000075601 001__ 75601
000075601 005__ 20190709135457.0
000075601 0247_ $$2doi$$a10.1016/j.ijhydene.2016.11.152
000075601 0248_ $$2sideral$$a99003
000075601 037__ $$aART-2017-99003
000075601 041__ $$aeng
000075601 100__ $$0(orcid)0000-0001-8327-7256$$aLachén, J.$$uUniversidad de Zaragoza
000075601 245__ $$aIron oxide ores as carriers for the production of high purity hydrogen from biogas by steam–iron process
000075601 260__ $$c2017
000075601 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075601 5203_ $$aProduction of high purity hydrogen (<50 ppm CO) by steam–iron process (SIP) from a synthetic sweetened biogas has been investigated making use of a natural iron ore containing up to 81 wt% of hematite (Fe2O3) as oxygen carrier. The presence of a lab-made catalyst (NiAl2O4 with NiO excess above its stoichiometric composition) was required to carry out the significant transformation of mixtures of methane and carbon dioxide in hydrogen and carbon monoxide by methane dry reforming reaction. Three consecutive sub-stages have been identified along the reduction stage that comprise A) the combustion of CH4 by lattice oxygen of NiO and Fe2O3, B) catalyzed methane dry reforming and C) G–G equilibrium described by the Water-Gas-Shift reaction. Oxidation stages were carried out with steam completing the cycle. Oxidation temperature was always kept constant at 500 °C regardless of the temperature used in the previous reduction to minimize the gasification of eventual carbon deposits formed along the previous reduction stage. The presence of other oxides different from hematite in minor proportions (SiO2, Al2O3, CaO and MgO to name the most significant) confers it an increased thermal resistance against sintering respecting pure hematite at the expense of slowing down the reduction and oxidation rates. A “tailor made” hematite with additives (Al2O3 and CeO2) in minor proportions (2 wt%) has been used to stablish comparisons in performance between natural and synthetic iron oxides. It has been investigated the effect of the reduction temperature, the proportion of methane to carbon dioxide in the feed (CH4:CO2 ratio) and the number of repetitive redox cycles.
000075601 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-44350-R$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2014-067984$$9info:eu-repo/grantAgreement/ES/DGA-FSE/GREG
000075601 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075601 590__ $$a4.229$$b2017
000075601 591__ $$aCHEMISTRY, PHYSICAL$$b42 / 146 = 0.288$$c2017$$dQ2$$eT1
000075601 591__ $$aENERGY & FUELS$$b24 / 97 = 0.247$$c2017$$dQ1$$eT1
000075601 591__ $$aELECTROCHEMISTRY$$b8 / 28 = 0.286$$c2017$$dQ2$$eT1
000075601 592__ $$a1.116$$b2017
000075601 593__ $$aCondensed Matter Physics$$c2017$$dQ1
000075601 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000075601 593__ $$aFuel Technology$$c2017$$dQ1
000075601 593__ $$aRenewable Energy, Sustainability and the Environment$$c2017$$dQ2
000075601 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075601 700__ $$0(orcid)0000-0002-4220-105X$$aPlou, J.
000075601 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, P.
000075601 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000075601 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, J.A.$$uUniversidad de Zaragoza
000075601 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000075601 773__ $$g42, 19 (2017), 13607-13616$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000075601 8564_ $$s1459592$$uhttps://zaguan.unizar.es/record/75601/files/texto_completo.pdf$$yPostprint
000075601 8564_ $$s91993$$uhttps://zaguan.unizar.es/record/75601/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075601 909CO $$ooai:zaguan.unizar.es:75601$$particulos$$pdriver
000075601 951__ $$a2019-07-09-11:44:09
000075601 980__ $$aARTICLE