000075607 001__ 75607
000075607 005__ 20191122145055.0
000075607 0247_ $$2doi$$a10.1016/j.combustflame.2017.10.001
000075607 0248_ $$2sideral$$a101846
000075607 037__ $$aART-2018-101846
000075607 041__ $$aeng
000075607 100__ $$0(orcid)0000-0002-4674-3614$$aAlexandrino, Katiuska$$uUniversidad de Zaragoza
000075607 245__ $$aAn experimental and modeling study of the ignition of dimethyl carbonate in shock tubes and rapid compression machine
000075607 260__ $$c2018
000075607 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075607 5203_ $$aIgnition delay times of dimethyl carbonate DMC were measured using low- and high-pressure shock tubes and in a rapid compression machine (RCM). In this way, the effect of fuel concentration (0.75% and 1.75%), pressure (2.0, 20, and 40 atm) and equivalence ratio (0.5, 1.0, 2.0) on ignition delay times was studied experimentally and computationally using a chemical kinetic model. Experiments cover the temperature range of 795–1585 K. Several models from the literature were used to perform simulations, thus their performances to predict the present experimental data was examined. Furthermore, the effect of the thermodynamic data of the CH3O(C[dbnd]O)¿ radical species and the fuel consumption reaction CH3O(C[dbnd]O)OCH3 ¿ CH3O(C[dbnd]O)¿ + CH3, on the simulations of the ignition delay times of DMC was analyzed using the different models. Reaction path and sensitivity analyses were carried out with a final recommended model to present an in-depth analysis of the oxidation of DMC under the different conditions studied. The final model uses AramcoMech 2.0 as the base mechanism and includes a DMC sub-mechanism available in the literature in which the reaction CH3O(C[dbnd]O)OCH3 ¿ CH3O(C[dbnd]O)¿ + CH3has been modified. Good agreement is observed between calculated and experimental data. The model was also validated using available experimental data from flow reactors and opposed flow diffusion and laminar premixed flame studies showing an overall good performance.
000075607 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2013-063049$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-65226$$9info:eu-repo/grantAgreement/ES/MINECO/EEBB-I-16-11445
000075607 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000075607 590__ $$a4.12$$b2018
000075607 591__ $$aENGINEERING, MECHANICAL$$b12 / 129 = 0.093$$c2018$$dQ1$$eT1
000075607 591__ $$aENGINEERING, CHEMICAL$$b23 / 138 = 0.167$$c2018$$dQ1$$eT1
000075607 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b10 / 88 = 0.114$$c2018$$dQ1$$eT1
000075607 591__ $$aTHERMODYNAMICS$$b6 / 60 = 0.1$$c2018$$dQ1$$eT1
000075607 591__ $$aENERGY & FUELS$$b30 / 103 = 0.291$$c2018$$dQ2$$eT1
000075607 592__ $$a1.29$$b2018
000075607 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000075607 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000075607 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000075607 593__ $$aFuel Technology$$c2018$$dQ1
000075607 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000075607 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075607 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, María U.$$uUniversidad de Zaragoza
000075607 700__ $$aCurran, Henry J.
000075607 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000075607 773__ $$g188 (2018), 212-226$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000075607 8564_ $$s4226487$$uhttps://zaguan.unizar.es/record/75607/files/texto_completo.pdf$$yPostprint
000075607 8564_ $$s20958$$uhttps://zaguan.unizar.es/record/75607/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075607 909CO $$ooai:zaguan.unizar.es:75607$$particulos$$pdriver
000075607 951__ $$a2019-11-22-14:45:44
000075607 980__ $$aARTICLE