000075459 001__ 75459
000075459 005__ 20200117221634.0
000075459 0247_ $$2doi$$a10.3390/s18093023
000075459 0248_ $$2sideral$$a108150
000075459 037__ $$aART-2018-108150
000075459 041__ $$aeng
000075459 100__ $$0(orcid)0000-0002-4157-5666$$aMutilba, U.
000075459 245__ $$a3D measurement simulation and relative pointing error verification of the telescope mount assembly subsystem for the large synoptic survey telescope
000075459 260__ $$c2018
000075459 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075459 5203_ $$aAn engineering validation of a large optical telescope consists of executing major performing tests at the subsystem level to verify the overall engineering performance of the observatory. Thus, the relative pointing error verification of the telescope mount assembly subsystem is of special interest to guarantee the absolute pointing performance of the large synoptic survey telescope. This paper presents a new verification method for the relative pointing error assessment of the telescope mount assembly, based on laser tracker technology and several fiducial points fixed to the floor. Monte-Carlo-based simulation results show that the presented methodology is fit for purpose, even if floor movement occurs due to temperature variation during the measurement acquisition process. A further research about laser tracker technology integration into the telescope structure may suggest that such laser tracker technology could be permanently installed in the telescope in order to provide an active alignment system that aims to detect and correct possible misalignment between mirrors or to provide the required mirror positioning verification accuracy after maintenance activities. The obtained results show that two on-board laser tracker systems combined with eight measurement targets could result in measurement uncertainties that are better than 1 arcsec, which would provide a reliable built-in metrology tool for large telescopes.
000075459 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075459 590__ $$a3.031$$b2018
000075459 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 61 = 0.246$$c2018$$dQ1$$eT1
000075459 591__ $$aCHEMISTRY, ANALYTICAL$$b23 / 84 = 0.274$$c2018$$dQ2$$eT1
000075459 591__ $$aELECTROCHEMISTRY$$b12 / 26 = 0.462$$c2018$$dQ2$$eT2
000075459 592__ $$a0.592$$b2018
000075459 593__ $$aAnalytical Chemistry$$c2018$$dQ2
000075459 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ2
000075459 593__ $$aMedicine (miscellaneous)$$c2018$$dQ2
000075459 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ2
000075459 593__ $$aInstrumentation$$c2018$$dQ2
000075459 593__ $$aBiochemistry$$c2018$$dQ2
000075459 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075459 700__ $$aKortaberria, G.
000075459 700__ $$aEgaña, F.
000075459 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe-Fabra, J.A.$$uUniversidad de Zaragoza
000075459 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000075459 773__ $$g18, 9 (2018), 3023 [17 pp]$$pSensors$$tSensors (Switzerland)$$x1424-8220
000075459 8564_ $$s1537427$$uhttps://zaguan.unizar.es/record/75459/files/texto_completo.pdf$$yVersión publicada
000075459 8564_ $$s109634$$uhttps://zaguan.unizar.es/record/75459/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075459 909CO $$ooai:zaguan.unizar.es:75459$$particulos$$pdriver
000075459 951__ $$a2020-01-17-22:01:12
000075459 980__ $$aARTICLE