga-

tion over Lie Groups

Uncertainty robot’s pose can be defined with Lie groups using the special
Euclidean group. As in the model of differential representation, in this model
the estimated location of the robot is represented by a ’large’, noise free

54 4. Uncertainty Representation and its Propagation

value and the estimation error is represented locally by a ’small’ uncertainty
perturbation. However, Equation 4.12 does not directly apply to members of
the special Euclidean group. For that, one notable concept used for applying
error perturbation to transformation matrix is relationship between special
Euclidean Group and its corresponding Lie algebra.

Uncertainty robot’s pose can be defined with Lie groups using the special
Euclidean group that represents rotation and translation, for 2D and 3D
cases (n = 2, 3, respectively) as,

SE(n) =

{(
R p
0 1

)
∈ R(n+1)×(n+1)|R ∈ SO(n),p ∈ Rn

}
(4.28)

where SO(n) is the special orthogonal group defined as,

SO(n) = {C ∈ Rn×n|CCT = I, det(C) = 1} (4.29)

Every Lie group has an associated Lie algebra, which is the tangent space
around the identity element of the group and they are related via exponential
map Varadarajan (2013), Bregler and Malik (1998). Importantly, the tangent
space associated with a Lie group provides an optimal space in which to
represent differential quantities related to the group such as covariances of
transformations. The Lie algebra corresponding to SE(n) and SO(n) is
denoted by se(n) and so(n), respectively.

In this model, uncertainty robot’s pose can be defined using homogeneous
matrices by,

TAB = T̄AB exp (d̂B) (4.30)

where T̄AB ∈ SE(n) is a ’large’, noise free value and, dB = (dx, dy, dθ)T

in 2D case and dB = (dx, dy, dz, dωx, dωy, dωz)
T in 3D case, is a ’small’ un-

certainty perturbation variable with respect to the reference frame B, being
assumed usually to be Gaussian,

d̄B = E[dB]

ΣB = E[(dB − d̄B)(dB − d̄B)T] (4.31)

4.4. Uncertainty Representation and Propagation over Lie Groups 55

For notational convenience, the hat-operator ·̂ in Equation 4.30 turns the
vector dB in a member of the Lie algebra se(n) according to, in the 2D case,

d̂B =

 [dθ]×
dx
dy

0 0

 (4.32)

being [dθ]× the 2 × 2 skew symmetric matrix corresponding to the hat-
operator in so(2),

[dθ]× =

(
0 −dθ
dθ 0

)
(4.33)

and in the 3D case,

d̂B =

 [dω]×

dx
dy
dz

0 0

 (4.34)

being [dω]× is the 3 × 3 skew symmetric matrix corresponding to the hat-
operator in so(3),

[dω]× =

 0 −dωz dωy
dωz 0 −dωx
−dωy dωx 0

 (4.35)

The exponential map in Equation 4.30 is a way to associate elements of
the tangent space se(n) to elements of the underlying Lie group SE(n).

The exponential map se(2) to SE(2) has closed form,

exp(d̂B) =

 exp([dθ]×) V

(
dx
dy

)
0 1

 (4.36)

where exp([dθ]×) is the exponential map so(2) to SO(2) defined by,

56 4. Uncertainty Representation and its Propagation

exp([dθ]×) = exp

(
0 −dθ
dθ 0

)
=

(
cos(dθ) − sin(dθ)
sin(dθ) cos(dθ)

)
(4.37)

and,

V =

(
sin(dθ)
dθ

−1−cos(dθ)
dθ

1−cos(dθ)
dθ

sin(dθ)
dθ

)
(4.38)

The exponential map se(3) to SE(3) has closed form:

exp(d̂B) =

 exp([dω]×) V

dxdy
dz


0 1

 (4.39)

where exp([dω]×) is the exponential map so(3) to SO(3) also called the
Rodrigues formula defined by,

exp([dω]×) = I +
sin θ

θ
[dω]× +

1− cos θ

θ2
[dω]2× (4.40)

where dθ =
√
dω2

x + dω2
y + dω2

z and,

V = I +
1− cos θ

θ2
[dω]× +

θ − sinθ
θ3

[dω]2× (4.41)

More information about the mathematical formulation in Lie groups can
be found in chapter 3.

As in differential representation, the uncertainty perturbation variable
can be represented with respect to the reference frame A, then uncertainty
robot’s pose is defined using homogeneous matrices as,

TAB = exp (d̂A)T̄AB (4.42)

where dA = (dx, dy, dθ)T in 2D case and dA = (dx, dy, dz, dωx, dωy, dωz)
T in

3D case, is assumed usually to be Gaussian,

4.4. Uncertainty Representation and Propagation over Lie Groups 57

d̄A = E[dA]

ΣA = E[(dA − d̄A)(dA − d̄A)T] (4.43)

The uncertainty perturbation variable with respect reference A and B
are related by the adjoint representation (or adjoint action) of a Lie group.
The adjoint representation is a way of representing the elements of the group
as linear transformations of the group’s Lie algebra, i.e., transforms a tan-
gent vector from the tangent space around one element to tangent space of
another. Therefore, dA and dB are related as,

dA = AdTAB
dB (4.44)

dB = AdTBA
dA (4.45)

where AdTAB
is the the adjoint of TAB in SE(2) and SE(3) is defined,

respectively, as,

AdTAB
=

 RAB RAB

(
yAB
−xAB

)
0 1

 (4.46)

AdTAB
=

(
RAB DABRAB

0 RAB

)
(4.47)

where RAB is an orthogonal rotation matrix and DAB is the 3 × 3 skew
symmetric matrix related to the translational part of T̄AB.

Let us consider two noisy poses, TAB and TBC , with perturbation error
associated dB and dC . The uncertainty at TAC can easily be estimated by
propagating forwards,

TAC = TABTBC = T̄AB exp(d̂B)T̄BC exp(d̂B) (4.48)

A useful property of the adjoint representation to Y ∈ se(n) and X ∈
SE(n) is,

58 4. Uncertainty Representation and its Propagation

exp (AdXY) = X exp (Y)X−1 (4.49)

or equivalently,

exp (Y) = X−1 exp (AdXY)X (4.50)

Then, using Y = d̂B, X = T̄−1
BC and the adjoint to correctly gather all of

uncertainty to the right-hand side, we can obtain,

TAC =T̄AB exp (d̂B)T̄BC exp (d̂C)

=T̄ABT̄BC exp (AdT−1
BC

d̂B)T̄−1
BCT̄BC exp (d̂C)

=T̄ABT̄BC exp (AdT−1
BC

d̂B) exp (d̂C)

=T̄ABT̄BC exp (AdT−1
BC

d̂B + d̂C)

=T̄AC exp (d̂
′

C) (4.51)

where AdT−1
BC

is the adjoint representation of transformation T̄−1
BC .

Therefore, the uncertainty perturbation matrix of TAC is,

d̂
′

C = AdT−1
BC

d̂B + d̂C (4.52)

Assuming that the perturbation error dB and dC are uncorrelated with
one another, the uncertainty of TAC is,

Σ′C ' AdT−1
BC

ΣBAd
T
T−1

BC
+ ΣC (4.53)

where the adjoint of T−1
BC in SE(2) and SE(3) is defined, respectively, as,

AdT−1
BC

=

 RT
BC RT

BC

(
−yBC
xBC

)
0 1

 (4.54)

AdT−1
BC

=

(
RT
BC RT

BCDBC

0 RT
BC

)
(4.55)

4.5. Differential Uncertainty vs. Lie Algebra Uncertainty 59

where RBC is an orthogonal rotation matrix and DBC is the 3 × 3 skew
symmetric matrix related to the translational part of T̄BC .

This result is one which can be obtained from the theory of extended Kal-
man filtering Smith et al. (2003), and also has been obtained using propagate
error densities over Lie groups in Wang and Chirikjian (2006).

If the independence assumption between the perturbation error dB and
dC are correlated, then the covariance matrix of the compounding poses is,

Σ′C ' AdT−1
BC

ΣBAd
T
T−1

BC
+ ΣC + AdT−1

BC
ΣB,C + ΣC,BAdT−1

BC
(4.56)

where ΣB,C is the correlation between dB and dC .

4.5 Differential Uncertainty vs. Lie Algebra

Uncertainty

In the previous section we have presented several ways to represent the un-
certainty of the robot’s pose. Observing Equation 4.23 and Equation 4.53 a
great similarity between both is observed. Comparatively the expressions of
the Jacobian of the differential transformations in Equation 4.24 and Equa-
tion 4.25 and the adjoint representation of the Lie group Equation 4.54 and
Equation 4.55 are similar, respectively.

This situation leads us to think about what are the similarities and dif-
ferences between representation of the uncertainty of robot’s pose over Lie
groups and using differential location vectors. For that, in this section we
are going to analyze the correspondence between the representation of the
uncertainty of robot’s pose in both models.

In differential models, a location vector xAB is represented locally by
Equation 4.12,

xAB = x̄AB ⊕ dB (4.57)

The above expression can be represented by a homogeneous transforms
as follows,

60 4. Uncertainty Representation and its Propagation

TAB = T̄ABTB (4.58)

On the other hand, the homogeneous transforms TAB assotiated to the
location vector xAB can be represented over the Lie groups as in Equa-
tion 4.30,

TAB = T̄AB exp (d̂B) (4.59)

In the following we analyze if the homogeneous transform of uncertainty
representation, TB and exp (d̂B), are similar in both models for 2D and 3D
cases.

4.5.1 2-dimensional space

A differential location vector dB = (dx, dy, dθ)T can be represented by ho-
mogeneous matrix as,

H = Hom(dB) =

cos(dθ) − sin(dθ) dx
sin(dθ) cos(dθ) dy

0 0 1

 (4.60)

For a differential change dθ the corresponding trigonometric functions
become,

lim
dθ→0

sin(dθ)→ dθ (4.61)

lim
dθ→0

cos(dθ)→ 1 (4.62)

Therefore,

H = Hom(dB) =

 1 −dθ dx
dθ 1 dy
0 0 1

 (4.63)

In Lie groups theory, exp(d̂B) is defined as,

4.5. Differential Uncertainty vs. Lie Algebra Uncertainty 61

exp(d̂B) =

 exp([dθ]×) V

(
dx
dy

)
0 1

 = (4.64)

=

 cos(dθ) − sin(dθ)
sin(dθ) cos(dθ)

sin(dθ)
dθ

−1−cos(dθ)
dθ

1−cos(dθ)
dθ

sin(dθ)
dθ

(
dx
dy

)
0 1

 (4.65)

Taking into account that cos(dθ) ' 1 and sin(dθ) ' dθ,

exp([dθ]×) =

 1 −dφz dx
dφz 1 dy
0 0 1

 (4.66)

It can be seen that Equation 4.63 and Equation 4.66 are similar. There-
fore, the homogeneous transformation of uncertainty are the same for both
models in 2-dimensional space.

4.5.2 3-dimensional space

In 3D case, the homogeneous matrix corresponding to differential vector
dB = (dx, dy, dz, dωx, dωy, dωz)

T can be represented as homogeneous trans-
form in different ways depend on the common alternatives to representing the
rotational part: Euler angles (Roll-Pitch-Yaw), orthogonal rotation matrices
from SO(3) and unit quaternions (see chapter 3).

Using Roll-Pitch-Yaw representation, the homogeneous matrix associated
to dB is defined as,

H = Hom(dB) =


h11 h12 h13 dx
h21 h22 h23 dy
h31 h32 h33 dz
0 0 0 1

 (4.67)

with,

62 4. Uncertainty Representation and its Propagation

h11 = cos(dωz) cos(dωy)

h12 = cos(dωz) sin(dωy) sin(dωx)− sin(dωz) cos(dωx)

h13 = cos(dωz) sin(dωy) cos(dψ) + sin(dφ) sin(dψ)

h21 = sin(dωz) cos(dωy)

h22 = sin(dωz) sin(dωy) sin(dωx) + cos(dωz) cos(dψ)

h23 = sin(dωz) sin(dωy) cos(dωx)− cos(dωz) sin(dψ)

h31 = − sin(dωz)

h32 = cos(dωy) sin(dωx)

h33 = cos(dωy) cos(dωx)

As in 2-dimensional case, taking into account that cos(dθ) ' 1 and
sin(dθ) ' dθ,

H = Hom(dB) =


1 −dωz dωy dx
dωz 1 −dωx dy
−dωy dωx 1 dy

0 0 0 1

 (4.68)

In Lie groups theory, the rotational part is represented by an orthogonal
rotation matrix from SO(3) and the homogeneous transformation associated
to differential vector dB is exp(d̂B) is defined as,

exp(d̂B) =

 exp([dω]×) V

dxdy
dz


0 1

 (4.69)

where exp([dω]×) is the exponential map so(3) to SO(3) defined by,

exp([dω]×) = I +
sin(dθ)

dθ
[dω]× +

1− cos(dθ)

dθ2
[dω]2× (4.70)

where dθ =
√
dω2

x + dω2
y + dω2

z , dk = dω and,

V = I +
1− cos(dθ)

dθ2
[dω]× +

dθ − sin(dθ)

dθ3
[dω]2× (4.71)

4.5. Differential Uncertainty vs. Lie Algebra Uncertainty 63

Taking into account that cos(dθ) ' 1 and sin(dθ) ' dθ:

exp(d̂B) =


1 −dωz dωy dx
dωz 1 −dωx dy
−dωy dωx 1 dy

0 0 0 1

 (4.72)

The unit-quaternion representation (qr, qx, qy, qz)
T has the special prop-

erty that it can be considered as a rotation of θ about the unit vector
k = (kx, ky, kz) which are related to the quaternion components by,

qr = cos
θ

2
(4.73)

qx =

(
sin

θ

2

)
kx (4.74)

qy =

(
sin

θ

2

)
ky (4.75)

qz =

(
sin

θ

2

)
kz (4.76)

and is similar to the angle-axis representation.

Transformations representing translation and rotation θ about a vector k
associated to the differential vector dB = (dx, dy, dz, dωx, dωy, dωz)

T can be
written as,

H =

 R
dx
dy
dz

0 1

 (4.77)

where dθ =
√
dω2

x + dω2
y + dω2

z , dk = dω and R is the rotation matrix
associated to dB defined by the Rodrigues formula in Equation 4.40,

R = I +
sin(dθ)

dθ
[dk]× +

1− cos(dθ)

dθ2
[dk]2× (4.78)

Taking into account that cos(dθ) ' 1 and sin(dθ) ' dθ,

64 4. Uncertainty Representation and its Propagation

H =


1 −dkz dky dx
dkz 1 −dkx dy
−dky dkx 1 dy

0 0 0 1

 (4.79)

In this case Equation 4.68, Equation 4.72 and Equation 4.79 are similar.
Additionally, in (Paul, 1981), it was shown that, differential rotations trans-
formations about the x, y and z axis are independent of the order of rotation
and are equivalent to a differential rotation made about a unit magnitude
vector.

Therefore, the representation of the uncertainty of robot’s pose over Lie
groups and using differential location vectors are similar independent of the
representation used for the rotational part associated to robot’s pose xAB.
This situation is due to in differential representations, the underlying idea is
that differential transformations are transformations whose elements are the
derivatives of the original transformation elements. Specifically, for trans-
formations which represent translation and rotation, the derivative can be
expressed as a differential translation and rotation. Specifically, the space
of differential transformations for translation and rotation is the Lie algebra
se(3).

However, the homogeneous transformation associated to the approxim-
ation of the real location x̄AB is different depend on the different ways of
representation the rotational part. In contrast to the Euler-angle based rep-
resentation and unit quaternions, representing the pose and its associated
uncertainty over Lie groups guarantee properties such as a minimal repres-
entation and absence of singularities.

4.6 Conclusions

Representation, estimation and propagation of the uncertainty of robot’s pose
is a fundamentally important problem that has received attention for years.
Different types of models of probabilistic representation of the uncertainty
have been proposed in the literature.

In absolute representation the estimated location of the robot is given by
the expected value and the uncertainty by its associated covariance matrix,

4.6. Conclusions 65

while the differential representation uses a local representation of the uncer-
tainty where the estimated location of robot is the best approximation of the
real location and the estimation error is represented locally by a differential
location vector. Equivalent representations over the Lie group have also been
considered where uncertainties of the location of the robot are represented
in the tangent space associated to the Lie group.

We review related work about representation and propagation of the un-
certainty of robot’s pose and present a survey of different types of models
proposed in the literature. Additionally, an analysis of the uncertainty repres-
ented with a differential uncertainty vector and the uncertainty propagation
on Lie groups is carried out.

Our fundamental conclusion is that uncertainty representation over Lie
groups and using differential location vectors are similar and are independent
of the representation used for rotational part of the robot’s pose. This is due
to the uncertainty is represented locally in the space of differential trans-
formations for translation and rotation that correspond with the Lie algebra
of special Euclidean group SE(n).

However, in 3-dimensional space, the homogeneous transformation asso-
ciated to the approximation of the real location because it depends on the
different ways of representation the rotational part. Therefore, a proper way
to jointly manipulation the estimation and uncertainty of the pose is to use
the theory of Lie groups due to is a representation to guarantee properties
such as a minimal representation and absence of singularities in rotation
angles.

66 4. Uncertainty Representation and its Propagation

CHAPTER 5

Utility Function Monotonicity:
the Importance of Uncertainty

Representation

This chapter focuses on the paramount importance of quantifying uncertainty
to correctly report the associated confidence of the robot’s location estimate
at each time step along its trajectory and therefore deciding the correct course
of action in an active SLAM mission.

Remembering the definition of active SLAM, the objective of an active
SLAM algorithm is to plan ahead the robot motion in order to maximize the
area explored and minimize the uncertainty associated with the estimation,
all within a time and computation budget. During the exploration phase of a
SLAM algorithm, where the robot navigates in a previously unknown region,
the uncertainty associated with the robot’s localization grows unbounded
(Kelly, 2004). Only after revisiting previously known regions a reduction
in the robot’s localization uncertainty is expected by detecting loop-closures
(Durrant-Whyte and Bailey, 2006). In an active SLAM scenario, guaran-
teeing monotonicity of these decision making criteria during exploration is
utmost importance to making correct decisions.

The most common approaches to quantifying uncertainty in SLAM are
based on real scalar functions of the covariance matrix. Some active SLAM
algorithms rely on optimality criteria which aim at quantifying the map and
robot’s pose uncertainty, namely A-opt (trace of the covariance matrix, or
sum of its eigenvalues (Chernoff, 1953), (Leung et al., 2006), (Kollar and Roy,
2008), (Meger et al., 2008)), D-opt (determinant of the covariance matrix,

68 5. Utility Function Monotonicity

or product of its eigenvalues (Wald, 1943), (Vidal-Calleja et al., 2006), (Kim
and Eustice, 2013)) and E-opt (largest eigenvalue (Ehrenfeld, 1955)) criteria.
Alternatively, other active SLAM algorithms, based on Information Theory
(Stachniss et al., 2005), (Blanco et al., 2008), rely on the use of the Shannon’s
entropy to select courses of action for the robot to reach the commanded goal
location.

We investigate the monotonicity of different decision making criteria, both
in 2-dimensional and 3-dimensional space, depending on the representation
of uncertainty and of the orientation of the robot’s pose. We analytically
show that, using differential representations to propagate spatial uncertain-
ties, monotonicity is preserved for all optimality criteria, A-opt, D-opt and
E-opt and for Shannon’s entropy. We also show that monotonicity does
not hold for any of them in absolute representations using Roll-Pitch-Yaw
and Euler angles. Finally, we show that using unit quaternions in absolute
representations, the only criteria that preserve monotonicity are D-opt and
Shannon’s entropy.

5.1 Introduction

Simultaneous Localization and Mapping (SLAM) algorithm estimate the
pose of a robot as well as the associated uncertainty and the map of the en-
vironment at the same time. This algorithm can be divided into two phases:
exploration and loop closure. During the exploration phase the robot moves
through unknown environment and during loop closure phase the robot re-
visits previously explored regions of the environment.

Kelly (2004) shows that the uncertainty in the robot’s pose estimate grows
while the robot is performing dead-reckoning, i.e., during the exploration
phase, the uncertainty associated with the robot’s localization grows with
time as a complete model of the robot’s motion may not be available or the
sensors’ readings may be noisy (Kelly, 2004), (LaValle, 2006). This uncer-
tainty grows unbounded until the robot performs a loopclosure, in which
case, a reduction in the robot’s localization uncertainty is expected (Frese,
2006).

In an active SLAM scenario, guaranteeing monotonicity of these decision
making criteria during exploration, i.e. quantifying correctly that the un-
certainty encapsulated in a covariance matrix is increasing, is an essential

5.1. Introduction 69

step towards making correct decisions. As already mentioned, during ex-
ploration the uncertainty associated with the robot’s localization increases
(Feder et al., 1999). Therefore, if monotonicity of the criteria considered
is not preserved, the system might select courses of action or paths that it
falsely believes lead to less uncertainty in the robot.

As mentioned in chapter 2, the most common approaches to quantifying
uncertainty in SLAM are based on real scalar functions of the covariance
matrix. Some active SLAM algorithms rely on optimality criteria which aim
at quantifying the map and robot’s pose uncertainty, namely A-opt (trace of
the covariance matrix, or sum of its eigenvalues) (Chernoff, 1953), (Leung
et al., 2006), (Kollar and Roy, 2008), (Meger et al., 2008), D-opt (determinant
of the covariance matrix, or product of its eigenvalues) (Wald, 1943), (Vidal-
Calleja et al., 2006), (Kim and Eustice, 2013) and E-opt (largest eigenvalue)
(Ehrenfeld, 1955) criteria.

In the literature, D-opt has been disregarded as unfruitful criterion for
it does not allow checking task completion as A-opt does. Furthermore, it
may not provide fruitful information as it can be driven quickly to zero (Mi-
haylova et al., 2003), (Sim and Roy, 2005), (Lefebvre et al., 2005). Mihaylova
et al. (2003) have done comparisons between uncertainty criteria in order to
determine if there is a criterion that converges faster to a desired solution.
Sim and Roy (2005) and Lefebvre et al. (2005) reported that optimizing the
A-opt criterion results in a more accurate map than existing approaches such
as D-opt. However, Kiefer (1974) and Pukelsheim (2006) state that D-opt
has more appealing characteristics than A-opt and E-opt because D-opt is the
criterion that captures the global uncertainty due to all the elements of a cov-
ariance matrix. Moreover, Kiefer (1974) demonstrated that A-opt, D-opt and
E-opt belong to a general family of uncertainty criteria. Recently, Carrillo
et al. (2012) presented a comparison of A-opt and D-opt. They demonstrate
that D-opt is capable of giving fruitful information as a metric for the un-
certainty and performs comparably to A-opt. Through various experiments
they show that the use of D-opt has desirable effects in various SLAM related
tasks such as active mapping and exploration.

Alternatively, other active SLAM algorithms, based on Information The-
ory (Stachniss et al., 2005), (Blanco et al., 2008), rely on the use of the
Shannon’s entropy to select courses of action for the robot to reach the com-
manded goal location. Recently, Carrillo et al. (2018) presented a novel
information- theoretic utility function for selecting actions in a robot based
autonomous exploration task. The authors simultaneously considered uncer-

70 5. Utility Function Monotonicity

tainty in both the robot pose and the map computing the difference between
the Shannon and the Rényi entropy of the current distribution over maps.

5.2 Monotonicity in Absolute Representations

of Uncertainty

The following analysis about the monotonicity of the optimality criteria using
absolute representation for the propagation of the uncertainty is presented for
2-dimensional and 3-dimensional space. We analyze theoretically the mono-
tonicity of each optimality criteria. The reported analysis is valid for common
interpretations of the orientation angles: Roll-Pitch-Yaw, Euler angles and
unit quaternions.

5.2.1 A-optimality

Monotonicity for the A-opt criterium requires that the trace of the covariance
matrix of the compounding pose be larger than or equal to the trace of the
covariance matrix of the initial pose, that is,

tr(ΣAC)− tr(ΣAB) ≥ 0 (5.1)

In chapter 4, we present the uncertainty propagation of compounding two
poses for absolute representation in Equation 4.9 as,

ΣAC ' J1⊕ΣABJT1⊕ + J2⊕ΣBCJT2⊕ (5.2)

Computing the trace in both sides of above equation and substituting
gives the difference between tr(ΣAC) and tr(ΣAB) as,

tr(ΣΣΣAC)− tr(ΣΣΣAB) = tr(J1⊕ΣΣΣABJT1⊕) + tr(J2⊕ΣΣΣBCJT2⊕)− tr(ΣΣΣAB) (5.3)

In order to evaluate the previous expression we will analyze each of the
terms for the 2D and 3D cases.

5.2. Monotonicity in Absolute Representations of Uncertainty 71

2-dimensional space

The term tr(ΣAB) ≥ 0 by definition because ΣAB is a covariance matrix.
To analyze the other terms, we use the following useful property of positive
semidefinite matrices: if P is a non-singular matrix (i.e. det(P) 6= 0) and
if A is positive semidefinite matrix then P

′
AP is positive definite (positive

semidefinite) matrix.

In the two dimensional space, the jacobian of the transformation of com-
pounding xAC = xAB ⊕ xBC is defined as in chapter 3. Therefore,

det(J1⊕) = det

1 0 yAB − yAC
0 1 xAC − xAB
0 0 1

 = 1 (5.4)

det(J2⊕) = det

cos θAB − sin θAB 0
sin θAB cos θAB 0

0 0 1

 = cos2 θAB + sin2 θAB = 1 (5.5)

Then, J1⊕ and J2⊕ are non-singular matrices and ΣAB and ΣBC are
positive semi-definite matrices by definition, thus it follows that J1⊕ΣΣΣABJT1⊕
and J2⊕ΣΣΣBCJT2⊕ are positive semi-definite matrices. Therefore,

tr(J2⊕ΣΣΣBCJT2⊕) ≥ 0 (5.6)

tr(J2⊕ΣΣΣBCJT2⊕) ≥ 0 (5.7)

However, condition in Equation 5.1 can not be affirmed to guarantee the
monotony of the A-optimality criterion because Equation 5.3 is,

tr(ΣΣΣAC)− tr(ΣΣΣAB) = tr(J1⊕ΣΣΣABJT1⊕)︸ ︷︷ ︸
≥0

+ tr(J2⊕ΣΣΣBCJT2⊕)︸ ︷︷ ︸
≥0

−tr(ΣΣΣAB)︸ ︷︷ ︸
≤0

(5.8)

To analyze which variables do not allow monotonicity to be guaranteed,
ΣAB and ΣBC are written as,

72 5. Utility Function Monotonicity

ΣAB =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (5.9)

ΣBC =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 (5.10)

Noting that J1⊕ΣΣΣABJT1⊕ and J2⊕ΣΣΣBCJT2⊕ matrix is as follows, we can
analyze which variables do not allow monotonicity to be guaranteed,

J1⊕ΣΣΣABJT1⊕ =

1 0 α
0 1 β
0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

1 0 0
0 1 0
α β 1


=

a11 + 2αa13 + α2a33 ? ?
? a22 + 2βa33 + β2a33 ?
? ? a33

 (5.11)

where,

α = yAB − yAC (5.12)

β = xAC − xAB (5.13)

J2⊕ΣΣΣBCJT2⊕ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

b11 b12 b13

b21 b22 b23

b31 b32 b33

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


=

m11 ? ?
? m22 ?
? ? m33

 (5.14)

where,

5.2. Monotonicity in Absolute Representations of Uncertainty 73

m11 = b11 cos2 θ − b21 cos θ sin θ − b12 sin θ cos θ + b22 sin2 θ (5.15)

m22 = b11 sin2 θ + b21 sin θ cos θ + b12 cos θ sin θ + b22 cos2 θ (5.16)

m33 = b33 (5.17)

Then,

tr(J1⊕ΣΣΣABJT1⊕) =a11 + a22 + a33 + 2αa13 + α2a33 + 2βa23 + β2a33

=tr(ΣAB) + 2αa13 + α2a33 + 2βa23 + β2a33 (5.18)

tr(J2⊕ΣΣΣBCJT2⊕) =b11 cos2 θ + b22 sin2 θ + b11 sin2 θ + b22 cos2 θ + b33

=b11 + b22 + b33 (5.19)

Substituting the above equation in Equation 5.3, we obtain that,

tr(ΣΣΣAC)− tr(ΣΣΣAB) =tr(J1⊕ΣΣΣABJT1⊕) + tr(J2⊕ΣΣΣBCJT2⊕)− tr(ΣΣΣAB)

=tr(ΣAB) + 2αa13 + α2a33 + 2βa23 + β2a33

+b11 + b22 + b33 − tr(ΣΣΣAB)

=2αa13 + α2a33 + 2βa23 + β2a33 + b11 + b22 + b33

(5.20)

By definition, α and β are values unbounded therefore we can not guar-
antee that the following expression is non-negative,

tr(ΣΣΣAC)− tr(ΣΣΣAB) = 2αa13 + 2βa23︸ ︷︷ ︸
?

+α2a33︸ ︷︷ ︸
≥0

+ β2a33︸ ︷︷ ︸
≥0

+ b11 + b22 + b33︸ ︷︷ ︸
≥0

≥︸︷︷︸
?

0

(5.21)

This implies that A-opt criteria breaks the monotonicity of covariance
matrix propagation in a dead-reckoning scenario in 2D case.

74 5. Utility Function Monotonicity

3-dimensional space

In the 3 dimesional case, a similar analysis is carried out to study the terms
of Equation 5.3. Taking into account the definition of the jacobian of the
transformation of compounding xAC = xAB ⊕ xBC defined in chapter 3, we
can obtain,

det(J1⊕) = det

(
I M
0 K1

)
= det(K1) 6= 0 (5.22)

det(J2⊕) = det

(
R 0
0 K2

)
= det(R) det(K2) 6= 0 (5.23)

Then, J1⊕ and J2⊕ are non-singular matrices and ΣAB and ΣBC are
positive semi-definite matrices by definition, thus it follows that J1⊕ΣΣΣABJT1⊕
and J2⊕ΣΣΣBCJT2⊕ are positive semi-definite matrices. Therefore,

tr(J2⊕ΣΣΣBCJT2⊕) ≥ 0 (5.24)

tr(J2⊕ΣΣΣBCJT2⊕) ≥ 0 (5.25)

However, as in the previous case, condition in Equation 5.1 can not be
affirmed to guarantee the monotony of the A-optimality criterion because
Equation 5.3 is,

tr(ΣΣΣAC)− tr(ΣΣΣAB) = tr(J1⊕ΣΣΣABJT1⊕)︸ ︷︷ ︸
≥0

+ tr(J2⊕ΣΣΣBCJT2⊕)︸ ︷︷ ︸
≥0

−tr(ΣΣΣAB)︸ ︷︷ ︸
≤0

(5.26)

To analyze which variables do not allow monotonicity to be guaranteed,
ΣAB and ΣBC are written as,

ΣAB =

(
A11 A12

A21 A22

)
(5.27)

ΣBC =

(
B11 B12

B21 B22

)
(5.28)

5.2. Monotonicity in Absolute Representations of Uncertainty 75

and using Equation 4.6 and Equation 4.7 result in,

J1⊕ΣΣΣABJT1⊕ =

(
I M
0 K1

)(
A11 A12

A21 A22

)(
I 0

MT KT
1

)
=

=

(
A11 + MA21 + A12M

T + MA22M
T A12K

T
1 + MA22K

T
1

K1A21 + K1A22M
T K1A22K

T
1

)
(5.29)

J2⊕ΣΣΣBCJT2⊕ =

(
R 0
0 K2

)(
B11 B12

B21 B22

)(
RT 0
0 KT

2

)
=

=

(
RBT

11 RB12K
T
2

K2B
T
21R

T K2B22K
T
2

)
(5.30)

Then,

tr(ΣAC)− tr(ΣAB) = tr(MA21)︸ ︷︷ ︸
?

+ 2tr(A12M
T)︸ ︷︷ ︸

?

+ tr(MA22M
T)︸ ︷︷ ︸

?

+

+ tr(K1A22K
T
1)︸ ︷︷ ︸

≥0

+ tr(RB11R
T)︸ ︷︷ ︸

≥0

+ tr(K2B22K
T
2)︸ ︷︷ ︸

≥0

− tr(A22)︸ ︷︷ ︸
≥0

(5.31)

because A22, B11 and B22 are positive semi-definite matrices, and R, K1 and
K2 are non-singular matrices. However, the definition of M involves unboun-
ded values (see chapter 3) for the cartesian coordinates and therefore, expres-
sions involving the values of M could either be negative or non-negative.

Therefore the monotonicity of A-opt in 3D case, cannot be guarantied
for the absolute representation of uncertainty, independently of the chosen
representation for the orientation terms of the location vectors.

5.2.2 D-optimality

Monotonicity for the D-opt criterium requires that the determinant of the
covariance matrix of the compounding pose would be larger than or equal to
the determinant of the covariance matrix of the initial pose, that is,

76 5. Utility Function Monotonicity

det(ΣAC)− det(ΣAB) ≥ 0 (5.32)

Computing the determinant in both sides of Equation 4.9,

ΣAC ' J1⊕ΣABJT1⊕ + J2⊕ΣBCJT2⊕ (5.33)

leads to,

det(ΣAC) = det(J1⊕ΣABJT1⊕ + J2⊕ΣBCJT2⊕) (5.34)

As the determinant is not a linear operator, the determinant of each
term can be analyse separately. However, a property of positive semidefinite
matrices can be applied. The Minkowski inequality for matrices (Seber, 2008)
states that if A and B are symmetric and positive semi-definite matrices of
dimension n, then,

det(A+B)1/n ≥ det(A)1/n + det(B)1/n (5.35)

where n is de dimension of matrix.

Therefore, given that the Jacobians of the composition are non-singular
matrices, and both J1⊕ΣABJT1⊕ and J2⊕ΣBCJT2⊕ are symmetric and positive
semi-definite matrices, from the Minkowski’s inequality for matrices results
in,

det(ΣAC)
1
n ≥ det(J1⊕ΣABJT1⊕)

1
n + det(J2⊕ΣBCJT2⊕)

1
n (5.36)

Thus, using basic determinant properties,

det(AT) = det(A) (5.37)

det(AB) = det(A) det(B) (5.38)

we have,

5.2. Monotonicity in Absolute Representations of Uncertainty 77

det(ΣAC)
1
n ≥ det(J1⊕)

1
n det(ΣAB)

1
n det(JT1⊕)

1
n +

+ det(J2⊕)
1
n det(ΣBC)

1
n det(JT2⊕)

1
n =

= det(J1⊕)
1
n det(ΣAB)

1
n det(J1⊕)

1
n +

+ det(J2⊕)
1
n det(ΣBC)

1
n det(J2⊕)

1
n =

= det(J1⊕)
2
n det(ΣAB)

1
n + det(J2⊕)

2
n det(ΣBC)

1
n (5.39)

2-dimensional space

In two dimensional space, the determinant of the jacobian transformation is,

det(J1⊕) = 1 (5.40)

det(J2⊕) = 1 (5.41)

Then, subtituting Equation 5.40 and Equation 5.41 in Equation 5.39, we
have,

det(ΣAC)
1
n ≥ det(ΣAB)

1
n + det(ΣAB)

1
n (5.42)

As the determinant of covariance matrix ΣAB and ΣBC are non-negative,
we have that,

det(ΣAC)
1
n ≥ det(ΣAB)

1
n + det(ΣBC)

1
n ≥ det(ΣAB)

1
n ≥ 0 (5.43)

Taking into account that det(ΣAC) ≥ det(ΣAB) is equivalent to the con-

dition det(ΣAC)
1
n ≥ det(ΣAB)

1
n ,

det(ΣAC)− det(ΣAB) ≥ 0 (5.44)

Therefore, the above inequality guarantee the monotonicity of D-opt cri-
teria in 2D space.

78 5. Utility Function Monotonicity

3-dimensional space

In the 3-dimensional space, det(J1⊕) and det(J2⊕) depends on its values so

the condition det(ΣAC)
1
n ≥ det(ΣAB)

1
n cannot be guarantee.

Nevertheless, a sufficient condition for the monotonicity of the D-opt cri-
terium is given by,

det(ΣAC)
1
n ≥ det(J1⊕)

2
n det(ΣAB)

1
n +

+ det(J2⊕)
2
n det(ΣBC)

1
n

≥ det(ΣAB)
1
n (5.45)

that results in,

det(J1⊕)
2
n ≥ 1− det(J2⊕)

2
n det(ΣBC)

1
n

det(ΣAB)
1
n

(5.46)

In the case of unit quaternions are used for representing orientation, D-opt
preserves monotonicity because Equation 5.46 is verified for all cases due to
det(J1⊕) = det(J2⊕) = 1. However, condition Equation 5.46 is not satisfied
in the absolute representation of uncertainty when Roll-Pitch-Yaw or Euler
angles are used.

5.2.3 E-optimality

Finally, monotonicity for the E-opt criterium requires that the largest eigen-
value of the covariance matrix of the compounding pose would be larger than
or equal to the largest eigenvalue of the covariance matrix of the initial pose,
that is,

maxλi(ΣAC)−maxλj(ΣAB) ≥ 0 (5.47)

A property of positive semidefinite matrices in relation to their eigenval-
ues is the Weyl’s inequality (Bernstein, 2009) that states that if A, B are

5.2. Monotonicity in Absolute Representations of Uncertainty 79

symmetric matrices and A ≤ B, i.e. B−A is a positive semi-definite matrix,
then,

λi(A) ≤ λi(B) (5.48)

with λi the i-th largest eigenvalue of A and B, respectively.

To apply the previous inequality, we have to check if ΣAC − ΣAB ≥ 0.
For that, we notice that a property of the semi-positive definite matrices is
that its principal minor are non-negative. Then, ΣAC −ΣAB is semi-definite
positive matrix if its principal minor are non-negative.

2-dimensional space

Subsituting Equation 4.9,

ΣAC ' J1⊕ΣABJT1⊕ + J2⊕ΣBCJT2⊕ (5.49)

in the difference between ΣAC and ΣAB, we have,

ΣΣΣAC −ΣΣΣAB = J1⊕ΣΣΣABJT1⊕ + J2⊕ΣΣΣBCJT2⊕ −ΣΣΣAB (5.50)

Using Equation 5.9, Equation 5.10, Equation 5.11 and Equation 5.14, the
first principal minor of ΣAC −ΣAB writes as follows,

2αa13︸ ︷︷ ︸
?

+α2a33︸ ︷︷ ︸
≥0

+ b11 cos2 θ︸ ︷︷ ︸
≥0

− b21 cos θ sin θ︸ ︷︷ ︸
?

− b12 sin θ cos θ︸ ︷︷ ︸
?

+ b22 sin2 θ︸ ︷︷ ︸
≥0

(5.51)

It can not be said that the above expression is always non-negative since
α, a13, b21 and b12 can be values positive or negative as it happened in the
A-opt case. Then it can not claim that the E-optimality criteria is monotone
increasing.

3-dimensional space

Subsituting Equation 4.9 in the difference between ΣAC and ΣAB, we have,

80 5. Utility Function Monotonicity

ΣΣΣAC −ΣΣΣAB = J1⊕ΣΣΣABJT1⊕ + J2⊕ΣΣΣBCJT2⊕ −ΣΣΣAB (5.52)

Using Equation 5.27, Equation 5.28, Equation 5.29 and Equation 5.30,
the first principal minor of ΣAC −ΣAB writes as follows,

|MA21 + A12M
T + MA22M

T + R1B11R
T
1 | ≥︸︷︷︸

?

0 (5.53)

The above expression is negative or non-negative depending on the un-
bounded values of M (see chapter 3) as in the A-opt case. Therefore, using
an absolute representations E-opt may not preserve monotonicity independ-
ently of the chosen representation of the orientation terms of the location
vectors.

5.3 Monnotonicity in Differential Represent-

ations of Uncertainty

Comparing the uncertainty associated to the differencial location vectors dB,
related to the previous robot’s pose in Equation 4.12,

xAB = x̄AB ⊕ dB (5.54)

and d′C , related to the compounding pose of the robot in Equation 4.21,

xAC = x̄AC ⊕ d′C (5.55)

requires them to be expressed in a common reference frame. Let A (equival-
ently both B and C could have been used) be such a reference, then,

dB|A = JABdB

d′C|A = JAC(JCBdB ⊕ dC)

= JABdB ⊕ JACdC (5.56)

5.3. Monnotonicity in Differential Representations of Uncertainty 81

Assuming small errors,

d′C|A ' JABdB + JACdC (5.57)

and, assuming uncorrelated noise sequences,

ΣB|A ' JABΣBJTAB (5.58)

Σ′C|A ' JABΣBJTAB + JACΣCJTAC (5.59)

In this case, we analyse the monotonicity of A-opt, D-opt and E-opt cri-
teria taking into account the following properties from (Seber, 2008):

If A and B are n× n symmetric matrices then,

• If A ≥ B, then tr(A) ≥ tr(B).

• If A ≥ B ≥ 0, then det(A) ≥ det(B).

• If A ≥ B, then for all i = 1,..., n, λi(A) ≥ λi(B) with λi the i-th
largest eigenvalue of A and B, respectively.

Thus, we should evaluate if,

Σ′C|A −ΣB|A ≥ 0 (5.60)

Subtituting Equation 5.58 and Equation 5.59 in Equation 5.60, we have,

Σ′C|A −ΣB|A ' JACΣCJTAC (5.61)

In 2-dimensional space, the jacobian of the relative transformation JAC
is defined by,

JAC =

 RAC RAC

(
−yAC
xAC

)
0 1

 (5.62)

82 5. Utility Function Monotonicity

where RAC is an orthogonal rotation matrix. JAC is a non-singular matrix
because det(JAC) = det(RAC) = 1.

In 3-dimensional space, the jacobian of the relative transformation JAC
is defined by,

JAC =

(
RAC RACDAC

0 RAC

)
(5.63)

where RAC is an orthogonal rotation matrix and DAC is the 3 × 3 skew
symmetric matrix related to the translational part of x̄AC ,

DAC = [x̄AC]× =

 0 −z y
z 0 −x
−y x 0

 (5.64)

Then, JAC is a non-singular matrix because det(JAC) = det(RAC) det(RAC) =
1.

As ΣC is a positive semi-definite matrix and JAC is a non-singular matrix
then JACΣCJTAC is a positive semi-definite matrix. Then we have,

Σ′C|A −ΣB|A ' JACΣCJTAC ≥ 0 (5.65)

and,

• Σ′C|A ≥ ΣB|A ≥ 0, then tr(Σ′C|A) ≥ tr(ΣB|A).

• Σ′C|A ≥ ΣB|A ≥ 0, then det(Σ′C|A) ≥ det(ΣB|A).

• Σ′C|A ≥ ΣB|A ≥ 0, then for all i = 1, ..., n, λi(Σ
′
C|A) ≥ λi(ΣB|A) with

λi the i-th largest eigenvalue of Σ′C|A and ΣB|A, respectively.

Therefore, the three optimality criteria A-opt, D-opt and E-opt would
satisfy monotonicity independently of the representation of the orientation
of the location vectors.

5.4. Monotonicity of the Shannon’s Entropy 83

5.4 Monotonicity of the Shannon’s Entropy

In this section we study, from the perspective of Information Theory, whether
the monotonicity of Shannon’s entropy holds when the robot is also perform-
ing an exploration phase within an active SLAM system.

A common approach to quantify uncertainty in the estimation of random
variables are the Information Theory (IT) framework (Cover and Thomas,
2012). The IT framework relies on the definition of entropy to quantify
the uncertainty of the probability distribution associated to the estimated
random variable.

It is standard to assume that the robot’s pose is represented using a
multivariate Gaussian distribution. In this case the (differential) Shannon
entropy of the distribution is given by the following expression Stachniss
et al. (2005),

H[P(x)] =
n

2
(1 + log(2π)) +

1

2
log(det(Σ)) (5.66)

where n is the dimension of the robot’s pose and Σ is its n × n covariance
matrix.

Monotonicity for the entropy requires that the definition of Shannon en-
tropy of the compounding pose would be larger than or equal to the expres-
sion of Shannon entropy of the initial pose, that is,

H[P(xAC)] ≥ H[P(xAB)] (5.67)

Using Equation 5.66, the Shannon entropy associated to the robot’s poses
xAC and xAB are defined as follows,

H[P(xAC)] =
n

2
(1 + log(2π)) +

1

2
log(det(ΣAC)) (5.68)

H[P(xAB)] =
n

2
(1 + log(2π)) +

1

2
log(det(ΣAB)) (5.69)

To analyze the monotonicity we will study the cases in which the following
expression is maintained,

84 5. Utility Function Monotonicity

H[P(xAC)] ≥ H[P(xAB)]⇔ H[P(xAC)]−H[P(xAB)] ≥ 0 (5.70)

Substituting the expressions in Equation 5.68 and Equation 5.69 in Equa-
tion 5.70, leads to,

H[P(xAC)]−H[P(xAB)] =
n

2
(1 + log(2π)) +

1

2
log(det(ΣAC))

−n
2

(1 + log(2π))− 1

2
log(det(ΣAB))

=
1

2
log(det(ΣAC))− 1

2
log(det(ΣAB))

=
1

2
[log(det(ΣAC))− log(det(ΣAB))]

=
1

2
log

(
det(ΣAC)

det(ΣAB)

)
(5.71)

Case 1:

If det(ΣAC) > det(ΣAB)⇒ H[P(xAC)] > H[P(xAB)]

Proof:

By hypothesis,

det(ΣAC) > det(ΣAB)⇒ det(ΣAC)

det(ΣAB)
> 1 (5.72)

Therefore, we have,

H[P(xAC)]−H[P(xAB)] =
1

2
log

(
det(ΣAC)

det(ΣAB)

)
︸ ︷︷ ︸

>1︸ ︷︷ ︸
>0

> 0 (5.73)

Case 2:

If det(ΣAC) < det(ΣAB)⇒ H[P(xAC)] < H[P(xAB)]

5.4. Monotonicity of the Shannon’s Entropy 85

Proof:

By hypothesis,

det(ΣAC) < det(ΣAB)⇒ det(ΣAC)

det(ΣAB)
< 1 (5.74)

Therefore, we have,

H[P(xAC)]−H[P(xAB)] =
1

2
log

(
det(ΣAC)

det(ΣAB)

)
︸ ︷︷ ︸

<1︸ ︷︷ ︸
<0

< 0 (5.75)

Case 3:

If det(ΣAC) = det(ΣAB)⇒ H[P(xAC)] = H[P(xAB)]

Proof:

By hypothesis,

det(ΣAC) = det(ΣAB)⇒ det(ΣAC)

det(ΣAB)
= 1 (5.76)

Therefore, we have,

H[P(xAC)]−H[P(xAB)] =
1

2
log

(
det(ΣAC)

det(ΣAB)

)
︸ ︷︷ ︸

=1︸ ︷︷ ︸
=0

= 0 (5.77)

Using the analysis performed for D-opt criteria, we have that,

• In 2D, the D-opt criteria maintains the monotonicity, then this is the
case 1 and 3. Therefore the entropy maintains the monotonicity.

• In 3D when the pose’s robot is represented using unit quaternions the
monotonicity of the D-opt criteria is maintained. This is the case 1 and

86 5. Utility Function Monotonicity

3 therefore the entropy maintains the monotonicity with this repres-
entation.

• In 3D when the pose’s robot is represented using Roll-Pitch-Yaw and
Euler angles the monotonicity of the D-opt criteria is not maintained.
This is the case 2 then the entropy does not maintain the monotonicity
with this representation.

• When the pose’s robot is represented using differential representation
in 2D and 3D the monotonicity of the D-opt criteria is maintained. This
is the case 1 and 3 therefore the entropy maintains the monotonicity
with this representation.

Therefore, we can conclude that in 2D the entropy maintains the mono-
tonicity. In 3D, differential representations maintain the monotonicity of the
entropy and in absolute representation the only representation that maintains
monotonicity is unit quaternions.

5.5 Simulations

In this section, we present several experiments to empirically confirm and
illustrate the analytical results about monotonicity using the uncertainty
representations analysed.

5.5.1 2-dimensional experiment

In 2D, we simulate an open loop trajectory followed a differential driven ro-
bot. The displacement of the mobile robot xRk−1Rk

= (x, y, θ)T is represented
in polar coordinates as,

xy
θ

 =

ρ cos θ
ρ sin θ
θ

 (5.78)

with (ρ, θ) a vector being normally distributed with mean and covariance
matrix given by,

5.5. Simulations 87

−3500 −3000 −2500 −2000 −1500 −1000 −500 0 500 1000

−2500

−2000

−1500

−1000

−500

0

500

1000

Trajectory (2D)

x [m]

y
 [
m

]

Figure 5.1: Pictorial representation of the trajectory used in 2-dimensional
experiment.

(
ρ
θ

)
∼ N

{(
ρ̄
θ̄

)
;

(
σ2
ρ 0

0 σ2
θ

)}
(5.79)

The propagation of the associated error of a robot’s pose transformation
in a dead-reckoning scenario is based on the approximation of the nonlinear
transformation presented in the compounding of the poses by a Taylor series
and then selecting the first degree terms. Therefore, the covariance matrix
associated with the transformation xRk−1Rk

is given by,

CRk−1Rk
' JRk−1Rk

(
σ2
ρ 0

0 σ2
θ

)
JTRk−1Rk

(5.80)

with,

JRk−1Rk
=

cos θ −ρ sin θ
sin θ ρ cos θ

0 1

 (5.81)

Figure 5.1 shows the path followed by the mobile robot for the parameters
ρ̄ = 1m, θ̄ = 0.001rad, σρ = 0.1m and σθ = 0.01rad.

88 5. Utility Function Monotonicity

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3
x 10

4 Absolute Uncertainty Representation (2D)

k

D
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3
x 10

7

k

A
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2
x 10

7

k

E
−

O
P

T

Figure 5.2: Evolution of the optimality criteria D-opt, A-opt and E-opt for
the trajectory for 2-dimensional experiment using absolute representation of
uncertainty.

For each step of the trajectory, we compute the uncertainty propagation
using absolute and differential representations as given in chapter 5. Then,
we analyze the evolution of the A-opt, D-opt and E-opt criteria shown in
Figure 5.2 for absolute representation of uncertainty and Figure 5.3 for dif-
ferential representation of uncertainty.

As shown in Figure 5.2 the monotonicity of A-opt and E-opt does not
hold in absolute representation. However, breaking of monotonicity is not
observed for D-opt. Figure 5.3 shows that the monotonicity of the optimality
criteria holds using a differential representation for the location uncertainty.
This experiment confirms the theoretical demonstrations shown in the pre-
vious sections.

5.5. Simulations 89

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3
x 10

4 Differential Uncertainty Representation (2D)

k

D
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
x 10

6

k

A
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
x 10

6

k

E
−

O
P

T

Figure 5.3: Evolution of the optimality criteria D-opt, A-opt and E-opt for
the trajectory for 2-dimensional experiment using differential representation
of uncertainty.

5.5.2 3-dimensional experiment

In the following, we show an experiment to test the monotonicity of optim-
ality criteria in a dead-reckoning scenario in 3D. As in the previous case, we
estimate the propagation of the uncertainty associated to the displacement
of the mobile robot and then, we analyze the evolution of optimality criteria
using absolute and differential representation of uncertainty.

In 3-dimensional case, the displacement of the mobile robot is represented
by xRk−1Rk

= (x, y, z, φ, θ, ψ)T where φ, θ and ψ are the angles of rotation on
the axis Z, Y, X, respectively. This displacement is represented in spherical
coordinates as,

90 5. Utility Function Monotonicity


x
y
z
φ
θ
ψ

 =


ρ cosφ cos θ
ρ sinφ cos θ
ρ sin θ
φ
θ
ψ

 (5.82)

with (ρ, φ, θ, ψ) a vector being normally distributed with mean and covariance
matrix given by,


ρ
φ
θ
ψ

 ∼ N


ρ̄
φ̄
θ̄
ψ̄

 ;


σ2
ρ 0 0 0

0 σ2
φ 0 0

0 0 σ2
θ 0

0 0 0 σ2
ψ


 (5.83)

Again, the propagation of the associated error of a robot’s pose trans-
formation in a dead-reckoning scenario is based on the approximation of the
nonlinear transformation presented in the compounding of the poses by a
Taylor series and then selecting the first degree terms. Therefore, the cov-
ariance matrix associated with the transformation xRk−1Rk

is given by,

CRk−1Rk
' JRk−1Rk


σ2
ρ 0 0 0

0 σ2
φ 0 0

0 0 σ2
θ 0

0 0 0 σ2
ψ

JTRk−1Rk
(5.84)

with,

JRk−1Rk
=


cosφ cos θ −ρ sinφ cos θ −ρ cosφ cos θ 0
sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ 0

sin θ 0 ρ cos θ 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.85)

Figure 5.4 shows the XY-projection of the path followed by the mobile
robot for the parameters ρ̄ = 1m, φ̄ = 0.01rad, θ̄ = 0.001rad, φ̄ = 0.001rad,
σρ = 0.1m, σφ = 0.01rad, σθ = 0.005rad and σψ = 0.005rad.

5.5. Simulations 91

−400 −300 −200 −100 0 100 200 300

−100

0

100

200

300

400

500

Trajectory (3D)

x [m]

y
 [
m

]

Figure 5.4: Pictorial representation of the trajectory used in 3-dimensional
experiment.

In order to analyze the evolution of the A-opt, D-opt and E-opt criteria,
uncertainty propagation using absolute and differential representations as
given in chapter 5 is computed. In absolute representations, the orientation
of uncertainty location vector is represented depending on the representation
of the rotation angles. In this simulation, we use Roll-Pitch-Yaw angles and
unit quaternions. The evolution of the A-opt, D-opt and E-opt criteria using
absolute representation of uncertainty for Roll-Pitch-Yaw angles is shown in
Figure 5.5 and for unit quaternions in Figure 5.6. Figure 5.3 shows the evolu-
tion of the optimality criteria using differential representation of uncertainty.

In Figure 5.5 the loss of monotonicity of the A-opt and E-opt criteria can
be observed when the covariance is propagated using absolute representation
as proved in chapter 5. As explained before, in this case, the only criterion
that does not break the monotonicity is the D-opt using unit quaternions
as is shown in Figure 5.6. Using either Roll-Pitch-Yaw, the monotonicity
of D-opt does not hold. However, as in the previous experiment in 2D,
the monotonicity holds for all optimality criteria when using a differential
representation.

92 5. Utility Function Monotonicity

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2
x 10

5 Absolute Uncertainty Representation (3D)

k
D

−
O

P
T

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
x 10

10

k

A
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
x 10

10

k

E
−

O
P

T

Figure 5.5: Evolution of the optimality criteria D-opt, A-opt and E-opt for
the trajectory for 2-dimensional experiment using absolute representation of
uncertainty for Roll-Pitch-Yaw angles.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1
Quaternion Uncertainty Representation (3D)

k

D
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
x 10

5

k

A
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4
x 10

5

k

E
−

O
P

T

Figure 5.6: Evolution of the optimality criteria D-opt, A-opt and E-opt for
the trajectory for 2-dimensional experiment using absolute representation of
uncertainty for unit quaternions.

5.6. Conclusions 93

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300
Differential Uncertainty Representation (3D)

k

D
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
x 10

5

k

A
−

O
P

T

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4
x 10

5

k

E
−

O
P

T

Figure 5.7: Evolution of the optimality criteria D-opt, A-opt and E-opt for
the trajectory for 3-dimensional experiment using differential representation
of uncertainty.

5.6 Conclusions

Given that assessing if the uncertainty increases or decreases is of utmost
importance in an active SLAM algorithm, in this paper we have shown that
the monotonicity of decision making criteria to quantify the uncertain loc-
alization strongly depends on the representation of the uncertainty of the
robot’s pose.

Mainly two types of models of probabilistic representation of the un-
certainty have been considered. In absolute representation the estimated
location of the robot is given by the expected value and the uncertainty by
its associated covariance matrix, while the differential representation uses a
local representation of the uncertainty where the estimated location of robot
is the best approximation of the real location and the estimation error is
represented locally by a differential location vector.

We have used both representations in a linearized framework to propagate
the covariance matrix of the robot’s pose in a dead-reckoning scenario using
different ways to represent rotations: orthonormal rotation matrices, Roll-
Pitch-Yaw and Euler angles, rotation axis and angle, and unit quaternions.

94 5. Utility Function Monotonicity

The two most common approaches to quantify uncertainty in the es-
timation of random variables are the Information Theory and the Theory
of Optimal Experimental Design. The most fundamental quantity in in-
formation theory is entropy that measures the amount of uncertainty of an
unknown or random quantity. In Theory of Optimal Experimental Design
bases its process of quantifying the uncertainty on the second moment of
the probability distribution associated to the estimated random variable, the
covariance matrix. The common optimality criteria used in the literature are
A-opt (trace of the covariance matrix, or sum of its eigenvalues), D-opt (de-
terminant of the covariance matrix, or product of its eigenvalues) and E-opt
(largest eigenvalue) criteria.

Our fundamental conclusion is that differential representations maintain
the monotonicity of the decision making criteria derived from the theory of
optimal design of experiments and from information theory usually employed
in active SLAM missions. In absolute representation the only criterion that
maintains monotonicity is the D-opt if unit quaternions are used. Also, we
report that guarantying the monotonicity of the Shannon’s entropy is equi-
valent to guarantying the monotonicity of the D-opt criterion.

CHAPTER 6

Conclusions

Active Simultaneous Localization and Mapping (Active SLAM) is the central
topic of this thesis. This problem has received a lot of attention from the
robotics community for its relevance in mobile robotics applications. New
findings in active SLAM implies advances in real applications with autonom-
ous operations under uncertainty that are essential in numerous problem do-
mains, including autonomous navigation, object manipulation, multi-robot
localization and tracking, and robotic surgery. The objective of Active SLAM
is to design robot trajectories to actively explore an environment and minim-
ize the map error. In this setting an SLAM algorithm must solve the so-called
exploration-exploitation dilemma. The exploration involves moving in previ-
ously unvisited parts with the objective of increasing the overall knowledge
of the environment, while the latter is exploitation, i.e., it involves revisiting
areas to maximize the information gain. In this thesis, the focus is on the
exploration part of Active SLAM.

Representation, estimation and propagation of the uncertainty in the es-
timation of the mobile robot is of utmost importance to correctly report the
associated confidence of the robot’s location estimate at each time step along
its trajectory and therefore deciding the correct course of action in an active
SLAM mission. Different types of models of probabilistic representation of
the uncertainty have been proposed in the literature. In absolute repres-
entation the estimated location of the robot is given by the expected value
and the uncertainty by its associated covariance matrix, while the differential
representation uses a local representation of the uncertainty where the estim-
ated location of robot is the best approximation of the real location and the
estimation error is represented locally by a differential location vector. Equi-

96 6. Conclusions

valent representations over the Lie group have also been considered where
uncertainties of the location of the robot are represented in the tangent space
associated to the Lie group.

In this thesis, we review related work about representation and propaga-
tion of the uncertainty and present a survey of different types of models
proposed in the literature to propagate the uncertainty representation. Ad-
ditionally, an analysis of the uncertainty represented with a differential error
and over Lie groups is carried out taking into account the similarities between
both models of representation. We show that the representation of uncer-
tainty over Lie groups and using differential location vectors are similar and
are independent of the representation used for rotational part of the robot’s
pose. This is due to the uncertainty is represented locally in the space of dif-
ferential transformations for translation and rotation that correspond with
the Lie algebra of special Euclidean group SE(n). However, in 3-dimensional
space, the homogeneous transformation associated to the approximation of
the real location depend on the different ways of representation the rota-
tional part. Therefore, a proper way to jointly manipulation the estimation
and uncertainty of the pose is to use the theory of Lie groups due to is a
representation to guarantee properties such as a minimal representation and
free of singularities in rotation angles.

A second problem addressed in this thesis is the quantification of uncer-
tainty in an active SLAM scenario because quantifying correctly the uncer-
tainty associated to the estimation of the mobile robot is an essential step
towards making correct decisions in an active SLAM algorithm. During the
exploration phase, where the robot navigates in a previously unknown re-
gion, the uncertainty associated with the robot’s localization grows unboun-
ded. Therefore, guaranteeing monotonicity of the decision making criteria
is essential, if monotonicity of the criteria considered is not preserved, the
system might select courses of action or paths that it falsely believes lead to
less uncertainty in the robot.

The two most common approaches to quantify uncertainty in the es-
timation of random variables are the Information Theory and the Theory
of Optimal Experimental Design. The most fundamental quantity in in-
formation theory is entropy that measures the amount of uncertainty of an
unknown or random quantity. In Theory of Optimal Experimental Design
bases its process of quantifying the uncertainty on the second moment of
the probability distribution associated to the estimated random variable, the
covariance matrix. The common optimality criteria used in the literature are

97

A-opt (trace of the covariance matrix, or sum of its eigenvalues), D-opt (de-
terminant of the covariance matrix, or product of its eigenvalues) and E-opt
(largest eigenvalue) criteria.

In this thesis, we investigate the monotonicity of different decision making
criteria, both in 2-dimensional and 3-dimensional space, taking into account
the different models of representation of uncertainty of the robot’s pose.
We have used both absolute and differential representations in a linearized
framework to propagate the covariance matrix of the robot’s pose in a dead-
reckoning scenario using different ways to represent rotations: orthonormal
rotation matrices, Roll-Pitch-Yaw and Euler angles, rotation axis and angle,
and unit quaternions. We analytically show that, using differential repres-
entations to propagate spatial uncertainties, monotonicity is preserved for all
optimality criteria, A-opt, D-opt and E-opt and for Shannon’s entropy. We
also show that monotonicity does not hold for any of them in absolute repres-
entations using Roll-Pitch-Yaw and Euler angles. Finally, we show that using
unit quaternions in absolute representations, the only criteria that preserve
monotonicity are D-opt and Shannon’s entropy.

These findings can guide active SLAM researchers to adequately select a
representation model for uncertainty, so that path planning and exploration
algorithms can correctly assess the evolution of location uncertainty.

98 6. Conclusions

APPENDIX A

A review of Partially
Observable Markov Decision

Processes

A.1 Introduction

As in mentioned in chapter 2, active SLAM is an instance of a more gen-
eral framework known as Partially Observable Markov Decision Processes
(POMDP) (Thrun et al., 2005). POMDP describes the process of making
decisions when both the actions and the sensing are uncertain, i.e. the state
of interest is not directly observable.

In this appendix, we present the mathematical formulation of POMDP
framework that has been studied during the research visit to The Robot-
ics, Vision and Control Group of the department Ingenieŕıa de Sistemas y
Automática (Escuela Técnica Superior de Ingenieros, Universidad de Sevilla).
This survey is based mainly on (White, 1991) and (Braziunas, 2003).

As future work, based on the knowledge acquired, the development of an
active SLAM algorithm with restrictions is pursuit. Specifically, a decision-
making algorithm with uncertainty for active perception in systems with
multiple unmanned aerial vehicles will be worked on. In decision-making,
restrictions related to time of flight, battery recharge, minimization of energy
consumed, environmental factors (such as wind) and communications link
will be raised.

100 A. A review of Partially Observable Markov Decision Processes

A.2 Sequential decision processes

A.2.1 Markov decision process framework

The most commonly used formal model of fully-observable sequential decision
processes is the Markov decision process (MDP) model. An MDP can be
viewed as an extension of Markov chains with a set of decisions (actions)
and a state-based reward or cost structure. For each possible state of the
process, a decision has to be made regarding which action should be executed
in that state. The chosen action affects both the transition probabilities and
the costs (or rewards) incurred. The goal is to choose an optimal action in
every state to increase some predefined measure of performance. The decision
process for doing this is referred to as the Markov decision process.

A state is a description of the environment at a particular point in time.
It can generally be assumed that the environment can be in a finite number
of states, and the agent can choose from a finite set of actions. Let S =
{s0, s1, . . . , sN} be a finite set of states. Since the process is stochastic, a
particular state at some discrete stage, or time step t ∈ T , can be viewed as
a random variable St whose domain is the state space S.

For a process to be Markovian, the state has to contain enough inform-
ation to predict the next state. This means that the past history of system
states is irrelevant to predicting the future,

Pr(St+1|S0, S1, . . . , St) = Pr(St+1|St). (A.1)

At each stage, the agent can affect the state transition probabilities by
executing one of the available actions. The set of all actions will be denoted
by A. Thus, each action a ∈ A is fully described by a |S|×|S| state transition
matrix, whose entry in an i-th row and j-th column is the probability that
the system will move from state si to state sj if action a gets executed,

paij = Pr(St+1 = sj|St = si, A
t = a) (A.2)

It is usually assumed that the processes are stationary, i.e., that the
transition probabilities do not depend on the current time step.

The transition function T (·) summarizes the effects of actions on systems
states. T : S × A → ∆(S) is a function that for each state and action

A.2. Sequential decision processes 101

associates a probability distribution over the possible successor states (∆(S)
denotes the set of all probability distributions over S). Thus, for each s, s

′ ∈
S and a ∈ A, the function T determines the probability of a transition from
state s to state s

′
after executing action a, i.e.,

T (s, a, s
′
) = Pr(St+1 = s

′|St = s, At = a) (A.3)

R : S×A→ R is a reward function that for each state and action assigns
a numeric reward (or cost, if the value is negative). R(s, a) is an immediate
reward that an agent would receive for being in state s and executing action
a.

A.2.2 Partially observable Markov decision processes
framework

Partially observable Markov decision processes (POMDPs) provide a natural
framework for sequential decision making under uncertainty. This model
augments a well-researched framework of Markov decision processes (MDPs)
(Howard, 1960; Puterman, 1994) to situations where an agent cannot reliably
identify the underlying environment state. The goal is to find a policy that
maximizes the expected total return specified by a reward function. The
POMDP formalism is very general and powerful, extending the application of
MDPs to many realistic problems. Unfortunately, the generality of POMDPs
entails high computational cost.

A POMDP is a generalization of MDPs to situations in which system
states are not fully observable. This realistic extension of MDPs dramatic-
ally increases the complexity of POMDPs, making exact solutions virtually
intractable. In order to act optimally, an agent might need to take into ac-
count all the previous history of observations and actions, rather than just
the current state it is in. A POMDP is comprised of an underlying MDP,
extended with an observation space O and observation function Z(·).

Let O be a set of observations an agent can receive. In MDPs, the agent
has full knowledge of the system state; therefore, O ≡ S. In partially observ-
able environments, observations are only probabilistically dependent on the
underlying environment state. Determining which state the agent is in be-
comes problematic, because the same observation can be observed in different
states.

102 A. A review of Partially Observable Markov Decision Processes

Z : S × A→ ∆(O) is an observation function that specifies the relation-
ship between system states and observations. Z(s

′
, a, o

′
) is the probability

that observation o
′

will be recorded after an agent performs action a and
lands in state s

′
,

Z(s
′
, a, o

′
) = Pr(Ot+1 = o

′ |St+1 = s
′
, At = a) (A.4)

Formally, a POMDP is a tuple 〈S,A, T,R,O, Z〉, consisting of the state
space S, action space A, transition function T (·), reward function R(·), ob-
servation space O, and observation function Z(·).

A.3 Basic concepts

A.3.1 History

A history is a record of everything that happened during the execution of
the process. For POMDPs, a complete system history from the beginning
till time t is a sequence of state, observation, and action triples,

〈S0, O0, A0〉, 〈S1, O1, A1〉, . . . , 〈St, Ot, At〉 (A.5)

The set of all complete histories (or trajectories) will be denoted as H.

Since rewards depend only on visited states and executed actions, a sys-
tem history is enough to evaluate an agent’s performance. Thus, a system
history is just a sequence of state and action pairs,

〈S0, A0〉, 〈S1, A1〉, . . . , 〈St, At〉. (A.6)

A system history h from the set of all system histories Hs provides an
external, objective view about the process; therefore, value functions will be
defined on the set Hs in the next subsection.

In a partially observable environment, an agent cannot fully observe the
underlying world state; therefore, it can only base its decisions on the ob-
servable history. Let’s assume that at the outset, the agent has prior beliefs
about the world that are summarized by the probability distribution b0 over
the system states; the agent starts by executing some action a0 based solely

A.3. Basic concepts 103

on b0. The observable history until time step t is then a sequence of action
and observation pairs,

〈A0, O1〉, 〈A1, O2〉, . . . , 〈At−1, Ot〉 (A.7)

The set of all possible observable histories will be denoted as Ho. Different
ways of structuring and representing Ho have resulted in different POMDP
solution and policy execution algorithms.

A.3.2 Value function

At each step in a sequential decision process, an agent has to decide what
action to perform based on its observable history. A policy π : Ho → A is a
rule that maps observable trajectories into actions. A given policy induces a
probability distribution over all possible sequences of states and actions, for
an initial distribution b0. Therefore, an agent has control over the likelihood
of particular system trajectories. Its goal is to choose a policy that maximizes
some objective function that is defined on the set of system histories Hs.

Such objective function is called a value function V (·); it essentially ranks
system trajectories by assigning a real number to each h ∈ Hs; a system
history h is preferred to h

′
if and only if V (h) > V (h

′
). Formally, a value

function is a mapping from the set of system histories into real numbers,

V : Hs → R (A.8)

A common assumption is that V (·) is additive, the value of a particular
system history is simply a sum of rewards accrued at each time step. If
the decision process stops after a finite number of steps H, the problem is a
finite horizon problem. In such problems, it is common to maximize the total
expected reward. The value function for a system trajectory h of length H
is simply the sum of rewards attained at each stage Bellman (1957),

V (h) =
t=H∑
t=0

R(st, at) (A.9)

The sum of rewards over an infinite trajectory may be unbounded. A
mathematically elegant way to address this problem is to introduce a discount
factor γ; the rewards received later get discounted, and contribute less than

104 A. A review of Partially Observable Markov Decision Processes

current rewards. The value function for a total discounted reward problem
is (?),

V (h) =
∞∑
t=0

γtR(st, at), 0 ≤ γ < 1 (A.10)

This formulation is very common in current MDP and POMDP literat-
ure, including the key papers concerning policy-based search in POMDPs
(Hansen, 1997, 1998b; Meuleau et al., 1999a,b). Another popular value func-
tion is the average reward per stage, e.g., in (Aberdeen and Baxter, 2002).

A.3.3 Policy representations

Generally, an agent’s task is to calculate the optimal course of action in an
uncertain environment and then execute its plan contingent on the history of
its sensory inputs. The agent’s behavior is therefore determined by its policy
π, which in its most general form is a mapping from the set of observable
histories to actions,

π : Ho → A (A.11)

Given a history,

ht = 〈a0, o1〉, 〈a1, o2〉, . . . , 〈at−1, ot〉 (A.12)

the action prescribed by the policy π at time t would be at = π(ht); a0 is the
agent’s initial action, and ot is the latest observation.

One of the more important concepts is that of an expected policy value.
Taking into account a prior belief distribution over the system states b0, a
policy induces a probability distribution Pr(h|π, b0) over the set of system
histories Hs. The expected policy value is simply the expected value of
system trajectories induced by the policy π,

EV (π) ≡ V π =
∑
h∈Hs

V (h)Pr(h|π, b0) (A.13)

The value of the policy π at a given starting state s0 will be denoted
V π(s0). Then,

EV (π) =
∑
h∈Hs

b0(s)V π(s) (A.14)

A.3. Basic concepts 105

The agent’s goal is to find a policy π∗ ∈ Π with the maximal expected
value from the set Π of all possible policies.

The general form of a policy as a mapping from arbitrary observation his-
tories to actions is very impractical. Existing POMDP solution algorithms
exploit structure in value and observation functions to calculate optimal
policies that have much more tractable representations. For example, ob-
servable histories can be represented as probability distributions over system
states, or grouped into a finite set of distinguishable classes using finite-suffix
trees or finite-state controllers.

MDP policies

A POMDP where an agent can fully observe the underlying system state
reduces to an MDP. Since the sequence of states forms a Markov chain, the
next state depends only on the current state; the history of the previous
states is therefore rendered irrelevant.

For finite horizon MDP problems, the knowledge of the current state
and stage is sufficient to represent the whole observable trajectory for the
purposes of maximizing total reward (discounted or not). Therefore, a policy
π can be reduced to a mapping from states and stages to actions,

π : S × T → A (A.15)

Let π(s, t) be the action prescribed by the policy at state s with t stages
remaining till the end of the process. The expected value of a policy at any
state can then be computed by the following recurrence ?,

V π
0 (s) = R(s, π(s, 0))

V π
t (s) = R(s, π(s, t)) + γ

∑
s′∈S

T (s, π(s, t), s
′
)V π

t−1(s
′
) (A.16)

The value functions in the set {V π
t }0≤t≤H are called t-horizon, or t-step,

value functions; H is the horizon length, a predetermined number of stages
the process goes through.

A policy π∗ is optimal if V pi∗

h (s) ≥ V pi
′

h (s) for all H-horizon policies π
′
and

all states s ∈ S. The optimal value function is a value function of an optimal
policy: V ∗H ≡ V π∗

H . A key result, called Bellman’s principle of optimality ?

106 A. A review of Partially Observable Markov Decision Processes

allows to calculate the optimal t-step value function from the (t − 1)-step
value function,

V ∗t (s) = max
a∈A

R(s, a) + γ
∑
s′∈S

T (s, a, s
′
)V ∗t−1(s

′
)

 (A.17)

This equation has served as a basis for value-iteration MDP solution
algorithms and inspired analogous POMDP solution methods.

For infinite horizon MDP problems, optimal decisions can be calculated
based only on the current system state, since at any stage, there is still an
infinite number of time steps remaining.Without loss of optimality, infin-
ite horizon policies can be represented as mappings from states to actions
Howard (1960),

π : S → A (A.18)

Policies that do not depend on stages are called stationary policies.

The value of a stationary policy π can be determined by a recurrence
analogous to the finite horizon case,

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s
′
)V π(s

′
) (A.19)

The agent’s goal is to find a policy π∗ that would maximize the value
function V (·) for all states s ∈ S. The optimal value function is,

V ∗(s) = max
a∈A

R(s, a) + γ
∑
s′∈S

T (s, a, s
′
)V ∗(s

′
)

 (A.20)

Equation A.16 and Equation A.19 show how to find the value of a given
policy π and provide the basis for policy-iteration algorithms. The calculation
is straightforward and amounts to solving a system of linear equations of size
|S| × |S|.

On the other hand, value-iteration methods employ Equation A.16 to cal-
culate optimal value functions directly. Optimal policies can then be defined
implicitly by value functions. First, we introduce a notion of a Q-function,

A.3. Basic concepts 107

or Q-value: Q(s, a) is the value of executing action a at state s, and then
following the optimal policy,

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s
′
)V ∗(s

′
) (A.21)

The optimal infinite horizon policy is a greedy policy with respect to the
optimal value function V ∗(·),

π∗(s) = arg max
a
Q(s, a) (A.22)

A stochastic infinite horizon MDP policy is a generalization of a determ-
inistic policy; instead of prescribing a single action to a state, it assigns a
distribution over all actions to a state. That is, a stochastic policy,

ψ : S → ∆(A) (A.23)

maps a state to a probability distribution over actions; ψ(s, a) is the probab-
ility that action a will be executed at state s. By incorporating expectation
over actions, Equation A.19 is rewritten for stochastic policies in a straight-
forward manner,

V ψ(s) =
∑
a∈A

R(s, a) + γ
∑
s
′
,a

ψ(s, a)T (s, π(s), s
′
)V ψ(s

′
) (A.24)

While stochastic policies have no advantage for infinite horizon MDPs, we will
use them in solving partially observable MDPs. Making policies stochastic
allows to convert the discrete action space into a continuous space of distribu-
tions over actions. We can then optimize the value function using continuous
optimization techniques.

POMDP policy trees

In partially observable environments, an agent can only base its decisions
on the history of its actions and observations. Instead of a simple mapping
from system states to actions, a generic POMDP policy assumes a more
complicated form.

As for MDPs, we will first consider finite horizon policies. With one stage
left, all an agent can do is to execute an action; with two stages left, it can

108 A. A review of Partially Observable Markov Decision Processes

execute an action, receive an observation, and then execute the final action.
For a finite horizon of length H, a policy is a tree of height H. Since the
number of actions and observations is finite, the set of all policies for horizon
H can be represented by a finite set of policy trees.

Each node prescribes an action to be taken at a particular stage; then,
an observation received determines the branch to follow. A policy tree for a
horizon of length H contains,

t=H−1∑
t=0

|O|t =
|O|H − 1

|O| − 1
(A.25)

nodes. At each node, there are |A| choices of actions. Therefore, the size of
the set of all possible H-horizon policy trees is,

|A|
|O|H−1
|O|−1 (A.26)

We will now present a recursive definition of policy trees using an im-
portant notion of conditional plans. A conditional plan σ ∈ Γ is a pair 〈a, v〉
where a ∈ A is an action, and v : O → Γ is an observation strategy. The
set of all observation strategies will be denoted as ΓO; obviously, its size is
|Γ||O|.

A particular conditional plan tells an agent what action to perform, and
what to do next contingent on an observation received. Let Γt be the set of
all conditional plans available to an agent with t stages left,

Γt = {〈a, vt〉|a ∈ A, vt ∈ ΓOt−1} (A.27)

In this case, vt : O → Γt−1 is a stage-dependent observation strategy.
As a tree of height t can be defined recursively in terms of its subtrees of
height t − 1, so the conditional plans of horizon t can be defined in terms
of conditional plans of horizon t − 1. At the last time step, a conditional
plan simply returns an action. A policy tree therefore directly corresponds
to a conditional plan. We will use the set Γt to denote both the set of t-step
policy trees and the equivalent set of conditional plans.

Representing policy trees as conditional plans allows us to write down a
recursive expression for their value function. The value function of a non-
stationary policy πt represented by a t-horizon conditional plan σt = 〈a, vt〉

A.3. Basic concepts 109

is,

V π
0 (s) = R(s, σ0(s))

V π
t (s) = V σt

t (s) = R(s, a) + γ
∑
s′∈S

T (s, a, s
′
)
∑
o∈O

Z(s
′
, a, o)V

vt(o)
t−1 (s

′
) (A.28)

where σ0(s) is the action to be executed at the last stage.

Since the actual system state is not fully known, we need to calculate the
value of a particular policy tree with respect to a (initial) belief state b. Such
value is just an expectation of executing the conditional plan σt at each state
s ∈ S,

V π
t (b) = V σt

t (b) =
∑
s∈S

b(s)V σt
t (s) (A.29)

The optimal t-step value function for the belief state b can be found
simply by enumerating all the possible policy trees in the set Γt,

V ∗t (b) = max
σ∈Γt

∑
s∈S

b(s)V σ
t (s) (A.30)

Thus, the t-step value function for the continuous belief simplex B can
in principle be represented by a finite (although doubly exponential in t!) set
of conditional plans and a max operator. The next section discusses some
ways of making such a representation more tractable.

α-vectors and belied state MDPs

Equation A.30 illustrates the fact that the optimal t-step POMDP value
function is piecewise linear and convex (Sondik, 1971, 1978). From equation
Equation A.29 we can see that the value of any policy tree V σ

t is linear in b;
hence, from Equation A.30, V ∗t is simply the upper surface of the collection
of value functions of policies in Γt.

Let ασ be a vector of size |S| whose entries are the values of the conditional
plan σ (or, values of a policy tre corresponding to σ) for each state s,

ασ = [V σ(s0), V σ(s1), . . . , V σ(sN)] (A.31)

Equation A.30 can then be rewritten in terms of α-vectors,

V ∗t (b) = max
σ∈Γt

∑
s∈S

b(s)ασ(s) = max
α∈Vt

∑
s∈S

b(s)α(s) (A.32)

110 A. A review of Partially Observable Markov Decision Processes

Here, the set Vt contains all t-step α-vectors; these vectors correspond
to t-step policy trees and are sufficient to define the optimal t-horizon value
function.

The optimal value function Vt is represented by the upper surface of the
α-vectors in Vt. Although in the worst case any policy in Γt might be superior
for some belief region, this rarely happens in practice. Many vectors in the
set Vt might be dominated by other vectors, and therefore not needed to
represent the optimal value function. Given the set of all α-vectors Vt, it is
possible to prune it down to a parsimonious subset V −t that represents the
same optimal value function,

V ∗t (b) = max
α∈Vt

∑
s∈S

b(s)α(s) = max
α∈V −t

∑
s∈S

b(s)α(s) (A.33)

A vector α is useful if there is a non-empty belief region R(α, V) over
which it dominates all other vectors, where

R(α, V) = {b|b · α〉b · α′ , α′ ∈ V − {α}, b ∈ B} (A.34)

The existence of such region can be easily determined using linear pro-
gramming. Various value-based POMDP solution algorithms differ in their
methods of pruning the set of all α-vectors Vt to a parsimonious subset V −t .

Implicit POMDP policies

As we already know, an explicit t-step POMDP policy can be represented
by a policy tree or a recursive conditional plan. Given an initial belief state
b0, the optimal t-step policy can be found by going through the set of all
useful policy trees and finding the one whose value function is maximal with
respect to b0. Then, executing the finite horizon policy is straightforward: an
agent only needs to perform actions at the nodes, and follow the observation
links to policy subtrees.

Instead of keeping all policy trees, it is enough to maintain the set of
useful α-vectors V −t for each stage t. As for MDPs, an implicit t-step policy
can be defined by doing a greedy one-step look ahead. First, we will define
the Q-value function Qt(b, a) as a value of taking action a at belief state b
and continuing optimally for the remaining t− 1 stages,

Qt(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗t−1(bao) (A.35)

A.3. Basic concepts 111

where bao is the belief state that results from b after taking action a and re-
ceiving observation o. It can be calculated using POMDP model and Bayes’s
theorem.

The optimal action to take at b with t stages remaining simply,

π∗(b, t) = arg max
a∈A

Qt(b, a) (A.36)

Belief state MDPs

A finite horizon POMDP policy now becomes a mapping from belief states
and stages to actions,

π : B × T → A (A.37)

Astrom (1965) has shown that properly updated probability distribution
over the state space S is sufficient to summarize all the observable history of
a POMDP agent without loss of optimality.

Therefore, a POMDP can be cast into a framework of a fully observable
MDP where belief states comprise the continuous, but fully observable, MDP
state space. A belief state MDP is threfore a quadruple 〈B,A, T b, Rb〉, where

• B = ∆(S) is the continuous state space.

• A is the action space, which is the same as in the original POMDP.

• T b : B × A→ B is the belief transition function:

T b(b, a, b
′
) =Pr(b

′|b, a)

=
∑
o∈O

Pr(b
′ |a, b, o)Pr(o|a, b)

=
∑
o∈O

Pr(b
′ |a, b, o)

∑
s′∈S

Z(s
′
, a, o)

∑
s∈S

T (s, a, s
′
)b(s) (A.38)

where

Pr(b
′|a, b, o) =

{
1 if bao = b

′

0 otherwise
(A.39)

After action a and observation o, the update belief bao can be calculated
from the previous belief b:

bao(s
′
) =

Z(s
′
, a, o)

∑
s∈S T (s, a, s

′
)b(s)

Pr(o|a, b)
(A.40)

112 A. A review of Partially Observable Markov Decision Processes

• Rb : B × A→ R is the reward function:

Rb(b, a) =
∑
s∈S

b(s)R(s, a) (A.41)

To follow the policy that maps from belief states to actions, the agent
simply has to execute the action prescribed by the policy, and then update its
probability distribution over the system states according to Equation A.40.

The infinite horizon optimal value function remains convex, but not ne-
cessarily piecewise linear, although it can be approximated arbitrarily closely
by a piecewise linear and convex function (Sondik, 1978). The optimal policy
for infinite horizon problems is then just a stationary mapping from belief
space to actions,

π : B → A (A.42)

It can be extracted by performing a greedy one-step lookahead with re-
spect to the optimal value function V ∗,

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao)

π∗(b) = arg max
a∈A

Q(b, a) (A.43)

Finite-state controllers

The optimal infinite horizon value function V ∗ can be approximated arbitrar-
ily closely by successive finite horizon value functions V0, V1, . . . , Vt, as t→∞
(Sondik, 1978). While all optimal t-horizon policies are piecewise-linear and
convex, this is not always true for infinite horizon value functions. They re-
main convex (White and Harrington, 1980), but may contain infinitely many
facets.

Some optimal value functions do remain piecewise linear; therefore, at
some horizon t, the two successive value functions Vt and Vt+1 are equal, and
therefore, optimal,

V ∗ = Vt = Vt+1 (A.44)

Each vector α in a parsimonious set V ∗ that represents the optimal infinite
horizon value function V ∗ has an associated belief space region R(α, V ∗) over

A.3. Basic concepts 113

which it dominates all other vectors,

R(α, V ∗) = {b|b · α > b · α′ , α′ ∈ V ∗ − {α}, b ∈ B} (A.45)

Thus, α-vectors define a partition of the belief space. In addition, it has
been shown that for each partition there is an optimal action (Smallwood
and Sondik, 1973). When an optimal value function V ∗ can be represented
by a finite set of vectors, all belief states within one region get transformed
to new belief states within the same single belief partition, given the optimal
action and a resulting observation. The set of partitions and belief transitions
constitute a policy graph, where nodes correspond to belief space partitions
with optimal actions attached, and transitions are guided by observations
(Cassandra et al., 1994). Another way of understanding the concept of policy
graphs is illustrated in an article by Kaelbling et al. (1998). If the finite
horizon value functions Vt and Vt+1 become equal, at every level above t the
corresponding conditional plans have the same value. Then, it is possible to
redraw the observation links from one level to itself as if it were the succeeding
level.

Essentially, we can convert non-stationary t-step policy trees (which are
non-cyclic policy graphs) into stationary cyclic policy graphs. Such policy
graphs enable an agent to execute policies simply by doing actions prescribed
at the nodes, and following observation links to successor nodes. The nodes
partition the belief space in a way that, for a given action and observation,
all belief states in a particular region map to a single region (represented
by another graph node). Therefore, an agent does not have to explicitly
maintain its belief state and perform expensive operations of updating its
beliefs and finding the best alpha-vector for the belief state. The starting
node is optimized for the initial belief state. Of course, not all POMDP
problems allow for optimal infinite horizon policies to be represented by a
finite policy graph. Since such a graph cannot be extracted from a suboptimal
value function, a policy in such cases is usually defined implicitly by a value
function.

However, limiting the size of a policy provides a tractable way of solving
POMDPs approximately. Although generally the optimal policy depends on
the whole history of observations and actions, one way of facilitating the
solution of POMDPs is to assume that an agent has a finite memory. We
can represent this finite memory by a set of internal states N . The internal
states are fully observable; therefore an agent can execute a policy that maps
from internal states to actions.

114 A. A review of Partially Observable Markov Decision Processes

The action selection function determines what action to execute at each
internal memory state n ∈ N . In addition to the mapping from internal
states to actions, we also need to specify the dynamics of the internal pro-
cess, i.e., describe the transitions from one internal state to another. The
internal memory states can be viewed as nodes, and the transitions between
nodes will depend on observations received. Together, the set of nodes and
the transition function constitute a policy graph, or a finite-state controller
(FSC).

A FSC model can be defined by the following model. A deterministic
policy graph is a triple 〈N, γ, µ〉, where

• N is a set of controller nodes n, also known as internal memory states.

• ψ : N → A is the action selection function that for each node n pre-
scribes an action ψ(n).

• µ : N × O → N is the node transition function that for each node
and observation assigns a successor node n

′
. µ(n, ·) is essentially an

observation strategy for the node n, described above when discussing
policy trees and conditional plans

In a stochastic FSC, the action selection function ψ and the internal
transition function µ are stochastic. Here,

• ψ : N → ∆(A) is the stochastic action selection function that for each
node n prescribes a distribution over actions:

ψ(n, a) = Pr(At = a|N t = n) (A.46)

• µ : N × O → ∆(N) is the stochastic node transition function that
for each node and observation assigns a probability distribution over
successor nodes n

′
; µ(n, o, n

′
) is the probability of transition from node

n to node n
′

after observing o
′ ∈ O:

µ(n, o
′
, n
′
) = Pr(N t+1 = n|N t = n,Ot+1 = o

′
) (A.47)

Cross-product MDP

In the way that an MDP policy π : S → ∆(A) gives rise to a Markov chain
defined by the transition matrix T , a POMDP policy, represented by a finite

A.3. Basic concepts 115

graph, is also sufficient to render the dynamics of a POMDP Markovian. The
cross-product between the POMDP and the finite policy graph is itself a finite
MDP, which will be referred to as the cross-product MDP. The structure of
both the POMDP and the policy graph can be represented in the cross-
productMDP.

Given a POMDP 〈S,A, T,R,O, Z〉 and a policy graph with the node
set N , the new cross-product MDP S̄, Ā, T̄ , R̄ can be described as follows
(Meuleau et al., 1999a),

• The state space S̄ = N ×S is the Cartesian product of external system
states and internal memory nodes; it consists of pairs 〈n, s〉, n ∈ N, s ∈
S.

• At each state 〈n, s〉, there is a choice of action a ∈ A, and a conditional
observation strategy v : O → N , which determines the next internal
node for each possible observation. The new action space Ā = A×NO

is therefore a cross product between A and the space of observation
mappings NO. A pair 〈a, v〉 is a conditional plan, where a ∈ A is an
action and v ∈ NO is a deterministic observation strategy.

• T̄ : S̄ × Ā→ S̄ is the transition function:

T̄ (〈n, s〉, 〈a, v〉, 〈n′ , s′〉) = T (s, a, s
′
)
∑

o|v(o)=n′

Z(s
′
, a, o) (A.48)

• The reward function R̄ : S̄ × Ā→ R becomes:

R̄(〈n, s〉, 〈a, v〉) = R(s, a) (A.49)

Given a (stochastic) policy graph π = (N,ψ, µ) and a POMDP decribed
by (S,A, T,R,O, Z), the generated sequence of node-state pairs (N t, St) con-
stitutes a Markov chain (Hansen, 1997, 1998b; Meuleau et al., 1999a). The
value of a given policy graph can be calculated using Bellman’s equations,

V̄ π(s̄) = R̄π(s̄) + γ
∑
s̄′

T̄ π(s̄, s̄
′
)V̄ π(s̄

′
) (A.50)

where s̄, s̄
′

are node-state pairs in S̄, and

116 A. A review of Partially Observable Markov Decision Processes

• T̄ π is the transition matrix. Given stochastic function psi(·) and µ(·),
the transition matrix is:

T̄ π(〈n, s〉, 〈n′ , s′〉) =
∑
a,o

ψ(n, a)µ(n, o, n
′
)T (s, a, s

′
)Z(s

′
, a, o) (A.51)

• R̄π is the reward vector:

R̄π(〈n, s〉) =
∑
a

ψ(n, a)R(s, a) (A.52)

A.4 Exact solution algorithms

A.4.1 Value iteration

MDP value iteration

Value iteration for MDPs is a standard method of finding the optimal finite
horizon policy π∗ using a sequence of optimal finite horizon value functions
V ∗0 , V

∗
1 , . . . , V

∗
t (Howard, 1960). The difference between the optimal value

function and the optimal t-horizon value function goes to zero as t goes to
infinity,

lim
t→∞

max
s∈S
|V ∗(s)− V ∗t (s)| = 0 (A.53)

It turns out that the optimal value function can be calculated in finite
number of steps given the Bellman error, ε, which is the maximum difference
(for all states) between two successive finite horizon value functions. Using
Equation A.17, the value iteration algorithm for MDPs can be summarized
as follows,

• Initialize t = 0 and V0(s) = 0 for all s ∈ S.

• While maxs∈S |Vt+1(s) − Vt(s)| > ε, calculated Vt+1(s) for all states
s ∈ S according to the following equation, and then increment t:

Vt+1(s) = max
a∈A

R(s, a) + γ
∑
s′∈S

T (s, a, s
′
)Vt(s

′
)

 (A.54)

A.4. Exact solution algorithms 117

POMDP value iteration

As described in previous sections, any POMDP can be reduced to a continu-
ous belief-state MDP. Therefore, value iteration can also be used to calculated
optimal infinite horizon POMDP policies as follows,

• Initialize t = 0 and V0(b) = 0 for all b ∈ B.

• While supb∈B |Vt+1(b)−Vt(b)| > ε, calculate Vt+1(b) for all states b ∈ B
according to the following equation, and then increment t:

Vt+1(b) = max
a∈A

Rb(s, a) + γ
∑
b′∈B

T b(b, a, b
′
)Vt(b

′
)

 (A.55)

The previous equation can be rewritten in terms of the original POMDP
formulation as,

Vt+1(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)Vt(bao)

]
(A.56)

where Pr(o|a, b) is,

Pr(o|a, b) =
∑
s′∈S

Z(s
′
, a, o)

∑
s∈S

T (s, a, s
′
)b(s) (A.57)

A.4.2 Policy iteration

Policy iteration algorithms proceed by iteratively improving the policies them-
selves. The sequence π0, π1, . . . , πt then converges to the optimal infinite ho-
rizon π∗, as t→∞. Policy iteration algorithms usually consist of two stages:
policy evaluation and policy improvement (Braziunas, 2003).

MDP policy iteration

First, we summarize the policy iteration method for MDPs (Howard, 1960),

118 A. A review of Partially Observable Markov Decision Processes

• Initialize π0(s) = a, for all s ∈ S; a ∈ A is an arbitrary action. Then,
repeat the following policy iteration and improvement steps until the
policy does not change anymore, i.e., πt+1(s) = πt(s) for all states
s ∈ S.

• Policy evaluation: calculate the value of policy πt (using Equation A.19):

V πt(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s
′
)V πt(s

′
) (A.58)

• Policy improvement: for each s ∈ S and a ∈ A, compute the Q-function
Qt(s, a):

Qt+1(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s
′
)V πt(s

′
) (A.59)

Then, improve the policy πt+1:

πt+1(s) = arg max
a∈S

Qt+1(s, a) for all s ∈ S (A.60)

Policy iteration tends to converge much faster than value iteration in prac-
tice. However, it performs more computation at each step; policy evaluation
step requires a solution of a |S| × |S| linear system.

POMDP policy iteration

For value iteration, it is important to be able to extract a policy from a value
function. For policy iteration, it is important to be able to represent a policy
so that its value function can be calculated easily. Here, we will describe a
POMDP policy iteration method that uses an FSC to represent the policy
explicitly and independently of the value function.

The first POMDP policy iteration algorithm was described by Sondik
(1971, 1978). It used a cumbersome representation of a policy as a mapping
from a finite number of polyhedral belief space regions to actions, and then
converted it to an FSC in order to calculate the policy’s value. Because the
conversion between the two representations is extremely complicated and
difficult to implement, Sondik’s policy iteration is not used in practice.

Hansen (1997, 1998b) proposed a similar approach, where a policy is dir-
ectly represented by a finite state controller. His policy iteration algorithm is

A.4. Exact solution algorithms 119

analogous to the policy iteration in MDPs. The policy is initially represented
by a deterministic finite-state controller π0. The algorithm then performs the
usual policy iteration steps: evaluation and improvement. The evaluation of
the controller π is straightforward; during the improvement step, a dynamic
programming update transforms the current controller into an improved one.
The sequence of finite-state controllers π0, π1, . . . , πt converges to the optimal
policy π∗ as t→∞.

Policy evaluation

In exact policy iteration, each controller node corresponds to an α-vector
in a piecewise-linear and convex value function representation. Since our
policy graph is deterministic, ψ(n) outputs the action associated with the
node n, and µ(n, o) is the successor node of n after receiving observation o.
The α-vector representation of a value function can be calculated using the
cross-product MDP evaluation formula,

V̄ π(〈n, s〉) = R(s, ψ(n)) + γ
∑
s′ ,o

T (s, ψ(n), s
′
)Z(s

′
, ψ(n), o)V̄ π(µ(n, o), s

′
)

(A.61)

V̄ π(〈n, s〉) is the value of state s of an α-vector corresponding to the node
n,

V̄ π(〈n, s〉) ≡ αi(s) (A.62)

Thus, evaluating the cross-product MDP for all states s̄ ∈ S is equivalent
to computing a set of α-vectors Vπ. Therefore, policy evaluation step is fairly
straightforward and its running time is proportional to |N × S|2.

Policy improvement

Policy improvement step simply performs a standard dynamic programming
backup during which the value function V π, represented by a finite set of α-
vectors Vπ, gets transformed into a improved value function V

′
, represented

by another finite set of α-vectors V ′ . Although in the worst case the size
of V ′ can be proportional to |A||Vπ||o| = |A||N ||O| (where |N | is the number
of controller nodes at the current iteration), many exact algorithms, such as
(Cassandra et al., 1994), fare better in practise.

120 A. A review of Partially Observable Markov Decision Processes

In the policy evaluation step, a set of α-vectors Vπ is calculated from
the finite-state controller π. Then, the set V ′ is computed using dynamic
programming backup on the set Vπ.The key insight in Hansen’s policy iter-
ation algorithm is observation that the new improved controller π

′
can be

constructed from the new set V ′ and the current controller π by following
three simple rules,

• For each vector α
′ ∈ V ′ :

– If the action and successor links of α
′

are identical to the action
and conditional plan of some node that is already in π, then the
same node will remain unchanged in π

′
.

– If α
′

pointwise dominates some nodes in π, replace those nodes by
a node corresponding to α

′
, i.e., change the action and successor

links to those of the vector α
′
.

– Else, add a node to π
′
that has the action and observation strategy

associated with α
′
.

item Prune any node in π that has no corresponding α-vector in V ′

as long as that node is not reachable from a node with an associated
vector in V ′ .

If the policy improvement step does not change the FSC, the controller
must be optimal. Of course, this can happen only if the optimal infinite hori-
zon value function does have a finite representation. Otherwise, a succession
of FSCs will approximate the optimal value function arbitrarily closely; an
ε-optimal FSC can be found in a finite number of iterations (Hansen, 1998a).
Like MDP policy iteration, POMDP policy iteration in practice requires
fewer steps to converge.

Since policy evaluation complexity is negligible compared to the worst-
case exponential complexity of the dynamic-programming improvement step,
policy iteration appears to have a clearer advantage over value iteration for
POMDPs (Hansen, 1998b). Controllers found by Hansen’s policy iteration
are optimized for all possible initial belief states. The convexity of the value
function is preserved because the starting node maximizes the value for the
initial belief state. From the next section onward, we will usually assume
that an initial belief state is known beforehand, and our solutions will take
computational advantage of this fact. Optimal controllers can be much smal-
ler if they do not need to be optimized for all possible belief states (Kaelbling
et al., 1998; Hansen, 1998b).

A.5. POMDP algorithms 121

A.5 POMDP algorithms

As it mentioned above, POMDP is a principled approach for planning and
making decision under uncertainty but it is hard to solve. In the literature,
there are significant efforts in developing approximation algorithms. Tra-
ditional planning and control problems in POMDP target to find a policy
that maximizes the expectation of accumulated rewards. Since belief state
is sufficient statistics for history, POMDP can be viewed as MDP with a
continuous state space formed by belief states (Astrom, 1965). This inspires
solving POMDP planning by finding the optimal control policy over the con-
tinuous belief state space (Zhang et al., 2017). Exact planning of POMDP
can be intractable with the size of state space and planning horizon exploding
quickly (Sondik, 1978). Therefore, approximation methods are proposed to
approximate the value function or limit the policy search space to alleviate
the computational complexity.

One of the most popular approaches is the point-based value iteration
(PBVI). This approach optimizes the value function only over a selected fi-
nite set of belief states and provides the optimization result with a bounded
error (Zhang and Zhang, 2001; Pineau et al., 2006; Kurniawati et al., 2008).
Point based algorithms have the computational advantage of approximating
the value function at a finite set of belief points. This permits much faster
updates of the value function compared to exact methods. PBVI provides
good results when points are representative and well-separated in the belief
space Thrun et al. (2005). An approximate POMDP solution algorithm is
the Heuristic Search Value Iteration (HSVI). This method combines tech-
niques for heuristic search with piecewise linear convex value function rep-
resentations (Smith and Simmons, 2004). Another method is the so-called
Successive Approximations of the Reachable Space under Optimal Policies
(SARSOP) that improves point-based algorithms by computing successive
approximations of R, the subset of belief points reachable from the initial
point, through sampling and converging to it iteratively (Kurniawati et al.,
2008).

Compared to the point-based approach that solves POMDP on the con-
tinuous state space of belief states, the controller based approach (Amato
et al., 2010) finds the optimal policy represented by a finite state control-
ler (FSC) with finite memory. There are two types of approaches to find
an FSC: policy iteration and gradient search. The policy iteration tends
to find the optimal controller, but the size of the controller can grow expo-

122 A. A review of Partially Observable Markov Decision Processes

nentially fast and turns intractable. The gradient search usually leads to a
suboptimal solution that often traps in local optimum Aberdeen and Bax-
ter (2002); Meuleau et al. (1999a). Poupart and Boutilier (2003) proposed
bounded policy iteration to combine the advantages from gradient ascent and
policy iteration.

A.6 POMDP related frameworks

A.6.1 Constrained POMDPs framework

In many applications, there are several objectives and it may be desirable to
ensure that some bounds are respected for some secondary objectives. To
that effect, POMDPs have been extended to constrained POMDPs (CPOM-
DPs) by allowing secondary objectives to be specified with corresponding
bounds on the expectation of those objectives (Isom et al., 2008).

A partially observable Markov decision process (POMDP) is defined form-
ally by a tuple, 〈S,A,O, T, Z,R, γ, b0〉 where S is the set of states s, A is the
set of actions a, O is the set of observations o, T (s

′
, s, a) = Pr(s

′|s, a) is the
transition distribution, Z(o, s

′
, a) = Pr(o|s′ , a) is the observation distribu-

tion, R(s, a) ∈ R is the reward function, γ ∈ (0, 1) is the discount factor and
b0(s0) = Pr(s0) is the initial belief at time step 0. Since the underlying state
of the system is not directly observable, the decision maker can maintain a
belief b(st) = Pr(st) about the current state st at each time step t. The belief
can be updated as time progresses based on Bayes’ theorem. For instance,
the belief boa obtained after executing a in b and observing o is,

Bao(s
′
) =

∑
s

b(s)Pr(s
′|s, a)Pr(o|s′ , a),∀S ′ (A.63)

A policy π : B → A is a mapping from beliefs to actions. In POMDP,
there is a single objective consisting of the reward function. The goal is to
find a policy π∗ that maximizes the expected discounted sum of rewards,

π∗ = arg max
π

E

[∑
t

γtR(st, at)|π

]
(A.64)

A constrained POMDP (Isom et al., 2008) allows multiple objectives to be
considered. One of the objectives is optimized, while the remaining object-

A.6. POMDP related frameworks 123

ives are bounded. without loss of generality, we will assume that the primary
objective is maximized and therefore we will denote it by the reward func-
tion, while the secondary objectives are assumed to be upper bounded and
therefore we will denoted them by cost functions.

Hence, a CPOMDP can be defined by a tuple,

〈S,A,O, T, Z,R, {Ck}1···K , {ck}1···K , γ, b0〉 (A.65)

where Ck(s, a) ∈ R is the cost function with upper bound ck (among K cost
functions).

The goal is to find a policy π∗ that maximizes the expected discounted
sum of rewards while ensuring that the expected discounted sum of costs
remains bounded,

π∗ = arg max
π

E

[∑
t

γtR(st, at)|π

]
(A.66)

subject to E

[∑
t

γtCk(st, at)|π

]
≤ ck∀k (A.67)

The optimization of CPOMDP policies is notoriously difficult. We cannot
restrict ourselves to deterministic policies since the optimal policies may all
be stochastic (Altman, 1999; Kim et al., 2011). This is due to the presence
of multiple objectives, where it may be necessary to randomize over multiple
actions in order to trade off between costs and rewards. An exact solution
can be obtained by solving a minimax quadratically constrained optimiza-
tion problem (Kim et al., 2011), however this approach is intractable. A
suboptimal dynamic programming technique (Isom et al., 2008) as well as
a constrained version of point-based value iteration (Kim et al., 2011) have
also been proposed. However, the non-convex nature of the optimal value
function complicates dynamic programming and point-based value iteration.
Alternatively, it is possible to think of the CPOMDP as a constrained belief
MDP (Poupart et al., 2015).

A.6.2 Mixed observability MDPs framework

For robotic systems, uncertainty arises from two main sources: robot con-
trol and sensing. It is, important to note that robotic systems often have

124 A. A review of Partially Observable Markov Decision Processes

mixed observability: even when a robot’s state is not fully observable, some
components of the state may still be so. For example, consider a mobile
robot equipped with a compass, but not a global positioning system (GPS).
Its orientation is fully observable, although its position may only be par-
tially observable. Such problems can be called mixed observability MDPs
(MOMDPs), a special class of POMDPs (Ong et al., 2010).

In a MOMDP, the fully observable state components are represented as a
single state variable x, while the partially observable components are repres-
ented as another state variable y. Thus, (x, y) specifies the complete system
state, and the state space is factored as S = X × Y , where X is the space of
all values for x and Y is the space of all values for y.

Formally, a MOMDP model is specified as a tuple,

(X, Y,A,O, TX , TY , Z,R, γ) (A.68)

The transition function TX(x, y, a, x
′
) = Pr(x

′|x, y, a) gives the probab-
ility that the fully observable state variable has value x

′
if the robot takes

action a in state (x, y), and TY (x, y, a, x
′
, y
′
) = Pr(y

′|x, y, a, x′) gives the
probability that the partially observable state variable has value y

′
if the

robot takes action a in state (x, y) and the fully observable state variable has
resulting value x

′
.

Compared with the POMDP model, the MOMDP model has a factored
state space X ×Y , with transition functions TX and TY , while other aspects
remain the same.

APPENDIX B

Deep Learning SLAM

Currently, one of the new research lines is Deep Learning. Therefore, dur-
ing the research stay at the Australian Center for Robotic Vision of the
University of Adelaide (Australia), a review of the state of the art on the
field of action of Deep Learning in SLAM was carried out and the study of
Deep Learning and the techniques developed in this area for possible future
research.

B.1 Literature review

Location and Simultaneous Mapping, or SLAM, is one of the most import-
ant problems in the field of Robotics, with pioneering work done by the com-
munity of researchers in computer vision and robotics. At present, algorithms
based on Visual SLAM, that is, algorithms that require visual sensors, for ex-
ample cameras, to perform SLAM, are capable of simultaneously constructing
3D maps while tracking the location and orientation of the camera.

The SLAM algorithms are complementary to those of Deep Learning:
SLAM focuses on geometric problems and Deep Leaning on problems of per-
ception (recognition). However, Deep Learning applications in autonomous
robots are not yet widespread. Next, a review of the literature of some Deep
Learning techniques applied to the main problem in perception, SLAM, is
carried out.

Obtaining a good estimate of the location of the robot is crucial in mobile
robots, navigation and augmented reality. Recently, there are several authors

126 B. Deep Learning SLAM

who have treated this topic applying Deep Learning. In the work of Agrawal
et al. (2015) and Konda and Memisevic (2015) the objective is to learn how
to perform visual Odometry from a couple of nearby images.

Kendall et al. (2015) presented a new location system called PoseNet. The
main contribution of this work is an estimation of the position of the camera
using a Convolutional Neural Network (CNN) from a single RGB image. This
system eliminates several existing problems in the SLAM algorithms of the
state of the art, such as the need to store keyframes in a dense way, the need
to maintain separate mechanisms for estimating the position of the location
and the landmarks, or the need to perform feature mapping between images.
The authors extended their system to a Bayesian model that is capable of
determining the location uncertainty in (Kendall and Cipolla, 2015).

It’s also an important issue, as correct loop closures guarantee the con-
sistency of the SLAM map and improve all-around accuracy. Computational
efficiency and robustness to false positives are the most important charac-
teristics of a successful loop closure subsystem. Hou et al. (2015) focussed
one specific problem that can benefit from the recent development of the
CNN technology, i.e., they focussed on using a pre-trained CNN model as
a method of generating an image representation appropriate for visual loop
closure detection in SLAM. They performed a comprehensive evaluation of
the outputs at the intermediate layers of a CNN as image descriptors, in
comparison with state-of-the-art image descriptors, in terms of their ability
to match images for detecting loop closures Chen et al. (2014) have also
worked along the same lines, by leveraging the representations embedded in
an existing CNN.

Since SLAM systems are very useful for autonomous navigation as men-
tioned above, it is possible to ask if there is still a need to explicitly SLAM
in many of these applications. For instance, the following latest work by
DeepMind is obviously able to understand the environment and navigate
within it, without needing any explicit SLAM module. Rather it just learns
to navigate in the virtual environment, using a deep reinforcement learning
objective.

Kober et al. (2013) attempted to make a strong link between the two
research communities by providing a study in reinforced learning (Reinforce-
ment Learning) for the behavior of a generation of robots. They discuss
how contributions in the study of algorithms or representation models can
achieve great improvements in both areas. In particular, the study focuses
on the choice between different models and methods for the search of object-

B.1. Literature review 127

ive policies and functions. Kollar and Roy (2008) addressed the problem of
how a robot should make a plan to explore an unknown environment and
collect data in order to maximize the accuracy of the resulting map. They
pose exploration as an optimization problem using Reinforcement Learning
to find trajectories that maintain the accuracy of the map. Zhang et al.
(2015) proposed a new learning algorithm, called Geometric Reinforcement
Learning (GRL), to plan trajectories in unmanned aerial vehicles.

Pomerleau (1989) presented a system called ALVINN (Autonomous Land
Vehicle in a Neural Network). In this study, a neural network is trained
under various conditions, suggesting the possibility of a novel autonomous
navigation system capable of adapting to environmental conditions. Lu et al.
(2016) designed a CNN with multiple layers to solve the problem of nano
robot trajectory planning.

Recently, Li et al. (2017) and Xia et al. (2017) analyzed the loop clos-
ure detection problem using deep learning framework. In (Li et al., 2017),
the authors solved loop closure detection and relative pose transformation
using 2D LiDAR within an end-to-end Deep Learning framework. In (Xia
et al., 2017), a comparison and analysis of several popular deep neural net-
works and traditional methods for loop closure detection is performed. The
authors evaluated their performance on two open datasets in terms of accur-
acy and processing time and concluded that deep neural network is suitable
for loop closure detection. Other authors as Ma et al. (2017) analyzed the
semantic mapping problem and proposed a novel approach to object-class
segmentation from multiple RGB-D views using deep learning.

Using reinforcement learning framework, Bruce et al. (2017) presented a
method for learning to navigate, to a fixed goal and in a known environment,
on a mobile robot. In Zhu et al. (2017) the objective was to show the use of
reinforcement learning for navigation in indoor environments. A navigation
framework for autonomous mobile robots in dynamic environments using a
reinforcement learning algorithm is proposed in (Zhu et al., 2017).

After carrying out this review of the literature, it is worth noting that
both algorithms in Deep Learning and in Reinforcement Learning are of great
interest for studies to be applied to SLAM problems. Therefore, a study of
the main concepts in both areas has been carried out. More information
and details about formulation of deep learning and reinforcement learning
can be found in (Bengio, 2009), (Deng et al., 2014), (Schmidhuber, 2015),
(Kaelbling et al., 1996), (Kober et al., 2013) and (Wirth et al., 2017).

128 B. Deep Learning SLAM

B.2 Deep Learning

Deep Learning is a new area of Machine Learning research, which has been
introduced with the objective of moving Machine Learning closer to one
of its original goals: Artificial Intelligence. See these course notes for a
brief introduction to Machine Learning for AI and an introduction to Deep
Learning algorithms. Specifically, Deep Learning is about learning multiple
levels of representation and abstraction that help to make sense of data such
as images, sound, and text. For more about deep learning algorithms, see
for example:

Below, we summarize the main ideas about the concepts studied in neuron
networks and their training, and how they can be used to carry out Deep
Learning.

B.2.1 Motivation to study Deep Learning

One of the keys to advanced artificial intelligence is learning. It is increasingly
common to ask machines to learn by themselves without the need to pre-
program each of the situations that appear in the real world. Instead of
doing that, the machines are required to be able to program themselves, that
is, to learn from their own experience. The Machine Learning discipline deals
with this challenge. More specifically, in computer science, machine learning
(machine learning) is a branch of artificial intelligence whose objective is
to develop programs capable of generalizing behaviors from unstructured
information. Provided in the form of examples, it is, therefore, a process
of knowledge induction.The discipline of machine learning is in full swing
thanks to its wide range of applications.

At present, there are many advances and improvements of the most tra-
ditional algorithms in artificial intelligence, from the ensemble of classifiers
(ensemble learning) to the Deep Learning, which is very fashionable nowadays
due to its ability to get closer and closer to the human perceptive power. Deep
Learning is the use of a set of algorithms to make abstract representations of
information and facilitate machine learning. In this approach, logical struc-
tures are used that more closely resemble the organization of the nervous
system of mammals, having layers of process units (artificial neurons) that
specialize in detecting certain characteristics existing in the perceived ob-
jects. Artificial vision is one of the areas where Deep Learning provides a

B.2. Deep Learning 129

considerable improvement compared to more traditional algorithms. Deep
Learning represents a more intimate approach to the mode of operation of
the human nervous system.

B.2.2 Introduction

An idea that has been around researchers for some time is to decompose prob-
lems into sub-problems at different levels of abstraction. The goal of deep
learning or Deep Learning is to automatically discover those abstractions
between low-level attributes and high-level concepts. The depth of the archi-
tecture refers to the number of levels. Most learning systems have shallow
architectures. For decades, neural network researchers wanted to train deep
multi-layered networks with little success. The real change came in 2006 with
an article by Hinton and his colleagues at the University of Toronto (Hinton
et al., 2006). Soon after, many other schemes were developed with the same
general idea: to guide learning by levels using unsupervised learning at each
level.

For a long time, many authors have tried to train deep multi-layer net-
works. The results of his research suggest that using gradient-based training
is trapped in valleys of apparent local minimums, and this worsens with
deeper architectures. In conclusion, it was obtained that better results could
be obtained if the network was pre-trained with unsupervised algorithms, in
one layer at a time. Almost all the schemes follow the idea of learning by
layers in an unsupervised way, giving rise to a proper initialization of para-
meters for supervised learning. The output of a layer serves as an input to
the upper layer.

The training can be done using some of the multiple variants of back-
propagation (conjugate gradient, steepest descent, etc.). The problem of
backpropagation with many layers is that by propagating the errors to the
first layers they become very small and therefore ineffective. This causes the
network to end up learning the average of all the training examples.

There are three classes of Deep Learning architectures:

• Generative architectures: in general an unsupervised training is done
as pre-training, where you learn in a ”greedy” way layer by layer in a
”bottom-up” way. In this category are the energy-based models, which
include the self-encoders and the deep Boltzmann machines (DBM).

130 B. Deep Learning SLAM

• Discriminative architectures: Conditional Random Fields deep and
convolutional neural networks (Convolutional Neural Network) or CNN.

• Hybrid Architectures: They use the two schemes.

B.2.3 Neural networks

Although there are several ways to implement Deep Learning, one of the
most common is to use neural networks. A neural network is a mathematical
modeling tool, a very simplified way, the functioning of neurons in the brain.
A neural network is composed of units called neurons. Each neuron receives
a series of inputs through interconnections and issues an output. This output
is given by three functions:

• A propagation function (also known as an excitation function), which
usually consists of the sum of each input multiplied by the weight of its
interconnection (net value). If the weight is positive, the connection is
called excitatory; if it is negative, it is called inhibitory.

• An activation function, which modifies the previous one. It may not
exist, being in this case the output the same propagation function.

• A transfer function, which is applied to the value returned by the ac-
tivation function. It is used to limit the output of the neuron and
is usually given by the interpretation we want to give these outputs.
Some of the most used are the sigmoid function (to obtain values in
the interval (0,1)) and the hyperbolic tangent (to obtain values in the
interval (-1,1)).

In other words, normally all the neurons in each layer have a connection
to each neuron in the next layer. These connections are associated with
a number, which is called weight. The main operation performed by the
network of neurons is to multiply the values of a neuron by the weights of
its outgoing connections. Each neuron in the next layer receives numbers
from several incoming connections, and the first thing it does is add them all
together.

Another operation performed by all the layers except the input layer,
before continuing to multiply its values by the outgoing connections, is the
activation function mentioned above. This function receives as input the sum

B.2. Deep Learning 131

of all the numbers arriving through the incoming connections, transforms the
value by means of a formula, and produces a new number. There are several
options, but one of the most common functions is the sigmoid function. One
of the objectives of the activation function is to keep the numbers produced by
each neuron within a reasonable range (for example, real numbers between 0
and 1). The sigmoid function is one of the most used in networks of neurons
because it is non-linear. This is very important, because if the activation
function that we choose is linear, the network will be limited to solving
linear problems (very simple).

A simple way to implement networks of neurons is to store the weights
in matrices. It is easy to see that if you save the values of all the neurons
of a layer in a vector, the product of the vector and the matrix of output
weights, gives us the input values of each neuron in the next layer. Then the
activation function that has been chosen is applied to each element of that
second vector, and the process is repeated. Without going into detail, it is
interesting to know that there are architectures of different neuron networks
that are also sometimes used to implement Deep Learning. For example,
networks of recurrent neurons do not have a layer structure, but allow ar-
bitrary connections between all neurons, even creating cycles. This allows
the concept of temporality to be incorporated into the network, and allows
the network to have memory, because the numbers that we introduce at a
given moment in the input neurons are transformed and continue to circu-
late through the network even after changing the input numbers by others
different.

Another interesting architecture is the networks of convolutional neurons
(Convolutional neural networks). In this case the concept of layers is main-
tained, but each neuron in a layer does not receive incoming connections
from all the neurons in the previous layer, but only in some. This favors a
neuron to specialize in a region of the list of numbers in the previous layer,
and drastically reduces the number of weights and multiplications needed. It
is usual for two consecutive neurons in an intermediate layer to specialize in
overlapping regions of the anterior layer.

B.2.4 Learning neural networks

Assuming that the number of neurons that are needed at the entrance and
exit has already been decided, it is still necessary to decide several things to
have a network that works: how many hidden layers will be included; how

132 B. Deep Learning SLAM

many neurons to put in each hidden layer; what concrete weights will be used
in the connections between each pair of layers. Usually the first two points
are decided by hand, and sometimes by trial and error. The more neurons
you have in hidden layers, the more complex the network is, and you can
solve more complex problems in turn. On the other hand, the more hidden
neurons you have, the more it will cost to make all the products and sums.

It is important to mention that if a linear activation function is chosen,
then it is not worth using hidden layers because it is possible to verify that
the power of the network will be the same for many layers that you have. The
power of the network only increases with the number of layers for non-linear
activation functions, such as the sigmoid.

The third point can be resolved automatically, through a process called
training. If the weights of the intermediate layers are initialized with ran-
dom weights, a deep network does not learn well. This can be remedied
if initial (non-random) weights are used that approximate the final or pre-
training solution. One way is by training pairs of successive layers such as
a restricted Boltzmann machine (RBM) or Auto-Encoders and then using
backpropagation to fine-tune the weights. To train a network of neurons,
you need to first collect some examples of inputs and the output that you
want for each example. This training process is known as supervised learning,
because the system needs a supervisor to explain what it has to do (through
examples of inputs and outputs).

Backpropagation

The backpropagation is a supervised learning algorithm used to train artificial
neural networks. The algorithm employs a propagation-adaptation cycle of
two phases. Once a pattern has been applied to the input of the network
as a stimulus, it propagates from the first layer through the upper layers of
the network, to generate an output. The output signal is compared with the
desired output and an error signal is calculated for each of the outputs.

The error outputs are propagated backwards, starting from the output
layer, to all the neurons in the hidden layer that contribute directly to the
output. However, the neurons of the hidden layer only receive a fraction of
the total signal of the error, based approximately on the relative contribution
that each neuron has contributed to the original output. This process is
repeated, layer by layer, until all the neurons in the network have received

B.2. Deep Learning 133

an error signal that describes their relative contribution to the total error.

The importance of this process is that, as the network is trained, the
neurons of the intermediate layers organize themselves in such a way that
the different neurons learn to recognize different characteristics of the total
input space. After training, when presented with an arbitrary input pattern
that contains noise or is incomplete, the neurons in the hidden layer of the
network will respond with an active output if the new input contains a pattern
that resembles that feature that individual neurons have learned to recognize
during their training. In other words, once the set of examples has been
configured, it is easy to evaluate the network with each example and check
the error between the desired output and the output that the network is
producing. To calculate the error, in each neuron of the output layer, the
produced and expected value is subtracted. Knowing what the error is for a
given example, you can try to correct it.

The idea to correct errors is to look for culprits. Among the output
neurons it is easy to know who are the culprits: it is known exactly how
much error occurs in each neuron, as explained before. But each one of those
neurons is connected to the previous neurons by means of some weights. You
can use those weights to determine how much the neurons before the error
contribute, simply by propagating the errors backwards in the same way that
values are propagated forward, multiplying and adding. In this way, we can
know how much each neuron in the entire network contributes to the error.

Knowing how much each neuron contributes to the error, p can try to
update the weights to reduce that error. First you need to find out how the
changes to the weights affect the error. That is, you need to determine the
speed with which the error changes with respect to the weights. Knowing
this, the next step is to change the weights to just the right amount so that
the error is reduced as fast as possible. The speed with which the error
changes with respect to the weights is calculated with partial derivatives,
and implies that it must be able to derive the activation function.

When using an existing library of neuron networks, the most usual thing
is that when training you get information about how the process goes in the
form of mean square error (MSE). The idea is that for each example, the
network evaluates the error in all its output neurons, elevates each one of
those numbers squared, and finally calculates the average. By raising each
error squared, the errors are always positive, so the errors of some neurons
do not cancel out those of others. To decide which is the minimum error
from which you can stop training, a simple way is to decide the maximum

134 B. Deep Learning SLAM

error that is willing to accept for each output neuron, calculate the squares
and then the average.

A serious problem with backward propagation algorithms is that the error
dilutes exponentially as it traverses layers on its way to the beginning of the
network. This is a problem because in a very deep network (with many
hidden layers), only the last layers are trained, while the former hardly suffer
any changes. That is why it sometimes makes up for using networks with
few hidden layers that contain many neurons, instead of networks with many
hidden layers that contain few neurons. This problem was corrected thanks
to Deep Learning.

B.2.5 Autoencoders

Another tool commonly used to implement Deep Learning is the autoen-
coders. Normally they are implemented as networks of neurons with three
layers (only one hidden layer). A self-encoder is an artificial neural network
used to perform an unsupervised learning system. The goal of a self-encoder
is to learn a representation for a set of data, usually to achieve a reduction in
dimensionality. A self-coder learns to output exactly the same information it
receives at the entrance. Therefore, the input and output layers must always
have the same number of neurons. The idea is the following:

• Use an input layer, a hidden layer with a minor (although it can be
larger) number of nodes and train to get an output layer equal to the
input.

• Use the information learned in the hidden layer (abstraction) as the
new input layer for the next level.

• Continue with the levels determined by the user.

• Finish, using the last hidden layer as input to a classifier.

Stacked Autocoders

A single auto-encoder can find fundamental characteristics in the input in-
formation, the most primitive and simple features that can be extracted from
that information. However, for machines to detect more complex concepts

B.2. Deep Learning 135

more power is needed. The idea of Deep Learning using stacked auto-coders
is to use several coders, and train them one by one, using each coder trained
to train the next. A deep network created in this way has two very important
characteristics:

• Learn without supervision, you only need data and find alone frequent
features with which to tag the data.

• The training of very deep networks is possible. As discussed in the
section of backward propagation, when training very deep networks
there was a problem since the error is diluted and the first layers are
almost not trained. In this way that problem is solved.

Convolution and pooling

In particular, in order to solve the identification of the same displaced charac-
teristic, Deep Learning uses a technique known as convolution, which is based
on how neurons are actually structured in our visual system. For example,
training an auto-coder with image patches is possible, and then moving the
coder over the entire image, as if it were a scanner, looking for features. This
process transforms the pixel array into another array of characteristics (lists
of numbers) produced by the encoder. It is essentially the same image, but
each pixel is much richer in information, and contains information on the
region in which the pixel is located, not just the isolated pixel.

The next step, called pooling, consists of grouping the characteristics
(lists of numbers) of several contiguous coordinates of the image, with some
function of grouping (the average, or the maximum). This stage reduces
the resolution of the image. Then you can continue doing convolution and
pooling until there is a 1×1 pixel image with a lot of information, or you can
include intermediate auto-encoders that process the data to look for higher
level features.

B.2.6 Supervised learning and Deep Learning

Since all composite encoders are a conventional network of neurons, the user
can continue with conventional supervised training (backward propagation).
When using backward propagation, there is the problem of the error that is

136 B. Deep Learning SLAM

diluted and, therefore, the first layers will suffer less training than the last
ones. But precisely the first layers are those that need less changes, because
they focus on fundamental characteristics (of very low level) necessary to
detect any complex object. The closer a layer of the exit is, the more inter-
ested it is in changes in supervised training and the focus is on detecting the
complex objects of interest.

Therefore, a very common technique in Deep Learning is to train unsu-
pervised a stack of auto-coders, and then compose the coders and continue
with a supervised training. That is, supervised training, instead of starting
with weights at random, starts with useful weights, especially for the first
layers. It is usually much easier to find untagged information (for which we
do not have a ”desired output”) than tagged information. And suddenly, all
that untagged information is useful for the unsupervised training phase.

B.2.7 Alternatives

Auto-coders are not the only mechanism to perform Deep Learning. There
are other alternatives, such as the Deep Belief Networks. These also consist
of a series of layers trained one by one, from the most specific to the most
generic, but each layer instead of a self-encoder uses a Restricted Boltzmann
Machine.

B.3 Reinforcement Learning

Reinforcement Learning is generally used to solve Markov decision problems
(MDP). The theory of reinforced learning is based on dynamic programming
and artificial intelligence. Details about mathematical formulation in MDP
are shown in Appendix A.

In recent years, Reinforcement Learning, also called as approximate dy-
namic programming, has taken an interest as a powerful tool to solve complex
decision problems in control theory. Although the seminal research work in
this area was done by the artificial intelligence community, it has recently
attracted attention in control theory. The power of Reinforcement Learn-
ing becomes more obvious in dynamic optimization problems, particularly in
Markov decision problems and their variants. For many years, the problem
of dimensionality and modeling as problems of classical dynamics have not

B.3. Reinforcement Learning 137

been effective in large-scale MDPs. Reinforcement Learning allows solving
these problems that had been considered intractable. The success of Rein-
forcement Learning is due to its strong mathematical basis on the principles
of dynamic programming, Monte Carlo simulation, approach function and
artificial intelligence.

Reinforcement Learning is a problem that deals with learning from inter-
action, that is, how to behave to achieve an objective. The agent, for example
a robot, and its environment interact on a discrete sequence of steps in time.
This specification of the problem defines a particular task: the actions are
the choices made by the agent; states are the basis for making choices: and
rewards are the basis for the evaluation of elections. The environment of the
agent is not controlled by him and may or may not be completely known. A
policy is a stochastic rule by which the agent selects actions, as a function of
states. The objective of the agent is to maximize the amount of reward he
receives over time.

The value functions of the policies assign to each state, or pair state-
action, the expected reward from that state, given the policy used by the
agent. The optimal value function assigns to each state, or pair state-action,
the highest expected reward achieved by any policy. A policy whose value
function is optimal is an optimal policy.

A problem of Reinforcement Learning can be posed in a great variety of
different ways depending on the hypothesis about the level of initial know-
ledge available to the agent. In problems of complete knowledge, the agent
has a complete and accurate model of the dynamics of the environment. If
the environment is a Markov decision problem (MDP), then such a model
consists of one-step transition probabilities and expected reward for all states
and their allowed actions. In incomplete knowledge problems, a complete and
perfect model of the environment is not available.

More details about this topic can be found in the book: Simulation-based
optimization: ’Parametric Optimization techniques and reinforcement learn-
ing’ (Zilinskas, 2005). Other book with detail on Reinforcement Learning
is ’Reinforcement Learning: An Introduction’ (Sutton and Barto, 1998) and
a recent tutorial on this topic is ’Reinforcement learning: A tutorial survey
and recent advances’ (Gosavi, 2009).

138 B. Deep Learning SLAM

Bibliography

Aberdeen, D. and Baxter, J. (2002). Scaling internal-state policy-gradient
methods for POMDPs. In Proceedings of the International Conference on
Machine Learning, pages 3–10.

Agrawal, P., Carreira, J., and Malik, J. (2015). Learning to see by moving.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 37–45.

Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC
Press.

Amato, C., Bonet, B., and Zilberstein, S. (2010). Finite-state controllers
based on mealy machines for centralized and decentralized POMDPs. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 1052–1058.

Astrom, K. J. (1965). Optimal control of Markov processes with incomplete
state information. Journal of Mathematical Analysis and Applications,
10(1):174–205.

Bai, H., Hsu, D., and Lee, W. S. (2014). Integrated perception and planning
in the continuous space: A POMDP approach. The International Journal
of Robotics Research, 33(9):1288–1302.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8):966–
1005.

Bar-Itzhack, I. Y. (2000). New method for extracting the quaternion from a
rotation matrix. Journal of Guidance, Control, and Dynamics, 23(6):1085–
1087.

140 Bibliography

Barfoot, T. D. and Furgale, P. T. (2014). Associating uncertainty with three-
dimensional poses for use in estimation problems. IEEE Transactions on
Robotics, 30(3):679–693.

Barratt, S. (2017). Active Robotic Mapping through Deep Reinforcement
Learning. arXiv preprint arXiv:1712.10069.

Basu, S., Essa, I., and Pentland, A. (1996). Motion regularization for model-
based head tracking. In Proceedings of the 13th International Conference
on Pattern Recognition, volume 3, pages 611–616.

Bellman, R. (1957). Dynamic Programming. P (Rand Corporation). Prin-
ceton University Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
trends in Machine Learning, 2(1):1–127.

Bernstein, D. S. (2009). Matrix mathematics: theory, facts, and formulas.
Princeton University Press.

Blackmore, D. and Leu, M. C. (1992). Analysis of swept volume via Lie
groups and differential equations. The International Journal of Robotics
Research, 11(6):516–537.

Blanco, J. L. (2010). A tutorial on SE(3) transformation parameterizations
and on-manifold optimization. Technical report, University of Malaga.

Blanco, J. L., Fernandez-Madrigal, J.-A., and González, J. (2008). A novel
measure of uncertainty for mobile robot slam with rao—blackwellized
particle filters. The International Journal of Robotics Research, 27(1):73–
89.

Bolle, R. M. and Cooper, D. B. (1986). On optimally combining pieces
of information with application to estimating 3D complex-object position
from range data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (5):619–638.

Borghi, G. and Caglioti, V. (1998). Minimum uncertainty explorations in
the self-localization of mobile robots. IEEE Transactions on Robotics and
Automation, 14(6):902–911.

Bourgault, F., Makarenko, A. A., Williams, S. B., Grocholsky, B., and
Durrant-Whyte, H. F. (2002). Information based adaptive robotic ex-
ploration. In Procceding of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 1, pages 540–545.

Bibliography 141

Braziunas, D. (2003). POMDP solution methods. Technical report, Univer-
sity of Toronto.

Bregler, C. and Malik, J. (1998). Tracking people with twists and exponen-
tial maps. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 8–15.

Brooks, R. A. (1982). Symbolic error analysis and robot planning. The
International Journal of Robotics Research, 1(4):29–78.

Brooks, R. A. (1984). Aspects of mobile robot visual map making. Robotics
Research, 2:369–375.

Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., and Milford, M. (2017).
One-shot reinforcement learning for robot navigation with interactive re-
play. arXiv preprint arXiv:1711.10137.

Burgard, W., Fox, D., and Thrun, S. (1997). Active mobile robot localization
by entropy minimization. In Proceedings of the Second Euromicro workshop
on Advanced Mobile Robots, pages 155–162.

Burgard, W., Moors, M., Stachniss, C., and Schneider, F. E. (2005). Coordin-
ated multi-robot exploration. IEEE Transactions on Robotics, 21(3):376–
386.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J.,
Reid, I., and Leonard, J. J. (2016). Past, present, and future of simultan-
eous localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332.

Carlone, L., Du, J., Ng, M. K., Bona, B., and Indri, M. (2010). An applic-
ation of Kullback-Leibler divergence to active slam and exploration with
particle filters. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 287–293.

Carlone, L., Du, J., Ng, M. K., Bona, B., and Indri, M. (2014). Active
SLAM and exploration with particle filters using Kullback-Leibler diver-
gence. Journal of Intelligent & Robotic Systems, 75(2):291–311.

Carrillo, H., Dames, P., Kumar, V., and Castellanos, J. A. (2018). Autonom-
ous robotic exploration using a utility function based on Rényi’s general
theory of entropy. Autonomous Robots, 42(2):235–256.

142 Bibliography

Carrillo, H., Reid, I., Castellanos, J., et al. (2012). On the comparison of un-
certainty criteria for active slam. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2080–2087.

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting
optimally in partially observable stochastic domains. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), volume 94, pages
1023–1028.

Castellanos, J. A., Montiel, J., Neira, J., and Tardós, J. D. (1999). The
SPmap: A probabilistic framework for simultaneous localization and map
building. IEEE Transactions on Robotics and Automation, 15(5):948–952.

Charrow, B., Liu, S., Kumar, V., and Michael, N. (2015). Information-
theoretic mapping using cauchy-schwarz quadratic mutual information. In
2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 4791–4798.

Chatila, R. and Laumond, J.-P. (1985). Position referencing and consistent
world modeling for mobile robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, volume 2, pages 138–145.

Chen, Z., Lam, O., Jacobson, A., and Milford, M. (2014). Convolutional
neural network-based place recognition. arXiv preprint arXiv:1411.1509.

Chernoff, H. (1953). Locally optimal designs for estimating parameters. The
Annals of Mathematical Statistics, pages 586–602.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory.
John Wiley & Sons.

Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications.
Foundations and Trends in Signal Processing, 7(3–4):197–387.

Desai, R. S., Volz, R., et al. (1989). Identification and verification of termin-
ation conditions in fine motion in presence of sensor errors and geometric
uncertainties. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 800–807.

Donald, B. R. (1986). Robot motion planning with uncertainty in the geo-
metric models of the robot and environment: A formal framework for error
detection and recovery. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation. Proceedings, volume 3, pages 1588–1593.

Bibliography 143

Donald, B. R. (1990). Planning multi-step error detection and recovery
strategies. The International Journal of Robotics Research, 9(1):3–60.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and
mapping: Part I. IEEE Robotics and Automation Magazine, 13(2):99–108.

Durrant-Whyte, H. F. (1987). Consistent integration and propagation of
disparate sensor observations. The International Journal of Robotics Re-
search, 6(3):3–24.

Durrant-Whyte, H. F. (1988). Uncertain geometry in robotics. IEEE Journal
of Robotics and Automation, 4(1):23–31.

Ehrenfeld, S. (1955). On the efficiency of experimental designs. The Annals
of Mathematical Statistics, 26(2):247–255.

Erdmann, M. (1986). Using backprojections for fine motion planning with
uncertainty. The International Journal of Robotics Research, 5(1):19–45.

Erdmann, M. A. (1984). On motion planning with uncertainty. AI Technical
Reports (1964 - 2004).

Fairfield, N. and Wettergreen, D. (2010). Active SLAM and loop prediction
with the segmented map using simplified models. In Field and Service
Robotics, pages 173–182. Springer.

Feder, H. J. S., Leonard, J. J., and Smith, C. M. (1999). Adaptive mobile
robot navigation and mapping. The International Journal of Robotics
Research, 18(7):650–668.

Fox, D., Burgard, W., and Thrun, S. (1998). Active markov localization for
mobile robots. Robotics and Autonomous Systems, 25(3-4):195–207.

Frese, U. (2006). A discussion of simultaneous localization and mapping.
Autonomous Robots, 20(1):25–42.

Gallier, J. (2011). Geometric methods and applications: for computer science
and engineering, volume 38. Springer Science & Business Media.

Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent
advances. INFORMS Journal on Computing, 21(2):178–192.

Grimson, W. E. L. and Lozano-Perez, T. (1984). Model-based recogni-
tion and localization from sparse range or tactile data. The International
Journal of Robotics Research, 3(3):3–35.

144 Bibliography

Hall, B. (2015). Lie groups, Lie algebras, and representations: an elementary
introduction, volume 222. Springer.

Hansen, E. A. (1997). An improved policy iteratioll algorithm for partially
observable MDPs. In Proceedings of the 10th International Conference on
Neural Information Processing Systems, pages 1015–1021. MIT Press.

Hansen, E. A. (1998a). Finite-memory control of partially observable systems.
PhD thesis, University of Massachusetts Amherst.

Hansen, E. A. (1998b). Solving POMDPs by searching in policy space. In
Proceedings of the Fourteenth conference on Uncertainty in artificial intel-
ligence, pages 211–219. Morgan Kaufmann Publishers Inc.

Hertzberg, C., Wagner, R., Frese, U., and Schröder, L. (2013). Integrating
generic sensor fusion algorithms with sound state representations through
encapsulation of manifolds. Information Fusion, 14(1):57–77.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554.

Hou, Y., Zhang, H., and Zhou, S. (2015). Convolutional neural network-based
image representation for visual loop closure detection. In Proceedings of the
IEEE International Conference on Information and Automation (ICRA),
pages 2238–2245.

Howard, R. A. (1960). Dynamic Programming and Markov processes. MIT
Press.

Indelman, V., Carlone, L., and Dellaert, F. (2014). Planning under uncer-
tainty in the continuous domain: a generalized belief space approach. In
Proceedings of the IEEE International Conference on Robotics and Auto-
mation (ICRA), pages 6763–6770.

Isom, J. D., Meyn, S. P., and Braatz, R. D. (2008). Piecewise linear dy-
namic programming for constrained pomdps. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 291–296.

Jadidi, M. G., Miro, J. V., Valencia, R., and Andrade-Cetto, J. (2014). Ex-
ploration on continuous gaussian process frontier maps. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
pages 6077–6082.

Jefferies, M. E. and Yeap, W.-K. (2008). Robotics and cognitive approaches
to spatial mapping. Springer.

Bibliography 145

Jensfelt, P. and Kristensen, S. (2001). Active global localization for a mobile
robot using multiple hypothesis tracking. IEEE Transactions on Robotics
and Automation, 17(5):748–760.

Juan, J. and Paul, R. P. (1986). Automatic programming of fine-motion for
assembly. In Proceedings of the IEEE International Conference on Robotics
and Automation, volume 3, pages 1582–1587.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial intelligence,
101(1-2):99–134.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285.

Kelly, A. (2004). Linearized error propagation in odometry. The International
Journal of Robotics Research, 23(2):179–218.

Kendall, A. and Cipolla, R. (2015). Modelling uncertainty in deep learning
for camera relocalization. arXiv preprint arXiv:1509.05909.

Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2938–2946.

Kiefer, J. (1974). General equivalence theory for optimum designs (approx-
imate theory). The annals of Statistics, pages 849–879.

Kim, A. and Eustice, R. M. (2013). Perception-driven navigation: Active
visual SLAM for robotic area coverage. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3196–
3203.

Kim, A. and Eustice, R. M. (2015). Active visual SLAM for robotic area
coverage: Theory and experiment. The International Journal of Robotics
Research, 34(4-5):457–475.

Kim, D., Lee, J., Kim, K.-E., and Poupart, P. (2011). Point-based value
iteration for constrained POMDPs. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274.

146 Bibliography

Kollar, T. and Roy, N. (2006). Using reinforcement learning to improve ex-
ploration trajectories for error minimization. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
3338–3343.

Kollar, T. and Roy, N. (2008). Trajectory optimization using reinforcement
learning for map exploration. The International Journal of Robotics Re-
search, 27(2):175–196.

Konda, K. and Memisevic, R. (2015). Learning visual odometry with a
convolutional network. In Proceedings of the International Conference on
Computer Vision Theory and Applications, pages 486–490.

Kreucher, C., Hero, A. O., and Kastella, K. (2005). A comparison of task
driven and information driven sensor management for target tracking. In
Proceedings of the IEEE Conference on Decision and Control and European
Control Conference, pages 4004–4009.

Kurniawati, H., Hsu, D., and Lee, W. S. (2008). SARSOP: Efficient Point-
Based POMDP Planning by Approximating Optimally Reachable Belief
Spaces. In Proceedings of the Robotics: Science and Systems, volume 2008.
Zurich, Switzerland.

Kyatkin, A. and Chirikjian, G. (1998). Applications of noncommutative
harmonic analysis in robotics. Courses and lectures / International Centre
for Mechanical Sciences, pages 119–126.

Lauri, M. and Ritala, R. (2016). Planning for robotic exploration based on
forward simulation. Robotics and Autonomous Systems, 83:15–31.

LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

Lefebvre, T., Bruyninckx, H., and De Schutter, J. (2005). Task planning
with active sensing for autonomous compliant motion. The International
Journal of Robotics Research, 24(1):61–81.

Leung, C., Huang, S., and Dissanayake, G. (2006). Active SLAM using model
predictive control and attractor based exploration. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5031.

Leung, C., Huang, S., and Dissanayake, G. (2008). Active SLAM in struc-
tured environments. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 1898–1903.

Bibliography 147

Li, J., Zhan, H., Chen, B. M., Reid, I., and Lee, G. H. (2017). Deep learning
for 2D scan matching and loop closure. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
763–768.

Lozano-Perez, T., Mason, M. T., and Taylor, R. H. (1984). Automatic syn-
thesis of fine-motion strategies for robots. The International Journal of
Robotics Research, 3(1):3–24.

Lu, Y., Yi, S., Liu, Y., and Ji, Y. (2016). A novel path planning method
for biomimetic robot based on deep learning. Assembly Automation,
36(2):186–191.

Ma, L., Stückler, J., Kerl, C., and Cremers, D. (2017). Multi-view deep
learning for consistent semantic mapping with RGB-D cameras. arXiv
preprint arXiv:1703.08866.

Maffei, R., Jorge, V. A., Prestes, E., and Kolberg, M. (2014). Integrated ex-
ploration using time-based potential rails. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3694–
3699.

Makarenko, A. A., Williams, S. B., Bourgault, F., and Durrant-Whyte, H. F.
(2002). An experiment in integrated exploration. In Procceding of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 1, pages 534–539.

Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., and Doucet,
A. (2009). A bayesian exploration-exploitation approach for optimal online
sensing and planning with a visually guided mobile robot. Autonomous
Robots, 27(2):93–103.

Massios, N. A., Fisher, R. B., et al. (1998). A best next view selection
algorithm incorporating a quality criterion. In Proceedings of the British
Machine Vision Conference, pages 780–789.

Maurović, I., Seder, M., Lenac, K., and Petrović, I. (2017). Path planning
for active SLAM based on the D* algorithm with negative edge weights.
IEEE Transactions on Systems, Man, and Cybernetics: Systems.

Mazon, I. and Alami, R. (1989). Representation and propagation of position-
ing uncertainties through manipulation robot programs-integration into a
task-level programming system. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 646–652.

148 Bibliography

Meger, D., Rekleitis, I., and Dudek, G. (2008). Heuristic search planning
to reduce exploration uncertainty. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
3392–3399.

Meuleau, N., Kim, K.-E., Kaelbling, L. P., and Cassandra, A. R. (1999a).
Solving POMDPs by searching the space of finite policies. In Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence, pages
417–426. Morgan Kaufmann Publishers Inc.

Meuleau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. P. (1999b). Learning
finite-state controllers for partially observable environments. In Proceed-
ings of the Fifteenth conference on Uncertainty in artificial intelligence,
pages 427–436. Morgan Kaufmann Publishers Inc.

Mihaylova, L., Lefebvre, T., Bruyninckx, H., Gadeyne, K., and De Schut-
ter, J. (2003). A comparison of decision making criteria and optimization
methods for active robotic sensing. In Numerical Methods and Applica-
tions, pages 316–324. Springer.

Morari, M. and Lee, J. H. (1999). Model predictive control: past, present
and future. Computers & Chemical Engineering, 23(4-5):667–682.

Mu, B., Giamou, M., Paull, L., Agha-mohammadi, A.-a., Leonard, J., and
How, J. (2016). Information-based active SLAM via topological feature
graphs. In Proceedings of the IEEE 55th Conference on Decision and Con-
trol (CDC), pages 5583–5590.

Murray, R. M., Li, Z., Sastry, S. S., and Sastry, S. S. (1994). A mathematical
introduction to robotic manipulation. CRC press.

Natarajan, B. (1988). The complexity of fine motion planning. The Interna-
tional Journal of Robotics Research, 7(2):36–42.

Nocedal, J. and Wright, S. J. (2006). Numerical optimization 2nd. Springer
Science & Business Media.

Ong, S. C., Png, S. W., Hsu, D., and Lee, W. S. (2010). Planning under
uncertainty for robotic tasks with mixed observability. The International
Journal of Robotics Research, 29(8):1053–1068.

Park, F. C. and Brockett, R. W. (1994). Kinematic dexterity of robotic
mechanisms. The International Journal of Robotics Research, 13(1):1–15.

Bibliography 149

Paul, R. P. (1981). Robot manipulators: mathematics, programming, and
control: the computer control of robot manipulators. MIT Press series in
artificial intelligence.

Pázman, A. (1986). Foundations of optimum experimental design, volume 14.
Springer.

Pertin-Troccaz, J. and Puget, P. (1988). Delaying with uncertainty in ro-
bot planning using program proving techniques. In Proceedings of the 4th
international symposium on Robotics Research, pages 455–446. MIT Press.

Pineau, J., Gordon, G., and Thrun, S. (2006). Anytime point-based ap-
proximations for large pomdps. Journal of Artificial Intelligence Research,
27:335–380.

Pito, R. (1999). A solution to the next best view problem for automated
surface acquisition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(10):1016–1030.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural
network. Technical report, DTIC Document.

Poupart, P. and Boutilier, C. (2003). Bounded finite state controllers. In
NIPS, pages 823–830.

Poupart, P., Malhotra, A., Pei, P., Kim, K.-E., Goh, B., and Bowling, M.
(2015). Approximate linear programming for constrained partially observ-
able markov decision processes. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 3342–3348.

Pukelsheim, F. (2006). Optimal Design of Experiments. SIAM.

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics.

Rawlings, J. B. (2000). Tutorial overview of model predictive control. IEEE
Control Systems, 20(3):38–52.

Reed, M. K., Allen, P. K., and Stamos, I. (1997). Automated model acquis-
ition from range images with view planning. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 72–77.

Rényi, A. (1961). On measures of entropy and information. Technical report,
Hungarian academy of science, Budapest, Hungary.

150 Bibliography

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural networks, 61:85–117.

Seber, G. A. (2008). A matrix handbook for statisticians, volume 15. John
Wiley & Sons.

Seiler, K. M., Kurniawati, H., and Singh, S. P. (2015). An online and approx-
imate solver for POMDPs with continuous action space. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
pages 2290–2297.

Selig, J. (1996). Geometrical Methods in Robotics. Springer-Verlag New York,
Inc.

Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Com-
munication. University of Illinois Press.

Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D. (2011). Introduction to
autonomous mobile robots. MIT press.

Sim, R. (2005a). Stabilizing information-driven exploration for bearings-only
SLAM using range gating. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3396–3401.

Sim, R. (2005b). Stable exploration for bearings-only SLAM. In Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 2411–2416.

Sim, R. and Roy, N. (2005). Global a-optimal robot exploration in SLAM. In
Proceedings of the IEEE International Conference on Robotics and Auto-
mation (ICRA), pages 661–666.

Smallwood, R. D. and Sondik, E. J. (1973). The optimal control of partially
observable markov processes over a finite horizon. Operations research,
21(5):1071–1088.

Smith, P., Drummond, T., and Roussopoulos, K. (2003). Computing map
trajectories by representing, propagating and combining pdfs over groups.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 1275–1282.

Smith, R., Self, M., and Cheeseman, P. (1990). Estimating uncertain spatial
relationships in robotics. In Autonomous robot vehicles, pages 167–193.
Springer.

Bibliography 151

Smith, R. C. and Cheeseman, P. (1986). On the representation and estima-
tion of spatial uncertainty. The International Journal of Robotics Research,
5(4):56–68.

Smith, T. and Simmons, R. (2004). Heuristic search value iteration for POM-
DPs. In Proceedings of the 20th conference on Uncertainty in artificial
intelligence, pages 520–527. AUAI Press.

Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov
Decision Processes. PhD thesis, Stanford University.

Sondik, E. J. (1978). The optimal control of partially observable markov
processes over the infinite horizon: Discounted costs. Operations Research,
26(2):282–304.

Souza, J. R., Marchant, R., Ott, L., Wolf, D. F., and Ramos, F. (2014).
Bayesian optimisation for active perception and smooth navigation. In
Proceedings of the IEEE International Conference on Robotics and Auto-
mation (ICRA), pages 4081–4087.

Stachniss, C., Grisetti, G., and Burgard, W. (2005). Information Gain-based
Exploration using Rao-Blackwellized Particle Filters. In Proceedings of the
Robotics: Science and Systems, volume 2, pages 65–72.

Stachniss, C., Hahnel, D., and Burgard, W. (2004). Exploration with active
loop-closing for FastSLAM. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 2, pages
1505–1510.

Stentz, A. (1994). Optimal and efficient path planning for partially-known
environments. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 3310–3317.

Su, S. and Lee, C. (1991). Uncertainty manipulation and propagation and
verification of applicability of actions in assembly tasks. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
pages 2471–2476.

Su, S.-F. and Lee, C. G. (1992). Manipulation and propagation of uncer-
tainty and verification of applicability of actions in assembly tasks. IEEE
Transactions on Systems, Man and Cybernetics, 22(6):1376–1389.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge.

152 Bibliography

Taylor, R. and Rajan, V. (1988). The efficient computation of uncertainty
spaces for sensor-based robot planning. Transformation, 7:1.

Taylor, R. H. (1976). The Synthesis of Manipulator Control Programs from
Task-level Specifications. PhD thesis, Stanford University.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT
press.

Valencia Carreño, R., Valls Miró, J., Dissanayake, G., and Andrade-Cetto, J.
(2012). Active pose SLAM. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1885–1891.

Vallvé, J. and Andrade-Cetto, J. (2014). Dense entropy decrease estimation
for mobile robot exploration. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 6083–6089.

Van Den Berg, J., Patil, S., and Alterovitz, R. (2012). Motion planning
under uncertainty using iterative local optimization in belief space. The
International Journal of Robotics Research, 31(11):1263–1278.

Varadarajan, V. S. (2013). Lie groups, Lie algebras, and their representa-
tions, volume 102. Springer Science & Business Media.

Vidal-Calleja, T., Davison, A. J., Andrade-Cetto, J., and Murray, D. W.
(2006). Active control for single camera SLAM. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 1930–
1936.

Wald, A. (1943). On the efficient design of statistical investigations. The
annals of mathematical statistics, 14(2):134–140.

Wang, Y. and Chirikjian, G. S. (2004). Workspace generation of hyper-
redundant manipulators as a diffusion process on se (n). IEEE Transac-
tions on Robotics and Automation, 20(3):399–408.

Wang, Y. and Chirikjian, G. S. (2006). Error propagation on the euclidean
group with applications to manipulator kinematics. IEEE Transactions on
Robotics, 22(4):591–602.

Wang, Y. and Chirikjian, G. S. (2008). Nonparametric second-order theory of
error propagation on motion groups. The International Journal of Robotics
Research, 27(11-12):1258–1273.

Bibliography 153

White, C. and Harrington, D. P. (1980). Application of Jensen’s inequal-
ity to adaptive suboptimal design. Journal of Optimization Theory and
Applications, 32(1):89–99.

White, C. C. (1991). A survey of solution techniques for the partially ob-
served markov decision process. Annals of Operations Research, 32(1):215–
230.

Wirth, C., Akrour, R., Neumann, G., Fürnkranz, J., et al. (2017). A survey
of preference-based reinforcement learning methods. Journal of Machine
Learning Research, 18(136):1–46.

Xia, Y., Li, J., Qi, L., Yu, H., and Dong, J. (2017). An evaluation of deep
learning in loop closure detection for visual SLAM. In , 2017 IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pages 85–91.

Xiao, J., Volz, R., et al. (1989). On replanning for assembly tasks using robots
in the presence of uncertainties. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 638–645.

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration.
In Proceedings of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation, pages 146–151.

Zhang, B., Mao, Z., Liu, W., and Liu, J. (2015). Geometric reinforcement
learning for path planning of uavs. Journal of Intelligent & Robotic Sys-
tems, 77(2):391–409.

Zhang, N. L. and Zhang, W. (2001). Speeding up the convergence of value
iteration in partially observable markov decision processes. Journal of
Artificial Intelligence Research, 14:29–51.

Zhang, X., Wu, B., and Lin, H. (2017). Supervisor synthesis of POMDP
based on automata learning. arXiv preprint arXiv:1703.08262.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and
Farhadi, A. (2017). Target-driven visual navigation in indoor scenes using
deep reinforcement learning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3357–3364.

Zilinskas, A. (2005). Simulation-based optimization: Parametric optimization
techniques and reinforcement learning. Springer US.

	Introduction
	Contributions
	Thesis Structure
	Publications

	Active SLAM
	Active SLAM definition
	Active SLAM related work
	Active SLAM algorithm
	Step 1: Selecting vantage points
	Step 2: Computing the utility of an action
	Step 3: Executing actions or terminating exploration

	Robot's Pose Representation
	Location vectors and homogeneous transformations
	General definition
	Transformation and Jacobian Matrices in 2D space
	Transformation and Jacobian Matrices in 3D space

	Lie Groups
	General definitions
	SO(2): Rotations in 2D space
	SE(2): Rigid transformations in 2D space
	SO(3): Rotations in 3D space
	SE(3): Rigid transformations in 3D space

	Uncertainty Representation and its Propagation
	Literature review
	Absolute Representation of Uncertainty
	Differential Representation of Uncertainty
	Uncertainty Representation and Propagation over Lie Groups
	Differential Uncertainty vs. Lie Algebra Uncertainty
	2-dimensional space
	3-dimensional space

	Conclusions

	Utility Function Monotonicity: the Importance of Uncertainty Representation
	Introduction
	Monotonicity in Absolute Representations of Uncertainty
	A-optimality
	D-optimality
	E-optimality

	Monnotonicity in Differential Representations of Uncertainty
	Monotonicity of the Shannon's Entropy
	Simulations
	2-dimensional experiment
	3-dimensional experiment

	Conclusions

	Conclusions
	A review of Partially Observable Markov Decision Processes
	Introduction
	Sequential decision processes
	Markov decision process framework
	Partially observable Markov decision processes framework

	Basic concepts
	History
	Value function
	Policy representations

	Exact solution algorithms
	Value iteration
	Policy iteration

	POMDP algorithms
	POMDP related frameworks
	Constrained POMDPs framework
	Mixed observability MDPs framework

	Deep Learning SLAM
	Literature review
	Deep Learning
	Motivation to study Deep Learning
	Introduction
	Neural networks
	Learning neural networks
	Autoencoders
	Supervised learning and Deep Learning
	Alternatives

	Reinforcement Learning

	Bibliography

