000075423 001__ 75423
000075423 005__ 20200117212656.0
000075423 0247_ $$2doi$$a10.1016/j.tiv.2017.10.016
000075423 0248_ $$2sideral$$a101777
000075423 037__ $$aART-2018-101777
000075423 041__ $$aeng
000075423 100__ $$0(orcid)0000-0002-6134-8698$$aSierra Arregui, Marta
000075423 245__ $$aOxidative stress prediction: A preliminary approach using a response surface based technique
000075423 260__ $$c2018
000075423 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075423 5203_ $$aA response surface was built to predict the lipid peroxidation level, generated in an iron-ascorbate in vitro model, of any organ, which is correlated with the oxidative stress injury in biological membranes. Oxidative stress studies are numerous, usually performed on laboratory animals. However, ethical concerns require validated methods to reduce the use of laboratory animals. The response surface described here is a validated method to replace animals. Tissue samples of rabbit liver, kidney, heart, skeletal muscle and brain were oxidized with different concentrations of FeCl3 (0.1 to 8 mM) and ascorbate (0.1 mM), during different periods of time (0 to 90 min) at 37 °C. Experimental data obtained, with lipid content and antioxidant activity of each organ, allowed constructing a multidimensional surface capable of predicting, by interpolation, the lipid peroxidation level of any organ defined by its antioxidant activity and fat content, when exposed to different oxidant conditions. To check the predictive potential of the technique, two more experiments were carried out. First, in vitro oxidation data from lung tissue were collected. Second, the antioxidant capacity of kidney homogenates was modified by adding melatonin. Then, the response surface generated could predict lipid peroxidation levels produced in these new situations. The potential of this technique could be reinforced using collaborative databases to reduce the number of animals in experimental procedures.
000075423 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2014-BIO-05
000075423 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075423 590__ $$a3.067$$b2018
000075423 591__ $$aTOXICOLOGY$$b36 / 93 = 0.387$$c2018$$dQ2$$eT2
000075423 592__ $$a0.895$$b2018
000075423 593__ $$aToxicology$$c2018$$dQ1
000075423 593__ $$aMedicine (miscellaneous)$$c2018$$dQ1
000075423 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075423 700__ $$aBragg-Gonzalo, Lorena
000075423 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa Orús, Jorge$$uUniversidad de Zaragoza
000075423 700__ $$0(orcid)0000-0001-8301-6902$$aMuñoz Gonzalvo, María Jesús$$uUniversidad de Zaragoza
000075423 700__ $$0(orcid)0000-0003-3003-5856$$aGonzález Ibáñez, David$$uUniversidad de Zaragoza
000075423 700__ $$0(orcid)0000-0001-5981-5448$$aMiana-Mena, Francisco Javier$$uUniversidad de Zaragoza
000075423 7102_ $$11005$$2410$$aUniversidad de Zaragoza$$bDpto. Farmacología y Fisiolog.$$cÁrea Fisiología
000075423 7102_ $$11005$$2315$$aUniversidad de Zaragoza$$bDpto. Farmacología y Fisiolog.$$cÁrea Farmacología
000075423 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000075423 773__ $$g46 (2018), 273-283$$pToxicol. in vitro$$tTOXICOLOGY IN VITRO$$x0887-2333
000075423 8564_ $$s890875$$uhttps://zaguan.unizar.es/record/75423/files/texto_completo.pdf$$yPostprint
000075423 8564_ $$s44515$$uhttps://zaguan.unizar.es/record/75423/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075423 909CO $$ooai:zaguan.unizar.es:75423$$particulos$$pdriver
000075423 951__ $$a2020-01-17-21:23:05
000075423 980__ $$aARTICLE