000075567 001__ 75567
000075567 005__ 20190709135627.0
000075567 0247_ $$2doi$$a10.1088/1751-8121/aa8e90
000075567 0248_ $$2sideral$$a103621
000075567 037__ $$aART-2017-103621
000075567 041__ $$aeng
000075567 100__ $$0(orcid)0000-0003-4480-6535$$aCariñena, J. F.$$uUniversidad de Zaragoza
000075567 245__ $$aQuantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach
000075567 260__ $$c2017
000075567 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075567 5203_ $$aThe quantization of systems with a position dependent mass (PDM) is studied. We present a method that starts with the study of the existence of Killing vector fields for the PDM geodesic motion (Lagrangian with a PDM kinetic term but without any potential) and the construction of the associated Noether momenta. Then the method considers, as the appropriate Hilbert space, the space of functions that are square integrable with respect to a measure related with the PDM and, after that, it establishes the quantization, not of the canonical momenta p, but of the Noether momenta P instead. The quantum Hamiltonian, that depends on the Noether momenta, is obtained as an Hermitian operator defined on the PDM Hilbert space. In the second part several systems with position-dependent mass, most of them related with nonlinear oscillators, are quantized by making use of the method proposed in the first part.
000075567 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E24-1$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2014-57129-C2-1-P$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2015-64166-C2-1
000075567 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000075567 590__ $$a1.963$$b2017
000075567 591__ $$aPHYSICS, MATHEMATICAL$$b13 / 55 = 0.236$$c2017$$dQ1$$eT1
000075567 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b29 / 78 = 0.372$$c2017$$dQ2$$eT2
000075567 592__ $$a0.843$$b2017
000075567 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ1
000075567 593__ $$aModeling and Simulation$$c2017$$dQ1
000075567 593__ $$aStatistics and Probability$$c2017$$dQ2
000075567 593__ $$aStatistical and Nonlinear Physics$$c2017$$dQ2
000075567 593__ $$aMathematical Physics$$c2017$$dQ2
000075567 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075567 700__ $$0(orcid)0000-0002-8402-2332$$aRañada, M. F.$$uUniversidad de Zaragoza
000075567 700__ $$aSantander, M.
000075567 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000075567 773__ $$g50, 46 (2017), 465202 [20 pp]$$pJournal of Physics A-Mathematical and Theoretical$$tJournal of Physics A-Mathematical and Theoretical$$x1751-8113
000075567 8564_ $$s250312$$uhttps://zaguan.unizar.es/record/75567/files/texto_completo.pdf$$yPostprint
000075567 8564_ $$s51433$$uhttps://zaguan.unizar.es/record/75567/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075567 909CO $$ooai:zaguan.unizar.es:75567$$particulos$$pdriver
000075567 951__ $$a2019-07-09-12:31:35
000075567 980__ $$aARTICLE