
Optimal role andposition assignment in
multi-robot freely reachable formations

Alejandro R. Mosteo a,b,1 Eduardo Montijano b,c Danilo Tardioli a,b

aCentro Universitario de la Defensa, ctra de Huesca s/n, 50090 Zaragoza, Spain

bInstituto de Investigación en Ingeniería de Aragón, c/ Mariano Esquillor 1, 50018 Zaragoza, Spain

cDepartamento de Ingeniería Informática y de Sistemas, Universidad de Zaragoza, Spain

Abstract

Many multi-robot problems require the achievement of formations as part of the overall mission. This work considers a scenario
in which unlabeled homogeneous robots must adopt a given formation pattern buildable anywhere in the environment. This
involves finding the relative pose of the formation in regard to the initial robot positions, understood as a translation and a
rotation; and the optimal assignment of the role of each robot within the formation. This paper provides an optimal solution for
the combined parameters of translation, rotation and assignment that minimizes total displacement. To achieve this objective
we first formally prove that the three decision variables are separable. Since computing the optimal assignment without
accounting for the rotation is a computationally expensive problem, we propose an algorithm that efficiently computes the
optimal roles together with the rotation. The algorithm is provably correct and finds the optimal solution in finite time. A
distributed implementation is also discussed. Simulation results characterize the complexity of our solution and demonstrate
its effectiveness.

Key words: multi-robot formations, task allocation, pose optimization, formation roles.

1 Introduction

The problem of a team of robots reaching and maintain-
ing a specific formation finds application in many multi-
robot tasks such as cooperative manipulation [1, 21], or
environmental surveillance [28]. Typically, this problem
is addressed by defining pairwise desired values between
the robots, and then designing control laws that drive
them towards these values [27]. In some cases the robots
use relative positions [7], bearing angles [11] or inter-
robot distances [26]. Other approaches include obstacle
avoidance [2] and vision sensors [9, 22]. A common as-
sumption in all these approaches is a predefined assign-
ment of the role of each robot in the formation, i.e., each
robot has a known “label” within the formation, which
defines the pairwise desired values with its neighbors
based on it. Depending on the initial conditions, this
can result in large displacements of all the robots or, in
some cases, even convergence to undesired equilibria, as

Email addresses: amosteo@unizar.es (Alejandro R.
Mosteo), emonti@unizar.es (Eduardo Montijano),
dantard@unizar.es (Danilo Tardioli).
1 Corresponding author: A.R. Mosteo. Tel. +34976739835.
Fax +34976739824.

observed in some distance-based solutions [19].
A possible way to overcome this limitation is to include
as a part of the problem the role assignment of each
robot within the formation, i.e., given a specific pattern
decide which robot should occupy which position on it.
When taking this route, many solutions in the literature
make the strong assumption that final coordinates for
the formation positions are known at the time of role al-
location: this particular optimization problem is known
as the optimal or linear assignment problem [25], where
the objective is, given a set of robots and a set of targets,
to find a bipartite matching that minimizes some cost
function, e.g., total displacement. This well-known clas-
sical problem can be centrally solved using, for example,
the Hungarian [20] or simplex [8] methods. Since this
problem naturally appears in many robotic contexts, it
has been exhaustively analyzed from a general multi-
robot task allocation perspective [13, 18, 29] and, more
specifically, in formation-oriented works aiming at rele-
vant bottlenecks in the role allocation like communica-
tions and scalability [3, 24,33,35].
Lifting the assumptions in the previous examples, known
roles and known final positions, gives rise to a more gen-
eral formulation, which our work studies. There are prac-

Preprint submitted to Automatica June 23, 2017

tical advantages to this approach, that involves consid-
ering the computation of the target positions and the
role assignments together in the formation problem. The
joint computation can lead to overall smaller displace-
ments of the robots, reducing, e.g., total fuel consump-
tion, which is useful in any domain where the formation
is not fixed within the global frame [32]. In addition, the
solution of the joint problem implicitly satisfies prox-
imity to the final formation, which in a distance-based
context can increase the chances of convergence to the
desired equilibrium. On the other hand, the joint prob-
lem poses a non-linear optimization problem with a non-
trivial solution, because all the variables are intrinsically
related. To overcome these issues, partial optimal solu-
tions are computed in [15], provided one of the variables
is fixed. These results are used afterwards to propose
different suboptimal iterative algorithms for the remain-
ing variables. The solution in [34] guarantees a consis-
tent control law while using a market-based algorithm
to assign formation roles to agents. This work makes no
claims on the optimality of the assignment, only ensur-
ing its soundness in regard to the absence of inconsistent
allocations. Another solution is presented in [16], where
optimality is sacrificed by using a two-step approach in
which the formation translation and rotation are found
by consensus and role allocations are corrected during
an on-line phase. Inversely, [10] starts from a given as-
signment for a previous formation to find with convex
optimization the optimal translation, rotation and scale
for a new formation. The previous assignment is kept for
the formation transition and hence the solution will be
typically suboptimal unless precisely the same assign-
ment were optimal for both formations.

The main contribution of this paper is an exact and
provably correct solution able to find all the optimal
parameters in finite time for the problem of simultane-
ous role assignment and formation placement. In order
to do so, we first demonstrate that the variables to op-
timize (translation, rotation, and role assignment) can
be computed separately. Then, since the computation
of the roles results in a quadratic assignment problem,
computationally intractable, our second contribution is
an algorithm that exploits complex-number properties
of our model to efficiently compute the optimal roles
and rotation simultaneously. Our third contribution is
a distributed implementation of such algorithm. Taken
together, these results provide a complete and efficient
solution to the problem being addressed. A preliminary
version of this paper was presented in [23]. This work ex-
tends our previous results to account for rotations in the
formation, which considerably increase the complexity
of the problem.

Our work provides a solution prior to the motion phase
and relies on properties of the squared L2 norm. Hence,
it is optimal for holonomous robots and can be useful
to other motion models for which this norm is a good
approximation. Finally, any problem that requires an
initial matching of roles can also benefit by using it as

a generic allocation algorithm, such as control laws or
motion plans that optimize the action [17,24,30] during
the motion phase.
The rest of the paper is organized as follows: Section 2
formally defines the problem. A mathematical decom-
position to find the optimal solution is described in Sec-
tion 3. An efficient algorithm using a recursive search is
described in Section 4. Section 5 provides a distributed
implementation of the algorithm. Empirical evaluation
with simulations is provided in Section 6. Finally, the
conclusions of the work are given in Section 7.

2 Problem Definition

Let us consider a team of N homogeneous robots, V =
{1, . . . , N}, moving on the plane. The position of robot
i is denoted by pi ∈ R2, and p = [pT1 , . . . ,p

T
N]T ∈

R2N×1 denotes the concatenation of all the positions.
The objective of the team is to self-organize, distribut-
ing themselves in a known specific formation pattern,
which can be described by a set of points, bj , and b =
[bT1 , . . . ,b

T
N]T . Without loss of generality, the pattern is

defined in such a way that

b̄ =
N∑
k=1

bk = 02, (1)

which can be accomplished simply by shifting the co-
ordinates of the different bj by their original centroid.
We assume that there are no restrictions about the role
of the different robots in the formation, or about where
it is achieved in the environment. However, we assume
that a limited amount of energy is available, and thus
the formation should be achieved minimizing the total
distance covered by the whole team of robots in order to
reduce the total fuel consumption.
In this regard, denote by q = [qT1 , . . . ,q

T
N]T a particular

realization of the pattern, expressed as a function of b
with the application of a translation, q̄, and a rotation,
ψ, so that

q = 1N ⊗ q̄ + (IN ⊗Rψ) b (2)

with

Rψ =

[
cosψ − sinψ

sinψ cosψ

]
a rotation matrix, IN the identity matrix of dimension
N , 1N a vector with all its components equal to one and
the operator ⊗ used to describe the Kronecker product.
In addition, in order to identify which robot takes which
role within the formation, we define the set of assign-
ment variables xij , i, j ∈ {1, . . . , N}. As it is standard
in assignment problems, xij = 1 denotes that robot i
assumes the role j within the formation, whereas other-
wise xij = 0. Since each robot can only be assigned one

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

role and there cannot be two robots with the same role,

N∑
j=1

xij =
N∑
i=1

xij = 1 and xij ∈ {0, 1} (3)

for all i, j ∈ {1, . . . , N}. The assignment variables can
also be arranged in a matrix, X = [xij]. When all the
constraints in (3) are satisfied, the matrix X is a permu-
tation and, as such, X−1 = XT .
Finally, given a formation, we consider that the energy
(cost) required to move robot ith to the jth position
in the formation is given by the squared distance the
robots need to move to reach that point, i.e., ‖pi−qj‖22.
Therefore, the goal of the paper is to find the translation,
q̄, rotation, ψ, and role assignment,X, that result in the
minimum total displacement of the whole team of robots.
This can be presented as an optimization problem of the
form

minimize
X,q̄,ψ

N∑
i=1

N∑
j=1

xij‖pi − qj‖22,

subject to (3).

(4)

This formulation differs from traditional task assign-
ment problems in that, due to the new decision variables
qj and ψ, individual robot costs cannot be precomputed.
This sets the problem apart from the regular instanta-
neous optimal assignment problem [13], requiring a new
analysis for an optimal and efficient algorithm. It also
differs from typical formation control strategies in that
robots do not know a priori specific desired pairwise val-
ues, since they are dependent on the assignment.
Remark 2.1 The cost function (4) implicitly assumes
that the agents can move from their positions, pi, to any
possible point in the environment following a straight line,
i.e., single integrator dynamics. For more complex mo-
tion models, if the cost for the motion can be expressed
as a linear function of the distance, γ‖pi − qj‖22, with γ
any positive constant, the solution discussed in this paper
can still be applied with optimality guarantees. Finally,
for those dynamics which do not allow such form, our
algorithm can still be used as an initial solution with rel-
atively low cost that can be refined in a second stage with
any of the several existing planning algorithms for these
dynamics, e.g., [17,30].

3 Fully Decoupled Equivalent Problem

This section presents a decomposition of the problem
such that the three optimization variables in eq. (4) can
be solved independently. This is a case of constrained op-
timization over X and unconstrained optimization over
q̄ and ψ (with the implicit understanding that ψ ∈
[0 . . . 2π)). Let us denote by f(q̄, ψ,X) the cost function
to minimize; this function can be expressed in vectorial
form by

f(q̄, ψ,X) = pTp + qTq− 2pT (X⊗ I2)q. (5)

Our first result demonstrates that the optimal transla-
tion of the formation is always the same, independently
of the assignment or the rotation.
Theorem 3.1 For any rotation ψ ∈ [0, 2π) and any as-
signment matrix, X, that satisfies the constraints in (3),
the optimal translation of the formation, q, remains con-
stant and equal to the centroid of the robot positions,

q̄ =

∑N
i=1 pi
N

= p̄. (6)

Proof: Let us consider a generic assignment matrix, X
such that it satisfies all the constraints associated to
the assignment variables and a particular rotation ψ.
Substituting q by (2),

f(q̄, ψ,X) =

pTp +N q̄T q̄ + 2bT (IN ⊗Rψ)T (1N ⊗ q̄)+

bTb− 2

(
N∑
i=1

pTi

)
q̄− 2pT (X⊗Rψ)b. (7)

Since p and b are constant values, independent of the
optimization variables, the terms pTp and bTb can be
removed from the cost. Additionally, using (1),

2bT (IN ⊗Rψ)T (1N ⊗ q̄) = 2q̄TRψ

N∑
k=1

bk = 02. (8)

Therefore, the minimization of f(q̄, ψ,X) is equivalent
to the minimization of

g(q̄, ψ,X) = N q̄T q̄− 2
(∑N

i=1 pTi

)
q̄− 2pT (X⊗Rψ)b. (9)

The partial derivative of (9) with respect to q̄ is equal to

∂g(q̄, ψ,X)

∂q̄
= 2N q̄− 2

N∑
i=1

pi, (10)

which does not depend on X or ψ. Since q̄ is a free vari-
able, we can find the optimal value making the derivative
zero, which yields (6). �
The theorem shows the independence of q̄ from the other
two optimization variables. The rotation and assignment
parameters are, however, interconnected in a way that
precludes such isolated optimization. Nevertheless, it is
still possible to decouple both variables working with (9).
Let us define the variables αij and βij ,

αij = pTi bj βij = pTi

[
0 −1

1 0

]
bj (11)

computed from the robot positions and the desired for-
mation pattern.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

Theorem 3.2 The optimal assignment, X∗, for the
problem (4) is the same as the one that solves the fol-
lowing optimization problem

maximize
X

 N∑
i=1

N∑
j=1

xijαij

2

+

 N∑
i=1

N∑
j=1

xijβij

2

subject to (3).

(12)

Proof: Doing some algebraic manipulation in the last
term of the right hand side of expression (9)

pT (X⊗Rψ)b =
N∑
i=1

N∑
j=1

xij(p
T
i Rψbj) (13)

=
N∑
i=1

N∑
j=1

xij(αij cosψ + βij sinψ) (14)

=
N∑
i=1

N∑
j=1

xijMij cos(ψ − φij) (15)

where αij and βij are given in (11) and

Mij =
√
α2
ij + β2

ij φij = arctan(βij , αij). (16)

Noting that (15) represents a sum of sinusoids of a same
“frequency”, namely the unity, for any value of X, the
outcome is necessarily a new sinusoid of the same fre-
quency and modulus, M(X), with phase, φ(X), depen-
dent on the Mij and φij selected by X:

2
N∑
i=1

N∑
j=1

xijMij cos(ψ − φij) = M(X) cos(ψ − φ(X)). (17)

This way, recalling that this term is subtracting in (9),
the original optimal assignment is equivalent to the as-
signment that maximizes M(X).
A simple way to compute the sum of multiple trigono-
metric functions of the same frequency is by considering
their complex notation applying Euler’s formula. With
this representation we just need to sum the real and the
imaginary parts separately, and then transform back the
result into the trigonometric form. At this point is when
eq. (14) comes in handy, because it provides the complex
representation of (15), with the real part of the complex
defined by αij and the imaginary part by βij . Therefore,

M(X) =

 N∑
i=1

N∑
j=1

xijαij

2

+

 N∑
i=1

N∑
j=1

xijβij

2

, (18)

which shows that (12) finds the optimal assignment.
Consequently, the objective is to find the assignment
that maximizes the modulus of the complex number

given by the sum of subsets of αij and βij , which is pre-
cisely (12). �
The previous theorem demonstrates that the optimal as-
signment can be computed independently from the rota-
tion angle, ψ. OnceX∗ is available, the optimal rotation
angle is the one that makes the cosine equal to one, i.e.,
ψ∗ = φ(X∗), where

ψ∗ = φ(X∗) = − arctan


(∑N

i=1

∑N
j=1 x

∗
ijβij

)2

(∑N
i=1

∑N
j=1 x

∗
ijαij

)2

 . (19)

Remark 3.1 Although this decomposition shows the in-
dependence of the three decision variables, in practice the
optimal assignment computation is not trivial. Unfor-
tunately, (12) represents an NP-Hard quadratic assign-
ment problem [6], for which an efficient optimal solution
is unknown.
In the next section we propose an efficient solution us-
ing a recursive search approach that optimizes both the
rotation and the assignment simultaneously.

4 Optimal efficient solution

The presented formulation exhibits properties that en-
able the design of another optimal exact approach, at
the cost of solving several regular assignment problem
instances. This is achieved without depending on any
discretization parameter.

4.1 Algorithm explanation

The algorithm requires as inputs the robots and forma-
tion positions, p,b, to exactly solve particular instances
of the problem for a given rotation. The matrices α,β
from eq. (11) are used to obtain the optimal rotation for
a particular solution X. An initial solution is computed
in order to obtain an initial bound using the Hungarian
or simplex algorithms, for example for initial rotation
ψ = 0.
Next, increasingly small rotation sub-ranges are evalu-
ated in a recursive refinement fashion until the full rota-
tion space is explored, [0, 2π). Consider a particular sub-
range, [ψL, ψR], such that ψR − ψL < π. The algorithm
computes the optimal assignment for the two angle ex-
trema, namely XL and XR. The two solutions have two
costs, cL and cR, which are optimal for those two par-
ticular rotations. Conversely, given one assignment, the
optimal rotation and cost for that assignment can be
easily computed. These costs are denoted ML and MR,
and correspond to the amplitude in (18) for a particular
assignment.
If the optimal assignment is the same for both extrema,
XL = XR, then it also holds thatML = MR.Moreover,
for any angle within the range, we will prove that the
optimal assignment is the same, which means that there
is no further need to sub-divide that interval. If this value
improves the best known cost, then it becomes the new
bound and the optimal assignment is also updated.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

If the optimal assignment is different, XL 6= XR, we
compute the cosine with fixed period equal to 2π that
goes through the points (ψL, cL) and (ψR, cR) [4]. We
let MLR cos(ψ − φLR) be such cosine, with

MLR =

√
c2L + c2R − 2cLcR cos (ψR − ψL)

sin (ψR − ψL)
, (20)

φLR =
π

2
+ arctan

(
cR sinψL − cL sinψR
cR cosψL − cL cosψR

)
. (21)

If MLR is larger than the best known cost, then the
interval [ψL, ψR] is divided into two sub-intervals and
the procedure is repeated for both of them. Otherwise
the interval can be pruned out.
Once the solution space has been explored, the optimal
rotation ψ∗ is obtained with (19) from the optimal as-
signment X∗ and the algorithm is done.
This solution is detailed in Algorithm 1. The procedure
“SolveFor” stands for an instance of the Hungarian or
simplex for the given rotation, and “FitCosine” refers
to (20)-(21). The algorithm is presented in recursive form
(lines 2-4, 19-20) for simplicity and the reason for the
initial trisection (lines 2-4) is to ensure that ψR−ψL < π
for every interval.

Algorithm 1 Optimal X∗ and ψ∗

Inputs: p,b,α,β
//Obtain initial bound using Hungarian and (16)

1: X∗,M∗ ← SolveFor(ψ = 0)
//Start search

2: CheckRange(0, 2π/3)
3: CheckRange(2π/3, 4π/3)
4: CheckRange(4π/3, 2π)
5: ψ∗ ← ObtainFrom(X∗) using (19)
6: return X∗, ψ∗

7: procedure CheckRange(ψL, ψR)
8: {cL,ML,XL} ← SolveFor(ψ = ψL)
9: {cR,MR,XR} ← SolveFor(ψ = ψR)

10: M∗ ←Max(M∗,ML,MR)
// Update bound

11: if XL = XR then
12: if ML = M∗ then
13: X∗ ← XL

14: end if
15: else
16: {φLR,MLR} ← FitCosine(ψL, ψR, cL, cR)
17: if MLR > M∗ AND φLR ∈ [ψL, ψR] then
18: ψC ← (ψL + ψR) /2
19: CheckRange(ψL, ψC)
20: CheckRange(ψC , ψR)
21: end if
22: end if
23: end procedure

4.2 Implementation considerations
Some efficiency improvements have been omitted to
streamline the presentation. More precisely, the solv-

ings at lines 8, 9 are sometimes redundant, since the
solution for a particular ψ is evaluated more than once.
This deficiency is fixed by moving the computation to
the calling point (lines 19, 20). Also, the intrinsically
parallel nature of the algorithm suggests the generation
of more than two subranges for each refinement if more
computational units are available.
While a recursive implementation is conceptually sim-
pler, a priority queue with pending ranges can be used in-
stead in an iterative implementation. By ordering these
ranges by their potential best bound, MLR, we found
noticeable improvements in the algorithm efficiency.
4.3 Optimality and termination
We formally demonstrate now that Algorithm 1 finds
the optimal solution in finite time. The outline of this
demonstration is first to show that the cosine given
in (20) and (21) represents an upper bound of the cost
in the interval [ψL, ψR]. This allows us to discard any in-
terval for which the optimal assignment at both extrema
is the same. Then we show that intervals are not divided
an infinite number of times, meaning that the algorithm
will find the optimal solution in a finite amount of time.
Proposition 4.1 Let (ψL, cL) and (ψR, cR) be such that
ψL < ψR, ψR − ψL < π and cL and cR are the best cost
values obtained at ψL and ψR respectively via the optimal
assignments at those orientations. Then, the values of
the cosineMLR cos(ψ−φLR), with (20) and (21), in the
interval [ψL, ψR], represent an upper bound for the cosine
of the optimal assignments in those rotations.
Proof: We prove this result showing that any cosine fit-
ted with some value aboveMLR cos(ψ−φLR) in (ψL, ψR)
is not feasible, in the sense that the value of such cosine
in ψL (or ψR) is strictly greater than cL (or cR), which
cannot be possible due to the optimality of cL (or cR).
Choose any other cosine, with period equal to 2π, such
that there is at least some ψ ∈ (ψL, ψR) for which such
cosine has a greater value than the cosine defined us-
ing (20) and (21). Having the same period, the two
cosines will intersect at two angles, ψ1 and ψ2 = ψ1 +π.
Since these are continuous functions, one of the cosines
will be greater than the other in the interval (ψ1, ψ2)
and the other one in the intervals (0, ψ1) and (ψ2, 2π).
If one of such intersections is within [ψL, ψR] then the
new cosine will also have a greater value than cL at
ψL or than cR at ψR, which cannot occur. Otherwise
[ψL, ψR] ⊂ [ψ1, ψ2]. In such case, by continuity of the
cosines, if one point is over the cosine defined by (20)
and (21), then all the points will be above, again violat-
ing the optimality of cL and cR at ψL and ψR. Therefore,
we conclude that the cosine defined by (20) and (21) pro-
vides an upper bound for the cost of the optimization
problem in the interval [ψL, ψR]. �
The next corollary is a direct implication of the previous
proposition:
Corollary 4.1 Given two rotations, ψL < ψR,
with X∗(ψL) = X∗(ψR) and ψR − ψL < π, then
∀ψM ∈ [ψL · · ·ψR] =⇒ X∗(ψM) = X∗(ψL).

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

Remark 4.1 These two results show that the algorithm
will always find the optimal solution X∗. When we prune
an interval because both extrema have the same assign-
ment, we can assert that there will not be a different op-
timal assignment in between them. Also, when the maxi-
mum of the bound cosine is outside the interval, the max-
imum value of the problem is achieved at the maximum
between cL and cR, and since the optimal assignment at
this value is already computed, there is no need for fur-
ther exploration of such interval. Therefore, whenever an
interval is pruned the optimal solution is not contained
in that interval.
The second result shows that the algorithm is not divid-
ing an infinite number of times a given interval.
Proposition 4.2 Algorithm 1 terminates in finite time.
Proof: Assume in the worst case that the exploration of
intervals is performed up to the point in which the in-
terval contains only two optimal assignments, the ones
obtained for ψL and ψR. If the interval is divided in
two again, one of the two halves will be discarded, as
necessarily both extrema will have the same optimal as-
signment. Regarding the other half, the cost obtained
at point (ψL + ψR)/2 will be strictly smaller than the
value of the upper bound cosine at that point, as other-
wise the two optimal assignments would have to be, as
proved, the same.
We need to show now that this division of the interval
in two does not occur infinitely. For simplicity in the
notation, we perform this analysis considering the in-
terval between ψL and ψR (instead of ψL or ψR and
(ψL + ψR)/2) and we denote ψLR = ψR − ψL. We an-
alyze now how the value of MLR varies by reducing cL.
A symmetric analysis can be applied fixing cL and de-
creasing cR, reaching the same conclusions. The partial
derivatives of (20) and (21) with respect to cL are

∂MLR

∂cL
=

2cL − 2cR cos(ψLR)

sin2(ψLR)MLR

, (22)

∂φLR
∂cL

= −cR sin(ψLR) < 0. (23)

Since the denominator of (22) is always positive, we
only need to analyze what happens with the numera-
tor. If cL = cR cos(ψLR), then MLR = cR, and thus,
φLR = ψR. For smaller values of cL, (22) becomes neg-
ative, which means that at this point MLR increases.
However, noting that (23) is always negative, the point
where MLR is achieved, φLR must be strictly greater
than ψR and then the interval will be discarded because
φLR 6∈ [ψL, ψR].
On the other hand, if cL > cR cos(ψLR) then eq. (22)
is positive, which means that in this case MLR is an
increasing function with respect to cL. Therefore, for
smaller values of cL, such that they are greater than
cR cos(ψLR),MLR will be decreased. In this case, due to
the continuity of the optimal value over ψ, as ψLR tends
to zero, the values cL and cR approach to each other.

Thus,

lim
ψLR→0+

√
2c2L − 2c2L cosψLR

sinψLR
= cL.

We finally need to consider two scenarios, the first one
when cL < ML and the second one when cL = ML,
withML being the amplitude for the cosine given by the
optimal assignment at ψL. In the first case, since MLR

converges to cL, there exists some ε > 0 such that, for
an interval of length ε, MLR < ML ≤M∗,meaning that
MLR ≤M∗ and the interval is not split anymore.
In the second case, when cL = ML, denote ψM ∈
(ψL, ψR) as the angle in which the optimal assignment
changes from the one given in ψL to the one given in ψR.
There exists a finite number of divisions by two such
that ψM will not be contained in the left interval (the
one starting at ψL). When that happens both extrema
of the left interval will have the same optimal assign-
ment, thus terminating the exploration of this interval,
and the right interval will correspond to the first case,
showing as well a finite time termination. �
Remark 4.2 The recursive essence of the algorithm en-
ables that every subrange check be made by a different
computational unit. Hence, the simplest optimization is
to parallelize subrange checking with as many computa-
tional units as possible.

5 Distributed Implementation of theAlgorithm
In this section we outline the foundation for a fully dis-
tributed solution in case of limited communications [14].
Assume the team of robots is arranged in an undirected
connected graph, G, where the nodes represent the
robots, the edges represent direct communication links,
and Ni is the set of neighbors of the robot i. The goal is
to use distributed consensus algorithms to address the
different problems involved in the computation of the
optimal solution. Initially, robots know the formation
pattern b and only their location pi, which needs to be
expressed in a common reference frame for everybody.
This last requirement can be distributively achieved
using, e.g., [12].
We first discuss how to compute the translation, q̄, in
a distributed fashion. This computation can be done by
means of any existing distributed averaging algorithm,
e.g., [31], running a standard linear iteration of the form

q̄(n+ 1) = (W ⊗ Id)q̄(n), (24)

with W a doubly stochastic weight matrix com-
patible with the communication graph and q̄(n) =
(q̄T1 (n), . . . , q̄TN (n))T the vector with the estimation at
iteration n that all the robots have about the centroid
of their positions, initialized by q̄i(0) = pi. It is well
known [31] that the previous iteration converges to:

lim
n→∞

q̄(n) = 1N ⊗

(
1

N

∑
i∈V

pi

)
. (25)

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

Algorithm 1 can also be solved using only local commu-
nications. Note that the remaining issue to be solved in
a distributed fashion is the computation of the optimal
assignment for a particular rotation, ψ, and its associ-
ated cost, c; i.e., distributively compute SolveFor(ψ).
To do so, we propose to use a distributed simplex like
the one described in [5]. Given a particular rotation, ψ,
denote cij = Mij cos(ψ−φij), computed from (11), (16).
The distributed simplex algorithm defines a partition
P = {P[1], . . . ,P[N]} of the full problem columns so that
robot i initially only knows the columns relative to its
own costs for every task (cij for all j), plus a set of
artificial columns that form its initial lex-feasible basis,
BM , constructed using the big-M method.
Robots periodically broadcast to neighbors the columns
forming their current optimal basis, B[i], with their as-
sociated costs. After a communication round each robot
solves to optimality, using as starting basis its current
one, the subset simplex formed by the columns it is aware
of: its permanent set P[i], its current basis, B[i], and the
bases received in the last round, B[Ni]. By virtue of [5],
eventually all robots arrive at an optimal, same basis for
the complete problem, in this case the optimal assign-
ment for (17).
Now, given two angles, ψL and ψR, and their associated
optimal costs, cL and cR, computed using the previ-
ous procedure, the upper-bound cosine in (20), (21),
can be locally found by each robot. Therefore, all the
robots can locally decide the next interval to call in
CheckRange(), which will be the same for all of them
under the assumption of sharing the same reference
frame. By Proposition 4.1 and Proposition 4.2 we can
assert that eventually all the robots will reach the opti-
mal assignment and rotation.
Algorithm 2 shows a high-level implementation of the
whole approach. The lines in the algorithm beginning
with “||” account for the parts of the algorithm that are
run concurrently, whereas the lines with cited references
account for distributed computations, following the pro-
cedures described above.

Algorithm 2 Distributed Optimal q∗, X∗ and ψ∗ as
run by robot i
Inputs: pi,b,W, Common frame (e.g., [12])
1: || q∗ ← Find robots’ centroid (e.g., [31]).
2: || X∗, ψ∗ ← Algorithm 1 using DistSolveFor in-

stead of SolveFor
3: return q∗,X∗, ψ∗

4: procedure DistSolveFor(ψ)
5: Prepare local data cij∀j, ψ with (11), (16).
6: Solve Assignment (17) (e.g., [5]).
7: return c,M,X
8: end procedure

An alternative implementation without the global frame
requirement is also possible. Since the assignments com-
puted in Algorithm 1 consider a fixed value of ψ, if q̄

is precomputed by the robots, instead of (17) in Line 6
they could distributively solve a standard task assign-
ment based on the total distance. In this case only the
distance to the goal is required, and this can be com-
puted independently of each robot’s frame. The limita-
tion of this approach compared to the previous one is
that it requires to be run in two steps, one to compute q̄,
using e.g., [12], and another one to run the distributed
version of Algorithm 1.

6 Simulations
In this section we present empirical evaluations. Firstly,
an example instance is analyzed in detail to highlight the
concepts behind the algorithm. Then, exhaustive simu-
lations show the typical performance of the algorithm as
a function of the instance size.

6.1 Illustrative example
We use a small problem instance to enhance clarity
of presentation. This case is geometrically depicted in
Fig. 1, where the robots, desired formation and the
found final target positions can be seen, as well as the
optimal rotation and assignment.

X (distance units)
-14 -12 -10 -8 -6 -4 -2 0

Y
 (

di
st

an
ce

 u
ni

ts
)

-2

-1

0

1

2

Figure 1. A solution example with four robots. On the right,
centered on the origin, is the original desired final configu-
ration, with targets as ‘×’ markers. On the left, shown as
circles, are the robots at their current locations. The optimal
formation rotation and translation is shown by the x-shaped
references at the formation centroid, linked by a dashed line.
The optimal allocation between robots and the transformed
formation is depicted by solid lines.

Given that the optimal translation has been shown to be
computable in a first separate step, all figures that fol-
low have this translation already applied. Fig. 2 shows
the costs associated to each robot for some possible as-
signments and all rotations. The sinusoids predicted by
eq. (14) are clearly visible. The most/least convenient
rotation for each robot is at the valley/peak of its sinu-
soid. Since there are as many possible allocations as per-
mutations, for N=4 there are 24 possible assignments.
The final cost of the solution is the sum of the sinusoid
values at the optimal rotation abscissa.
The sum of individual robot sinusoids in each subplot
in Fig. 2 is another sinusoid representing the cost of
the whole assignment. These sinusoids (for all 24 assign-
ments) are shown in Fig. 3. All sinusoids have the same
period and offset (given by the constant costs in (7)),
meaning that the largest amplitude determines the opti-
mal assignment, independently of the optimal rotation,

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

0 Assignment #1

C
os

t

0

20

40

60

 Rotation (rads)
0 Assignment #2

0

20

40

60

0 Assignment #3
0

20

40

60

0 Assignment #4
0

20

40

60

Figure 2. Individual robot costs (solid lines) for 4 of the 24 possible assignments. The optimal rotation is marked by the vertical
dashed line. The sum of costs, giving the total assignment cost, is the dashed sinusoid. The optimal assignment, geometrically
depicted in Fig. 1, is #4 with rotation φ = 3.78 rads. The optimal rotation is found at the valley, typically nearby robots’
locally optimal rotations.

which can be found later at the valley of its sinusoid.
Consequently, the lower frontier of all assignments in
Fig. 3 gives the optimal assignment and cost for each
rotation angle.
A step-by-step insight into the algorithm operation is in
Fig. 4, which depicts the pruning progress for this par-
ticular instance. The numbered cosines identify the re-
cursion depth at which each range has been examined by
the refinement process. A cosine corresponds to an ac-
tual assignment when the solutions found at its bound-

Rotation (radians)
0 1 2 3 4 5 6

C
os

t (
di

st
an

ce
 u

ni
ts

)

0

10

20

30

40

50

60

70

Figure 3. All assignment costs and the optimal assignment.

Rotation (radians)
0 1 2 3 4 5 6

C
os

t (
di

st
an

ce
 u

ni
ts

)

-20

-10

0

10

20

30

1

1
1

2 2 2
22 2

3
3

3 3

Positively worse amplitude
Potentially better amplitude
Suboptimal assignment
Potentially optimal assignment
Optimal assignment and rotation

Figure 4. Recursive search view. Each checked range is la-
beled with its depth in the recursion process, starting and
ending at discontinuities. Ranges with potentially better so-
lutions must be split. The search ends for a range when its
locally optimal solution is known (blue lines) or when the
best potential amplitude is positively worse (red lines).

aries match (blue lines) or to a potential bound when
they differ (red/green lines).
Initial potential bounds (labeled with ‘1’) are clearly op-
timistic (besides being unfeasible, as the cost cannot be
negative). At the next recursion level, ‘2’, the optimal
solution is already found (‘×’ marker) albeit this is not
known until the complete rotation range is explored. At
depth ‘3’ the rotation space is exhausted and the algo-
rithm is done. In this particular example 13 sub-ranges
were considered (corresponding to each plotted cosine in
Fig. 4) and 8 Hungarian problem instances were solved
(one for each angle-split operation).

6.2 Simulation results

Batch simulations were run to characterize the typi-
cal execution cost of the algorithm. Since the costlier
operation is the solving of Hungarian instances, which
has complexity O(N3), the total count of instances
solved was one of the selected metrics. The number
of robots ranged from 4 to 128, with the limiting fac-
tor being the memory necessary to store the matrices
rather than computing time. Robots were always ran-
domly placed, whereas three formation scenarios were
considered (Fig. 5): random configurations which do
not contain symmetries, an abreast formation that con-
tains two symmetries, and a worst-case (from the point
of view of computational cost) circular configuration
which, having as many symmetries/optimal solutions
as targets, forces the finding of all of them during the
search. A hundred identically seeded instances were run
for each combination of team size and scenario.
Figure 6 (a) shows the amount of unique Hungarian
problem instances solved. The results show that the
search effort, measured in subranges evaluated, increases
in the worst case of maximum symmetries roughly lin-
early with the number of robots/tasks. Let us recall
that splitting a range (algorithm line 17) requires the
solving of one Hungarian instance at ψC .
Fig. 6 (b) shows the count of leaf nodes having a unique
solution found during the search. These leaves provide
a locally optimal assignment for a subrange and thus an
exact bound for the search, corresponding to line 13 of
the algorithm. It is clear that for the circular formation
at least as many leaves as symmetric solutions have to

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

X (units)
-12 -10 -8 -6 -4 -2 0 2

Y
 (

un
its

)

-6

-4

-2

0

2

4

6

X (units)
-14 -12 -10 -8 -6 -4 -2 0 2

Y
 (

un
its

)

-6

-4

-2

0

2

4

6

X (units)
-12 -10 -8 -6 -4 -2 0 2

Y
 (

un
its

)

-6

-4

-2

0

2

4

Figure 5. Example setups used in simulations: random, line and circle formations.

be found. However, the small number of leaves reached
during the search in the other cases is striking. The im-
plication is that the bounds found by the algorithm are
in practice very tight, which explains its quasi-linear per-
formance in terms of number of nodes to be explored.
Consequently, even if formations with many symmetries
are sought, it may be worth to slightly noisify them to
avoid the worst-case performance of the algorithm.
Fig. 6 (c) shows the maximum recursion depth reached
during algorithm execution, where a logarithmic trend is
observed. Since each recursion level splits its subranges
in two, creating a new Hungarian instance with cost
O(N3), we arrive at a complexity of O(2log2NN3) =
O(N4), consistent with the previous figures complexity
of N . Hence, the algorithm adds a worst-case linear cost
over the solving of a single optimal assignment problem.

7 Conclusion
This article has studied the problem of assigning for-
mation roles to robots when the formation is not con-
strained by translation or rotation, by minimizing the
sum of squared distances between each robot and its tar-
get position. By defining the formation restrictions with
a null centroid, we have been able to demonstrate that
the three decision parameters can be separated. The cen-
troid can be computed with a standard averaging pro-
cess, whereas the assignment can be obtained by solving
a quadratic maximization problem. The rotation is di-
rectly computable from the assignment afterwards using
our model. Since there are no known well-performing al-
gorithms for such maximization problems, we have ex-
ploited the complex-number properties of our formula-
tion to design an efficient algorithm that simultaneously
finds the assignment and rotation with a worst-case com-
plexity of O(N4) according to extensive simulations. We
have also described the distributed implementation of
this algorithm in a graph-like network.

Acknowledgements
This research has been supported by the projects
RoboChallenge (DPI2016-76676-R-AEI/FEDER-
UE) and Alerta (CUD2016-17).

References
[1] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus. Local

motion planning for collaborative multi-robot manipulation
of deformable objects. In IEEE International Conference on
Robotics and Automation, 2015.

[2] N. Ayanian and V. Kumar. Abstractions and controllers for
groups of robots in environments with obstacles. In IEEE
International Conference on Robotics and Automation, pages
3537 – 3542, May 2010.

[3] D. P. Bertsekas. The auction algorithm for assignment
and other network flow problems: A tutorial. Interfaces,
20(4):133–149, 1990.

[4] P. Bloomfield. Fourier analysis of time series: an
introduction. John Wiley & Sons, 2004.

[5] M. Burger, G. Notarstefano, F. Allgower, and F. Bullo. A
distributed simplex algorithm for degenerate linear programs
and multi-agent assignments. Automatica, 48(9):2298–2304,
2012.

[6] R. E. Burkard, E. Cela, P. M. Pardalos, and L. S.
Pitsoulis. The Quadratic Assignment Problem. Handbook of
Combinatorial Optimization. Kluwer Academic Publishers,
1998.

[7] J. Cortés. Global and robust formation-shape stabilization
of relative sensing networks. Automatica, 45(12):2754–2762,
Dec 2009.

[8] G. B. Dantzig, A. Orden, P. Wolfe, et al. The generalized
simplex method for minimizing a linear form under linear
inequality restraints. Pacific Journal of Mathematics,
5(2):183–195, 1955.

[9] A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and
C. J. Taylor. Vision based formation control of multiple
robots. IEEE Transactions on Robotics and Automation,
18(5):813–825, Oct 2002.

[10] J. C. Derenick and J. R. Spletzer. Convex optimization
strategies for coordinating large-scale robot formations.
IEEE Trans. on Robotics, 23(6):1252–1259, 2007.

[11] A. Franchi and P. R. Giordano. Decentralized control
of parallel rigid formations with direction constraints
and bearing measurements. In 51th IEEE International
Conference on Decision and Control, pages 5310–5317, Dec
2012.

[12] A. Gasparri and M. Franceschelli. Gossip-based centroid and
common reference frame estimation in multiagent systems.
IEEE Trans. on Robotics, 30(2):524–531, April 2014.

[13] B. P. Gerkey and M. J. Matarić. A formal analysis and
taxonomy of task allocation in multi-robot systems. The Int.
Journal of Robotics Research, 23(9):939–954, 2004.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

Robots
4 8 16 24 32 48 64 96 128

H
un

ga
ria

n
in

st
an

ce
s

so
lv

ed

10 1

10 2

10 3

Random

Line

Circle

f (x) = N

Robots
4 8 16 24 32 48 64 96 128

Le
av

es

10 1

10 2

Random

Line

Circle

f (x) = N

Robots
4 8 16 24 32 48 64 96 128

M
ax

im
um

 r
ec

ur
si

on
 d

ep
th

2

4

6

8

10

12

14

Random

Line

Circle

f (x) = log2 N

(a) Hungarian instances (b) Exact bounds (c) Recursivity depth

Figure 6. Simulation results. (a) Amount of Hungarian problem instances solved. A linear trend is shown for reference. The
performance is roughly linear in the worst-case circular formation. (b) Number of exact bounds found during search. Only
the worst-case scenario with maximal symmetries exhibits the linear trend. (c) Maximum recursivity depth reached during
algorithm execution. A logarithmic trend is shown for reference.

[14] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of Groups
of Mobile Autonomous Agents using Nearest Neighbor Rules.
IEEE Trans. on Automatic Control, 48(6):988–1001, June
2003.

[15] M. Ji, S. Azuma, and M. B. Egerstedt. Role-assignment in
multi-agent coordination. International Journal of Assistive
Robotics and Mechatronics, 7(1):32–40, March 2006.

[16] K. Kanjanawanishkul and A. Zell. Distributed role
assignment in multi-robot formation. In Intelligent
Autonomous Vehicles, volume 7, pages 103–108, 2010.

[17] S. Karaman and E. Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal of
Robotics Research, 30(7):846–894, 2011.

[18] G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive
taxonomy for multi-robot task allocation. The Int. Journal
of Robotics Research, 32(12):1495–1512, 2013.

[19] L. Krick, M. E. Broucke, and B. A. Francis. Stabilization of
infinitesimally rigid formations of multi-robot networks. In
IEEE Int. Conf. on Decision and Control, pages 477–482,
2008.

[20] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83–97,
1955.

[21] N. Michael, J. Fink, and V. Kumar. Cooperative
manipulation and transportation with aerial robots.
Autonomous Robots, 30(1):73–86, January 2011.

[22] E. Montijano, E. Cristofalo, D. Zhou, M. Schwager, and
C. Sagues. Vision-based distributed formation control
without an external positioning system. IEEE Trans. on
Robotics, 32(2):339–351, Apr 2016.

[23] E. Montijano and A. R. Mosteo. Efficient multi-robot
formations using distributed optimization. In IEEE 53th
Conference on Decision and Control, pages 6167–6172, 2014.

[24] D. Morgan, G. P. Subramanian, S-J. Chung, and F. Y.
Hadaegh. Swarm assignment and trajectory optimization
using variable-swarm, distributed auction assignment and
sequential convex programming. The Int. Journal of Robotics
Research, pages 1–25, 2016. Early access.

[25] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society for Industrial
and Applied Mathematics, 5(1):32–38, 1957.

[26] K-K Oh and H-S Ahn. Formation control of mobile
agents based on inter-agent distance dynamics. Automatica,
47(10):2306–2312, Oct 2011.

[27] K-K. Oh, M-C Park, and H-S. Ahn. A survey of multi-agent
formation control. Automatica, 53(3):424–440, March 2015.

[28] M. Schwager, B. Julian, M. Angermann, and D. Rus. Eyes in
the sky: Decentralized control for the deployment of robotic
camera networks. Proceedings of the IEEE, 99(9):1541–1561,
Sept 2011.

[29] S. L. Smith and F. Bullo. Target assignment for robotic
networks: Worst-case and stochastic performance in dense
environments. In 46th IEEE Conf. on Decision and Control,
pages 3585–3590. IEEE, 2007.

[30] I. Şucan and L. E. Kavraki. A sampling-based tree planner
for systems with complex dynamics. IEEE Transactions on
Robotics, 28(1):116–131, 2012.

[31] L. Xiao and S. Boyd. Fast Linear Iterations for Distributed
Averaging. Systems and Control Letters, 53:65–78, September
2004.

[32] M. Yim, W-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian. Modular self-reconfigurable
robot systems [grand challenges of robotics]. Robotics &
Automation Magazine, IEEE, 14(1):43–52, 2007.

[33] J. Yu, S. J. Chung, and P. G. Voulgaris. Target assignment
in robotic networks: Distance optimality guarantees and
hierarchical strategies. IEEE Trans. on Automatic Control,
60(2):327–341, Feb 2015.

[34] M. Zavlanos and G. J. Pappas. Distributed formation control
with permutation symmetries. In IEEE 46th Conference on
Decision and Control, pages 2894–2899, 2007.

[35] M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A distributed
auction algorithm for the assignment problem. In 47th IEEE
Conference on Decision and Control, pages 1212–1217, 2008.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Final version available at https://doi.org/10.1016/j.automatica.2017.03.040

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.automatica.2017.03.040

	Introduction
	Problem Definition
	Fully Decoupled Equivalent Problem
	Optimal efficient solution
	Algorithm explanation
	Implementation considerations
	Optimality and termination

	Distributed Implementation of the Algorithm
	Simulations
	Illustrative example
	Simulation results

	Conclusion
	References

