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PURPOSE. Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disease that typically
causes bilateral blindness in young men. It is characterized by as yet undisclosed genetic and
environmental factors affecting the incomplete penetrance.

METHODS. We identified 27 LHON subjects who possess heteroplasmic primary LHON
mutations. Mitochondrial DNA (mtDNA) copy number was evaluated.

RESULTS. The presence of centrocecal scotoma, an edematous, hyperemic optic nerve head,
and vascular tortuosity, as well as telangiectasia was recognized in affected subjects. We found
higher cellular mtDNA content in peripheral blood cells of unaffected heteroplasmic mutation
carriers with respect to the affected.

CONCLUSIONS. The increase of cellular mtDNA content prevents complete loss of vision despite
the presence of a heteroplasmic state of LHON primary mutation, suggesting that it is a key
factor responsible for penetrance of LHON.
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Leber’s hereditary optic neuropathy (LHON) is the most
common of all of the mitochondrial diseases. Approximately

90% of individuals harbor one of three ‘primary’ mutations in
the mitochondrial genome (i.e., m.3460G>A, m.11778G>A
and m.14484T>C). Each mutation affects subunits of NADH-
ubiquinone oxidoreductase (EC 1.6.5.3).1 The presence of
primary mutations is necessary, but not sufficient alone, to
cause optic neuropathy, because disease penetrance can vary in
different families harboring the same mutation.2,3 Thus, exists
the implication that environmental and/or other genetic factors
affect its penetrance. Mitochondrial DNA (mtDNA), a multicopy
genome, is essential for 13 subunits of the oxidative phosphor-
ylation system. Recognized as one of the genetic factors
contributing to disease penetrance, mtDNA itself may contrib-
ute in one of three ways: (1) by adding ‘secondary’ mtDNA
mutations acting in synergy with the primary ones, (2) by
adjusting the cellular quantity of mtDNA, known as ‘the copy
number’,4 and (3) by modifying the relative proportion of
mutants versus wild-type mitochondrial genotypes that may
occur as a mixture in a cell or a tissue, which is known as
‘heteroplasmy’. In most known mitochondrial neurologic
diseases, the mutated versus wild-type ratio impinges on the
penetrance, or the severity, of the condition.5 Among the
LHON primary mutations, m.11778G>A, being the most
frequently occurring, is typically homoplasmic (all the mole-
cules have the same genotype)6 but heteroplasmy, predomi-
nantly for the m.3460G>A, has been detected as well.7–11

We determined the presence as well as the heteroplasmic
status of primary LHON mutations in a cohort of patients with a
clinical diagnosis of LHON; we additionally determined such in
their relatives. We evaluated the contribution of the mutational
load to the penetrance of LHON disease and the mtDNA copy
number in all the heteroplasmic subjects to assess whether it
can discriminate between affected and unaffected subjects as it
happens in large groups of homoplasmic LHON individuals.4,12

MATERIALS AND METHODS

LHON Patients and Family Members

After receiving informed consent, we enrolled 30 subjects in
the study at three sites: Ophthalmology Clinic, Policlinico Bari
Hospital, Italy; Hospital IRCCS ‘Casa Sollievo della Sofferenza’,
Italy; and the University of Zaragoza, Spain. Several examina-
tions were performed: slit-lamp biomicroscopy, fundal and
optic nerve head stereoscopy, fluorescein angiography, optical
coherence tomography, and visual field testing. The control
group consisted of 90 unrelated subjects. Research adhered to
the tenets of the Declaration of Helsinki.

Molecular Genetics and Statistics

Total genomic DNA was extracted by standard methods from
participants’ peripheral blood. Using the PCR-restriction-
fragment length polymorphism (PCR-RFLP) method,13 we
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determined the primary LHON mutations, as well as the
relative quantification of mtDNA copy number was per-
formed.14 The distances between different population distri-
butions were calculated by the Kolmogorov�Smirnov (KS)
statistic on two samples and implemented in the Scipy
numerical software library.15 Data were also analyzed applying
the ANOVA test in conjunction with Bonferroni test. Statistical
significance was set at P < 0.05.

RESULTS

Clinical Features and Genetic Diagnosis

We included 30 subjects in the study cohort: 28 participants
belonged to 10 families; the remaining 2 participating were
unrelated (Supplementary Fig. S1). Clinical findings (when
available) including sex, molecular genetic testing results,
LHON risk factors, recovery of vision and response to
Idebenone therapy, are reported in Table 1. In 12 subjects
(male:female ratio, 10:2) the diagnosis of LHON was based on
unilateral and severe visual decline followed, within a few
weeks, by declining vision in the contralateral eye. Ophthal-
mologic examinations revealed the presence of a centrocecal
scotoma, the presence of an edematous, hyperemic optic
nerve head, tortuosity and telangiectasia of vasculature and,
finally, the absence of leakage and staining using fluorescein
angiography. Visual acuity ranged between light perception
and 20/25 (Table 1). Patients with these features comprised the
Affected cohort; those patients lacking these features were
Carriers. The 90 unrelated subjects (male:female ratio, 47:43),
the Control group, exhibited no history of retinal disease, eye
trauma or surgery, nor any evidence of systemic or neurologic
disease. The diagnosis of LHON was confirmed by mitochon-
drial genetics testing: the m.11778G>A mutation was identi-
fied in 14 subjects (2 homoplasmic; 12 heteroplasmic) and the
m.3460G>A in 16 subjects (1 homoplasmic and 17 hetero-
plasmic) (Table 1; Supplementary Fig. S2). None carried the
m.14484T>C primary mutation. The mean frequency of the
appearance of mutant alleles for both mutations of hetero-
plasmic subjects was 70% for the Affected (range, 15%–95%)
and 53% for the Carriers (8%–95% range) (Table 1). The
penetrance value of both LHON mutations was 40% (12/30) in
our LHON cohort, 71% (10/14) in male and 12% (2/16) in
female. Among the 14 subjects (8 males; 6 females) who
harbored the m.11778G>A mutation, six (5 male; 1 female)
developed typical optic neuropathy with a total of 43%
phenotype penetrance. In this group, the penetrance value
of 83% in men was five times higher than that for woman.
Among the 16 subjects (6 males; 10 females) who harbored
m.3460G>A mutation, six (5 males; 1 female) were affected
with a total of 37% phenotype penetrance. In this group, the
penetrance value of 83% in men was eight times higher than
that for women. One m.11778G>A patient recovered vision
without Idebenone treatment (Table 1). The determination of
mtDNA copy numbers was performed independently from the
type of LHON primary mutations in all the heteroplasmic
subjects (5 Affected and 18 Carriers) and all compared with
Controls. We could not quantify the mtDNA content for three
homoplasmic Affected (II-1 FAM-A2; III-2 FAM-A4; III-1 FAM-B4;
Table 1) and for four heteroplasmic Affected (II-1 FAM-A1; II-3
FAM-A3; I-1 FAM-A5; II-1 FAM-B3; Table 1) due to the
insufficient quantity of useful genetic material. The mtDNA
copy number distribution was highly variable between the
Affected and Carriers. Using very strict criterion, the Carriers
showed a different distribution with respect to either the
Affected or the Controls who could not be distinguished (i.e.,
the probability of the null hypothesis < 0.001) (Table 2).

Conversely, when the distribution of the two LHON popula-
tions was compared with the heteroplasmy of mutations, no
statistically significant differences were observed (not shown).
Panel A of the Figure shows that all the Affected fall in the same
range of mtDNA copy number as the Controls. The mean value
of the mtDNA copy number showed that the peak of mtDNA
content shifted progressively toward higher values from
Controls (210 6 66) to Affected (293 6 85) to Carriers (488
6 140) (Controls versus Carriers P < 0.001; Affected versus
Carriers P < 0.001; Controls versus Affected did not reach
statistical significance; ANOVA test) (Fig. panel B). It is
important to note that two affected subjects (II-5 FAM-A4; I-1
FAM-B7) having the lowest quantities of mtDNA had been
exposed to ethanol, tobacco, and controlled substances, all of
which have been shown to decrease mtDNA amounts and
considered as risk factors for the development of LHON.1,4,16,17

DISCUSSION

The aim of this study was to identify factors controlling LHON
penetrance. In our cohort of 30 LHON subjects, we found the
two most common primary LHON mutations, are heteroplas-
mic in peripheral blood cells of 27 subjects. Heteroplasmy was
more frequent for m.3460G>A than for m.11778G>A in our
cohort, as has been reported by other investigators.18,19 When
we looked at the segregation of heteroplasmy along the
maternal lineages in those eight families with two or three
successive generations available (Table 1), we found in seven
families an increase of mutant alleles, which suggests a positive
selection; conversely, in one family we found a decrease in the
percentage of mutant alleles. Our sample size was too small to
draw conclusions, yet our data agree with a random drift model
for LHON mutations segregation.8,20 We found no correlation
between the clinical manifestations of LHON and the
percentage of mtDNA mutation: one patient harbored 15%
and another 55% heteroplasmic mutant alleles in their
peripheral blood, which is below the threshold value of 60%
proposed in a retrospective analysis of 17 families.10 On the
other hand, the presence of 95% and even 100% homoplasmic
mutant alleles are not unequivocally the cause of LHON clinical
manifestations, as reported.8,19,21 We report a unique finding in
a heteroplasmic cohort: a significantly higher level of mtDNA
copy number, which characterized the Carriers respect to the
Affected. However, the Affected fall in the same range of
mtDNA copy number as the Controls, suggesting that for
subjects carrying LHON mutations, a smaller amount of
mtDNA vis-à-vis the Carriers is a risk factor for vision loss and
the development of LHON. It is of note that three subjects who
have been exposed to trigger environmental factors like
smoke, illicit drugs, and alcohol have developed the disease.
On the other hand, among the Carriers those subjects with
quantities of mtDNA similar to that of Controls may be
considered at high risk for developing the disease and must be
observed over time. Our results are in line with previous
reports that high levels of mtDNA are found in blood cells of
LHON homoplasmic asymptomatic subjects.5,13 The greater
number of mtDNA copies found in Carriers versus the Affected
indicates that the increase in the number of mtDNA molecules
occurs despite the homo- or heteroplasmy of LHON mutations.
All of these findings suggest that cells carrying LHON primary
homoplasmic and heteroplasmic mutations trigger a compen-
satory response depending on the increase of mitochondrial
biogenesis, as evidenced by mtDNA copy number. The ability
to produce such increased copy numbers is significantly more
efficient in those individuals who remain Carriers. The failure
of a strategy to compensate for mitochondrial dysfunction is
commonly observed in severe pathogenic heteroplasmic
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mutations such as those leading to ‘ragged red fibers’.
Interestingly, in the case of LHON mutations, which have
weak pathogenic potential, mitochondrial mass may represent
a compensatory mechanism for the development of complex I
deficiency, as well as a possible molecular explanation for the
variable penetrance of the LHON primary mutations.4 Thus,
the mitochondrial proliferation in Carriers appears to be a
consequence of less-severe deleterious mutations leading to
alterations in mitochondrial activity. This mechanism, for
unknown reasons, does not occur, or may be interrupted at a
certain time in subjects who manifest the disease. The
molecular pathway and the nature of the retrograde signaling
generated by the less performing complex I to boost
mitochondria proliferation in LHON Carriers are not known.

Overall, despite the small number of subjects, our results
suggest that mtDNA content may be a determining factor in
LHON onset. Higher mtDNA content is possibly involved in
protecting from or promoting the disease process, an
observation that may have important implication for our
understanding of the mechanisms involved in the development
of LHON, and most importantly, for the potential to use this
information as a prognostic biomarker and a therapeutic
strategy.
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