000075631 001__ 75631 000075631 005__ 20191212100703.0 000075631 0247_ $$2doi$$a10.1103/PhysRevA.97.023838 000075631 0248_ $$2sideral$$a104923 000075631 037__ $$aART-2018-104923 000075631 041__ $$aeng 000075631 100__ $$0(orcid)0000-0003-1740-2244$$aGil, J.J.$$uUniversidad de Zaragoza 000075631 245__ $$aPolarimetric purity and the concept of degree of polarization 000075631 260__ $$c2018 000075631 5060_ $$aAccess copy available to the general public$$fUnrestricted 000075631 5203_ $$aThe concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017)]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state R-p, (2) a middle state R-m given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru-3D, it is found that, in general, R-m exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component R-p. It is shown that the parameter P-3D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973)] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P-3D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed. 000075631 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2014-58303-P 000075631 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000075631 590__ $$a2.907$$b2018 000075631 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b13 / 36 = 0.361$$c2018$$dQ2$$eT2 000075631 591__ $$aOPTICS$$b28 / 95 = 0.295$$c2018$$dQ2$$eT1 000075631 592__ $$a1.268$$b2018 000075631 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ1 000075631 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000075631 700__ $$aNorrman, A. 000075631 700__ $$aFriberg, A.T. 000075631 700__ $$aSetala, T. 000075631 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000075631 773__ $$g97, 2 (2018), 023838 [4 pp]$$pPhys. rev., A$$tPhysical Review A$$x2469-9926 000075631 8564_ $$s179899$$uhttps://zaguan.unizar.es/record/75631/files/texto_completo.pdf$$yVersión publicada 000075631 8564_ $$s20442$$uhttps://zaguan.unizar.es/record/75631/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000075631 909CO $$ooai:zaguan.unizar.es:75631$$particulos$$pdriver 000075631 951__ $$a2019-12-12-10:05:33 000075631 980__ $$aARTICLE