000075602 001__ 75602
000075602 005__ 20190709135457.0
000075602 0247_ $$2doi$$a10.1016/j.ijhydene.2016.12.112
000075602 0248_ $$2sideral$$a99004
000075602 037__ $$aART-2017-99004
000075602 041__ $$aeng
000075602 100__ $$0(orcid)0000-0002-1629-6083$$aCebollero, J.A.
000075602 245__ $$aCharacterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells
000075602 260__ $$c2017
000075602 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075602 5203_ $$aBy laser machining we have prepared thin and self-supported yttria stabilized zirconia (YSZ) electrolytes that can be used in electrolyte-supported solid oxide fuel cells for reducing the operation temperature. The membranes, which are supported by thicker areas of the same material, have an active area of ~20 µm in thickness and up to 8 mm in diameter. Buckling limits the maximum size of the thin areas to below 1 mm, the overall effective active area being formed by multiple thin areas bounded by ribs. Electron Backscattering Diffraction experiments determined that there are not significant strains inside the membranes and that the heat-affected zone is confined to a shallow layer of ~1–2 µm. The bending strength of the membranes decreases by ~26% as a result of the surface microcracking produced by the laser machining. The membranes have a roughness of ~2.5 µm and are coated by a layer of nanoparticles produced by the laser ablation. This coating and small roughness is not detrimental for the cathodic polarization of the cells. Conversely, the cathode polarization resistance decreases ~5% in the 650–850 °C temperature range.
000075602 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68078-R
000075602 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075602 590__ $$a4.229$$b2017
000075602 591__ $$aCHEMISTRY, PHYSICAL$$b42 / 146 = 0.288$$c2017$$dQ2$$eT1
000075602 591__ $$aENERGY & FUELS$$b24 / 97 = 0.247$$c2017$$dQ1$$eT1
000075602 591__ $$aELECTROCHEMISTRY$$b8 / 28 = 0.286$$c2017$$dQ2$$eT1
000075602 592__ $$a1.116$$b2017
000075602 593__ $$aCondensed Matter Physics$$c2017$$dQ1
000075602 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000075602 593__ $$aFuel Technology$$c2017$$dQ1
000075602 593__ $$aRenewable Energy, Sustainability and the Environment$$c2017$$dQ2
000075602 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075602 700__ $$0(orcid)0000-0003-4708-5577$$aLahoz, R.$$uUniversidad de Zaragoza
000075602 700__ $$0(orcid)0000-0002-7819-8956$$aLaguna-Bercero, M.A.$$uUniversidad de Zaragoza
000075602 700__ $$0(orcid)0000-0003-2242-6822$$aPeña, J.I.$$uUniversidad de Zaragoza
000075602 700__ $$0(orcid)0000-0002-0809-641X$$aLarrea, A.$$uUniversidad de Zaragoza
000075602 700__ $$0(orcid)0000-0001-9690-9064$$aOrera, V.M.$$uUniversidad de Zaragoza
000075602 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000075602 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000075602 773__ $$g42, 19 (2017), 13939-13948$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000075602 8564_ $$s407124$$uhttps://zaguan.unizar.es/record/75602/files/texto_completo.pdf$$yPostprint
000075602 8564_ $$s96147$$uhttps://zaguan.unizar.es/record/75602/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075602 909CO $$ooai:zaguan.unizar.es:75602$$particulos$$pdriver
000075602 951__ $$a2019-07-09-11:44:15
000075602 980__ $$aARTICLE