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ABSTRACT 

The present work focuses on the development of a fast and cost effective method based on 

Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and 

detection of adulteration in milk. Two adulteration cases have been studied; a qualitative 

analysis for the discrimination between different milk blends and quantification of melamine 

in adulterated toddler milk powder. Principal Component Analysis (PCA) and Neural 

Networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate 

of 98% with a 100% of robustness. For the quantification of melamine, two methodologies 

have been developed; univariate analysis using CN emission band and multivariate calibration 

NN model obtaining correlation coefficient (R
2
) values of 0.982 and 0.999 respectively. The 

results of the use of LIBS technique coupled with chemometric analysis are discussed in 

terms of its potential use in the food industry to perform the quality control of this dairy 

product.  
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1. Introduction 

Milk due to its nutritional importance is among the most consumed food, containing the main 

ingredients to sustain life, especially in early stages such as childhood, where it represents the 

principal intake. In 2016, the world milk production reached 816 million tons per year where 

the European states have taken the lead among the major milk exporters with 19.2 million 

tons (Griffin, 2016). Consequently, there is a great economic importance of milk products and 

therefore, milk is one of the main targets of adulteration. The adulteration consists of the 

addition of any substance to the natural milk, which changes its composition and may occur in 

many different forms. The most common, in order of importance, is adding water to raw milk, 

mixing milk of different animal species, fat replacement and modification of the protein 

content by introducing an adulterant as melamine (C3H6N6). The addition of water has only 

economic and nutritional effects, and does not produce any health hazard. However, the 

mixture of milk from different animal origin can produce adverse allergic reaction and the 

addition of melamine to increase the protein content causes serious health problems such as 

kidney disorder and even death of the consumer (Pei, Tandon, Alldrick, Giorgi, Huang, & 

Yang, 2011). Thus, milk quality control benefits both consumer and dairy industry from the 

nutritional, economic and legal point of view. According to European laws, the origin of milk 

must be stated and labeled for its consumption or production of other dairy products (EU-

Comm, 2001). The main quality control procedure of milk and its derivatives include 

organoleptic analysis, such as appearance, taste and smell, compositional analysis (fats, solids 

and protein content), physical and chemical assays together with the analysis of adulterant and 

fraud detection. The principal analytical methods to carry out the control of adulteration are 

based on chromatographic techniques such as reversed phase high performance liquid 

chromatography (HPLC) (Tay, Fang, Chia, & Li, 2013), gas chromatography coupled to mass 
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spectrometry (GC-MS), (Rebechi, Vélez, Vaira, & Perotti, 2016), mid-infrared 

microspectroscopy (MIR- microspectroscopy) (Santos, Pereira-Filho, & Rodriguez-Saona, 

2013),  nuclear magnetic resonance (NMR), matrix assisted laser desorption/ionization time 

of flight (MALDI-TOF) (Garcia, Sanvido, Saraiva, Zacca, Cosso, & Eberlin, 2012) and 

Raman spectroscopy (Nieuwoudt, Holroyd, McGoverin, Simpson, & Williams, 2016). These 

techniques produce accurate results, however, the large amount of sample needed for analysis, 

the use of complex and voluminous equipment, time delays in providing the results and 

expensive consumables required, increase the economic and temporal cost of the analysis. 

Moreover, the milk adulteration with melamine is not easily identified in routine analysis 

because the non-protein nitrogen cannot be detected by usual procedures for protein 

determination (Cremers & Radziemski, 2013; Gottfried, Frank C, & Miziolek, 2009; 

Grégoire, Motto-Ros, Ma, Lei, Wang, Pelascini, et al., 2012). This leads to the need of 

developing methods that are simple, sensitive and reliable to perform such analyses with the 

possibility to be employed for an online analysis. LIBS technique has been a subject of 

research for the past few decades due to the advantages, it offers becoming a powerful 

analytical tool in different fields of application. LIBS analyses a sample by direct 

measurement of the emission of plasma generated by ablation of the sample, providing an 

immediate spectral fingerprint that is representative of its elemental composition (Cremers & 

Radziemski, 2013). Although there is a need in the food industry to improve quality and 

process controls, the application of LIBS technique in food control analysis has not been 

sufficiently explored and only few studies can be found in literature (Bilge, Boyacı, Eseller, 

Tamer, & Çakır, 2015; Bilge, Sezer, Eseller, Berberoglu, Topcu, & Boyaci, 2016; Bilge, 

Velioglu, Sezer, Eseller, & Boyaci, 2016; Mbesse Kongbonga, Ghalila, Onana, & Ben 

Lakhdar, 2014). The combination of LIBS with chemometric methods offers the possibility to 

be used in a fast, automatic and on-line manner as has already been demonstrated with 
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successful results for sample classification and quantification (Caceres, Moncayo, Rosales, de 

Villena, Alvira, & Bilmes, 2013; Curteanu & Cartwright, 2011; Huang, Kangas, & Rasco, 

2007; Moncayo, Manzoor, Navarro-Villoslada, & Caceres, 2015; Moncayo, Rosales, 

Izquierdo-Hornillos, Anzano, & Caceres, 2016; Torrecilla, Cámara, Fernández-Ruiz, Piera, & 

Caceres, 2008). Some authors have shown that the molecular LIBS signal is dependent on the 

molecular nature of the sample (Anzano, Casanova, Bermúdez, & Lasheras, 2006; Gregoire, 

Boudinet, Pelascini, Surma, Detalle, & Holl, 2011). Although there is a loss of molecular 

information in plasma, the intensities of C, H, N, and O lines and the C/H, C/O, and C/N 

intensity ratios have provided excellent results for the identification of many samples of 

organic nature (Lasheras, Bello-Gálvez, Rodríguez-Celis, & Anzano, 2011; Lucena, Doña, 

Tobaria, & Laserna, 2011; Marcos-Martinez, Ayala, Izquierdo-Hornillos, de Villena, & 

Caceres, 2011).  A wide study on the formation of CN fragments present in the plasma and its 

correlation with the carbon content of the sample is shown by Baudelet et al.(Baudelet, 

Boueri, Yu, Mao, Piscitelli, Mao, et al., 2007).  In the case of the milk analysis by LIBS, G. 

Bilge et al. (Bilge, Sezer, Eseller, Berberoglu, Topcu, & Boyaci, 2016) demonstrate that LIBS 

in combination with multivariate methods can be successfully used to discriminate between 

skimmed milk powders and whey powders, and to quantitatively determine the adulteration 

ratio of skimmed milk powder with sweet/acid whey powder.  

In this work, Laser Induced Breakdown Spectroscopy (LIBS) technique has been evaluated 

for the study of two different cases of adulteration practices in milk. As in the case of animal 

milk, the adulteration is done by mixing liquid animal milk of different origin and in 

powdered toddler’s milk by the addition of melamine, two different methodologies have been 

developed based on LIBS and NN combination to deal with such cases. Therefore, the aim of 

this study was improving the recognition capacity of extremely similar samples that have 

negligible physical and spectral differences between them. Firstly, a methodology combining 
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LIBS and NN has been developed to detect the adulteration by analyzing the mixtures of milk 

from different animal species (cow, goat and sheep) in different proportions. Secondly, the 

quantification of melamine in toddler milk powder samples was performed, particularly 

observing the CN band emission correlating it to adulteration ratios. Conventional univariate 

calibration curve and a multivariate NN quantification procedure have been compared.  

 

2. Materials and Methods 

2.1 Milk samples 

For the qualitative analysis, two type of samples were analyzed. Firstly, ten commercial pure 

semi-skimmed samples; four different commercial brands of cow milk, four of goat milk and 

two of sheep milk all purchased at local markets from Spain. The information about the 

studied samples including sample ID and respective commercial brand is shown in Table 1. 

Secondly, twelve milk samples were blended with fixed-volume percentages of different milk 

used as adulterants. These samples were prepared by mixing the respective pure milk with the 

percentages ranging from 25 to 75 % v/v of adulterating milks as detailed in Table 2 and 

agitating continuously using a magnetic stirrer for 15 minutes. For the quantitative analysis, 

commercial toddler powder milk was used and melamine was obtained from Sigma-Aldrich 

Company with 99% purity.  

 

<< Table 1>> 

<< Table 2>> 

 

 

2.2 Sample preparation  
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For the qualitative analysis, all samples were left to freeze for 24 hours and lyophilized for the 

next 24 hours, to remove their water content, obtaining powdered sample. For LIBS 

measurements, 250 mg of milk powder was compressed into compact pellet using a hydraulic 

press at 10 Ton/cm
2
. The thickness and diameter of the pellets were about 2 mm and 12 mm, 

respectively. The pellets were directly analyzed without further preparation. In the second 

adulteration case, quantification of melamine, a blank-value and five different mixtures of 1, 

2, 3, 4 and 6 % (w/w) concentrations were prepared. To validate the model three test samples 

(2, 4 and 5 %) were also produced independently.  To prepare each sample, 1 g of commercial 

toddler milk powder was homogenized in an agate mortar with the corresponding amount of 

melamine to ensure the uniform distribution and 250 mg of the mixture was taken and 

compressed to form a pellet as mentioned previously. Three replicates for all samples were 

prepared to provide statistic and improve the correctness, reproducibility and accuracy of the 

measurement. 

 

2.3 LIBS Set-up 

LIBS technique, experimental configuration and conditions used in this study have been 

previously described (Caceres, Moncayo, Rosales, de Villena, Alvira, & Bilmes, 2013). 

Herein, the parameters more relevant to the set-up have been given. LIBS measurements were 

obtained using a Q-switched Nd:YAG laser (Quantel, Brio model) operating at 1064 nm, with 

a pulse duration of 4 ns full width at half maximum (FWHM), 4 mm beam diameter and 0.6 

mrad divergence. Samples were placed over an X–Y–Z manual micro-metric positionator 

with 7.5 cm of travel at every coordinate. The laser beam was focused on the surface of the 

pellet with a 100 mm focal-distance lens, producing a spot of 170 µm in diameter. The plasma 

radiation was collected using an optical fiber with 200 µm aperture and 2 m long, coupled to a 

fused silica collimator with a focal distance of 8.7 mm and analyzed with spectrometer 
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AvaSpec from Avantes, covering the spectral interval between 190 and 450 nm (with spectral 

resolution of 0.1 nm). The laser pulse energy was fixed to 100 mJ and repetition rate was 1 

Hz. LIBS spectra were acquired with a delay of 2.5 µs after the laser pulse. The integration 

time was set to 20 ms (lowest possible).   

2.4 LIBS analysis 

All samples were measured at room conditions. In the qualitative analysis, for each sample, 

100 LIBS spectra were obtained where each spectrum was an average of 5 laser shots at the 

same position. To expose a fresh portion of the sample surface, the sample was moved by 0.3 

mm along a vertical straight line avoiding the areas altered by the previous shots using a 

micrometer stage. The total acquisition time was less than 10 min/sample taking into account 

the spectrometer integration time and the laser pulse repetition. In order to reduce spectral 

variations, all spectra were normalized by using the intensity value of the Ca II emission line 

at 393.37 nm. Once the normalization was done, all the spectra for each sample were 

compiled in a data set composed by 3648 rows and 100 columns, intensity value and number 

of spectra respectively. Only in the case of the C1, G1 and S1 samples, two data sets of 100 

spectra were obtained: the first one (training library) was used to calibrate the NN model, and 

the second data set (replicate library) was used to validate the model (Moncayo, Rosales, 

Izquierdo-Hornillos, Anzano, & Caceres, 2016). For the quantification analysis of melamine, 

three pellets for each concentration were prepared, 10 spectra for each pellet were recorded, 

where each spectrum was the average of five laser shots at a single position. Therefore, for 

each concentration a total 150 spectra were considered, which is comparable with the 

qualitative analysis. To build the calibration model six samples at different concentrations 

were contaminated ex profeso. Only on milk toddler brand was used to build and validate the 

model, however our system is adaptive and more brands can be introduced in further studies. 
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2.5. Wavelength range selection 

In order to improve the performance of NN classification model, a reduction in the number of 

variables was carefully done by selecting only several wavelength ranges encompass useful 

peaks observed in the spectra. This has previously demonstrated that the variable selection has 

advantages in providing an increment in the robustness of the models and a higher 

discrimination capability (Moncayo, Manzoor, Navarro-Villoslada, & Caceres, 2015; 

Moncayo, Rosales, Izquierdo-Hornillos, Anzano, & Caceres, 2016). Herein, nine wavelength 

ranges containing the emission lines from C (247.4- 248.4 nm), Mg (278.5 - 281.3 nm), Ca 

(314.7 - 320.1, 368.6 - 376.1,   389.49 - 401.2, 442.6 - 446.5 nm), Sr (405.5 - 409.0, 420.5 - 

423.4 nm) and CN (382.1 - 390.0 nm) were selected, reducing the variables from 3648 to 635. 

 

2.6 Data analysis  

In this work two chemometric methods were applied, Principal Component Analysis (PCA) 

and Neural Networks (NN). PCA was employed only as an exploratory data analysis to 

display the structure of the multivariate data. PCA provides useful plots by representing the 

first principal components (PCs), linear combination of original variables that retains the 

maximum amount of spectral variability. Therefore, PCA allows an easy visualization of the 

distribution of samples, the observation of anomalous spectra (outlier) and the reduction of 

variables. Although PCA by itself is not a classification method, a previous PCA analysis is 

always useful to give a general overview of the sampling space improving the analysis. 

Herein, using PCA provides a fast and simple way to visual and detect such outliers. The 

introduction of outlier spectra into the classification models go in detrimental of the 

classification ability of the model and therefore filtering the outliers by PCA is an effective 
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way to improve analysis. On the other hand, NN analysis has been applied in two independent 

ways. First for the classification of milk mixtures in a qualitative way and second in a 

quantitative approach for the quantification of melamine. In both cases, a multilayer 

perceptron, feedforward, supervised neural network was used, consisting of several neurons 

(information processing units) arranged in three layers (input, hidden and output) where each 

receives information from all of the neurons in the previous layer. The connections are 

controlled by weights able to modulate the output from the neuron before inputting its 

numerical content into a neuron in the next layer. The process that optimizes the weights, i.e., 

the training process was based on a backpropagation (BP) algorithm (Bishop, 1996). The 

main difference between both qualitative and quantitative approach is given by the type of 

target used (expected output of the NN). The target in the qualitative application is labelled 

with categorical values (dummy variable) from one to the total number of classes. In the 

melamine quantification, the target has a chemical meaning corresponding to a concentration 

and therefore the output value is a continuous number, not restricted to defined values but any 

infinite number in between. Moreover, in the case of qualitative analysis we used a scaled 

conjugate gradient backpropagation training function (SCG), whereas in the quantitative 

analysis we used a Bayesian regularization (BR) training function (MacKay, 1992; Møller, 

1993). A detailed description of the calculation process is provided in the literature 

(Moncayo, Manzoor, Ugidos, Navarro-Villoslada, & Caceres, 2014; Moncayo, Rosales, 

Izquierdo-Hornillos, Anzano, & Caceres, 2016). In this case, C1, G1, and S1 were selected to 

train the neural network model. As a part of the training process of the neural network, the 

dataset was randomly divided into two subsets: 80% in training and 20% in the self-validation 

of the estimated model. During the training process, C1, G1 and S1 were assigned as 1, 2 and 

3 respectively in the NN output layer. PCA and NN models were calculated using home-made 

software developed in Matlab (Mathworks, 2014b). The “spectral correlation” parameter 
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(equation 1), defined as the percentage of test spectra correctly classified, was assessed as 

model accuracy (Moncayo, Rosales, Izquierdo-Hornillos, Anzano, & Caceres, 2016). 

�� =
���

�
∑ �	
�
	
�     (Eq. 1) 

where δi is either 1 when a spectrum is classified correctly or 0 otherwise and N is the total 

number of spectra.  

To consider a milk sample correctly classified, the prediction of the model must match with 

the actual class by an arbitrary threshold of SC higher than 80% and less than 20% to the 

other classes, otherwise considered incorrectly classified. A milk sample was assigned as 

unclassified when the SC was less than 80% for all the three type of milks.  

A SC higher than 80% is consider as a quality control of our classification system. As far as 

we know, there is no methodology to estimate the threshold and therefore we consider 80% as 

suitable value for this kind of classification system. This threshold has already been used in 

our previous works (Moncayo, Manzoor, Navarro-Villoslada, & Caceres, 2015; Moncayo, 

Rosales, Izquierdo-Hornillos, Anzano, & Caceres, 2016). 

 

3. Results and Discussion 

As stated earlier, two separate adulteration tests were performed, one for qualitative milk 

mixtures detection and the other for quantitative analysis of melamine in adulterated toddler 

milk powder. 

3.1 Qualitative Analysis: Detection of milk mixtures  

Ten pure milk samples (four from cow and goat and two from sheep), and twelve mixtures 

between them as indicated by Table 1 & 2, were analyzed. The spectra were recorded within a 

range of 190 to 450 nm and a representative spectrum of each milk species is shown in Fig.1a. 
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The observed emission lines are identified using the spectroscopic information tabulated in 

NIST Atomic Spectral Database (US Department of Commerce, 2015). Emission lines from 

C, Ca, Mg, Sr, and molecular species such as CN and Swan carbon system, among others, are 

mainly present in the LIBS spectra. A visual comparison between the spectra reveals very 

similar composition, however, clear differences can be seen in the intensity of Sr emission 

line. In case of goat milk, an increase in the emission intensity can be observed, which can be 

attributed mainly to the food consumed and the metabolism of the animals. 

Fig. 1b shows the training spectra set (one hundred spectra for each type of milk) plotted 

according to the values of the PCA scores. It has been represented that the scores of the 

second PC against the first PC, accumulate 86.02% of the total variance. Each milk type 

(class) is shown with different color and shape for a better visualization. The confidence 

ellipses of each class were calculated statistically using SAISIR source code (Cordella & 

Bertrand, 2014), with α = 0.05.  Although the origin of the milk is different, the 

discrimination based on PCA is not clear; the LIBS spectra look similar and it is hard to 

distinguish by linear methods due to overlapping. For this purpose NN classification model 

was developed, where Fig. 1c shows the output results of the self-validation step of the 

training process for each type of milk. Although the spectra considered to calibrate the NN are 

the same as used in PCA model, it is clear to see that NN model, due to its ability to model 

complex non-linear input target relationships, is able to discriminate between types of milk 

outperforming PCA.  

<< Figure 1 a, b & c >> 

It has been demonstrated in several studies that NN outperforms other chemometric methods 

(Inakollu, Philip, Rai, Yueh, & Singh, 2009; Moncayo, Manzoor, Navarro-Villoslada, & 

Caceres, 2015; Shaffer, Rose-Pehrsson, & McGill, 1999). However, overfitting is very 
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common issue for NN and in order to ensure that the NN model is able to generalize, milk 

samples not included in the training process, were tested. The generalization ability 

demonstrates the performance of the model to classify new objects taking into account the 

possible overfitting. In our case, the generalization ability was evaluated testing pure milk 

samples (C1 - S2). Table 3 shows the classification results obtained. All samples were 

correctly classified ensuring a non-overfitted model. It is interesting to note that in spite of 

using only one milk brand for each animal origin for calibrating the NN model, different 

brands are correctly assigned to their class membership, showing the capacity of the NN 

model to generalize and obtain a high rate of correct classification (100 %) for all the pure 

milk samples. Once the NN model was validated, the adulteration test was performed by 

testing binary blended samples (M1 - M9) and ternary blends of milk samples (M10 - M12). 

The results of detection of adulteration are also shown in Table 3.  Binary adulterated milk 

samples M1 to M9 were not classified to any class of pure milk used in training and therefore 

were classified as “unknown” by the NN model, indicating the presence of adulteration. 

Similar results were obtained in case of ternary mixtures (M10 - M12), where all samples 

were also correctly classified as unknown. These results were very encouraging, as the 

adulterated samples were not assigned any class membership. Moreover, irrespective of the 

type (binary/ternary) and the proportions of mixing, NN model could clearly detect the 

adulterated milk. It important to note that none spectra used in the training has been used for 

any validation purposes. In general, the high spectral correlation demonstrates the high 

accuracy of the proposed methodology to discriminate and detect blended milk adulteration. 

A good quality control system must be able to detect any kind of milk mixture adulteration 

with a high accuracy but also it has to be able to correctly classify non adulterated sample 

even when those samples do not belong to the training data set. In here, we demonstrate that 

the developed NN model accomplished both premises. First, the 100% of correct 
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classification of pure milk samples reveals the high generalization ability of the model and the 

lack of overfitting. Secondly, the model is able to detect all the blended samples as 

adulterated, by not classifying to any pure sample that shows the robustness and capacity of 

NN to detect this type of adulteration. 

<< Table 3>> 

 

3.2 Quantitative Analysis: Adulteration with melamine  

A commercial toddler milk sample was adulterated with different amounts of melamine at 

concentrations between 1% and 6% to plot the calibration curve. The validation sets 

comprised of samples at concentrations of 2, 4 and 5%. 

For the quantification of melamine in the milk samples, CN band emissions were analyzed. 

Fig. 2a shows the CN spectral emission range of milk adulterated with melamine at different 

adulteration ratios where variation in the intensity can be seen. Considering the nature and 

composition of melamine (C3H6N6), an increase in the CN molecule signal with increasing 

concentrations of melamine was observed.  

For the quantification purpose, two calibration procedures were employed. Firstly, a 

conventional calibration curve was calculated by integrating the CN emission band in the 

spectral range between 382 – 389 nm. Fig. 2a shows the correlation between the integrated 

area and the nominal adulterated ratio. Each point represents the value averaged of 30 LIBS 

spectra (10 for each of the three replicates at the same adulteration percentage) and the error 

bars show the relative standard deviation (RSD) between the three measurements. Reference 

values have been represented in black squares whereas the test value are in blue circles. The 

regression coefficient value found was 0.982.   
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A multivariate prediction curve using NN (Fig. 2b) was also studied. For this purpose, the 

same wavelength ranges as in the qualitative analysis has been used as input to the NN model. 

In this case, an improvement in the correlation coefficient was found, obtaining a value of 

0.999 that shows perfect agreement between the actual and NN predicted concentration.  

<< Figure 2a & b >> 

To compare both methods (univariate and multivariate), the mean prediction error (MPE) was 

calculated following equation 2: (Cámara, Torrecilla, Caceres, Sánchez Mata, & Fernández-

Ruiz, 2010)  

 ��
 =
�

�
∑

|�����|

��

�
	
� × 100  (Eq. 2)  

Where N is the total number of spectra, ri the prediction output and yi the actual value. A 

MPE of 24% and 5% was obtained for the univariate and multivariate methods, respectively. 

Table 4 shows an overview of the quantification parameters, it is clear that the multivariate 

NN approach provided better results for the quantification of adulterated milk samples. 

<<Table 4>> 

Taken together, these results seem to indicate that NN is more accurate than the conventional 

univariate method. This can be attributed to the fact that NN is able to model complex non-

linear structure of the data. Although NN may be more difficult to implement than others 

standard chemometric methods because of its diversity of functions and architectures, the 

results obtained in this study demonstrate that LIBS combined with NN offers significant 

advantages in the quantitative analysis as well as for the classification purpose. 

 

4. Conclusions 
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Laser Induced Breakdown Spectroscopy (LIBS) technique has been evaluated to be applied 

for a real world application for a fast and robust control of adulteration of milk. Two different 

types of adulterations have been studied, including the binary/ternary blending of milk of 

different animal species and addition of melamine to toddler milk powder. The LIBS/NN 

combination allowed to distinguish clearly the blended milk from the pure milk as well as 

differentiating the pure milk samples with a 100% of correct classification in all cases. On the 

other hand, the quantification of melamine in toddler powder milk sample showed that the 

multivariate analysis by NN quantitative model produced better results than conventional 

calibration. Although the methodology requires further studies to increase the reliability and 

accuracy, the developed LIBS/NN methodology provided a sensitive and robust analysis to 

detect and quantify melamine in powder milk sample. It has been demonstrated that the 

emission band of the CN correlates to the molecular nature and concentration of melamine. 

The results demonstrate that LIBS/NN combination, supported by its speed of analysis, 

reduced cost, and ease of use has the potential to serve as a useful screening tool in the quality 

control of milk, both quantitatively and qualitatively.  
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Figure Captions 

Fig. 1. (a) Typical spectrum of (i) cow, (ii) sheep and (iii) goat. (b) PCA analysis of Cow, 

Sheep and Goat milk (c) NN outputs of the training samples 

Fig. 2.  (a) Spectral magnification on CN molecular band at different adulteration ratios and 

Conventional Calibration curve for melamine quantification by integration of the CN band (b) 

multivariate NN calibration model of adulterated milk powder  
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Table 1. Pure milk samples used in the study 

Animal Origin Sample ID Commercial Brand 

Cow 

C1 Hacendado 
C2 Lauki 

C3 Pascual 
C4 Asturiana 

Goat 

G1 Hacendado 
G2 Lauki 

G3 Puleva 

G4 Covap 

Sheep S1 Gaza 

S2 Lauki 
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Table 2. Samples composition of the adulterated milk in binary and ternary  

Sample ID Composition (% v/v) 

 C1 G1 S1 

M1 25 75 - 

M2 50 50 - 

M3 75 25 - 

M4 25 - 75 

M5 50 - 50 

M6 75 - 25 

M7 - 25 75 

M8 - 50 50 

M9 - 75 25 

M10 50 25 25 

M11 25 50 25 

M12 25 25 50 
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Table 3. Identification and robustness tests results for NN method 

 

 

  

 
Sample 

Predicted Group Membership (Spectral Correlation, %) 

 Cow 1 Goat 1 Sheep 1 Unknown Correctly 
Classified 

 C1 100 0 100 0 � 

Pure milk 

C2 85 0 0 15 � 

C3 90 0 0 10 � 

C4 94 2 2 2 � 

G1 0 100 0 0 � 

G2 0 100 0 0 � 

G3 0 100 0 0 � 

G4 0 96 2 2 � 

S1 0 1 100 1 � 

S2 0 2 96 2 � 

Binary 

mixtures 

M1 0 0 0 100 � 

M2 0 0 0 100 � 

M3 0 0 0 100 � 

M4 0 0 0 100 � 

M5 0 0 0 100 � 

M6 0 2 0 98 � 

M7 42 16 0 42 � 

M8 6 12 42 40 � 

M9 40 12 2 48 � 

Ternary 

mixtures 

M10 30 4 0 66 � 

M11 0 60 0 40 � 

M12 44 4 4 46 � 
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Table 4. Statistical Results of the quantification test for melamine adulteration by LIBS  

 Univariate method NN model 

Correlation coefficient, R2 0.982 0.999 

Mean prediction error, MPE (%) 24 5 

Standard deviation (%) 2.2 0.3 
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Highlights 

1. LIBS based methodology was developed to detect adulteration in animal milk.  

2. Pure and blended milk from different animal species were analyzed by LIBS-NN.  

3. Quantification of melamine by univariate calibration and multivariate NN model was done. 

4. CN band emission showed linear variation with melamine added. 

5. NN outperformed both in classification and quantitative analysis. 

 

 


