000075605 001__ 75605
000075605 005__ 20201130083153.0
000075605 0247_ $$2doi$$a10.1016/j.ijhydene.2017.02.123
000075605 0248_ $$2sideral$$a99008
000075605 037__ $$aART-2017-99008
000075605 041__ $$aeng
000075605 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, M.$$uUniversidad de Zaragoza
000075605 245__ $$aFuture applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to Gas-Oxycombustion power plants
000075605 260__ $$c2017
000075605 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075605 5203_ $$aPower to Gas (PtG) has appeared in the last years as a potential long-term energy storage solution, which converts hydrogen produced by renewable electricity surplus into synthetic methane. However, significant economic barriers slow down its massive deployment (e.g. operating hours, expensive investments). Within this framework, the PtG-Oxycombustion hybridization can palliate these issues by improving the use of resources and increasing the overall efficiency. In this study we assess the requirements for electrolysis, depending on the size of the oxycombustion plant, the fuel physical and chemical properties and the final application of the hybrid system. Most suitable heat demanding options to implement this PtG-Oxycombustion hybridization are district heating, industrial processes and small combined cycled power plants. The latter case is modelled and simulated in detail and thermally integrated. The global efficiency of this hybrid system increases from 56% to 68%, thanks to avoiding the requirement of an air separation unit and integrating up to 88% of the available heat from methanation in a LP steam cycle.
000075605 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075605 590__ $$a4.229$$b2017
000075605 591__ $$aCHEMISTRY, PHYSICAL$$b42 / 146 = 0.288$$c2017$$dQ2$$eT1
000075605 591__ $$aENERGY & FUELS$$b24 / 97 = 0.247$$c2017$$dQ1$$eT1
000075605 591__ $$aELECTROCHEMISTRY$$b8 / 28 = 0.286$$c2017$$dQ2$$eT1
000075605 592__ $$a1.116$$b2017
000075605 593__ $$aCondensed Matter Physics$$c2017$$dQ1
000075605 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000075605 593__ $$aFuel Technology$$c2017$$dQ1
000075605 593__ $$aRenewable Energy, Sustainability and the Environment$$c2017$$dQ2
000075605 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075605 700__ $$aKezibri, N.
000075605 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000075605 700__ $$aEspatolero, S.
000075605 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P.
000075605 700__ $$aBouallou, C.
000075605 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000075605 773__ $$g42, 19 (2017), 13625-13632$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000075605 8564_ $$s721514$$uhttps://zaguan.unizar.es/record/75605/files/texto_completo.pdf$$yPostprint
000075605 8564_ $$s69520$$uhttps://zaguan.unizar.es/record/75605/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075605 909CO $$ooai:zaguan.unizar.es:75605$$particulos$$pdriver
000075605 951__ $$a2020-11-30-07:56:43
000075605 980__ $$aARTICLE