000075603 001__ 75603 000075603 005__ 20230216092006.0 000075603 0247_ $$2doi$$a10.1016/j.ijhydene.2016.12.124 000075603 0248_ $$2sideral$$a99006 000075603 037__ $$aART-2017-99006 000075603 041__ $$aeng 000075603 100__ $$aUgarte, P.$$uUniversidad de Zaragoza 000075603 245__ $$aDry reforming of biogas in fluidized bed: Process intensification 000075603 260__ $$c2017 000075603 5060_ $$aAccess copy available to the general public$$fUnrestricted 000075603 5203_ $$aBiogas is a renewable resource obtained mainly from the anaerobic fermentation of agro-industrial and anthropogenic residues. The production of hydrogen by dry reforming of methane represents a potential application for this renewable energy carrier. This could play a positive contribution towards meeting the challenge of providing a global supply of energetically sustainable and environmentally friendly energy. This work combines a catalytic reaction, a separation and the catalyst regeneration in a single reactor. To this end, a two zone fluidized bed reactor (TZFBR) with hydrogen selective membranes has been employed (TZFBR + MB). The operating conditions for the process of dry reforming of biogas have been optimized experimentally, both in TZFBR and TZFBR + MB. Several catalysts were prepared (Ni/Al2O3, Ni–Ce/Al2O3, Ni–Co/Al2O3), characterized and tested in reactions in both TZFBR and in TZFBR + MB. Finally, the influence of using oxygen or carbon dioxide as regenerating gases in the process has been studied. Experimental results show the feasibility of using CO2 for in situ catalyst regeneration, avoiding the potential problems associated with the use of O2. 000075603 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T05$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-44350-R 000075603 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000075603 590__ $$a4.229$$b2017 000075603 591__ $$aCHEMISTRY, PHYSICAL$$b42 / 146 = 0.288$$c2017$$dQ2$$eT1 000075603 591__ $$aENERGY & FUELS$$b24 / 97 = 0.247$$c2017$$dQ1$$eT1 000075603 591__ $$aELECTROCHEMISTRY$$b8 / 28 = 0.286$$c2017$$dQ2$$eT1 000075603 592__ $$a1.116$$b2017 000075603 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1 000075603 593__ $$aCondensed Matter Physics$$c2017$$dQ1 000075603 593__ $$aFuel Technology$$c2017$$dQ1 000075603 593__ $$aRenewable Energy, Sustainability and the Environment$$c2017$$dQ2 000075603 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000075603 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, P. 000075603 700__ $$0(orcid)0000-0002-7488-6196$$aLasobras, J. 000075603 700__ $$0(orcid)0000-0001-9022-2835$$aSoler, J.$$uUniversidad de Zaragoza 000075603 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, M.$$uUniversidad de Zaragoza 000075603 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza 000075603 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química 000075603 773__ $$g42, 19 (2017), 13589-13597$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199 000075603 8564_ $$s888598$$uhttps://zaguan.unizar.es/record/75603/files/texto_completo.pdf$$yPostprint 000075603 8564_ $$s93155$$uhttps://zaguan.unizar.es/record/75603/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000075603 909CO $$ooai:zaguan.unizar.es:75603$$particulos$$pdriver 000075603 951__ $$a2023-02-16-09:07:47 000075603 980__ $$aARTICLE