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Abstract 

The origin and nature of the numerous lakes in the central Ebro Basin have been 

interpreted according to the prevailing arid or semiarid conditions, the easily-eroded 

materials and the solubility of the gypsum- and/or carbonate-rich Tertiary/Cenozoic 

substratum, involving important dissolution (karstic) and/or aeolian deflation. However, 

the origin of Sariñena Lake, the largest in the central Ebro Basin, remains unknown 

since the typical lake-generating processes in the region are not applicable. This work 

provides significant clues to the genesis and evolution of Sariñena Lake in a regional 

context. The combination of geomorphological mapping and high resolution LiDAR 
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data together with sedimentological observations, the characterisation of soils and 

sediments around the lake, and the application of high-resolution geophysical 

techniques suggests that piping is the major genetic process driving the evolution of the 

Sariñena depression and lake. Field evidence demonstrates that piping is, at present, the 

most important erosive process in the region, generating significant collapse and surface 

lowering. Sariñena Lake is located within a deep endorheic depression excavated from 

Na-rich Tertiary materials. This work hypothesises that once an early, fluvially-

originated palustrine area had developed, the progressive lowering of the regional water 

table linked to regional fluvial incision favoured the establishment of a hydrological 

gradient high enough to trigger piping processes within the claystones and siltstones 

underlying the original palustrine area. The Quaternary evolution of the Sariñena 

lacustrine basin was then controlled by successive water table fluctuations, linked to 

different phases of incision and alluvial deposition in the surrounding fluvial systems. 

All the evidence supporting a piping-related origin for this lake, together with examples 

of lakes generated by similar processes in different contexts, is used to propose a new 

genetic type of lacustrine depression, generated by piping processes under favourable 

conditions. 

Keywords: Ebro Depression; Lake geomorphology; Northeast Spain; Sodic soils;  

 

 

1. Introduction 

Establishing the origin of a given lake is not always easy because very often different 

geological or geomorphological processes interact to produce closed depressions where 

water subsequently accumulates, and these processes evolve over time. Major processes 

in lacustrine basin formation are generally regionally controlled (Reeves, 1968) and 
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hence regional factors like climate, geology, geomorphological context, and evolution 

must be explored in detail. Lakes of complex origin (Wright, 1964; Wood and 

Osterkamp, 1987) are very often difficult to ascribe to a specific genetic type using 

traditional (Hutchinson, 1957; Timms, 1992; Hakanson, 2007) or other integrative 

classifications (Semeniuk and Semeniuk, 1995). In such cases, applying a single 

criterion to genetically classify a lake seems too simplistic and may lead to 

misinterpretation. This difficulty can be resolved by employing different methods that 

infer the geometry of the basin, the relationship between the basin and its substrata, the 

possible processes responsible for generating the depression, and its subsequent 

evolution. This work illustrates the application of different methods to the genetic and 

evolutionary interpretation of Sariñena Lake (Ebro Basin, NE Spain, Fig. 1), the origin 

of which is rather controversial. 

The Tertiary Ebro Basin is one of the most important basins on the Iberian Peninsula, 

located to the south of the Pyrenean Range, north of the Iberian Range, and west of the 

Catalan Coastal Range. Although drained along its axis by the Ebro River, various 

environmental factors, such as the prevailing semiarid climate, very low relief in the 

area, and predominant outcrops of impervious materials, favour the generation of 

endorheic areas, usually occupied by small, ephemeral lakes. The literature on the origin 

and nature of the numerous lakes in the Ebro Basin is abundant and dates back to the 

beginning of the 20th century (Aramburu, 1904; Dantin, 1942; Quirantes, 1965; Ibáñez, 

1975; Mingarro et al., 1981; Alberto et al., 1984; Sánchez et al., 1998; Gutiérrez et al., 

2002a, among other authors). Most lacustrine depressions in the central zone of the 

basin are small, very shallow, and involve groups of lakes developed on wide 

morphostructural platforms or alluvial plains. Sariñena Lake, however, does not share 

these characteristics. 
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Ibáñez et al. (1984) recognised the difficulty of interpreting the origin and evolution of 

Sariñena Lake. These authors presented a summary of the factors favouring the 

maintenance of endorheic zones in the Ebro Basin, including those cited above, and 

concluded that this lacustrine basin probably formed as a combination of processes: 

differential weathering and erosion during humid periods, and aeolian deflation during 

dry periods. This hypothesis is in stark contrast with the notable depth of the lacustrine 

depression and the steep slopes surrounding the lake. Moreover, aeolian sediments are 

very scarce and local in the area (Desir et al., 2011), indicating a limited deflational 

effect, the most important traces of which can be recognised in the form of some rocky 

yardangs (Gutiérrez et al., 2002a), ventifacts (Cuchí et al., 2012), and small local dunes 

(Sancho et al., 2004).  

Hernández Samaniego et al. (1998) considered a possible karstic origin for the lake, 

given the frequent calcareous clasts in the Pleistocene fluvial deposits surrounding it, 

which could have dissolved to produce a doline-like depression. However, this 

hypothesis is difficult to support as the lime-rich deposits are only a few metres thick 

and the present-day lake, and most of the lacustrine depression, is predominantly 

excavated from non-soluble materials: claystones, siltstones, and quartz-sandstones. A 

third hypothesis once again refers to the possible dissolution of gypsarenites present as 

channels in the Tertiary units underlying the terrace on which the Sariñena Lake 

depression is developed (Hernández Samaniego et al., 1998), despite the relative 

scarcity of this type of sediment in the lake surroundings (Costa et al., 1998; Hernández 

Samaniego et al., 1998). 
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Fig. 1. Elevation of the Sariñena high plain in the central Ebro Basin. Digital elevation 

model (pixel = 200 m) obtained from www.ign.es/ in ASCII grid ARC/INFO format 

derived from interpolation of 5-m pixel DEM. 

 

Sariñena is an example of where the normal lake-generating processes prevailing in the 

region do not apply. Once the genetic origins suggested by the abovementioned authors 

have been ruled out, it is possible to propose a new model of lake generation for 

Sariñena Lake involving soil and sediment piping processes. This work utilises a 

multidisciplinary approach to reconstruct the origin and evolution of the lake. High-
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resolution topographic data together with stereo photointerpretation and 

sedimentological observations of the substratum outcrops surrounding the lake provide 

important clues as to the timing and general causes of onset of the initial endorheic 

conditions. The physical and chemical characterisation of soils and sediments 

surrounding the lake give information about the possible processes conducive to the 

genesis of the lake. Electrical resistivity imaging (ERI) and complementary seismic 

refraction tomography (SRT) were applied in the zone in order to recognise possible 

piping structures within the basin. The study shows how integrating data collected 

through complementary techniques may provide significant information on the genesis 

and evolution of lakes. 

 

2. Geological and geomorphological setting 

The central zone of the Ebro Basin comprises a sequence of horizontal Neogene 

sedimentary materials of various lithologies, ranging from conglomerates and 

sandstones in the vicinity of the Pyrenean Range, clays, marls, and gypsum in the 

intermediate area, to Middle-Late Miocene lacustrine limestones in the centre of the 

basin (Quirantes, 1978; Riba et al., 1983; Arenas and Pardo, 1999; Luzón et al., 2002). 

The study zone is in the intermediate area (Fig. 2) where the substrata are mainly yellow 

claystones and siltstones with occasional 0.1-2 m-thick sandstone lenses of Middle 

Miocene age (Agenian to Aragonian, according to Costa et al., 1998, and Hernández 

Samaniego et al., 1998). Sedimentological details of these units can be found in Luzón 

(2005), along with their palaeogeographical significance. No significant tectonic 

structures have been identified in the area. Only minor fractures and E-W and N-S 

oriented joints affect the sandstones lenses at a local scale (Arlegui and Soriano, 1998; 

Costa et al., 1998). 
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Differential erosion of the Neogene materials in the Ebro Basin has led to the 

excavation of wide topographic lows. This process has been accelerated by the presence 

of easily eroded materials, mainly clays, silts and gypsum (Fig. 2). Fluvial excavation 

and rapid river migration favoured the sedimentation of extensive Quaternary 

morphosedimentary units whose staircase morphology and chronology point to different 

phases of floodplain aggradation and river incision associated with climatic variations, 

glacial pulses and tectonic uplift in the Pyrenees in the Mid-Late Pleistocene (Lewis et 

al., 2009; Stange et al., 2013, 2016). 

The Quaternary deposits in the zone principally comprise stepped sequences of fluvial 

terraces and associated pediments descending from the surrounding relief. These were 

previously identified and mapped by several authors (Mensua and Ibáñez, 1977; Bomer, 

1979; Alberto et al., 1984; Calle et al., 2013; Badía et al., 2015; Montes et al., 2016). 

The Sariñena Lake occupies the bottom of a basin inset into a wide mesa approximately 

300 m above sea level, which forms the main divide between the Alcanadre and Flumen 

rivers prior to their confluence (Fig. 1). The mesa is composed of Pleistocene fluvial 

deposits 0.5–4 m thick (Ibáñez et al., 1984) and constitutes an old perched terrace 

hanging more than 40 m above the nearby fluvial valleys. The mesa is elongated and 

extends for approximately 18 km in a N-S direction, being 4 km wide in its central 

sector. It is limited to the N and NE by a series of high plains, the highest reaching an 

altitude of about 500 m (Saso de las Fitas, Fig. 1), all of which developed in Lower 

Pleistocene alluvial deposits with a mean electron spin resonance (ESR) age of 1276 ± 

104 ky (Duval et al., 2015), making them probably the oldest Quaternary fluvial 

deposits on the Iberian Peninsula (Sancho et al., 2016). 
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Fig. 2. Regional geological setting of the Sariñena high plain. 

 

The Alcanadre River valley has six stepped alluvial levels according to Costa et al. 

(1998) and Hernández Samaniego et al. (1998), and nine according to Calle et al. 

(2013). Terrace level numbering differs between the authors, since the first two groups 

began counting the levels on the lowest surface while the latter took the opposite 

approach. The relative heights of the terraces estimated in these studies are shown in 

Tables 1 and 2. OSL and palaeomagnetic dating of samples taken from different terrace 

levels allowed the age of the alluvial sequence to be estimated (Table 2). The thickness 

of all these fluvial deposits decreases with age (Calle et al., 2013). They comprise 

different polymictic gravel and sand levels, capped by typical floodplain silts and clays.  
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Table 1. Pediment and fluvial terrace levels in the Alcanadre, Flumen and Cinca rivers 

(Costa et al., 1998; Hernández Samaniego et al., 1998). 

Pediment levels Alcanadre River Flumen River Cinca River 
Pyrenean piedmont high level (+ 180 m) 

P5 T6 (+ 60-100 m)   
P4 T5 (+ 65-70 m)   
P3 T4 (+ 35-60 m) T3 (+ 35-40 m) T3 (+ 30-40 m) 
P2 T3 (+ 20-30 m) T2 (+ 20-25 m)  
P1 T2 (+ 15 m)  T2 (+ 15 m) 

 T1 (+ 10 m) T1 (+ 10 m) T1 (+ 10 m) 
 

Table 2. The Alcanadre River terrace levels and their estimated ages (Calle et al., 2013). 

Terrace 
level 

Absolute height 
m a.s.l. 

Relative height 
m 

Estimated age 
kyr 

T1 420 160-200 1276 
T2 --- 100 1000 – 780 
T3 325 55 780 
T4 300 30 < 780 
T5 270 20-25 44 
T6 --- 25 19 
T7 260 10 10 
T8 255 3-5 --- 
T9 250 Present floodplain 

 

The climate in the area is typically semiarid with a mean annual rainfall of 407 mm and 

1306 mm of annual evapotranspiration measured at the neighbouring Grañén weather 

station (Faci and Martínez-Cob, 1991). The area is moderately windy and strong winds 

in winter are coming from the NW a 13% of the time (Martínez-Cob et al., 2010). The 

hydric regime of the present Sariñena Lake does not respond to the semiarid climatic 

conditions of the area but shows strong evidence of the impact of irrigation return flows. 

The formerly small lake (~100 ha) (Figs. 3A and B), whose variable salinity has been 

conditioned since Roman times by historical irrigation flows, has been reshaped into a 

permanent freshwater lake of about 200 ha (Fig. 3C). At present, the lake is regulated up 

to a maximum of 2.5 m depth to prevent the lake from flooding the adjacent agricultural 

areas. 
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Fig. 3. Sariñena Lake: (A) 1927 photomap; (B) 1957 USAF aerial photograph; and (C) 

2015 PNOA orthophotograp. The blue line broadly outlines the limits of the lacustrine 

depression. Note the palustrine area extending to the south of the lake.  

 

3. Materials and methods 

Geomorphological mapping was based on stereoscopic photointerpretation performed 

using pairs of black and white aerial photographs from 1957, from US Air Force flight 

B, printed at 1:33,000 scale. Other complementary aerial photographs were also used; 

these dated from 1927, at 1:40,000 scale supplied by the Ebro Basin Water Authority, to 

a PNOA (National Programme for Aerial Orthophotography) flight from 2015, with 0.5 

m pixels. 

The resulting geomorphological map and the 1957 aerial photographs were scanned, 

georeferenced, and transferred directly onto the screen using ArcGIS® 10.3. A digital 

elevation model (DEM) generated in 2010 from airborne LiDAR data (PNOA project) 

was used to refine the photointerpretation and determine the height of the fluvial 

terraces. The DEM has an absolute vertical accuracy of 0.20 m and a density of 0.5 

points/m2. Absolute and relative heights were measured from a series of topographic 

profiles drawn from N to S through the Sariñena high plain. A complementary DEM 
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(GIS Oleícola), generated in 1997 with 20 m pixels, was also used to provide a 

comprehensive topography of the entire high plain. Topographic maps at 1:25,000 scale 

were overlain to refine and reshape the current outlines of rivers and floodplains. A 

subsequent field survey was carried out in the lake basin and at selected sites across the 

high plain and in the surrounding areas, in order to identify different landforms and 

processes. 

Soils representative of the geomorphic units within the Sariñena Basin and 

complementary soils and sediments from the whole area were studied. Soil profiles 

were described following Schoeneberger et al. (2012) and SINEDARES (CBDSA, 

1983). Genetic and diagnostic horizons and soil classification was based on Soil 

Taxonomy (Soil Survey Staff, 2014). The soil samples were air dried and sieved to < 2 

mm for subsequent laboratory analyses. Soil salinity was measured as the electrical 

conductivity of the 1:5 soil:water extract and the aqueous extract of saturated paste 

(United States Salinity Laboratory Staff, 1954) using a conductivity cell (Orion 

013605MD) and expressed in dS m−1 at 25 °C; pH of the 1:2.5 soil:water extract of the 

soil was measured using a pH electrode (Orion 9157BNMD). Calcium carbonate 

equivalent was measured with gasometry (MAPA, 1994), and the gypsum content was 

determined using thermogravimetry (Artieda et al., 2006) and confirmed with the 

qualitative test (Van Reeuwijk, 2002) for gypsum content < 2%. The ionic content (Na, 

Ca and Mg) of saturated paste extracts was analysed using an ionic chromatograph 

(Metrohm 861 Advanced compact IC) (APHA, 1989). Organic matter content was 

determined by chromic acid digestion (Heanes, 1984) and a UV/V UNICAM8625 

spectrophotometer; particle size distribution was assessed by laser diffraction with a 

correction for the clay value following Taubner et al. (2009). The sodium adsorption 

ratio (SAR) was used as a measure of the relative concentrations of Na+ versus Ca2+ 
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plus Mg2+. Clay mineralogy was studied through X-ray powder diffraction (XRD) using 

a Bruker D8 ADVANCE diffractometer with graphite-monochromated CuK(a) 

radiation and a linear VANTEC detector. XRD patterns were obtained from random 

powder mounts and oriented mounts. 

In September 2016, a geophysical survey was conducted in two selected areas: south of 

Laguneta and north of Puyalón (Fig. 4), where surface features suggested the possible 

presence of piping structures presumably associated with the genesis of the lake. 

Electrical resistivity imaging (ERI) profiles were collected using a Lund Imaging 

system comprising 64 electrodes according to the Dipole-Dipole (DDP) array. DDP was 

selected because it provides dense data coverage and good horizontal resolution, 

valuable for identifying sharp lateral variations caused by vertical structures (Dahlin and 

Zhou, 2004).  

ERI has been demonstrated to be particularly effective for detecting piping structures 

developed in landslide deposits (Giampaolo et al., 2016), pseudokarstic features in loess 

deposits (Zeng et al., 2016), anthropogenic cavities (Martínez-Pagán, et al., 2013), and 

piping voids affecting earth dams (Loperte et al., 2016). The Laguneta profile was 80 m 

long with an inter-electrode spacing of 1-2 m (1 m for the inner electrodes and 2 m for 

the outer ones) to gain resolution. The Puyalón profile was 400 m long with an inter-

electrode spacing of 5-10 m in order to investigate deeper features of the piping system, 

even though this was detrimental to the resolution. The apparent resistivity records were 

inverted by the EarthImager2D software (Advanced Geosciences, Inc). Despite the 

gentle topographic curve, topographic correction of the model was carried out using the 

LiDAR-based DEM. A seismic refraction tomography (SRT) profile was acquired 

overlapping the ERI profile at the Laguneta site, with the aim of better constraining the 

higher-resolution resistivity image. The seismic P-velocities were recorded using a 12-
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channel seismograph ES-1225 (EG&G Geometrics), 12 geophones of 10 Hz, spaced at 

5 m intervals (with the exception of the terminal geophones that were placed at 2.5 m), 

and a 5 kg sledge hammer that acted as the energy source. The seismic inversion was 

performed with the SeisImager2D software suite (EG&G Geometrics). 

 

4. Results 

4.1. Sariñena high plain and main landforms 

Up to seven fluvial terrace levels, in addition to the present floodplain, have been 

recognised in the Alcanadre River valley in the vicinity of the Sariñena mesa (Table 3 

and Fig. 4). The higher levels, T6 and T7, are mainly represented on the eastern side of 

the valley, although some isolated remnants of these old levels can be recognised along 

the northern and western sides of the Sariñena mesa (Figs. 4 and 5A), resting on the T5 

level. The Sariñena high plain corresponds to level T5. The photointerpretation and 

LiDAR-derived topography show an apparent split in T5 evidenced by the occurrence 

of a subtle to noticeable escarpment paralleling the eastern border of the Sariñena high 

plain. The lowest terrace levels, from T4 to T1, are asymmetrically distributed on the 

two sides of the present-day Alcanadre River valley (Fig. 5) with notable N-S 

elongation and very limited E-W extension.  

The Flumen River valley is much more asymmetrical, with a complete sequence of 

staircased terrace and pediment levels on the SW margin and a very steep erosional 

escarpment through Miocene claystones and sandstones on the NE side (Fig. 2), 

presumably as a consequence of the lateral migration of the river course towards the 

NE. 

The Sariñena high plain is topographically almost flat, with a very gentle slope of 0.4-

0.5% towards the S (Fig. 4 inset). The basin divides the plain into two areas, a northern 
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area with a fan-like shape open towards the SW, and a southern area with a more 

triangular and elongated form, sloping to the S. Despite the systematic levelling caused 

by decades of agricultural transformation over much of the area, the LiDAR-derived 

topographic profiles highlight the convex shape of terrace T5 (Fig. 5) and its persistent 

decline towards the W, especially in the northern area (Fig. 4 inset).  

 

Table 3. LiDAR-derived height of the fluvial terrace levels (T) in the Alcanadre-Flumen 

River system and the lacustrine pediment-terraces (PT) of the Sariñena Basin. 

Terraces in Alcanadre-Flumen River 
system Pediment-terraces in Sariñena basin 

Level 
Relative* 

height 
Height 
range Standard 

deviation Level 

Height 
above the 

lake bottom 

Height above 
the Alcanadre 
River thalweg 

––––  m  –––– –––––––––  m  ––––––––– 
T7 63.1 27.4 10.7    
T6 45.1 3.8 1.7    
T5 40.9 11.8 4.3 PT3 9-13 

4-7 
2-3 

33-37 
T4 32.9 9.6 4.4 PT2 28-31 
T3 25.1 10.8 3.9 PT1 24-27 
T2 13.9 4.9 1.6    
T1 8.6 4.7 2.0    
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Fig. 4. Geomorphological map of the Sariñena high plain showing the locations of the 

topographic profiles in Fig. 5, and frames A and B illustrated in detail in Fig. 11. The 

inset shows the topography of the Sariñena high plain with 5 m-spaced contour lines 

overlying the hill-shaded GIS Oleícola DEM.  
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Fig. 5. LiDAR-derived topographic cross sections of the Sariñena high plain. Location 

shown in Fig. 4. 

 

The fluvial deposits from the Flumen and Alcanadre Rivers are broadly similar in 

composition, although several diagnostic differences can be used to distinguish them. 

Flumen River deposits contain low centile (< 10 cm) and median (~ 3 cm) clast sizes 

and frequent subangular fragments of Miocene limestone supplied by the pediments 

derived from the Alcubierre Range (Fig. 2). Alcanadre River deposits present higher 

centile (> 20 cm) and median (~ 5 cm) clast sizes and virtually no Miocene limestone 

fragments. The difference in grain size between the two fluvial deposits was analysed 

and quantified by Ibáñez et al. (1984). 
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There are also sedimentological differences between the deposits associated with the 

higher (T5-T7) and lower (T1-T4) terrace levels. Higher deposits, regardless of whether 

they are ascribed to the Flumen or Alcanadre rivers, show a certain degree of 

rubefaction and most gravels present typical carbonate coatings, indicating iron oxide 

segregation and carbonate washing processes. These diagnostic characteristics, already 

described and quantified by Badía et al. (2015) in this zone, are absent in the deposits 

associated with the lower levels, whose gravels are mainly grey. The development of 

petrocalcic horizons in the high levels (Badía et al., 2015), including T5, favoured the 

preservation of these features. 

A railway trench cutting the high plain in a broad E-W direction has exposed the inner 

structure of the T5 deposit, allowing the recognition of two different alluvial units 

overlying the Miocene sandstones and claystones, separated by a planar erosive contact 

(Fig. 6). The lower alluvial unit comprises 1–2 m of rounded clast-supported polymictic 

gravels. The unit shows well-developed channels with high-angle cross-bedding, typical 

of a braided fluvial system. The upper level consists of less than 1 m of a more 

heterogeneous, sandier, fining-upward deposit with alternating layers of different grain 

sizes (sands with gravels and silts with clays). This upper unit includes a basal 0.3 m-

thick reddish silt- and clay-rich layer overlain by unchannelised sets of sands and 

gravels with low-angle (≤ 10º) planar cross-bedding, dipping to the W and SW, and 

showing great lateral continuity. 
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Fig. 6. General aspect of the T5 fluvial deposit in an E-W oriented railway cutting near 

the Sariñena depression (Location shown in Figs. 4 and 7). 

 

The major landform of the Sariñena high plain is the Sariñena Basin (Figs. 4 and 7), 

located in the centre of the mesa. The basin is 540 ha in area and broadly elliptical; it 

measures 3.5 km in a NNW-SSE direction and 1.5 km perpendicular to this (Fig. 5B). 

This lacustrine basin appears as a very conspicuous hollow, inset more than 20 m into 

the T5 plain, with very steep margins. The southwestern and southern margins of the 

basin present subvertical profiles (Fig. 5B), favouring the development of small 

landslides (Fig. 7). The basin bottom is located at a height similar to the Alcanadre T3 

level, and is inset not only into the fluvial T5 deposit but also the substratum of 

Miocene claystones (Fig. 5B). The height difference between the base level of Sariñena 

Lake and that of the Flumen River thalweg is about 20-25 m. Despite its significant lack 

of relief, a sequence of three stepped morphosedimentary levels have been recognised 

within the lacustrine basin, all of them showing a gentle centripetal slope (Fig. 7). Their 
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morphology and geometry are intermediate between lacustrine terraces and marginal, 

local pediments, so they have been denominated lacustrine pediment-terraces PT1 to 

PT3. They are mantled pediments with a thin veneer (< 0.5 m) of small (~3 cm) very 

rounded pebbles with dark coatings. The correspondence between the height of these 

perched lacustrine surfaces and the heights of Alcanadre-Flumen River system terraces 

is shown in Table 3. 

The Sariñena Lake occupies the central and northern areas of the basin and is roughly 

triangular in form, being a maximum of 2 km long extending in a NW-SE direction, and 

1.2 km in an E-W direction on its northern side (Figs. 3B and 7). According to the 

heights of the perched pediment-terraces surrounding the lake, the maximum water level 

of the lake seems never to have exceeded 289 m a.s.l. A palustrine area, subjected to 

intermittent flooding in the past (Figs. 3A and B), extends into the southern sector of the 

basin. Around the western fringe of the lake there is a narrow but continuous beach 

whereas incipient sand spits have developed on the southern border. These coastal 

forms suggest a prevailing wave-induced current moving clockwise along the shoreline 

(Fig. 7). Small alluvial fans are found where the occasional streams reach the lake.  

A second major landform is the small lacustrine basin of Laguneta Lake (Figs. 4 and 8), 

located in the NE area of the plain and currently artificially drained. It is 830 m long and 

450 m wide, elongated in a NNE- SSE direction, and inset about 8 m into the T5 plain 

(Fig. 5A). A small remnant of a perched lacustrine level can be recognised in the 

northern sector of the basin, about 3 m above the lake floor. The basin is outlined by a 

continuous sharp escarpment, with 4 m-high subvertical profiles along the eastern and 

southeastern borders. There is a noticeable flat-bottomed valley starting at the SE border 

of this depression, perched 3 m with respect to the basin bottom and less than 2 m with 
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respect to the T5 plain. This smooth dry valley is oriented NNW-SSE and connects the 

Laguneta basin border with the Alcanadre River valley (Fig. 8). 

 

Fig. 7. Detailed geomorphological map of the Sariñena lacustrine basin overlying the 

LiDAR-derived hill-shaded DEM. Forms mapped according to the photointerpretation 

of the 1957 flight. 

 

Flat-bottomed valleys (Fig. 4) are very common minor landforms on the T5 plain. In 

general, they are less than 2 m deep and follow an irregular distribution pattern. Some 

are partially bounded by subvertical to degraded escarpments (Fig. 7) whereas others 
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show little topographic evidence in the field, being obscured due to decades of 

agricultural land levelling and landscape transformation. Most are dry valleys with no 

evidence of surface streams, and they always drain towards local base levels. 

 

 

Fig. 8. Detailed geomorphological map of Laguneta Lake overlying the LiDAR-derived 

hill-shaded DEM. 

 

4.2 Field evidence of piping and related structures 

Field observations evidence the widespread occurrence of collapse-based erosion 

processes in the area. Many metric or decametric sinkholes and outlets can be seen in 

the Miocene outcrops, within the Sariñena basin near the lake (Figs. 9A and B), on the 
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surrounding slopes of the Sariñena high plain, and even at landscape scale in nearby 

areas (Figs. 9C and D). Soil collapse occurs in irrigated agricultural plots located on the 

T5 high plain. Collapse also affects the fluvial deposit of the T5 high plain. Fig. 10 

illustrates an example of palaeocollapse discovered in a quarry excavated in the fluvial 

deposits. The structure is filled by finer reddish sediments derived from the upper 

floodplain layer. 

 

Fig. 9. (A) and (B) Pipes developed in Miocene materials and soils around Sariñena 

Lake. (C) and (D) Piping structures developed at landscape scale, in the nearby Clamor 

River valley (Location shown in Figs. 1 and 2). 
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Fig. 10. Collapse in terrace T5 (Location shown in Fig. 4). 

 

Indirect indicators of past piping process activity in the zone are represented by several 

perched gravel-rich deposits less than 300 m in length with a characteristic fan-like 

form identified along the western slope of the T5 high plain (Figs. 4 and 11). The apices 

of all these fans are disconnected from the T5 terrace and start mid-slope, about 5-15 m 

below the contact between the T5 gravels and the Miocene claystones (Fig. 11). The 

distal edges of the fans are perched 6-11 m with respect to Flumen River (Fig. 12) 

corresponding in height to the T2 level. While the terrace levels show a significant lack 

of relief, these fans have a slope ranging from 2% in the Cántaro Valley, to 10–15% 

towards the Flumen River thalweg. The Cántaro Valley fan (Fig. 11A) is located at the 

exit of the small valley hosting the Cántaro spring, whereas the fans clustered very near 

Sariñena Lake (Fig. 11B) are not linked to any significant valley or gully. In contrast to 

the nearby Flumen terraces, all these fan deposits exclusively comprise reddish-coated 

gravels from the higher Alcanadre terraces, T5 to T7. The mesa slopes near the fan 

apices are full of pipe inlets.  
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Fig. 11. Detailed geomorphological maps of the perched fan-like deposits of the western 

mesa slopes. The map is overlying the LiDAR-derived hill-shaded DEM. Location 

shown in Fig. 4.  
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Fig. 12. Longitudinal profile of a perched fan-like deposit at Cántaro Arroyo, mapped in 

Fig. 11A. 

 

4.3. Geophysical profiles 

The Laguneta profile, located to the south of the lacustrine basin, crosses the bottom of 

the flat-bottomed valley referred to in section 4.1 (Fig. 8). The resulting ERI model 

depicts two main resistivity layers: a shallow high-resistivity (> 500 Ωm), 1 to 3 m-

thick layer interpreted to be the fluvial T5 deposit, and an underlying low-resistivity (< 

150 Ωm) layer interpreted to be the Miocene clays with sandstones (Fig. 13A). 

The seismic P-velocity model (Fig. 13B) shows three different seismic layers: a topmost 

low-velocity (300-500 m/s) layer, which may be the over-interpretation of the aerial 

wave together with the soil layer response; an intermediate layer with a velocity of 

~1000 m/s, which broadly matches the fluvial deposit inferred in profile A; and a 

deeper, high-velocity (1500–2000 m/s) layer corresponding to the Miocene substratum.  

The ERI profile shows how the contact between the fluvial T5 deposit and the Miocene 

bedrock is roughly irregular and discontinuous, especially on the SSW side of the 

profile, which corresponds to the valley bottom. Near the NNE edge of the profile, 

beyond the valley bottom, the contact is more planar and continuous, at about 3 m 

depth. The velocity model (Fig. 13B) shows a lower velocity gradient between the 

fluvial deposit and the bedrock within the valley bottom, indicating a less stiff bedrock 

and/or looser material than at the valley edge. 

The ERI profile at the Puyalón site (Fig. 13C) represents the cross-section of a flat-

bottomed, NNW-SSE oriented valley (Fig. 4). This profile, much deeper than that at 

Laguneta, also depicts a low-resistivity layer (< 50 Ωm) overlain by a high-resistivity 

layer (> 100 Ωm), interpreted as the Miocene bedrock and the overlying fluvial T5 
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deposit, respectively. Like the Laguneta profile, the contact between the two units (red 

dashed line in Fig. 13C), located at a depth of around 4–5 m, is quite irregular and 

discontinuous, especially below the valley bottom. A series of irregular, metric-sized 

voids, some more than 8 m wide and with a noticeable vertical elongation, can be 

identified within the Miocene substratum, at depths of 7 to 20 m below the fluvial T5 

deposit. The red arrow in profile C indicates a very surficial signal about 6 m wide 

corresponding to the gravel infilling of a trench dug for the installation of the main NW-

SE-oriented irrigation pipe. Other artefacts are ruled out at this shallow level where the 

high signal-to-noise ratio results in high sensitivity in the ERI model. The lower 

envelope of the major voids wedges out to the E while to the W it achieves a roughly 

horizontal geometry at about 30 m depth (white dotted line in Fig. 13C).  
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Fig. 13. Geophysical models of the subsoil architecture at the Laguneta (A and B) and 

Puyalón (C) sites. (A) Inverted resistivity image and (B) P-wave velocity model of the 

Laguneta profile. (C) Inverted resistivity image of the Puyalón profile. The red dashed 

lines define the base of the upper layer and the white dotted line in (C) represents the 

lower envelope of the major voids detected. 

 

4.4. Soils and parent materials  

Soils developed from the clayey Miocene materials are usually shallower than 2 m. 

Entisols and Inceptisols predominate in the geomorphological units of the Sariñena 

Basin (Fig. 7). Entisols are found on the highest slopes, where heterogeneous, shallow, 

and weak soil profiles develop. The less frequent Aridisols and Alfisols are associated 

with more ancient soils and exhibit clay mobilisation, coatings and natric 

characteristics. The most common Subgroups are Calcic Haploxerepts, followed by 

Typic Calcixerepts, Xeric Torriorthents, and Typic Xerorthents.  

The Sariñena basin is characterised by the occurrence of soil salinity and sodicity in 

different topographic positions (Table 4), from the gentle slopes and upper terrace-

pediment (PT3) down to the palustrine area. Btnk horizons incorporate materials 

affected by predominantly sodic salts (NaCl and Na2SO4). Their desalinisation favoured 

strong Na saturation of the cation exchange complexes in the soils and subsequent clay 

illuviation. The soil saturation extracts have a mean ECe = 6.0 dS m−1 (range = 1.5–29.7 

dS m−1) and a median sodium adsorption ratio (SAR) of 14.6 (range = 1.8–39.7). Many 

individual SAR values were much higher than the classical threshold of SAR for sodic 

soils (> 13). Following the salinity phases established for irrigated agricultural soils by 

the NRCS (Soil Survey Division Staff, 1993), moderately and slightly saline soils 
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predominate in the Sariñena basin. Exceptionally, very strongly saline soils are found in 

the PT2 pediment level (Fig. 7). 

The soils have a mean calcium carbonate equivalent (CCE) of 25% and a very low 

organic matter content (mean = 1%). With the exception of the clayey soils in the 

palustrine area, the soils in the basin have a predominantly medium- to moderately-fine 

texture. 

In the lower units, PT1 and the palustrine area, the common occurrence of redox 

features evidences inherited lacustrine conditions, i.e. soil saturation by water due to 

water-level fluctuations in the lake. The underlying Miocene materials, mainly fine 

detrital sediments, consist of mainly saline–sodic dispersible claystones with carbonates 

(mean CCE 22%) and predominant illites (≅ 75%). There is rare gypsum in the 

sandstones (Table 5).  
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Table 4. Selected soil data for pedons representative of the main geomorphic units in the 

Sariñena lacustrine basin (pHp: pH measured in the saturated soil paste; CEe: electrical 

conductivity of the saturated soil-paste extract; OM: organic matter; CCE: calcium 

carbonate equivalent; SAR: sodium absorption ratio). 

Horizons* 
Depth 

pHp 
CEe OM CCE Sand Silt Clay USDA 

textural 
class 

SAR 
cm dS m–1 

25ºC % 

Pediment-Terrace 3/LN-1/Typic Natrixeralf 

Ap 0-22 8.3 8.08 0.82 17.0 30.6 31.3 38.1 Clay loam 16.8 
Btn 22-40 8.3 3.72 0.85 17.0 37.9 29.3 32.8 Clay loam 11.2 
Btnk 40-110 8.6 2.41 0.61 30.0 34.3 33.2 32.6 Clay loam 4.6 
2C (lutite) > 110 --- ---  --- ---  --- --- --- 

Pediment-Terrace 2/LO-21/Calcic Haploxerept 

A 0-23 8.2 2.19 1.48 24.0 19.7 27.6 52.6 Clay loam 3.6 
Bwk 23-74 8.3 8.02 0.59 31.0 26.7 34.0 39.3 Loam 18.2 
2Bwk 74-110 8.2 29.70 0.33 32.0 24.5 32.7 42.8 Loam 39.7 
2CB > 110 --- ---  --- ---  --- --- --- 

Pediment-Terrace 1/LO-7/Calcic Haploxerept 

Ap 0-27 8.7 2.05 1.34 22.2 49.5 28.3 22.2 Loam 5.3 
Bwkg 27-93 9.1 2.17 0.57 25.5 52.9 21.6 25.5 Silt loam 6.9 
2C (lutite)           

High slope (40%)/LO-3/Xeric Torriorthent 

A  0-32 8.2 2.23 2.87 30.0 21.3 43.2 35. 5 Loam 4.4 
2C (lutite) 32-53 --- ---  --- ---  --- --- --- 

Low slope (5%)/LO-6/Typic Xerorthent 

A1 0-20 8.5 1.49 0.92 30.0 21. 42.9 36.1 Loam 3.3 
A2 20-40 8.7 5.46 0.66 33.0 25.4 50.2 24.4 Silt loam 14.4 
Bwy 40-68 8.2 2.97 0.17 6.0 26.6 69.6 3.8 Silt loam 1.8 
2Cy (lutite) 68-80 --- ---  --- ---  --- --- --- 

Palustrine depression/FL-2/Sodic Calcixerept 

Ag 0-18 7.9 4.66 1.27 23.4 45.7 39.2 15.1 Clay 14.9 
Bwg1 18-35 8.3 5.39 2.47 16.9 55.4 38.1 6.5 Clay 19.6 
Bwg2 35-60 8.6 5.62 0.91 12.3 54.4 34.8 10.8 Clay 21.3 
Bwkg1 60-95 8.7 6.73 0.71 24.1 59.1 33.0 8.0 Clay 22.8 
Bwkg2 95-120 8.5 7.91 0.63 33.0 53.0 35.2 11.8 Clay 25.4 
2C 120-160 8.5 7.91 0.52 30.5 45.9 32.5 11.8 Clay 25.4 
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* The meaning of the lowercase letters used as suffixes to designate specific features within the 

soil master horizons (A, B, and C) are as follows: g, strong gleying; k, accumulation of 

secondary carbonates; n, accumulation of sodium; p, tillage; t, accumulation of silicate clay; w, 

development of colour or structure; and y, accumulation of gypsum (Soil Survey Staff, 2014). 

Table 5. Selected characteristics of the claystones and sandstones in the Sariñena 

lacustrine basin (Locations shown in Fig. 7). CCE: calcium carbonate equivalent; Gyp: 

gypsum; pHp: pH measured in the saturated soil paste; CEe: electrical conductivity of 

the saturated soil-paste extract; SAR: sodium absorption ratio. 

Sample 
Sand Silt Clay CCE Gyp 

pHp 
CEe 

SAR 

Clay minerals of oriented 
aggregates, % 

  %   dS m-1 
25 ºC Quartz Calcite Illite 

Lutites 

L1 (LAG-1) 2.2 58.1 39.7 18.6 0 8.5 12.9 29.5 4 17 76 
L2 (LAG-2) 4.1 52.0 43.9 24.1 0 9.1 8.1 33.3    
L3 (AG-4) 3.9 47.6 48.5 24.7 0 8.6 18.6 49.2    
L4 (CP-21) 5.9 53.2 40.8 12.3 0 8.3 12.2 29.4 8 13 71 

Sandstones 

A1 (AR-1a) 70.9 21.0 8.1 28.2 0       
A2 (AR-1b) 54.4 39.0 6.7 32.8 0       
A3 (AR-2a) 88.8 7.2 4.1 16.8 0       
A4 (AR-2b) 79.9 12.2 8.0 15.5 14.3       

 

 

5. Discussion 

Most lacustrine depressions in the central Ebro Basin hold playas and saline lakes, 

whose geomorphic origin and evolution remains poorly understood (Gutiérrez et al., 

2013). Lake genesis models applied to the region include the collapse of large bedrock 

cavities, widespread dissolution by groundwater and subsequent subsidence, and aeolian 

deflation during dry periods (Quirantes, 1965; Ibáñez, 1975; Sánchez et al., 1998; 

Gutiérrez et al., 2013). Sariñena Lake, one of the most important bodies of water in the 

Ebro Basin because of its size and volume, is difficult to explain using these models. Its 
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morphology and dimensions, the nature of its substratum and the absence of related 

aeolian deposits rule out the genetic models proposed by other authors (Ibáñez et al., 

1984; Hernández Samaniego et al., 1998). The results of this work show how the 

formation and development of this lake are the consequence of various factors and 

processes, among which piping plays a significant, although not exclusive role. The 

following discussion focuses on reconstructing the initial conditions under which the 

proto-lacustrine depression was generated, and then goes on to address the processes 

involved in the development of the basin until it reached its present-day form. 

 

5.1 Origin of the lacustrine depression 

The genesis of the Sariñena high plain is interpreted in the context of the evolution of 

the main fluvial network draining the southern Pyrenean ranges. There was very active 

lateral migration of channels as well as river capture processes along the Pyrenean 

piedmont during the Pleistocene. Wide alluvial mantles formed on the southern 

Pyrenean piedmont, favoured by the easily eroded materials and topographic lows 

between the mountain ranges and the limestones of the central Ebro Basin (Fig. 2). The 

formation of extensive terrace levels, many of them acquiring a fan-like shape in plan 

view, could have been related to allogeneic factors such as climate change and uplift 

episodes in the Pyrenean ranges, as well as to avulsion processes during their evolution 

(Alberto et al., 1984; Rodríguez-Vidal, 1986). 

The Sariñena T5 high plain is an example of the rapid lateral migration of the Alcanadre 

River during the middle Pleistocene. According to Calle et al. (2013), the 

sedimentological characteristics of the Alcanadre River terrace deposits suggest that the 

higher levels represent braided channels with a very strong tendency for lateral 

migration, while the lower terraces are associated with increasing channel confinement 
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and river incision. The T5 terrace level of the Sariñena plain is a clear example of these 

braided channels, not only because of its remarkable lateral extension but also the 

sedimentological characteristics of its main unit (lower unit in Fig. 6). The lateral 

migration of the Alcanadre River was restricted on its eastern side by an important 

topographic barrier represented by various levels of high terraces (Fig. 4), which forced 

the prevalent lateral migration of the river towards the W. This westward migration was 

in turn constrained by the remnants of a series of higher, earlier terraces that formed the 

interfluvial area between the Flumen and Alcanadre rivers (Fig. 14A).  

The high mobility of the Alcanadre channel generated a fan-like alluvial plain that 

corresponds to the northern half of the Sariñena high plain, north of the present lake 

(Figs. 4 inset and 14B). High flood stages during the development of the T5 alluvial 

plain would have caused the generation of overbank and crevasse-splay sheets, typical 

of highly fluctuating rivers, especially in semiarid environments (Bridge and Demicco, 

2008; Li and Bristow, 2015). The topographical restrictions on the eastern valley side 

favoured the development of widespread overbank deposits on the western margin of 

the valley (Fig. 14B). This produced a fluvial fan-like deposit, which can be interpreted 

as a large crevasse splay. This deposit is recognisable in the centre of the high plain, 

overlying preceding channel facies (Fig. 6). The finer grain size of the deposits and the 

low-angle cross stratification is typical of this kind of facies (Pontén and Plink-

Björklund, 2007; Van Toorenenburg et al., 2016), and its lateral continuity is indicative 

of rapid progradation. The exposed section shown in Fig. 6 suggests there was more 

than 6 km of westwards progradation (the current width of the Sariñena mesa), although 

the present-day geometry of the mesa (Fig. 4 inset) indicates progradation was more 

likely towards the SW (Fig. 14C). Crevasse sheets typically develop a basal erosion 

surface (like that recognisable in Fig. 6) and a metre-scale thickness that decreases 
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towards the distal margin, thinning gradually or ending abruptly with a steep slope 

(Bridge, 2003). In this sense, the topographic profiles in Fig. 5 resemble those described 

in many other mature fluvial systems with well-developed floodplains and crevasses 

(Coleman, 1969; Smith et al., 1989; Mjos et al., 1993). At present, there is a height 

difference of 2-3 metres between the E (proximal) and W (distal) T5 margins. 

Subsequently, a typical backswamp area is expected to have formed in the distal areas 

of the crevasse lobes, overlying the fine sediments deposited previously on the 

floodplain, as observed in the T5 deposits (see Section 4.1). It is likely that this swamp, 

or palustrine area, hosted intermittent standing water between the high terrace footwall 

and the crevasse sediments (Fig. 14C). At a later stage, the lateral migration of the 

Flumen River and its tributaries towards the E would have partially eroded the remnants 

of the higher terraces. After this, the incision of the Alcanadre River would have led to 

the generation of an incipient fluvial network on the T5 level, forming smooth flat-

bottomed valleys on the high plain. The existing palustrine area became perched and 

was preserved probably due to its significant extent and remarkable isolation with 

regard to distance to the Alcanadre River valley. From an evolutionary point of view, 

this can be considered the starting point in the genesis of the Sariñena depression. It is 

highly likely that in this embryonic stage the depression would have been characterised 

by very gentle slopes and intermittent, shallow water (Fig. 14D). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

34 

 

 

Fig. 14. Simplified sequence illustrating the formation of the Sariñena depression.  
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5.2. The role of piping processes in the evolution of the basin 

Climate, geomorphology, topography and substrate characteristics provide clues for 

reconstructing the evolution of the Sariñena Basin related to piping processes. 

Traditionally, the development of piping has been associated with the presence of 

several conditioning factors: climate, physiography, and the inherent properties of soils 

or sediments (Jones, 1981; Bryan and Yair, 1982; Selby, 1982; Parker et al., 1990; 

Jones, 1994, 2004; Faulkner et al., 2000, Desir and Marin, 2011; Goudie, 2013). Piping 

only occurs in soils with a high dispersion index, sodium content, SAR and 

exchangeable sodium percentage. Nevertheless, these factors alone do not automatically 

lead to piping, as this process also requires seasonally variable rainfall, a high soil 

cracking density, suitable slope length and gradient, together with a high hydraulic 

gradient, scarce vegetation cover, and relatively impermeable layers in the soil profile 

promoting an irregular horizontal subsurface flow. 

In the central Ebro Basin, soil loss by piping is especially amplified in unconsolidated 

materials (mainly silts and clays) due to irrigation and the saline nature of the soil 

(García-Ruiz et al., 1997; García-Ruiz, 2011; Gutiérrez et al., 1997). In the Sariñena 

Basin, the salinity and sodicity of the soils and Miocene sediments, together with the 

low organic matter content of the soils (Tables 4 and 5), promote the structural 

instability and dispersibility of materials and their transport through the subsurface, as 

well as conspicuous surface soil erosion. Soil salinisation and sodification processes, 

and elevated SAR values were identified decades ago in the Flumen area (Lebrón, 1988; 

Rodríguez-Ochoa et al., 1990, 1999; Vizcayno et al., 1995; García-González et al., 

1996; and Sirvent et al., 1997), related to lithological, geomorphological, climatic and 

anthropic factors. Oedometric assays carried out on these Miocene clays gave swelling 
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values of up to 12% (Gutiérrez et al., 1997). The occurrence of sand and clay coatings 

in the pipes (Pratdesaba, 1997) confirms the high transport capacity of the flow. Soil 

loss, pipe erosion, water logging, pipe-drain clogging, and land abandonment have been 

recurrent problems in the area (Herrero et al., 1989; Rodríguez-Ochoa et al., 2000; 

Darmendrail et al., 2004). Evidence for this can be observed in agricultural areas 

subjected to intense levelling without preservation of the topsoil and after the 

modernisation of irrigation (Rodríguez-Ochoa et al., 1989; Rodríguez-Ochoa and 

Artieda, 1999). Outstanding evidence of active piping processes has been described in 

the basin (see Section 4.2, Figs. 9C and D), as well as in nearby areas (Figs. 15A and B; 

Harvey and Gutiérrez-Elorza, 2005; Gutiérrez et al., 2002b). 

Similar conditions favouring piping are supposed to have taken place in the Sariñena 

basin during its evolution. In fact, there is direct and indirect evidence of relict piping 

processes in the zone. The palaeocollapse shown in Fig. 10 is an example of an ancient 

subsidence episode affecting the T5 fluvial deposit. The perched fan-like deposits 

identified in the western slopes of the T5 high plain (Figs. 11 and 12) indicate past 

piping activity. According to their geometry, topographic position and composition, 

these deposits are interpreted to be outlet deposits related to the subsurface transport and 

evacuation of gravel-rich materials from the high terrace levels. Only the Cántaro fan 

(Figs. 11A and 12), located in the middle of a valley, may involve a certain surface 

component linked to supply from the Cántaro River. Quite similar gravel-rich, fan-like 

outlet deposits were reported by Batalla and Balasch (2001) as a consequence of piping 

processes affecting an earth dam in Altorricón (central-eastern Ebro Basin), which 

eventually led to the catastrophic failure of the structure. The genetic interpretation of 

the fan-like outlet deposits is supported by the abundance of subsurface voids 

recognised in the Puyalón geophysical profile, the location of which was selected 
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according to two main geomorphic indicators: 1) the active landslides on the steep 

slopes of the southwestern and southern margins of the Sariñena Basin (Fig. 7) 

indicative of recent and/or present subsidence processes; and 2) the proximity to the 

hypothetical main line of subsurface flow and particle transport between the lake basin 

and the nearby outlet deposits. The voids in the Puyalón profile probably represent a 

dense network of conduits developed at the lower contact between the fluvial deposit 

and the Miocene substratum (Fig. 13A), as well as within the Miocene clays (Fig. 13C). 

The remarkable size of the voids (8–12 m) and their depth (7–20 m) indicate important 

subsurface erosion due to piping. There are examples of similar, or even larger voids in 

the nearby Clamor Valley (Figs. 2, 9C and D) developed in Holocene valley fills fed 

from the erosion of the same Miocene units as in the Sariñena area (Harvey and 

Gutiérrez-Elorza, 2005) (see Fig. 13.24, page 307 in Gutiérrez-Elorza, 2005). Besides 

the size and depth of the voids, the irregularities in the ERI profiles at the base of the 

fluvial deposit reveal that the complexity and degree of development of the subsurface 

pipe network increase towards the W, where the Flumen River valley represents the 

local base level of the hydraulic gradient responsible for piping initiation and 

enlargement.  

Usually, piping outlets are open conduits through which water and/or sediments have 

been evacuated (Jones, 1981, Goudie, 2013; Harvey, 1982; Romero-Díaz et al., 2007) 

but there are limited records and evidence of outlet deposits, even where rock blocks 

have been removed through the conduits (Parker et al., 1990), similar to karst 

environments (see Fig. 1 in Rodríguez et al., 2014). The piped materials are generally 

silts and clays, which are easily eroded once released from the pipe system. However, 

gravel deposits can also be involved in piping, even if this initiates in finer, more 

susceptible horizons, as reported by Ternam et al. (1998). A spectacular example of pipe 
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growth involving the base of a capping gravel deposit can be seen at Bardenas Reales 

Natural Park, in the western Ebro Basin (Fig. 15C). 

 

Fig. 15. Examples of piping processes in the Ebro Basin. A and B) Initiation and 

development of piping-related depressions on horizontal surfaces near the Sariñena 

Basin. C) Gravel cap undermined by pipe growth in Miocene clays, Bardenas Reales 

Natural Park. 

 

Similarly, the pipes in the Sariñena Basin originated in the Miocene bedrock due to 

water infiltrating across the interstitial porosity of the capping fluvial gravels into the 

Miocene clays. Voids and conduits very likely formed initially in the contact between 

the two materials and progressively grew horizontally until finding an exit or outlet 
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depending on the prevailing hydrological gradient: to the west in the case of the 

Sariñena Basin, or to the east for Laguneta Lake. Once the outlet was established, 

subsurface flow circulation promoted enlargement of the pipe through which eroded 

material was evacuated. The pipe network progressively reached a higher hierarchical 

organisation, favouring the increased drag and transport capacity of the water flow. This 

piping enlargement would have been especially rapid during phases of Alcanadre and 

Flumen river incision, due to the concomitant increase in the hydraulic gradient.  

Pipe enlargement involved removal of the base of the capping T5 fluvial deposit. 

Erosional emptying of pipes and the loss of caprock cohesion finally led to collapse. 

Coarse detrital material, including gravels, was transported through the voids, as 

suggested by the irregular contact at the base of the fluvial deposit (Fig. 13). Very likely 

some of the voids were filled by gravels (Fig. 13C). All this evidence points to piping as 

the main cause of subsidence and recent morphological development in the Sariñena 

Basin. 

In a similar way, the Laguneta lacustrine basin (Fig. 8) can be considered to be a small 

collapse, evidenced by the subvertical escarpments bounding the S and SE basin 

margins and the presence of a perched flat-bottomed valley starting in these margins 

and oriented towards the Alcanadre Valley. The floor of this flat-bottomed valley and its 

NE margin were selected for geophysical surveying. The very irregular contact between 

the fluvial deposit and the Miocene substratum in the centre of the valley (SW side of 

the ERI profile, Fig. 13A) reveals significant development of piping conduits below the 

valley floor, suggesting that the origin of the valley and its perched location may be 

linked to piping–related subsidence with subsurface drainage towards the SE (Fig. 8). 

The possible outlets would be located more than 1 km from the lake and are not visible 

due to the intense transformation of the area by linear infrastructures (railway and 
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roads) and agriculture. The magnitude of piping development and associated subsidence 

in Laguneta is much more limited than in Sariñena Lake, and is related to water draining 

towards the E slope of the Sariñena high plain. In this case at least two episodes of land 

subsidence linked to piping can be inferred. The first would have been responsible for 

the generation of the flat bottom valley, reflecting the prevailing subsurface flow from 

the centre of the T5 plain towards the Alcanadre River valley. The second, subsequent 

episode generated the Laguneta depression, inset into the T5 plain, leaving the flat-

bottomed valley perched with respect to the base of the depression.  

 

5.3. Evolution of the Sariñena Basin 

The hypothesis proposed for the evolution of the Sariñena Basin requires the following 

steps:  

1) Blocking relief (T6 terrace levels) created confined areas that occluded a low-lying 

zone where water was available and there was no external surface drainage (Fig. 16A). 

2) A significant hydraulic gradient was generated that was high enough for piping 

processes to develop in the Na-rich Miocene clays. Pre-existing structures such as joints 

and palaeochannels in the sandstones would have favoured preferential flow pathways 

underneath the T5 terrace, as noted by Higgins and Schoner (1997). This gradient 

became progressively higher during the vertical incision of the Alcanadre and Flumen 

rivers during the Middle and Upper Pleistocene, according to dating by Calle et al. 

(2013). The dimensions of the initial pipes probably ranged from cm to dm, similar to 

those described by Khobzy (1972) in the genesis of closed depressions in areas of 

smooth relief (Figs. 15A and B). Excavation by piping was favoured by the alternation 

of humid and dry periods (Fig. 16B), since water table oscillations induce changes in 

the hydraulic gradient. During dry periods with higher gradients, vertical growth of 
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pipes would have prevailed thanks to the circulation of undersaturated hypodermic 

fluxes, while in humid periods, when the water table was higher, there would have been 

horizontal development of the pipe network and conduit enlargement.  

3) Pipes and conduits became large enough to allow the transport of gravels from the 

capping terrace deposit, and the basin floor subsided due to successive collapses. Since 

the water level in the lake was probably related to the regional water table, these pulses 

would have led to the intermittent desiccation of Sariñena Lake and the exposure of the 

former lake floor to surface water erosion processes. After each river incision episode, 

the topographical gradient produced between the desiccated lake floor and the new 

surrounding river floodplains would once again have favoured the onset of piping 

processes along the Sariñena floor. These processes would have generated erosional 

micro- and macroforms typical of low-gradient surfaces submitted to piping, similar to 

those that can be observed at present in the area (hollows, pseudo-dolines and collapses, 

natural bridges, etc.; Fig. 15A), with a roughly irregular bottom surface being produced 

over time (Fig. 15B).  

The increasing verticality of the surrounding slopes triggered the development of mass 

movements and erosion by water. As a result, the slopes retreated and the basin widened 

evolving a U-shaped cross-section (Fig. 16C). Intervening phases of stability would 

have favoured the development of the PT levels, coeval with the deepening and 

flattening of the depression bottom. The presence of small escarpments separating the 

different pediment levels indicates that at least three basin-bottom deepening phases 

took place during the evolution of the depression, probably related to successive 

lowering of the hydraulic gradient and the rejuvenation of the piping system, separated 

by phases of stable water levels. The base levels of the Sariñena pediment-terraces are 

broadly equivalent in elevation to those of the Alcanadre-Flumen T4 and T3 terrace 
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levels (Table 3), suggesting that the systems were genetically connected through 

oscillations in the water table, as a response to the regionally alternating episodes of 

river incision and alluviation. 

Regarding the period of development of the lake, the only data which can be referred to 

is the relationship of the lake height to the different Alcanadre River terrace levels and 

their respective dates supplied by Calle et al. (2013) and showed in Table 2. According 

to this, T5 level may have an estimated age equal to or younger than 780 ky BP. The 

bottom of present Sariñena Lake develops at a height equivalent to T3 level, with an 

estimated age between 44 and 19 ky BP. Finally, the fan-like deposits developed in the 

eastern flank of the Flumen River valley are coeval with the T2 terrace level of the 

Flumen River system, whose age can be estimated about 19-10 ky BP. The age of such 

outlets probably corresponds to the main and last period of collapse in the Sariñena 

depression, coeval to the development of T3-T2. In summary, very likely the main 

episodes of Sariñena Basin development occurred during the Last Glacial Maximum. 

Palaeoclimatic studies of lacustrine records in nearby lakes of the Ebro Depression 

during that period indicate the prevalence of semiarid cold steppe vegetation with an 

increase of the effective moisture which made some lakes to experience more positive 

water balance than today (Valero-Garcés et al., 2004). 

During humid periods, water would have accumulated more frequently in the basin, 

enabling wind-generated waves to flatten and level the lake bottom, a planation process 

common in shallow lakes (Lees and Cook, 1991). This basal erosion of the lake by 

waves would have led to the entrainment and transport of debris over the rough, 

irregular floor left after the previous period of desiccation and piping activity. Finally, 

eroded material would have been exported through the dense conduit network excavated 

in the lake substratum, towards the surrounding river valleys. As reported by Batalla 
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and Balasch (2001), active pipes can evacuate material very quickly, producing a very 

high sediment yield, such as would have been required to excavate the significant 

volume of Sariñena basin (estimated to be approximately 30 × 106 m3). The presence of 

numerous outflow pipes in the erosive slopes surrounding the Sariñena high plain 

reinforces this hypothesis. 

4) Some conduits and voids became filled and obstructed by gravels (Fig. 13C), and 

very probably became inactive. In other cases, the smaller grain size of the gravels or 

the greater dimensions of the pipes allowed subsurface gravel transport until this finally 

exited into the Flumen River valley, and formed the fan-like outlet deposits, coeval with 

the T2 terrace of the Flumen River valley (Fig. 16D). 
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Fig. 16. Conceptual model for the genesis and evolution of Sariñena Lake.  

 

The prevailing NW winds produce small waves (ranging between 0.2 and 0.3 m) on the 

lake surface and some coastal dynamics consisting of minor littoral spits and sand 

barriers that reflect a prevailing clockwise shoreline current. It is likely that this current 

is responsible for redistributing the sediments around the lake shores, preventing the 

accumulation of deposits on the lee side (Fig. 7). The action of wind-produced waves 

must have always occurred under conditions of reduced water depth, meaning active 

interaction between the waves and the lake floor, a very frequent feature of shallow 
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lakes in semiarid environments (Lees and Cook, 1991). The resulting lake bottom 

sediments eroded by the waves are subsequently transported and distributed along the 

lake bottom.  

At present, many minor pipes can be recognised in the basin floor. Sariñena Lake water 

is supplied by the current irrigation surplus and has low salinity and sodicity. These 

undersaturated waters may circulate as hypodermic fluxes until they reach the present 

water table, favouring the initiation of piping. Several springs rise in intermediate and 

low topographic positions on the western slopes of T5, facing the Flumen River valley 

(visible in the aerial photographs from 1927 and 1957). Sudden pipe collapses could 

occur in the future, mobilising and exporting clay, although their dimensions would 

probably not be large enough to generate sufficient flooding to transport gravels. The 

future of the system may involve the rejuvenation of piping erosion once the base level 

drops due to fluvial incision (Fig. 16D) and the hydraulic gradient increases because of 

the migration of the Flumen River towards the E.  

 

5.3. Piping-derived lakes: a new type of lake origin? 

There are very few examples in the literature of lakes and closed depressions generated 

by piping. Wright (1964) interpreted piping to be the main formational factor in the 

genesis of hundreds of lakes developed on siliceous sands and sandstones in the Chuska 

Mountains, northwestern New Mexico. In this case, successive episodes of water table 

lowering were inferred to have occurred during the Pleistocene producing the 

depressions, which at present are considered relict forms. Khobzi (1972) described 

pseudokarstic depressions in some parts of the Andes in Colombia, developed on 

siliceous alluvium and sands derived from the weathering of siliceous rocks. According 

to this author, piping can be directly observed in some cases and seems to be the initial 
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and perhaps the main lake-generating process. Higgins and Schoner (1997) explained 

the development of sinks on flat or nearly flat drylands, referring to a lowered water 

table and deep dewatering of the sediment. The onset of a strong inflow enlarges 

conduits and cracks, leading to the generation of sinkholes, even in gravel bodies. 

Huddart and Bennett (2000) described subsidence processes in an Icelandic proglacial 

lake bed caused by sediment cracking and subsequent subsurface piping. Shaw and 

Bryant (2011) also indicated piping as a mechanism that may be locally important in the 

generation of shallow lakes and pans in semiarid environment. 

Although relatively rare, piping-related lakes and depressions constitute a particular 

type of basin that may appear in a wide range of climatic or geomorphic contexts, 

always associated with specific favourable factors, such as dispersive soils and 

hydrological gradients. However, no mention is made of this kind of lake in classical 

genetic lake taxonomy (Hutchinson, 1957; Reeves, 1968; Bayly and Williams, 1973; 

Timms, 1992). The latter two proposals are probably the most complete and detailed, 

and both differentiate between lakes related to processes like tectonism, volcanism, 

landslides, glaciation, solution, fluviatile action, wind action, coastline dynamics, 

biological activity, meteorite impact, and human action. 

In some aspects, the origin of piping-generated lakes could be considered similar to that 

of lakes developed on confined floodplains, especially the fluviatile dams described by 

Timms (1992, pp 105), i.e. generated in blocked conditions associated with alluvial fans 

and laterally confined lowlands. However, Sariñena Lake does not correspond to the 

typical lake formed at the abrupt termination of the distal margin of the crevasse splay 

deposit (Bridge, 2003), although its early origin could have been associated with this 

kind of morphosedimentary setting.  
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As a premise, Sariñena Lake could be considered to have had a destructive origin, 

according to the early classification proposed by Davis (1882) for continental semiarid 

regions. Destructive forms generated by piping have been termed pseudokarstic. In fact, 

the term “pseudokarst” (Quinlan, 1966) has been often used for describing sinkholes 

and caves similar to those formed by karst although generated by processes other than 

the dissolution of substrata. The proper use of such a controversial term was discussed 

by both Otvos (1976) and Eberhard and Sharples (2013). Typical pseudokarstic forms 

generated by piping processes include caves and sinkholes, usually of limited size 

(Bartolomé et al., 2015).  

Piping processes can be active in a number of geomorphic contexts and, as in the case 

of karst, depend on the existence of favourable substrata and hydraulic gradients. In 

several genetic aspects piping-related lakes and karstic lakes bear similarities to each 

other, since both are related to the removal of subsurface materials and can produce 

either gentle depressions or deep sinkholes. In this sense, one possible option would be 

to consider a class of “lakes generated through the removal of subsurface substrata”, 

which includes both genetic types. In fact, the genesis and development of subsurface 

voids and conduits constitute the response of a specific substratum (regardless of 

whether this involves carbonate or Na-rich clays) to physical and chemical processes 

driven by flowing water under a given hydraulic gradient. 

 

6. Conclusions 

Sariñena Lake is a controversial wetland to which previous, traditional hypotheses on 

the origin of many lakes in the Ebro Depression cannot be applied. It could be 

considered to have had a destructive origin, in a semiarid continental context, where 

solution processes and wind action can be ruled out. The present morphology of the 
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lacustrine basin, characterised by high topographic gradients and steep slopes, the 

nature of the Miocene substrata underlying the lake, formed of insoluble dispersive 

clays and silts, and the virtual absence of aeolian forms and deposits, preclude a 

possible karstic or hydro-aeolian origin. The climate, bedrock and soil all favour pipe 

development, not only on the Sariñena high plain but also across a relatively wide area 

in the southern Pyrenean piedmont at the centre of the Ebro Basin. Piping micro- and 

mesoforms are quite common in the lake basin and surrounding areas, often being 

spectacularly developed and reaching impressive dimensions. Surface evidence of past 

collapse episodes affecting the main Pleistocene fluvial unit into which the lake is inset 

supports an initial piping-related genetic hypothesis. Detailed geomorphological 

mapping and field work was complemented with mineralogical and geochemical 

analysis of the soils and rocks, as well as a high-resolution geophysical survey. The 

results obtained evidence how piping processes are the main agent responsible for the 

basin evolving into its current form.  

The onset of favourable conditions for the initiation of piping in this specific zone is not 

known in detail, although sedimentological data from the Pleistocene fluvial deposit on 

which the lake formed provides some valuable clues. The upper depositional level 

identified, and interpreted as a very wide crevasse splay, could explain the origin of the 

initial depression, as a backswamp area inset between the crevasse splay deposits and 

other confining relief. Subsequent evolution of the initial wetland would have been 

controlled by water table oscillations within a general falling trend, related to the 

incision/alluviation episodes recorded in the surrounding fluvial valleys. Episodes of 

fluvial incision favoured a prevailing vertical development of pipes, while episodes of 

alluviation and water table stabilisation promoted the enlargement and predominantly 

horizontal development of the pipe network. The general evolution of the pipes included 
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an initial phase in which a complex conduit network was constructed, and a further 

phase involving the lengthening of the pipes until they reached the base of the 

Pleistocene fluvial deposits. After this, some of the fluvial gravels were transported and 

exported to the nearby fluvial valleys through the subsurface pipe network, while other 

clasts filled up and blocked a number of pipes, halting their activity. At present only 

minor piping processes are still active on the lacustrine basin bottom and slopes. 

A number of other minor closed depressions excavated in Miocene dispersive clays can 

also be recognised in the Ebro Basin, the origin of which is difficult to explain using 

traditional models. Undoubtedly, further research is necessary, particularly in light of 

the new evidence presented in this work. The results obtained from Sariñena Lake may 

aid in the reinterpretation of other controversial or poorly-understood closed 

depressions and lakes. Future research in this field will help support and reinforce the 

proposal of piping-related lakes, or lakes generated through the removal of sub-surface 

strata, if karstic lakes are also included, as a new genetic type of lake. 
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Table 1. Pediment and fluvial terrace levels in the Alcanadre, Flumen and Cinca rivers 

(Costa et al., 1998; Hernández Samaniego et al., 1998). 

 

Pediment levels Alcanadre River Flumen River Cinca River 
Pyrenean piedmont high level (+ 180 m) 

P5 T6 (+ 60-100 m)   
P4 T5 (+ 65-70 m)   
P3 T4 (+ 35-60 m) T3 (+ 35-40 m) T3 (+ 30-40 m) 
P2 T3 (+ 20-30 m) T2 (+ 20-25 m)  
P1 T2 (+ 15 m)  T2 (+ 15 m) 

 T1 (+ 10 m) T1 (+ 10 m) T1 (+ 10 m) 
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Table 2. The Alcanadre River terrace levels and their estimated ages (Calle et al., 2013). 

Terrace 
level 

Absolute height 
m a.s.l. 

Relative height 
m 

Estimated age 
kyr 

T1 420 160-200 1276 
T2 --- 100 1000 – 780 
T3 325 55 780 
T4 300 30 < 780 
T5 270 20-25 44 
T6 --- 25 19 
T7 260 10 10 
T8 255 3-5 --- 
T9 250 Present floodplain 
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Table 3. LiDAR-derived height of the fluvial terrace levels (T) in the Alcanadre-Flumen 

River system and the lacustrine pediment-terraces (PT) of the Sariñena Basin. 

Terraces in Alcanadre-Flumen River 
system Pediment-terraces in Sariñena basin 

Level 
Relative* 

height 
Height 
range Standard 

deviation Level 

Height 
above the 

lake bottom 

Height above 
the Alcanadre 
River thalweg 

––––  m  –––– –––––––––  m  ––––––––– 
T7 63.1 27.4 10.7    
T6 45.1 3.8 1.7    
T5 40.9 11.8 4.3 PT3 9-13 

4-7 
2-3 

33-37 
T4 32.9 9.6 4.4 PT2 28-31 
T3 25.1 10.8 3.9 PT1 24-27 
T2 13.9 4.9 1.6    
T1 8.6 4.7 2.0    
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Table 4. Selected soil data for pedons representative of the main geomorphic units in the 

Sariñena lacustrine basin (pHp: pH measured in the saturated soil paste; CEe: electrical 

conductivity of the saturated soil-paste extract; OM: organic matter; CCE: calcium 

carbonate equivalent; SAR: sodium absorption ratio). 

Horizons 
Depth 

pHp 
CEe OM CCE Sand Silt Clay USDA 

textural 
class 

SAR 
cm dS m–1 

25ºC % 

Pediment-Terrace 3/LN-1/Typic Natrixeralf 

Ap 0-22 8.3 8.08 0.82 17.0 30.6 31.3 38.1 Clay loam 16.8 
Btn 22-40 8.3 3.72 0.85 17.0 37.9 29.3 32.8 Clay loam 11.2 
Btnk 40-110 8.6 2.41 0.61 30.0 34.3 33.2 32.6 Clay loam 4.6 
2C (lutite) > 110 --- ---  --- ---  --- --- --- 

Pediment-Terrace 2/LO-21/Calcic Haploxerept 

A 0-23 8.2 2.19 1.48 24.0 19.7 27.6 52.6 Clay loam 3.6 
Bwk 23-74 8.3 8.02 0.59 31.0 26.7 34.0 39.3 Loam 18.2 
2Bwk 74-110 8.2 29.70 0.33 32.0 24.5 32.7 42.8 Loam 39.7 
2CB > 110 --- ---  --- ---  --- --- --- 

Pediment-Terrace 1/LO-7/Calcic Haploxerept 

Ap 0-27 8.7 2.05 1.34 22.2 49.5 28.3 22.2 Loam 5.3 
Bwkg 27-93 9.1 2.17 0.57 25.5 52.9 21.6 25.5 Silt loam 6.9 
2C (lutite)           

High slope (40%)/LO-3/Xeric Torriorthent 

A  0-32 8.2 2.23 2.87 30.0 21.3 43.2 35. 5 Loam 4.4 
2C (lutite) 32-53 --- ---  --- ---  --- --- --- 

Low slope (5%)/LO-6/Typic Xerorthent 

A1 0-20 8.5 1.49 0.92 30.0 21. 42.9 36.1 Loam 3.3 
A2 20-40 8.7 5.46 0.66 33.0 25.4 50.2 24.4 Silt loam 14.4 
Bwy 40-68 8.2 2.97 0.17 6.0 26.6 69.6 3.8 Silt loam 1.8 
2Cy (lutite) 68-80 --- ---  --- ---  --- --- --- 

Palustrine depression/FL-4/Sodic Calcixerept 

Ag 0-18 7.9 4.66 1.27 23.4 45.7 39.2 15.1 Clay 14.9 
Bwg1 18-35 8.3 5.39 2.47 16.9 55.4 38.1 6.5 Clay 19.6 
Bwg2 35-60 8.6 5.62 0.91 12.3 54.4 34.8 10.8 Clay 21.3 
Bwkg1 60-95 8.7 6.73 0.71 24.1 59.1 33.0 8.0 Clay 22.8 
Bwkg2 95-120 8.5 7.91 0.63 33.0 53.0 35.2 11.8 Clay 25.4 
2C 120-160 8.5 7.91 0.52 30.5 45.9 32.5 11.8 Clay 25.4 
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Table 5. Selected characteristics of the claystones and sandstones in the Sariñena 

lacustrine basin (Locations shown in Fig. 7). CCE: calcium carbonate equivalent; Gyp: 

gypsum; pHp: pH measured in the saturated soil paste; CEe: electrical conductivity of 

the saturated soil-paste extract; SAR: sodium absorption ratio. 

Sample 
Sand Silt Clay CCE Gyp 

pHp 
CEe 

SAR 

Clay minerals of oriented 
aggregates, % 

  %   dS m-1 
25 ºC Quartz Calcite Illite 

Lutites 

LAG-1 2.2 58.1 39.7 18.6 0 8.5 12.9 29.5 4 17 76 
LAG-2 4.1 52.0 43.9 24.1 0 9.1 8.1 33.3    
LAG-4 3.9 47.6 48.5 24.7 0 8.6 18.6 49.2    
CP-21 5.9 53.2 40.8 12.3 0 8.3 12.2 29.4 8 13 71 

Sandstones 

AR-1a 70.9 21.0 8.1 28.2 0       
AR-1b 54.4 39.0 6.7 32.8 0       
AR-2a 88.8 7.2 4.1 16.8 0       
AR-2b 79.9 12.2 8.0 15.5 14.3       
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Highlights 

 A genetic model is proposed for Sariñena Lake which involves piping 

processes. 

 Data from photointerpretation, LiDAR, soils, and geophysics were used for 

reconstructing lake origin and evolution. 

 A new type of lakes is proposed, generated by the removal of subsurface 

materials, including karst-related lakes and those formed by piping processes 
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