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Abstract. Recent work on return properties of quantum walks (the quantum analogue of
random walks) has identified their generating functions of first returns as Schur functions.
This is connected with a representation of Schur functions in terms of the operators
governing the evolution of quantum walks, i.e. the unitary operators on Hilbert spaces.

In this paper we propose a generalization of Schur functions by extending the above
operator representation to arbitrary closed operators on Banach spaces. Such generalized
‘Schur functions’ meet the formal structure of first return generating functions, thus we
call them FR-functions. We derive some general properties of FR-functions, among them
a simple relation with an operator version of Stieltjes functions which generalizes the
renewal equation already known for random and quantum walks. We also prove that FR-
functions satisfy splitting properties which extend useful factorizations of Schur functions.

When specialized to self-adjoint operators on Hilbert spaces, we show that FR-functions
become Nevanlinna functions. This allows us to obtain properties of Nevanlinna functions
which, as far as we know, seem to be new. The FR-function structure leads to a new
operator representation of Nevanlinna functions in terms of self-adjoint operators, whose
spectral measures provide also new integral representations of such functions. This allows
us to characterize each Nevanlinna function by a measure on the real line, which we
refers to as ‘the measure of the Nevanlina function’. In contrast to standard operator and
integral representations of Nevanlinna functions, these new ones are exact analogues of
those already known for Schur functions. The above results are also the source of a very
simple ‘Schur algorithm’ for Nevanlinna functions based on interpolations at points on
the real line, which we refer to as the ‘Schur algorithm on the real line’.

The paper is completed with several applications of FR-functions to orthogonal poly-
nomials and random and quantum walks which illustrate their wide interest: an analogue
for orthogonal polynomials on the real line of the Khrushchev formula for orthogonal
polynomials on the unit circle, and the use of FR-functions to study recurrence in random
walks, quantum walks and open quantum walks. These applications provide numerous
explicit examples of FR-functions, clarifying the meaning of these functions –as first re-
turn generating functions– and their splittings –which become recurrence splitting rules.
They also show that these new tools, despite being extensions of very classical ones, play
an important role in the study of physical problems of a highly topical nature.
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1. Introduction

The analytic functions mapping the open unit disk into its closure are known as Schur
functions. These functions, as well as their matrix and operator valued versions, are cen-
tral objects in harmonic analysis, but their interest goes beyond this area, covering a wide
variety of applications such as linear system theory, electrical engineering, signal process-
ing, geophysics, stochastic processes, operator theory, interpolation problems, orthogonal
polynomials on the unit circle (OPUC) or quantum walks (QW).

Among the main and most fruitful features of these functions is their characterization
by a sequence of complex parameters –the Schur parameters– arising from the so called
Schur algorithm [61] (see [28] for the matrix valued case), which generates a sequence of
Schur functions –the Schur iterates– starting from the original one. The standard Schur
algorithm, based on the evaluation of the iterates at the origin, can be generalized to deal
with evaluation points arbitrarily chosen in the open unit disk, and then it is known under
the name of the Nevanlinna-Pick algorithm [54,55] (see [29] for the matrix valued case).

Schur functions are also characterized by an integral representation which follows from
the Riesz-Herglotz representation of Carathéodory functions [38,60] (see [16, Sect. I.4] for
the operator valued case), i.e. the analytic functions mapping the open unit disk into the
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closed right half-plane. This yields a one-to-one correspondence between Schur functions
and normalized measures on the unit circle, linking such functions to unitary operators via
spectral measures. This leads to a representation of Schur functions in terms of unitary
operators and orthogonal projections [15,25,37], which is connected to a known realization
as transfer/characteristic functions related to unitary colligations [17,51].

A further feature which adds value to Schur functions is the existence of factorization
properties related to certain compositions of linear systems or unitary operators. The
importance of these factorizations can be hardly summarized in a single paragraph. As
an example let us mention their key role in the invariant subspace problem of operator
theory [16, 51], in Wiener-Hopf methods and realizability in linear systems [12, 39], in a
recent OPUC revolution known as Khrushchev theory [44, 45, 65] (see [25] for the matrix-
valued case) or in the study of splitting rules for QW recurrence, see Section 9.

Some of these results can be generalized to the so called Nevanlinna functions, the
analogue of the Schur functions when the open unit disk is replaced by the open upper
half-plane. For instance, the linear fractional transformations between these two domains
have suggested Nevanlinna analogues of the Schur algorithm which use interpolation points
in the open upper half-plane, see [3, Chapter 3] and [4,6,30]. Nevertheless, these algorithms
are not as simple as that one for Schur functions.

This is in contrast with the simplicity of the standard Schur algorithm for Nevanlinna
functions of Stieltjes type, which uses a point in the boundary of the upper half-plane, the
point at infinity, as interpolation point, see [3, Chapter 3] and [5]. This suggests to explore
the possibility of taking the rest of such a boundary, i.e. the real line, as a natural place
for the interpolation points of a simple Schur algorithm for Nevanlinna functions. Among
other things, this would have the benefit of leading to a simple Nevanlinna version of the
Nevanlinna-Pick algorithm when chosing a different interpolation point in the real line at
each step.

Nevanlinna functions also have integral and operator representations, but in terms of
measures on the real line and self-adjoint operators instead of measures on the unit circle
and unitary operators, see [63, Chapter III], [16, Sect. I.4], [11, 13, 35, 36, 46, 52, 62] and
references therein. However, in contrast to the case of Schur functions, the integral repre-
sentations either are restricted to certain type of Nevanlinna functions or require additional
parameters, thus they do not yield a one-to-one correspondence between Nevanlinna func-
tions and measures. Besides, these integral and operator representations are qualitatively
different from those of Schur functions.

Mappings between the open unit disk and the open upper half-plane may be useful for
surmising results for Nevanlinna functions inspired by the case of Schur functions, but this
is not the end of the story. For instance, these transformations do not suggest the simplicity
of taking the point at infinity as interpolation point in a Schur algorithm for Nevanlinna
functions (concerning the differences beween the interpolation problems for Schur and
Nevanlinna functions, see [31]). Besides, such mappings have not been used to understand
the Nevanlinna version of factorizations already known for Schur functions. This also
holds for the Nevanlinna version of applications already developed for Schur functions.
By analogy with that case one should expect, for instance, applications of Nevanlinna
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functions to orthogonal polynomials on the real line (OPRL), as well as to symmetrizable
random walks (RW) –i.e., RW whose stochastic matrix can be made self-adjoint–, such as
those which are both irreducible and reversible [74, Chapter 6].

The previous discussion leads to the following natural questions:
● Is there any simple Schur algorithm for Nevanlinna functions based on interpola-
tions at points on the real line?

● Are there integral and operator representations of Nevanlinna functions which re-
semble those of Schur functions? Do they establish a one-to-one correspondence
between the set of all Nevanlinna functions and some set of measures?

● Do Nevanlinna functions satisfy any splitting properties that could be viewed as
an analogue of known factorizations of Schur functions?

● Do the previous ideas shed light on applications of Nevanlinna functions which
parallel those of Schur functions? In particular, do they have any interesting con-
sequence for the study of OPRL or RW?

Among the main results of this paper is the discovery of new properties of Nevanlinna
functions which answer affirmatively the above questions. We do not intend to state that
these new findings on Nevanlinna functions are, for any purpose, better than similar ones
already existing in the literature. However these new results are specially useful for the
applications to OPRL and RW described in Sections 7 and 8.

Answering the first question, we will see that there exists a very natural and surprisingly
simple Schur algorithm for Nevanlinna functions which uses interpolation points lying in
the real line instead of the interior of the upper half-plane. This shows once more that
the strategy of translating ideas from Schur to Nevanlinna functions by using Möbius
transformations does not exhaust all the possibilities, and does not even yield necessarily
the simplest answers. A single step of the alluded Schur algorithm looks like

f(z) → 1
z

f(z) − f(0) − f ′(0)z
f(z) − f(0)

for a Nevanlinna function f analytic at the origin. A real translation gives the version of
this algorithm for Nevanlinna functions analytic at other points on the real line, while the
matrix valued case only requires a slight modification which is similar to the one required for
matrix valued Schur functions, see (55) and Definition 5.3. Also, the analyticity condition
can be weakened to the existence of derivatives along normal directions to the real line.

We will also obtain new integral and operator representations of Nevanlinna functions
which are in perfect analogy with those already known for Schur functions, see Theorem 4.1.
In particular, we will find an integral representation without additional parameters which
characterizes each Nevanlinna function by a measure on the real line –much in the same
way as in the case of Schur functions and measures on the unit circle– which we call ‘the
measure of the Nevanlinna function’, see Theorem 4.1.(ii) and Definition 4.2. Explicitly,
the measure µ of a Nevanlinna function f is defined by the following identity for the
Stieltjes function of µ,

∫
dµ(t)
1 − zt = (1 − zf(z))−1. (1)
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This is the exact analogue of the known integral representation of Schur functions via
Carathéodory functions, except for the fact that now the measure is not necessarily nor-
malized by µ(R) = 1, but µ(R) ≤ 1. Actually, we will show that the integral representation
(1) establishes a one-to-one correspondence between Nevanlinna functions and measures
on the real line such that µ(R) ≤ 1. All these results remain true for matrix valued Nevan-
linna functions and measures, where 1 stands for the identity matrix of appropriate size
wherever necessary.

As for the new operator representations of Nevanlinna functions, they are given in terms
of self-adjoint operators and orthogonal projections in a way almost identical to the repre-
sentation of Schur functions by unitary operators given in [15,25,37], see Theorem 4.1.(iv).
Namely, we will prove that every Nevanlinna function can be expressed as

f(z) = −dz−1 + PT (1 − zQT )−1P,
T self-adjoint operator, d ≥ 0,
P rank 1 orthogonal projection, Q = 1 − P,

and viceversa. In the matrix valued case d becomes a non-negative definite matrix and
P is simply finite rank. The only quirk of the Nevanlinna case is the eventual presence
of additional terms proportional to −z−1, the only ones that cannot be reproduced by the
operator representation. This difference with respect to Schur functions is related to that
one in the normalization condition of the measure µ previously noticed. Actually, d = 0
exactly when µ(R) = 1 because in this case µ becomes a spectral measure for the self-
adjoint operator T , see Corollary 4.3. This is one of the interesting features of the integral
representation (1) since such spectral measures codify dynamical properties of random
systems described by the self-adjoint operator T [32,40,49,50,59] (see [2,15,18,19,37] for
the unitary case).

Regarding the splitting properties, it can be seen that certain factorizations of a unitary
operator yield similar factorizations of Schur functions generated by such an operator
[12, 17, 25, 51]. Analogously, we will show that a decomposition of a Nevanlinna function
into a sum of other ones follows from similar decompositions of the self-adjoint operator
giving the corresponding operator representation, see Theorem 6.1.(i) particularized to
self-adjoint operators. This can be considered as a Nevanlinna analogue of the alluded
factorizations of Schur functions.

The parallelism between these new results for Nevanlinna functions and those already
known for Schur functions opens the possibility of exporting to the Nevanlinna case the
applications of Schur functions previously described. For instance, as it is shown in [25],
Khrushchev formula [44, 45] (see also [65, Chapters 4 and 9]) –the cornerstone of OPUC
Khrushchev theory– can be understood as a factorization of Schur functions generated by
certain factorizations of the so called CMV matrices [21, 75] (see also [65, Chapter 4]),
unitary analogue of Jacobi matrices. Analogously, we will show that the decomposition
properties of Nevanlinna functions uncovered in the present work lead to a Khrushchev type
formula for OPRL –see Theorem 7.1– which should be the starting point of a Khrushchev
theory for OPRL. More precisely, this OPRL Khrushchev formula will be a consequence
of certain decompositions of the Jacobi matrix encoding the OPRL three term recurrence
relation.
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Besides, we will prove that the success of Schur functions in encrypting the recurrence
–i.e., the return properties– of QW [15, 20, 37] has a Nevanlinna counterpart: the recur-
rence of a symmetrizable RW is best codified by Nevanlinna functions associated with the
related self-adjoint operator, see Section 8 when applied to such a RW. Also, it will be
shown that the role of the factorization properties of Schur functions as splitting rules
for QW recurrence is paralleled by the splitting rules for RW recurrence generated by the
decomposition properties of Nevanlinna functions, see Theorem 8.3.(i) when applied to a
symmetrizable RW.

Actually, we will do more than this since we will prove that both, Schur and Nevanlinna
functions, are just a particular case of a much more general class of functions linked to
arbitrary closed operators and bounded projections on Banach spaces, see Definition 2.2.
The starting point for this generalization is the extension to arbitrary operators of the
representation of Schur functions in terms of unitaries uncovered in [15,25,37], giving rise
to the definition of what we will call first return functions –the name refers to the fact
that these functions have the formal structure of a generating function of first returns–,
in short FR-functions. More precisely, we will define an FR-function f by the operator
representation

f(z) ∶= PT (1 − zQT )−1P,
T closed operator,
P bounded projection, Q = 1 − P. (2)

On the one hand, FR-functions arise as an abstract generalization of the notion of
generating function of first returns, whose origin goes back to G. Pólya’s celebrated paper
on RW recurrence [56] (see also [33, 74]). Thus their study has a direct impact in the
analysis of recurrence in different dynamical systems, see Sections 8, 9 and 10. On the
other hand, FR-functions provide generalizations of transfer/characteristic functions [12,
16, 17, 39, 51] to unbounded situations –see Proposition 2.7 and subsequent comments–, a
fact which is behind new representations of Nevanlinna functions in terms of self-adjoint
operators and measures on the real line, see Theorem 4.1 and Corollary 4.3.

The interesting fact is that some properties already known in much more restricted
settings are satisfied by FR-functions in this general abstract context of operators on
Banach spaces, even in the absence of an inner product. For instance, we will see in
Theorem 2.5 that (1) generalizes to every FR-function (2) as

s(z) ∶= P (1 − zT )−1P = (1 − zf(z))−1,

where s is an operator version of the Stieltjes function of a measure, which formally plays
the role of a generating function of returns. This relation between generating functions
of returns and first returns also generalizes the well known renewal equation for RW, first
derived by G. Pólya in [56] (see also [33, Chapter XIII] and [74, Chapter 4]), as well as its
QW version which has been recently obtained [15,20,37].

Another example of the properties which hold for general FR-functions of operators on
Banach spaces are the factorizations and decompositions mentioned above in the unitary
and self-adjoint case respectively. We will prove that these splitting properties have a
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mere algebraic nature and are simply a consequence of similar splittings of the underlying
operator, regardless of any symmetry that the operator may have, see Theorem 6.1.

The extension of these results to the general setting of operators on Banach spaces is not
a mere exercise of abstraction, but it is motivated by the requirements of important appli-
cations. For instance, the stochastic matrix of a RW is connected to a self-adjoint operator
only in some situations –for instance, when the RW is irreducible and reversible [74, Chap-
ter 6]–, however every stochastic matrix defines an operator in a Banach space. Therefore,
the general results on FR-functions apply to every RW and not only to symmetrizable
ones. In particular, this allows us to prove that the splitting rules –including not only
decomposition, but also factorization rules– for RW recurrence constitute a completeley
general feature of RW, see Theorem 8.3.

Even more interesting is the possibility of applying the results on FR-functions to more
burning issues. The emergence of quantum information as one of the most promising scien-
tific developments for the practical implementation of quantum technologies has promted
the research on quantum systems in interaction with the macroscopic world to better repro-
duce realistic situations. Among these kind of systems are the so called quantum channels,
which have been recently used to build a version of QW in interaction with the enviro-
ment under the name of open QW (OQW) [9] (see also [10, 22–24, 47, 48, 64, 66–70]). The
evolution of such systems is governed by an operator on a Banach space rather than on a
Hilbert space. Hence, every result on general FR-functions may be applied to the study
of such open quantum systems. We will show that, as in the case of standard QW, the
recurrence properties of OQW –or more generally, iterated quantum channels– are codified
by FR-functions of the corresponding evolution operator. This not only makes possible
to perform calculations which are hard to tackle with other methods, but also allows us
to generalize to OQW results obtained for RW or QW recurrence, such as establishing a
renewal equation or developing splitting techniques for OQW recurrence, see Section 10.

Summarizing, this work is an attempt to extend tools and techniques of harmonic analy-
sis and operator theory already used with great success for the study of unitary operators,
OPUC and QW, to other contexts such as self-adjoint operators, OPRL, RW and OQW.
This requires the generalization of the notion of Schur function and its properties to ar-
bitrary operators on Banach spaces. As a byproduct, the specialization of these ideas to
self-adjoint operators on Hilbert spaces leads to results on Nevanlinna functions which, to
the best of our knowledge, seem not to have been noticed before.

The content of the paper is organized as follows: the rest of the introduction is devoted
to a summary on Schur functions and unitary operators –highlighting the results that we
wish to generalize– and also to some results on Schur complements for operators on Ba-
nach spaces which will be of interest for the analysis of FR-functions. The whole paper
revolves around the concept of FR-function as a generalization of the notion of Schur func-
tion. FR-functions for arbitrary operators on Banach spaces are introduced in Section 2,
which also includes some results on FR-functions, the main one being the generalization of
the renewal equation to this abstract setting. The special features of the self-adjoint case
are considered in Section 3, which links FR-functions of self-adjoint operators to Nevan-
linna functions. This relation is examined in more detail in Section 4, which provides
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different equivalent characterizations of Nevanlinna functions, among them integral and
operator representations which are in perfect analogy with those of Schur functions. The
FR-function approach leads to a Schur algorithm for Nevanlinna functions based on in-
terpolations at points on the real line, which we call the Schur algorithn on the real line.
This algorithm and its different generalizations are discussed in Section 5. The factoriza-
tion and decomposition formulas for FR-functions are derived in Section 6 from similar
splittings of the underlying operators. The application of such decomposition formulas to
Nevanlinna functions associated with Jacobi matrices leads to a Khrushchev formula for
OPRL, which is the aim of Section 7. Sections 8, 9 and 10 are devoted to the applica-
tions of FR-functions to the study of recurrence in RW, QW and OQW respectively. The
examples presented in these sections also provide many explicit examples of FR-functions
and illustrate some of their features, such as the splitting properties mentioned above.
Finally, Appendices A and B prove some technical results on Nevanlinna functions which
are needed for the development of the paper.

1.1. The unitary case - Schur functions.
Let us summarize some known connections between Schur functions and unitary oper-

ators whose origin lies in the study of QW, to better understand the kind of results we
wish to generalize. Quick references to scalar and matrix valued Schur functions which
stress the aspects that we need can be found in [65, Chapter 1] and [27, Sect. 1 and
3] respectively. The connection between Schur functions and unitary operators via QW
recurrence appears in [15, 25, 37]. For good references to QW, a notion first introduced
in [1], see [7,26,42,43]. Also, Section 9 provides a summary of QW recurrence which may
be useful to follow some of the ideas presented in this section.

Given any unitary operator U on a Hilbert space H , we can consider the QW driven
by U . If P is the orthogonal projection onto a closed subspace H0 and Q = 1 − P is the
projection onto H �

0 , the generating function of the first time return amplitudes to H0
is (up to multiplication by z) the function f with values in operators on H0 given by

f(z) = ∑
n≥0

znPU(QU)nP = PU(1 − zQU)−1P = P (U † − zQ)−1P. (3)

This function is obviously analytic on the unit disk
D ∶= {z ∈ C ∶ ∣z∣ < 1}.

Note that this region coincides with that one bounded by the unit circle
T ∶= {z ∈ C ∶ ∣z∣ = 1}

where the spectrum of a unitary lives.
We will refer to the first return generating function f in short as the FR-function

of the subspace H0 with respect to the unitary U .
We point out that other generating functions appear in connection with return properties

of QW. The generating function of the return amplitudes to H0 is given by
s(z) = ∑

n≥0
znPUnP = P (1 − zU)−1P, (4)
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which is again analytic on D. The spectral decomposition U = ∫ t dE(t) gives to this
generating function a special meaning since one has

s(z) = ∫
dµ(t)
1 − zt , µ = PEP. (5)

That is, s is the Stieltjes function of a measure µ suported on T, namely, the spectral
measure of H0 with respect to U . As in the case of f , the spectral measure µ and the
Stieltjes function s take values in operators on H0. In particular,

s(0) = µ(T) = 10 ∶= identity on H0.

Both generating functions, f and s, are related by the quantum renewal equation
[15, 20,37],

s(z)−1 = 10 − zf(z), z ∈ D, (6)
a quantum version of the renewal equation for classical random walks [33, Chapter XIII]
(see also [74, Chapter 4]). This allows us to connect f to the Carathéodory function F of
µ, defined by

F (z) ∶= ∫
t + z
t − z

dµ(t) = 2s†(z) − 10, s†(z) ∶= s(z)†,

leading to the identification of
f †(z) = z−1(F (z) − 10)(F (z) + 10)−1 (7)

as the Schur function of µ [65, Chapter 1] (see [27, Sect. 3] for the matrix-valued case).
As a consequence, besides its analyticity, the FR-function f has a remarkable contractivity
property in D,

∥f(z)∥ ≤ 1 for z ∈ D. (8)
This means that every FR-function related to a unitary operator is a Schur function.

The integral representation (5) of Stieltjes functions combined with (6) provides an
integral representation of Schur functions, thus of FR-functions for unitary operators,

f(z) = z−1 (10 − (∫
dµ(t)
1 − zt)

−1
) = (∫

t dµ(t)
1 − zt )(∫

dµ(t)
1 − zt)

−1
. (9)

In the case of a one-dimensional subspace H0, the FR-function is an analytic map
f ∶D→ D. According to the maximum modulus principle, there are two possibilities:

● f is degenerate: ∣f(z0)∣ = 1 for some z0 ∈ D, then f is a unimodular constant on D.
● f is non-degenerate: ∣f ∣ < 1 on D, i.e. f(D) ⊂ D.

In this scalar valued case f is characterized by a finite or infinite number of Schur param-
eters αn via the Schur algorithm [61] (see also [65, Chapter 1]),

f0(z) = f(z),
fn+1(z) = z−1Mαn(fn(z)), αn = fn(0), n ≥ 0,

(10)

where Mα is the Möbius transformation

Mα(z) =
z − α
1 − αz , ∣α∣ < 1. (11)
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This algorithm generates new Schur functions fn, the iterates of f , and it terminates if
some iterate fN is degenerate, i.e. if ∣αN ∣ = 1. Thus, the Schur parameters lie on D, except
for the last one, if any, which lies on T.

A canonical unitary operator can be associated with any scalar valued Schur function
f , namely, the operator in `2 defined by the CMV representation [21, 75] (see also [65,
Chapter 4]) of the multiplication operator h(z) ↦ zh(z) in L2

µ, where µ is the measure
on T associated with f . Geronimus theorem [34] (see also [65, Chapter 3]) implies that
the Schur parameters of f coincide with the Verblunsky coefficients which parametrize the
related CMV matrix. Thus, the Schur algorithm can be viewed as a procedure to extract
from a Schur function the parameters giving the corresponding canonical unitary operator.

The Schur algorithm also works for higher dimensional subspaces H0, which leads to
matrix valued Schur functions. Then, the Schur parameters αn are square matrices and the
scalar Möbius transformation must be changed by its matrix version [28] (see also [27, Sect.
1 and 3])

Mα(T ) = ρ−1
α†(T − α)(1 − α†T )−1ρα = ρα†(1 − Tα†)−1(T − α)ρ−1

α ,
∥α∥ < 1,
ρα = (1 − α†α)1/2.

(12)

The equivalence between the above two expressions follows from the identity ρ2
α†α = αρ2

α,
which implies that αρ−2

α = ρ−2
α†α. As in the scalar case, there are two possibilities:

● f is degenerate: ∥f(z0)∥ = 1 for some z0 ∈ D, then ∥f∥ = 1 on D (but now f is not
necessarily constant).

● f is non-degenerate: ∥f∥ < 1 on D.
Thus, ∥αn∥ < 1 unless one runs into a degenerate iterate fN , a situation which terminates
the algorithm because ∥αN∥ = 1.

Another feature of FR-functions is a remarkable factorization property which lies behind
Khrushchev formula for OPUC: suppose that a unitary U on a Hilbert space with an
orthogonal decomposition H = H− ⊕ H0 ⊕ H+ has a factorization into unitaries which
only overlap on H0, i.e.

U = (UL ⊕ 1+)(1− ⊕UR),
UL = unitary on HL ∶= H− ⊕H0,

UR = unitary on HR ∶= H0 ⊕H+,

1± = identity on H±.

Then, the FR-function f of H0 with respect to U also factorizes as [25]
f = fLfR,

where fL,R are the FR-functions of H0 with respect to the ‘left/right’ unitaries UL,R.
The above factorization determines the FR-function of H0 in the QW driven by U in

terms of those in the left/right QW driven by UL,R. That is, any overlapping factorization
of a QW into smaller ones allows us to recover the return properties of the overlapping
subspace for the larger QW from those in the smaller QWs.

Finally, FR-functions related to unitary operators are not just examples of Schur func-
tions, rather both concepts coincide exactly. In other words, every Schur function with
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values in operators on a Hilbert space is the FR-function of a closed subspace with respect
to a unitary operator. This follows from the integral representation of Schur functions
in terms of measures on the unit circle –via Carathéodory or Stieltjes functions– and
Naimark’s dilation theorem [53]. Let f be a Schur function with values in operators on a
Hilbert space H0. The relation (7) between Schur and Carathéodory functions –or equiv-
alently the relation (9)– associates to f a measure µ on T with values in operators on
H0. Naimark’s dilation theorem implies that µ comes from the projection of an spectral
measure E, defined in a larger Hilbert space H ⊃ H0, i.e. µ = PEP with P the orthogonal
projection of H onto H0. Then, the unitary operator U = ∫ t dE(t) associates the spectral
measure µ to the subspace H0 and, hence, f †(z) becomes the FR-function of H0 with
respect to U . In other words, f is the FR-function of H0 with respect to the unitary U †.

We intend to show that an analogue of these operator valued FR-functions also appears
in other areas where, to the best of our knowledge, they have not been considered so
far. Indeed, we will see that FR-functions and their properties generalize to arbitrary
operators on Banach spaces. We will exploit our obsevation of the role and properties
of these generalized FR-functions for OPRL, RW, QW and OQW. Their analogy with
the FR-functions of the unitary case –i.e., the Schur functions– rests on the following
similarities:

(A) Definition: formally identical to that of the unitary case and similarly related to
Stieltjes functions by a renewal equation. Recognizable as a generating function of
first time returns.

(B) Properties: domain of analyticity similarly related to the spectrum of the under-
lying operator. Analogous transformation properties in the self-adjoint and unitary
cases.

(C) “Schur algorithm” (self-adjoint and unitary cases): existence of an algorithm
which, starting from a FR-function, yields iteratively a set of FR-functions of the
same kind and characterizes the original one by means of certain parameters which
also provide a connection with a related canonical operator.

(D) Splittings: existence of splitting rules for FR-functions, consequence of similar
“overlapping” splittings for the underlying operator. Interpretation as rules to split
return properties when splitting a system into overlapping smaller subsystems.

1.2. Block operators and Schur complements.
The generalization of FR-functions mentioned above requires dealing with operators

related to resolvents, as in the unitary case. Here we summarize the results that we will
use along the paper regarding operator inverses.

As required by the applications to RW and open QW, we will develop most of the results
in the abstract context of operators on Banach spaces, a generalization which requires no
more effort than the case of Hilbert spaces.

The results previously summarized for the unitary case show the prominent role that
projections will play in this generalization. A projection on a Banach space B is a linear
operator P ∶B →B such that P 2 = 1 is the identity on B. Any such a projection is specified
by a decomposition B = B0 ⊕B1 into the direct sum of two subspaces, B0 = R(P ) and
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B1 = kerP . We say that P is the projection onto B0 = R(P ) along B1 = kerP , which is a
bounded operator exactly when these subspaces are closed. Bounded projections –specified
by pairs of complementary closed subspaces– are the only ones that we will consider along
the paper.

Let T ∶D(T ) → B be a linear operator on a Banach space B with domain D(T ) and
range R(T ). Since we will get away from unitarity, we will assume that the domain is an
arbitrary subspace, not necessarily the whole space or even a closed one, to include the
case of unbounded operators. A bounded projection P onto B0 along B1, together with
the complementary projection Q = 1 − P , yield a block representation of T whenever

D(T ) = (B0 ∩D(T )) ⊕ (B1 ∩D(T )), (13)
i.e. as long as PD(T ) = B0 ∩D(T ) and QD(T ) = B1 ∩D(T ). Then,

T = (A B
C D

) ,
A = PTP ∶B0 ∩D(T ) →B0, B = PTQ∶B1 ∩D(T ) →B0,

C = QTP ∶B0 ∩D(T ) →B1, D = QTQ∶B1 ∩D(T ) →B1,
(14)

makes sense acting on arbitrary vectors v ∈ D(T ) in block form

v = (Pv
Qv

) .

We will refer to (14) as the block representation of the operator T generated by the bounded
projection P .

Condition (13) implies that
PD(T ) ⊂ D(T ). (15)

Conversely, (15) gives QD(T ) = (1−P )D(T ) ⊂ D(T ), thus D(T ) = PD(T )⊕QD(T ) which
becomes (13). This means that (13) is equivalent to (15), a condition which therefore
characterizes the projections P which generate block representations for T . Condition
(15) holds for instance if B0 ⊂ D(T ), a particularly simple situation generating block
representations which will be of interest later on.

Since we will use the block representation of T ∶D(T ) → B to obtain a similar one for
T −1∶R(T ) → B, besides (15) we also need to suppose that PR(T ) ⊂ R(T ). To avoid
unnecessary complications we will assume that R(T ) = B, a condition that will cover all
our needs.

A key tool for the analysis of inverses is the notion of Schur complement for block
operators on Banach spaces. The Schur complement of the block D with respect to the
block operator T given in (14) is the operator

T /D ∶= A −BD−1C = PTP − PTQ(QTQ)−1QTP, (16)
which defines an operator on B0 with domain D(T /D) = B0 ∩ D(T ) whenever D is
invertible with R(C) ⊂ R(D). Again, we will make the stronger assumption that R(D) =
B1, which will be enough to deal with all the situations appearing in the paper.

The following two results, usually given for finite dimension, hold for any Banach space
under the previous assumptions. We present their proof in such a general case to take care
of the subtleties of infinite dimension.



A GENERALIZATION OF SCHUR FUNCTIONS 13

Lemma 1.1. Let T ∶D(T ) → B be a linear operator on a Banach space B with block
representation (14) generated by a projection P onto B0 along B1 satisfying (15). If T
and D have inverses everywhere defined on B and B1 respectively, then T −1∶H →H has
a block representation generated by P given as follows

T −1 = ((T /D)−1 ∗
∗ ∗) ,

i.e.,
PT −1P = (A −BD−1C)−1 = (PTP − PTQ(QTQ)−1QTP )−1. (17)

Proof. Rewriting the Schur complement as

T /D = PT − PTQ − PTQ(QTQ)−1QTP = PT − PTQ(QTQ)−1(QTQ +QTP )
= PT − PTQ(QTQ)−1QT,

T /D = TP −QTP − PTQ(QTQ)−1QTP = TP − (QTQ + PTQ)(QTQ)−1QTP

= TP − TQ(QTQ)−1QTP,

gives
(T /D)PT −1P = (T /D)T −1P = PTT −1P = identity on B0,

PT −1P (T /D) = PT −1(T /D) = PT −1TP = identity on B0 ∩D(T ),

since TT −1 is the identity on B and T −1T is the identity on D(T ). This proves that
PT −1P ∶B0 →B0 and T /D∶B0 ∩D(T ) →B0 are inverses of each other. �

The particular case of (14) in which PTQ = 0 corresponds to a triangular block operator

T = (A 0
C D

) , (18)

which will be of especial interest for us.

Lemma 1.2. Let T ∶D(T ) → B be a linear operator on a Banach space B with block
representation (18) generated by a projection P onto B0 along B1 satisfying (15). Then,

T has an inverse
everywhere defined on B

Ô⇒ A has an inverse everywhere defined on B0,
D has an inverse everywhere defined on B1,

whenever any of the following conditions is satisfied:
(i) C = 0, (ii) A is invertible, (iii) R(D) = B1, (iv) dimH0 < ∞.

Conversely, if A and D have inverses everywhere defined on B0 and B1 respectively, then
T has an inverse everywhere defined on B with block representation generated by P given
by

T −1 = ( A−1 0
−D−1CA−1 D−1) . (19)



A GENERALIZATION OF SCHUR FUNCTIONS 14

Proof. The result under condition (i) is obvious since T = A⊕D in such a case.
Assume only the existence of T −1 everywhere defined on B.
Using PTQ = 0, we find that (PTP )(PT −1P ) = PTT −1P is the identity on B0, hence

A = PTP has range B0 but it is not necessarily invertible. Also, (QT −1Q)(QTQ) =
QT −1TQ is the identity on B1 ∩ D(T ), so D = QTQ has an inverse but not necessarily
everywhere defined on B1. Hence, (ii) implies that A has an inverse everywhere defined
on B0, while (iii) implies that D has an inverse everywhere defined on B1.

Furthermore, PTQ = 0 also gives
(PTP )(PT −1Q) = PTT −1Q = 0, (PT −1Q)(QTQ) = PT −1TQ = 0,

thus any of the conditions (ii) or (iii) implies that PT −1Q = 0. If this is the case,
then (PT −1P )(PTP ) = PT −1TP is the identity on B0 ∩D(T ), while (QTQ)(QT −1Q) =
QTT −1Q is the identity on B1, thus A = PTP is invertible and D = QTQ has range B1.

Combining the previous results we conclude that any of the conditions (ii) or (iii) imply
that A and D have inverses everywhere defined on B0 and B1 respectively. This also holds
for condition (iv) because R(A) = B0 is equivalent to A being invertible if dimB0 < ∞.

Suppose now that that A and D have inverses everywhere defined on B0 and B1. Then,
the block operator given by (19) has domain B and it is straightforward to check that it
is the inverse of T . �

The right implication of the previous lemma and the lower triangular block represen-
tation of T −1 may not hold unless an additional condition is added as to the existence of
such an inverse with D(T −1) = B. As a counter example, take T as the forward shift in
`2(Z) and B0 = {(xn) ∈ `2(Z) ∶ xn = 0, n ≥ 0}. Then, B0 generates a lower triangular block
representation for T , but an upper triangular one for T −1, the backward shift,

T =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ 0 0 0 0 0 0 ⋯

⋯ 1 0 0 0 0 0 ⋯

⋯ 0 1 0 0 0 0 ⋯

⋯ 0 0 1 0 0 0 ⋯

⋯ 0 0 0 1 0 0 ⋯

⋯ 0 0 0 0 1 0 ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, T −1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ 0 1 0 0 0 0 ⋯

⋯ 0 0 1 0 0 0 ⋯

⋯ 0 0 0 1 0 0 ⋯

⋯ 0 0 0 0 1 0 ⋯

⋯ 0 0 0 0 0 1 ⋯

⋯ 0 0 0 0 0 0 ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Besides, R(A) = B0 but A is not invertible, while D has an inverse but D(D−1) = R(D) =
{(xn) ∈ `2(Z) ∶ xn = 0, n ≤ 0} is not the whole subspace B1 = {(xn) ∈ `2(Z) ∶ xn = 0, n ≤ −1}.

2. FR-functions for arbitrary operators

In this section we will extend the notion of FR-functions to arbitrary operators on
Banach spaces and study some of their general properties. Concerning the technical details
of operator theory arising in the discussion below, we refer to [41].

Although we will work in general with operators which are not necessarily bounded,
some of the operators involved in the discussions will be bounded and everywhere defined.
Thus, for convenience, given a Banach space B we introduce the notation

B(B) ∶= {T ∶B →B bounded linear} = {T ∶B →B closed linear},
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where T ∶B →B indicates that T has domain D(T ) = B and the second identity is due to
the closed graph theorem.

Let T ∶D(T ) → B be a linear operator on a Banach space B with domain D(T ) and
range R(T ). We will denote

$(T ) ∶= {z ∈ C ∶ ∃(z − T )−1∶B →B} = {z ∈ C ∶ ker(z − T ) = {0}, R(z − T ) = B},
%(T ) ∶= {z ∈ C ∶ ∃(z − T )−1 ∈B(B)}.

The set %(T ), obviously included in $(T ), is known as the resolvent set of T and it is
non-empty only for a closed operator T . When T is closed, the resolvent operator (z−T )−1

is not only bounded and everywhere defined on B for z ∈ %(T ), but it is also analytic in z
in such a domain. Besides, the closed graph theorem implies that

T closed ⇒ %(T ) =$(T ). (20)
Closely related to the resolvent operator are the notions of Stieltjes function and FR-

function. The expressions (3) and (4) of FR-functions and Stieltjes functions for the unitary
case suggest a generalization to arbitrary operators which also involves projections. The
validity of the results of this section for arbitrary Banach spaces –even in the absence
of an inner product– reflects the fact that they are indeed true for arbitrary bounded –
not necessarily orthogonal– projections, i.e. for arbitrary pairs of complementary closed
subspaces.

Following these ideas, we will introduce the Stieltjes function and FR-function of a
bounded projection, which we will define for an arbitrary closed operator. Since we
assume no symmetry for the operator, no spectral measure is available in this case, so we
should define such functions resorting to operator identities similar to (3) and (4).

Definition 2.1. Let T ∶D(T ) → H be a closed operator on a Banach space B and P
a bounded projection of B onto a closed subspace B0. The Stieltjes function of the
projection P with respect to the operator T is the function s with values in operators on
B0 given by

s(z) ∶= P (1 − zT )−1P, z−1 ∈ %(T ).
When B is a Hilbert space and P is the orthogonal projection onto B0 we will also refer
to s as the Stieltjes function of the subspace B0 with respect to the operator T .

The existence of s(z)∶B0 →B0 for every bounded projection only requires the existence
of (1 − zT )−1∶B →B, i.e. z−1 ∈ $(T ). However, (20) implies that $(T ) = %(T ), thus the
domain of definition z−1 ∈ %(T ) is the largest one which guarantees the existence of the
Stieltjes function for every bounded projection P as an operator everywhere defined on
B0 = R(P ). Actually, these arguments and the properties of the resolvent operator show
that s(z) is an analytic function with values in B(B0) for z−1 ∈ %(T ).

The origin may also lie in the domain of analyticity of s –for instance, if T ∈B(B)– but
is in general a special point which requires particular care. For example, a naive evaluation
suggests that s(0) is always the identity on B0. However, by definition, 1−zT has domain
D(T ) for any value of z, hence we should identify this operator with the identity on D(T )
for z = 0. Therefore, the origin lies outside of the set of values of z for which (1 − zT )−1
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is everywhere defined on B unless D(T ) = B, i.e. unless T ∈ B(B). Hence, s(0) is the
identity on B0 ∩D(T ), which belongs to B(B0) only when B0 ⊂ D(T ).

The Stieltjes function given by the above definition becomes the usual Stieltjes function
for the spectral measure µ of the subspace B0 when T has a spectral decomposition, i.e.
if B is a Hilbert space and T is a normal operator on B,

T = ∫ t dE(t) ⇒ µ = PEP ⇒ s(z) = ∫
dµ(t)
1 − zt . (21)

Note that µ is normalized so that µ(R) = 10 is the identity on B0 because E(R) = 1 is the
identity on B.

The key point of this section is the generalization to arbitrary closed operators of the
Schur functions appearing in the unitary case. As in the case of Stieltjes functions, such a
generalization calls for a purely operator definition, suggested in this case by the identifi-
cation between Schur functions and FR-functions related to unitary operators. This leads
to the introduction of the FR-function of a bounded projection with respect to a closed
operator, which constitutes the generalization of Schur functions beyond the unitary case.

Definition 2.2. Let T ∶D(T ) → B be a closed operator on a Banach space B and P a
bounded projection of B onto a closed subspace B0. The first return function (FR-
function) of the projection P with respect to the operator T is the function f with values
in operators on B0 given by

f(z) ∶= PT (1 − zQT )−1P, Q = 1 − P, z−1 ∈$(QT ). (22)

When B is a Hilbert space and P is the orthogonal projection onto B0 we will also refer
to f as the FR-function of the subspace B0 with respect to the operator T .

The condition z−1 ∈$(QT ) means that (1−zQT )−1 exists as an operator with domain B
and range D(T ), so that T (1−zQT )−1 is also everywhere defined on B. This ensures that,
for every projection P , its FR-function gives at z an operator f(z) everywhere defined on
B0 = R(P ).

The origin requires once again special care. The operator QT has domain D(T ), so for
z = 0 we should consider 1− zQT as the identity on D(T ). Thus, f(0) = PTP , which fails
to be everywhere defined on B0 unless B0 ⊂ D(T ). An FR-function f may also satisfy
f(0) ∈B(B0), as it is the case of T ∈B(H ) where f becomes analytic at the origin.

In contrast to the Stieltjes case, the condition z−1 ∈$(QT ) is not necessarily equivalent
to z−1 ∈ %(QT ) because the class of closed operators on H is preserved by the product by
an operator of B(B) on the right but not on the left, i.e.

ST closed ⇍ T closed, S ∈B(B) ⇒ TS closed.

This means that QT need not be closed even if T is closed (this is for instance the case
if a sequence vn ∈ D(T ) converging to v ∈ H ∖ D(T ) satisfies Tvn ∈ B0 because then
(vn,QTvn) = (vn,0) converges to (v,0) which does not belong to the graph of QT ). Hence,
z−1 ∈ $(QT ) implies the existence of f(z)∶B0 → B0 for every projection P , but a priori
does not guarantee that f(z) ∈B(B0).



A GENERALIZATION OF SCHUR FUNCTIONS 17

The following proposition shows that the stronger condition z−1 ∈ %(QT ) selects an open
subset of z−1 ∈$(QT ) in which f(z) ∈B(B0).
Proposition 2.3. Let T ∶D(T ) → B be a closed operator on a Banach space B, P a
bounded projection of B onto a closed subspace B0 and Q = 1−P . Then, the FR-function
f(z) of P with respect to T is an analytic function with values in B(B0) for z−1 ∈ %(QT ).
Proof. The condition z−1 ∈ %(QT ) means that (1 − zQT )−1 ∈ B(B) so, as a product of a
closed operator by an operator of B(B) on the right, T (1− zQT )−1∶B →B is also closed,
hence it is bounded by the closed graph theorem. We conclude that T (1−zQT )−1 ∈B(B)
and f(z) ∈B(B0) for z−1 ∈ %(QT ), where both operator valued functions are also analytic
in z due to the properties of the resolvent operator. �

The domain of definition of f , determined by the properties of QT ∶D(T ) →B, can be
rewritten sometimes in terms of the properties of the block QTQ∶B1 ∩D(T ) →B1. The
proposition below provides one of such situations which will be of interest later on.
Proposition 2.4. Let T ∶D(T ) → B be a closed operator on a Banach space B, P a
bounded projection of B onto a closed subspace B0 and Q = 1 − P . Then,

B0 ⊂ D(T ) ⇒ $(QT ) ∖ {0} =$(QTQ) ∖ {0}, %(QT ) ∖ {0} = %(QTQ) ∖ {0}.
Proof. The proposition can be restated by saying that the condition B0 ⊂ D(T ) ensures
that 1−zQT and Q−zQTQ have simultaneously (bounded) inverses everywhere defined on
B and B1 respectively. According to the comments of Section 1.2, a block representation
of T is available whenever B0 ⊂ D(T ), which also leads to a block representation of 1−zQT
generated by P ,

1 − zQT = ( P 0
−zQTP Q − zQTQ) . (23)

From Lemma 1.2, we know that 1 − zQT has an inverse everywhere defined iff the block
Q − zQTQ does likewise, and the inverse of 1 − zQT has the block representation

(1 − zQT )−1 = ( P 0
z(Q − zQTQ)−1QTP (Q − zQTQ)−1) .

Therefore, (1 − zQTQ)−1 bounded implies that (Q − zQTQ)−1 = Q(1 − zQT )−1Q is also
bounded. On the other hand, the operator TP is closed –as a product of a closed operator
by an operator of B(B) on the right– and has domain B –because B0 ⊂ D(T )– so it
is bounded by the closed graph theorem. Hence, (Q − zQTQ)−1 bounded implies that
(Q − zQTQ)−1QTP , and thus (1 − zQT )−1, are also bounded. �

As a consequence of this result, the conditions z−1 ∈ $(QT ) in (22) and z−1 ∈ %(QT )
in Proposition 2.3 can be substituted respectively by z−1 ∈ $(QTQ) and z−1 ∈ %(QTQ)
if B0 ⊂ D(T ). This has some advantages when dealing with a self-adjoint operator T
since such a symmetry is usually inherited by QTQ, as it is the case for instance when
T ∈B(B).

As in the unitary case, Stieltjes functions and FR-functions are intimately related also for
general operators. This relation is established in the following theorem, which constitutes
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the main result of this section. The theorem also uses the close link between Stieltjes
functions and FR-functions to provide information about the domain of the latter ones.
More precisely, the theorem below shows on the one hand that the renewal equation (6)
holds beyond the unitary case, and on the other hand that the common part of the domain
of definition for Stieltjes and FR-functions is characterized in terms of Stieltjes functions
theirselves.

Theorem 2.5 (renewal equation for FR-functions). Let T ∶D(T ) → B be a closed
operator on a Banach space B, P a bounded projection of B onto a closed subspace B0
and Q = 1 − P . Denote by s and f , respectively, the Stieltjes function and FR-function of
P with respect to T . Then, if z−1 ∈ %(T ),

z−1 ∈$(QT ) ⇔ ∃s(z)−1∶H0 →H0, (24)
z−1 ∈ %(QT ) ⇔ ∃s(z)−1 ∈B(H0). (25)

Besides, f and s are related by

s(z)−1 = 10 − zf(z), 10 = identity on B0, z−1 ∈ %(T ) ∩$(QT ), (26)
which we will call the generalized renewal equation for arbitrary closed operators.

Proof. In what follows, z ∈ C is chosen so that z−1 ∈ %(T ). To prove (24) we must show
that the existence of (1 − zQT )−1 everywhere defined on B is equivalent to the existence
of s(z)−1 everywhere defined on B0. Then, (25) means that (1 − zQT )−1 and s(z)−1 are
simultaneously bounded.
⇐ Assume the existence of s(z)−1∶B0 → B0. To prove that z−1 ∈ $(QT ) we need to
show that the equation

(1 − zQT )u = v, v ∈ B, (27)
has a unique solution u ∈ D(T ) for each v ∈ B. Bearing in mind that z−1 ∈ %(T ), the above
equation may be rewritten as

(1 − zT )u + zPTu = v ⇔ u + z(1 − zT )−1PTu = (1 − zT )−1v. (28)
Applying the operator PT to both sides of the last equation we get

(P + zPT (1 − zT )−1P )PTu = PT (1 − zT )−1v,

which, using that
1 + zT (1 − zT )−1 = (1 − zT )−1, (29)

reads as
s(z)PTu = PT (1 − zT )−1v.

Since s(z) has an inverse everywhere defined on B0, the above equation implies that
PTu = s(z)−1PT (1 − zT )−1v. (30)

Inserting this into (28) yields
u = (1 − zT )−1(1 − zs(z)−1PT (1 − zT )−1)v,
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a vector in D(T ) which is the only possible solution of (27). Actually, using (29) again,
it is straightforward to check that this vector satisfies (30) and (27), so it is really the
solution that we were looking for. This proves the left implication of (24).

The above arguments give an expression for (1− zQT )−1 whenever s(z)−1 is everywhere
defined on B0, namely

(1 − zQT )−1 = (1 − zT )−1(1 − zs(z)−1PT (1 − zT )−1)
= (1 − zT )−1(1 + s(z)−1P − s(z)−1P (1 − zT )−1),

where in the second equality we have used once again (29). Bearing in mind that z−1 ∈ %(T ),
this expression shows that (1−zQT )−1 is bounded whenever s(z)−1 is bounded. This gives
the left implication of (25).
⇒ The right implication of (25) follows from Proposition 2.3, assuming the right im-
plication of (24) and the renewal equation (26), so we only need to prove the two latter
ones.

Suppose now that z−1 ∈ $(QT ), so that f(z) and s(z) exist because z−1 ∈ %(T ) by
hypothesis, and let us prove that s(z) has an inverse everywhere defined on B0. Indeed,
we will show that

s(z)−1 = 10 − zf(z), (31)
which will finally finish the proof of the theorem. We start with the identities
(1 − zT )−1 − (1 − zQT )−1 = z(1 − zT )−1PT (1 − zQT )−1 = z(1 − zQT )−1PT (1 − zT )−1

= (1 − zQT )−1P (1 − zT )−1 − (1 − zQT )−1P,
(32)

where in the last step we have used (29). Multiplying (32) by the projection P on the
right, we obtain from the equality between the first and the last term that

(1 − zT )−1P = (1 − zQT )−1s(z). (33)
On the other hand, multiplying (32) by P both on the left and the right, the first two
equalities yield

s(z) − P = zs(z)f(z) = zP (1 − zQT )−1PT (1 − zT )−1P. (34)
Here we have used that P (1 − zQT )−1 = P , which follows from the identity obtained by
substituting T by QT in (29). Finally, inserting (33) into the last term of (34) gives

s(z) − P = zs(z)f(z) = zf(z)s(z),
which is equivalent to (31) since s(z) and f(z) must be understood as operators on B0. �

The generalized renewal equation can be also expressed as
f(z) = z−1(10 − s(z)−1), z−1 ∈ %(T ) ∩$(QT ), (35)

which gives the FR-function in terms of the Stieltjes function. Inserting the definition of
the Stieltjes function into (35) yields an alternative explicit expression of the FR-function
in terms of the operator T ,
f(z) = z−1(s(z) − 10)s(z)−1 = (PT (1 − zT )−1P )(P (1 − zT )−1P )−1, z−1 ∈ %(T ) ∩$(QT ).
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As a direct consequence of Proposition 2.3 and Theorem 2.5, we get the following result
concerning the domain of analyticity of FR-functions.

Corollary 2.6. Let T ∶D(T ) → B be a closed operator on a Banach space B and P a
bounded projection of B onto a closed subspace B0. Denote by s and f , respectively,
the Stieltjes function and FR-function of P with respect to T . Then, f(z) is an analytic
function with values in B(B0) for z in

{z ∈ C ∶ z−1 ∈ %(T ), ∃s(z)−1 ∈B(B0)}.

If the range of a projection is included in the domain of an operator, the corresponding
FR-function admits alternative expressions, each one of them with its own interest.

Proposition 2.7. Let T ∶D(T ) → B be a closed operator on a Banach space B, P a
bounded projection of B onto a closed subspace B0 and Q = 1 − P . If B0 ⊂ D(T ), the
FR-function f of P with respect to T can be expressed as

(i) f(z) = P (1 − zTQ)−1TP , z−1 ∈$(QTQ),

(ii) f(z) = PTP + zPTQ(Q − zQTQ)−1QTP , z−1 ∈$(QTQ),

(iii) f(z) = PTP + zPTQ(1 − zQTQ)−1QTP , z−1 ∈$(QTQ).

Proof.
(i) As in the proof of Proposition 2.4, we can see that z−1 ∈ $(TQ) is equivalent to
z−1 ∈ $(QTQ) whenever B0 ⊂ D(T ). If v ∈ D(T ) and z−1 ∈ $(QTQ), we can define
w = (1 − zQT )−1v ∈ D(T ), which satisfies QTw = z−1(w − v) ∈ D(T ) so that TQTw makes
sense. Therefore,

(1 − zTQ)(T (1 − zQT )−1 − (1 − zTQ)−1T )v = (1 − zTQ)Tw − T (1 − zQT )w = 0.

Since ker(1 − zQT ) = {0} for z−1 ∈$(QT ), i.e. for z−1 ∈$(QTQ), we conclude that

T (1 − zQT )−1v = (1 − zTQ)−1Tv, ∀v ∈ D(T ).

Hence f(z) = PT (1 − zQT )−1P = P (1 − zTQ)−1TP because B0 ⊂ D(T ).
(ii) The condition B0 ⊂ D(T ) guarantees that B0 generates the block representations (14)
and (23) for T and 1 − zQT respectively. Applying Lemma 1.2 to (23) and combining the
result with (14) gives

T (1 − zQT )−1 = (PTP − zPTQ(Q − zQTQ)−1QTP ∗
∗ ∗) , z−1 ∈$(QTQ),

which proves the result.
(iii) It follows from the previous result and the block diagonal representation

1 − zQTQ = (P 0
0 Q − zQTQ) ,

which yields the identity Q(1 − zQTQ)−1Q = Q(Q − zQTQ)−1Q. �
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Proposition 2.7.(ii) relates the FR-function f to the so called transfer/characteristic
function [12, 16, 17, 39, 51] associated with the colligation operator (14) when T ∈B(B) –
so that A,B,C,D are bounded and everywhere defined–, as is the case for instance when T
is unitary. However, since unbounded operators cannot be everywhere defined, the ‘trans-
fer/characteristic function representation’ of general FR-functions –with respect to not
necessarily bounded operators– is more limited than the original notion (Definition 2.2) or
the alternative expression provided by the renewal equation (Theorem 2.5), for which D(T )
imposes no constraint on B0 (they hold even if B0 ∩D(T ) = {0}!). In other words, FR-
functions constitute a generalization of transfer/characteristic functions to the unbounded
case. This will be crucial, for instance, when identifying the whole class of functions which
are expressible as FR-functions associated with –bounded or unbounded– self-adjoint oper-
ators on Hilbert spaces. This is at the root of the wide validity of the integral and operator
representations of Nevanlinna functions given in Theorem 4.1 and Corollary 4.3.

Sometimes the following modified version of Stieltjes functions will be useful.

Definition 2.8. Let T ∶D(T ) → B be a closed operator on a Banach space B and P a
bounded projection of B onto a closed subspace B0. The modified Stieltjes function
(m-function) of the projection P with respect to the operator T is the function m with
values in operators on B0 given by

m(z) ∶= P (T − z)−1P, z ∈ %(T ). (36)
When B is a Hilbert space and P is the orthogonal projection onto B0 we will also refer
to m as the m-function of the subspace B0 with respect to the operator T .

The function m is analytic on %(T ) with values in B(B0), connected to the correspond-
ing Stieltjes function s by

m(z) = −z−1s(z−1), z ∈ %(T ).
This relation allows us to rewrite the previous results using m-functions instead of Stieltjes
ones. For instance, the renewal equation (35) reads in terms of m-functions as

f(z) = z−110 +m(z−1)−1, z−1 ∈ %(T ) ∩$(QT ). (37)

2.1. The bounded case.
It is worth to specialize the above discussion to the case of bounded everywhere defined

operators, where many of the subtleties in the previous relations and results disappear.
For instance, if T ∈B(B) every subspace lies on D(T ) = B. Also QT ∈B(B) and QTQ ∈
B(B0), thus both operators are closed. Hence, %(QT ) =$(QT ) and %(QTQ) =$(QTQ)
by the closed graph theorem, while %(QT )∖{0} = %(QTQ)∖{0} by Proposition 2.4. Since
the spectrum of T ∈B(B) is bounded, it is natural to consider the extended resolvent set
%(T ) ∶= %(T ) ∪ {∞}, so that the condition z−1 ∈ %(T ) defines an open set which contains
the origin.

Bearing in mind the results of the previous sections in the light of the above comments,
we find that FR-functions have the following list of equivalent expressions which are valid
for any subspace.
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Proposition 2.9. Let T ∈B(B), P a bounded projection of B onto a closed subspace B0
and Q = 1 − P . Denote by s and f , respectively, the Stieltjes function and FR-function of
P with respect to T . Then, s(z) and f(z) are analytic functions with values in B(B0) for
z−1 ∈ %(T ) and z−1 ∈ %(QTQ) respectively. Besides one has,

(i) f(z) = PT (1 − zQT )−1P , z−1 ∈ %(QTQ),

(ii) f(z) = P (1 − zTQ)−1TP , z−1 ∈ %(QTQ),

(iii) f(z) = PTP + zPTQ(Q − zQTQ)−1QTP , z−1 ∈ %(QTQ),

(iv) f(z) = PTP + zPTQ(1 − zQTQ)−1QTP , z−1 ∈ %(QTQ),

(v) zf(z) = 10 − s(z)−1, z−1 ∈ %(T ) ∩ %(QTQ),

(vi) f(z) = (PT (1 − zT )−1P )(P (1 − zT )−1P )−1, z−1 ∈ %(T ) ∩ %(QTQ),

(vii) f(z) = ∑
n≥0

znPT (QT )nP , ∣z∣ < ∥QTQ∥−1.

Proof. Taking into account Theorem 2.5, Proposition 2.7, the comments just before this
theorem and the identities s(0) = 10, f(0) = PTP , it only remains to prove the analyticity
of s and f at the origin as well as the expression (vii). The power expansion

(1 − zT )−1 = ∑
n≥0

znT n, ∥zT ∥ < 1,

shows that s(z) is analytic for ∣z∣ < ∥T ∥−1. Similar arguments for QTQ and the power
expansion of (1 − zQTQ)−1 around the origin, combined with the expression (iv), prove
that f(z) is analytic for ∣z∣ < ∥QTQ∥−1 with an expansion given by (vii). �

WhenB is a Hilbert space and P is an orthogonal projection we have that ∥P ∥ = ∥Q∥ = 1.
Hence, if f is the FR-function of a closed subspace with respect to a bounded operator on a
Hilbert space, the power expansion of Proposition 2.9.(vii) holds for ∣z∣ < ∥T ∥−1 regardless
of the subspace.

The power expansion of FR-functions given in Proposition 2.9.(vii) identifies them as
‘true generating functions’ in the bounded case. Actually, this expansion gives to f the
meaning of a generating function of ‘first returns’: suppose that each time step the state
v ∈ B of a system evolves according to v → Tv. If the evolution starts at a state in B0,
the projection P conditions on the event ‘return to B0’, while the projection Q conditions
on the event ‘no return to B0’. Thus, the operator coefficient PT (QT )nP reflects the fact
that, starting at B0, the system has not returned to B0 during the first n steps, but has
returned to B0 in the last step, i.e. the system has returned to B0 for the first time in the
last step. The power expansion of the corresponding Stieltjes function,

s(z) = ∑
n≥0

znPT nP, ∣z∣ < ∥T ∥−1,

also uncovers its interpretation as generating function of ‘returns’: the operator coefficient
PT nP is associated with the return to B0 in the n-th step, but without excluding any
return at previous steps.
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Proposition 2.9.(vii) implies that f(0) = PTP and f (n)(0) = n!PTQ(QTQ)n−1QTP
for T ∈ B(B). Properly interpreted, this result makes sense also for certain unbounded
situations, see Lemma A.1 in Appendix A.

3. The self-adjoint case - Nevanlinna functions

FR-functions related to self-adjoint operators have a especial interest because, together
with the unitaries, they are the operators that appear more frequently in applications.
In this section we will discuss the FR-function of a self-adjoint bounded projection P
with respect to a self-adjoint operator T ∶D(T ) → H on a Hilbert space H . The self-
adjointness of the projection means that it is orthogonal, i.e. kerP = R(P )�. In this case
we talk about the FR-function of the closed subspace H0 ∶= R(P ) –since it determines
the subspace H1 ∶= kerP = H �

0 along which the projection takes place– and likewise for
Stieltjes functions and m-functions. This is the kind of functions that we will consider in
this section, as well as in Sections 4 and 5.

Continuing in the spirit of the previous section, we will deal with general self-adjoint
operators, bounded or not. Although including unbounded situations will make the discus-
sions more complicated, this is a price that we will pay to arrive later on at operator and
integral representations valid for every Nevanlinna function, see Section 4. For the technical
results on unbounded self-adjoint operators that we will use below we refer to [41,58].

As in the unitary case, self-adjoint operators generate FR-functions with special prop-
erties. Remember that the FR-functions for unitary operators are Schur functions. This
section provides a similar identification in the self-adjoint case: the FR-functions for self-
adjoint operators are operator valued Nevanlinna functions, i.e. analytic functions
f ∶C ∖R→B(H0) satisfying

f(z)† = f(z), Im f(z)
Im z

≥ 0, z ∈ C ∖R. (38)

In other words, they are analytic functions in the upper and lower half-planes

C+ ∶= {z ∈ C ∶ Im z > 0}, C− ∶= {z ∈ C ∶ Im z < 0},

such that
Im f(z) ≥ 0 for z ∈ C+, Im f(z) ≤ 0 for z ∈ C−. (39)

These inequalities, which hold simultaneously under the symmetry f(z)† = f(z), are the
self-adjoint version of the contractivity property (8) of Schur functions in the unitary case.

The subtleties arising in the unbounded case –absent for unitaries– make it difficult to
know if the above connection between FR-functions for self-adjoint operators and Nevan-
linna functions holds in its full extent, so we will prove it in two general cases:

● For arbitrary finite-dimensional subspaces, not necessarily included in the do-
main of the operator.

● For closed subspaces included in the domain of the operator, but with no
restriction on their dimension.
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Since we will deal with adjoints of operators which are not necessarily bounded, we must
be very careful with the manipulation of adjoints. First, the adjoint of T ∶D(T ) →H exists
iff D(T ) is dense in H , a requirement which is implicit when stating that T is self-adjoint.
Besides, if we only know that T and S are operators densely defined on H , all that we
can say about (S +T )† and (ST )† is that, whenever S +T and ST are also densely defined
on H ,

S† + T † ⊂ (S + T )†, T †S† ⊂ (ST )†.

In spite of the above, to guarantee the equalities in the above relations it is not necessary
for both operators to be bounded and everywhere defined, it is enough to impose this
requirement for only one of the operators,

S ∈B(H ) ⇒ S† + T † = (S + T )†, T †S† = (ST )†.

These remarks will be important in what follows.

Theorem 3.1 (FR-functions of self-adjoint operators). Let f be the FR-function
of a closed subspace H0 ⊂ H with respect to a self-adjoint operator T ∶D(T ) → H on a
Hilbert space H . Then, f is a Nevanlinna function in any of the following cases:

(i) dimH0 < ∞.
(ii) H0 ⊂ D(T ).

Proof.
(i) Let s be the Stieltjes function of H0 with respect to T . The spectrum of T is real, thus
C ∖R ⊂ %(T ) and s(z) exists as an operator everywhere defined on H0 for every non-real
z. Also, s(z)v = 0 for some v ∈ H0 and z ∈ C ∖R implies that

0 = ⟨s(z)v∣v⟩ = ⟨(1 − zT )−1v∣v⟩ = ⟨w∣(1 − zT )w⟩ = ∥w∥2 − z⟨w∣Tw⟩, w = (1 − zT )−1v.

Since ⟨w∣Tw⟩ is real and z is not, we find that w = 0, hence v = 0. Therefore, if z ∈ C∖R, we
conclude that ker s(z) = {0}, which is equivalent to stating that s(z)−1 ∈ B(H0) because
dimH0 < ∞. Then, Corollary 2.6 implies that f(z) ∈B(H0) and is analytic for z ∈ C∖R.

Let z ∈ C ∖R. Taking adjoints we get s(z)† = s(z). Applying Theorem 2.5 we find that
f(z) = z−1(10 − s(z)−1), z ∈ C ∖R, (40)

hence f(z)† = f(z).
To finish the proof, it is convenient to rewrite (40) using the m-function (36),

g(z) ∶= f(z−1) = z10 +m(z)−1, z ∈ C ∖R.
Then, Im f(z)/ Im z ≥ 0 is equivalent to Im g(z)/ Im z ≤ 0. As in the case of s, the adjoint
of m is given by m(z)† =m(z). Therefore, if z ∈ C ∖R,

Imm(z) = 1
2iP ((T − z)−1 − (T − z)−1)P = (Im z)P (T − z)−1(T − z)−1P,

Im g(z) = Im z + 1
2i(m(z)−1 − (m(z)†)−1) = Im z − (m(z)†)−1(Imm(z))m(z)−1

= (Im z) (10 − (m(z)†)−1P (T − z)−1(T − z)−1P m(z)−1)
= −(Im z) (m(z)†)−1P (T − z)−1Q(T − z)−1P m(z)−1, Q = 1 − P,
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which gives
Im g(z)

Im z
= −R(z)†R(z), R(z) ∶= Q(T − z)−1m(z)−1.

This proves that Im g(z)/ Im z ≤ 0 for z ∈ C ∖R.
(ii) Denote by P and Q the orthogonal projections onto H0 and H �

0 respectively. The
block operator QTQ –which controls the domain of definition of f– has domain H �

0 ∩D(T ),
which is dense in H �

0 because H0 ⊂ D(T ) implies that D(T ) = H0 ⊕ (H0 ∩D(T )), while
D(T ) is dense in H because T is self-adjoint. Thus the adjoint of QTQ makes sense.
Indeed (QTQ)† is an extension of QTQ, i.e. QTQ is symmetric.

Let us see that the symmetric block operator QTQ is indeed self-adjoint. For this
purpose we can consider QTQ equivalently as an operator on H . Then (QTQ)† = (TQ)†Q
because Q ∈B(H ). As for TQ = T −TP , remember from the proof of Proposition 2.4 that
TP ∈ B(H ) whenever H0 ⊂ D(T ) because then TP is closed and everywhere defined on
H . Hence (TQ)† = T − (TP )†. Note that (TP )† ∈ B(H ) is an extension of PT to the
whole space H . Despite this, we can substitute (TP )† by PT in T − (TP )† because this
operator has the same domain D(T ) as PT . We conclude that (TQ)† = T − PT = QT , so
that (QTQ)† = (TQ)†Q = QTQ.

As a self-ajoint operator, QTQ has real spectrum, thus C ∖ R ⊂ %(QTQ). Then,
Proposition 2.4 implies that C ∖ R ⊂ %(QT ), so that from Proposition 2.3 we know that
f(z) ∈ B(H0) and is analytic for z ∈ C ∖R. Since Theorem 2.5 gives (40), we can follow
the same steps as in the case (i) to prove (38). �

As a consequence of the previous theorem, if a subspace has finite dimension or lies
in the domain of the operator, the versions (35) and (37) of the corresponding renewal
equation read in the self-adjoint case as

f(z) = z−1(10 − s(z)−1) = z−110 +m(z−1)−1, z ∈ C ∖R, (41)

s(z) = P (1 − zT )−1P = ∫
dµ(t)
1 − zt , m(z) = P (T − z)−1P = ∫

dµ(t)
t − z

, µ(R) = 10.

Here µ is the spectral measure assigned to the subspace H0 by the self-adjoint operator T .
As in the case of Schur functions, a dichotomy concerning Nevanlinna functions classifies

them into two types. If f is a scalar Nevanlinna function, i.e. an analytic map f ∶C∖R→ C
such that f(z) = f(z) and f(C±) ⊂ C±, general principles of complex analysis lead to the
following options:

● f is degenerate: Im f(z0) = 0 for some z0 ∈ C∖R, then f is a real constant on C∖R.
● f is non-degenerate: Im f ≠ 0 on C ∖R, then f(C±) ⊂ C±.

On the other hand, the operator valued Nevanlinna functions f ∶C ∖ R → B(H0) are
obviously characterized by the fact that ⟨v∣f(z)v⟩ is a scalar Nevanlinna function for every
v ∈ H0. This allows us to study many properties of the operator valued case by reducing
them to the scalar situation.

This is the case for instance for the analysis of the strict positivity of Im f . To state
that Im f(z0)/ Im z0 is not positive definite at some z0 ∈ C∖R is equivalent to the existence
of v ∈ H0 such that Im f(z0)v = 0. Then, Im⟨v∣f(z0)v⟩ = ⟨v∣ Im f(z0)v⟩ = 0, so that
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⟨v∣f(z)v⟩ is a degenerate scalar Nevanlinna function, i.e. a real constant. As a consequence
⟨v∣ Im f(z)v⟩ = Im⟨v∣f(z)v⟩ = 0 for every z ∈ C∖R, which implies that Im f(z)v = 0 at every
non-real z because Im f(z)/ Im z ≥ 0. Therefore, ker Im f(z) is independent of z ∈ C ∖R,
leaving only two possibilities:

● f is degenerate: ker Im f is non-trivial on C ∖R, then Im f/ Im z ≥ 0 but nowhere
positive definite on C ∖R.

● f is non-degenerate: ker Im f is trivial on C ∖R, then Im f/ Im z > 0 on C ∖R.
Degenerate Nevanlinna functions have several equivalent characterizations. Some of

them, of interest for the Nevanlinna version of the Schur algorithm discussed below, have
to do with the limit value and the derivative of Nevanlinna functions at a point in the
real line. When this point is the origin, the existence of such limits and derivatives is
guaranteed for FR-functions of bounded operators, but may hold even for an unbounded
self-adjoint operator T if understood as limits along the imaginary axis, i.e. normal to the
real line: if H0 ⊂ D(T ), the corresponding FR-function f has a well defined normal limit
at the origin

f(0) ∶= lim
y→0

f(iy) = PTP ∈B(H0),

while the more restrictive condition H0 ⊂ D(T 2) ensures that f has also a normal derivative
at the origin

f ′(0) ∶= lim
y→0

f(iy) − f(0)
iy

= PTQTP ∈B(H0).

These limits must be understood in the weak sense if dimH0 = ∞, see Lemma A.1 in
Appendix A.

In the case of a Nevanlinna FR-function f , the above expressions show that f(0) is self-
adjoint, while f ′(0) is not only self-adjoint, but also non-negative definite. Actually, these
properties of normal limits and normal derivatives hold for every Nevanlinna function at
every point in the real line where such limit and derivative exist.

Proposition 3.2. Given an arbitrary Nevanlinna function f ∶C ∖ R → B(H0), consider
the following weak limits for x ∈ R,

f(x) ∶= lim
y→0

f(x + iy), (normal limit of f at x),

f ′(x) ∶= lim
y→0

f(x + iy) − f(x)
iy

(normal derivative of f at x).

Then, whenever these limits exist as everywhere defined operators on H0, they are self-
adjoint operators of B(H0) and f ′(x) ≥ 0.

Proof. Suppose that f(x) is everywhere defined on H0 for some x ∈ R. Since f(x + iy)† =
f(x − iy) for y ∈ R ∖ {0}, we get

⟨u∣f(x)v⟩ = lim
y→0

⟨u∣f(x + iy)v⟩ = lim
y→0

⟨f(x − iy)u∣v⟩ = ⟨f(x)u∣v⟩, u, v ∈ H0.

This means that f(0) is self-adjoint, hence closed, thus it is also bounded because f(0)
has closed domain H0 by hypothesis.
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If, besides, f ′(x) is everywhere defined on H0, then

⟨v∣f ′(x)v⟩ = lim
y→0

⟨v∣(f(x + iy) − f(x))v⟩ − ⟨v∣(f(x − iy) − f(x))v⟩
2iy

= lim
y→0

⟨v∣ Im f(x + iy)v⟩
y

≥ 0, v ∈ H0.

This implies that f ′(x) is self-adjoint and non-negative definite, hence also bounded since
we assume that it has closed domain H0. �

The following proposition summarizes different properties that distinguish between de-
generate and non-degenerate Nevanlinna functions, among them those given in terms of
their limits and derivatives at a point in the real line. The proof is given in Appendix B.

Proposition 3.3. If f ∶C ∖ R → B(H0) is a Nevanlinna function and x ∈ R, then, for
every z ∈ C ∖R,

ker Im f(z) = {v ∈ H0 ∶ fv is constant on C ∖R}
= ker(f(z) − f(x)), if ∃f(x) ∶= lim

y→0
f(x + iy),

= ker f ′(x), if ∃f ′(x) ∶= lim
y→0

(f(x + iy) − f(x))/iy,

where f(x) and f ′(x) are assumed to exist as weak limits everywhere defined on H0. As a
consequence, any of the following conditions characterizes the non-degenerate Nevanlinna
functions:

(i) Im f(z0) is invertible for some z0 ∈ C ∖R.
(ii) Im f(z) is invertible for every z ∈ C ∖R.
(iii) fv is not constant on C ∖R for any v ∈ H0 ∖ {0}.
(iv) f(z0) − f(x) is invertible for some z0 ∈ C ∖R (if f(x) exists).
(v) f(z) − f(x) is invertible for every z ∈ C ∖R (if f(x) exists).
(vi) f ′(x) is invertible (if f ′(x) exists).

Taking into account the previous remark, Propositions 3.2 and 3.3 imply that for every
non-degenerate Nevanlinna function f and x ∈ R, f ′(x) is positive definite when it exists
as an everywhere defined operator.

The above properties of non-degenerate Nevanlinna functions will be key to guarantee the
proper running of the Schur algorithm on the real line discussed in Section 5: analogously
to the case of Schur functions, such a Schur algorithm for Nevanlinna functions will not
stop unless a degenerate Nevanlinna iterate arises.

4. Representations of Nevanlinna functions

As in the unitary case, the FR-functions for self-adjoint operators turn out to be more
than mere examples of Nevanlinna functions. We will see in this section that the FR-
functions of finite-dimensional subspaces with respect to self-adjoint operators provide all
the matrix Nevanlinna functions, up to additive terms which are non-negative multiples
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of −z−1. This gives a new operator representation for matrix Nevanlinna functions, ana-
logue of the operator representation for matrix Schur functions as FR-functions related to
unitaries. This result also yields a new integral representation of matrix Nevanlinna func-
tions, providing a self-adjoint version of the integral representation (9) of matrix Schur
functions. This establishes a connection between matrix Nevanlinna functions and matrix
measures on the real line which, in contrast to the standard one, is one-to-one, and is in
perfect analogy with the usual correspondence between matrix Schur functions and matrix
measures on the unit circle via Carathéodory functions.

Before proving the above results, let us recall the details of the standard integral represen-
tations of matrix Nevanlinna functions see [63, Chapter III], [16, Sect. I.4] and [35,36,62].
A general representation formula states that every such a function f can be expressed as

f(z) = a + bz + ∫
1 + zt
t − z

dν(t), (42)

with a a self-adjoint matrix, b a non-negative definite matrix and ν a finite positive ma-
trix measure on R. This integral representation establishes a one-to-one correspondence
between matrix Nevanlinna functions and matrix measures on R only up to the matrix
coefficients a, b.

A particular situation will be of especial interest. It can be proved that the condition
sup
y>0

y∥f(iy)∥ < ∞ (43)

is equivalent to stating that the matrix Nevanlinna function f is the m-function of a finite
(not necessarily normalized) matrix measure µ on R, i.e.

f(z) = ∫
dµ(t)
t − z

. (44)

Actually, by dominated convergence, such an m-function satisfies
µ(R) = lim

y→∞
−iyf(iy) = lim

y→∞
y Im f(iy). (45)

In the case of an m-function f(z) = P (T − z)−1P associated with a self-adjoint operator
T = ∫ t dE(t), the related measure µ is the spectral measure PEP of the subspace where
P projects, thus µ is normalized by µ(R) = 10 and

lim
y→0

−iyf(iy) = 10. (46)

The above results will be the key to proving the theorem below.
To connect with the language in the paper, note that any Nevanlinna function with

values in operators on a finite-dimensional Hilbert space H0 can be identified with a
matrix valued Nevanlinna function by choosing an orthonormal basis in H0. Hence, the
above results about integral representations can be obviously translated to the operator
valued setting if dimH0 < ∞.

Theorem 4.1 (characterizations of matrix Nevanlinna functions). If H0 is a finite-
dimensional Hilbert space, the following statements are equivalent:

(i) f is a Nevanlinna function with values in B(H0).
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(ii) Integral representation I: There exists a positive measure µ on R with values in
operators on H0 such that µ(R) ≤ 10 and, for z ∈ C ∖R,

f(z) = z−1 (10 − (∫
dµ(t)
1 − zt)

−1
) = z−110 +m(z−1)−1, m(z) = ∫

dµ(t)
t − z

.

(iii) Integral representation II: There exist a positive measure µ̂ on R with values
in operators on H0 and a self-adjoint operator c on H0 such that µ̂(R) = 10, c ≤ 10
and, for z ∈ C ∖R,

f(z) = z−1 (c − (∫
dµ̂(t)
1 − zt)

−1
) = cz−1 + m̂(z−1)−1, m̂(z) = ∫

dµ̂(t)
t − z

.

(iv) Operator representation: f is the FR-function of a closed subspace with respect
to a self-adjoint operator, up to the addition of a non-negative multiple of −z−1, i.e.
there exist a self-adjoint operator T on a Hilbert space H ⊃ H0 and a self-adjoint
operator d on H0 such that d ≥ 0 and, for z ∈ C ∖R,

f(z) = −dz−1 + PT (1 − zQT )−1P,
P = orthogonal projection of H onto H0,

Q = 1 − P.
The correspondence between Nevanlinna functions and measures on R established by the
integral representation (ii) is one-to-one. The operators c and d in (iii) and (iv) are given
by d = limy→0 −iyf(iy) = limy→0 y Im f(iy) and c = 10 − d. The correspondence between
Nevanlinna functions and pairs (µ̂, c) established by the integral representation (iii) is one-
to-one.

Proof. Bearing in mind that −z−1 is a Nevanlinna function, Theorem 3.1.(i) gives the
implication (iv) ⇒ (i). Also, using the one-to-one correspondence µ ↦ m(z) between
finite operator valued measures on R and their m-functions, (ii) leads to a one-to-one
correspondence µ↦ f(z) = z−110+m(z−1)−1 between Nevanlinna functions f and measures
µ such that µ(R) ≤ 10. Due to a similar reason, asuming that the self-adjoint operator c in
(iii) is fixed by the Nevanlinna function f , (iii) yields a one-to-one correspondence between
such functions and pairs (µ, c) with µ(R) = 10 and c ≤ 10. To prove the theorem we will
show that (i) ⇒ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i), obtaining also the values of the operators c and
d in terms of the Nevanlinna function f .

(i) ⇒ (ii)
All that we must prove is that, if f is a Nevanlinna function, thenm(z) = (f(z−1)−z10)−1

is the m-function of a matrix measure µ on R such that µ(R) ≤ 10. This is proved if we
show that m is a Nevanlinna function satisfying y∥m(iy)∥ ≤ 1 for y > 0 because in this case
supy>0 y∥m(iy)∥ < ∞ and

⟨v∣y Imm(iy)v⟩ = Im⟨v∣ym(iy)v⟩ ≤ ∣⟨v∣ym(iy)v⟩∣ ≤ y∥s(iy)∥∥v∥2 ≤ ∥v∥2, v ∈ H0, y > 0,
so that y Im s(iy) ≤ 10 for y > 0 and the measure µ related to m satisfies

µ(R) = lim
y→∞

y Imm(iy) ≤ 10.
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Note that g(z) = f(z) − z−110 is a non-degenerate Nevanlinna function because f(z)
and −z−1 are both Nevanlinna functions, −z−1 being non-degenerate. Therefore, ker g is
trivial on C∖R, which means that g is invertible there. Bearing in mind that dimH0 < ∞,
we conclude that g(z)−1 ∈ B(H0) is analytic for z ∈ C ∖ R. From the identity Im g−1 =
−(g−1)†(Im g)g−1 we find that Im g(z)−1/ Im z < 0. Thus, Im g(z−1)−1/ Im z > 0, proving
that m(z) = g(z−1)−1 is a Nevanlinna function again.

Concerning the bound for y∥m(iy)∥, let us write for convenience ym(iy) = −h(y)−1 with
h(y) = i10 − y−1f(−iy−1). Assume that y > 0. Then Im f(−iy−1) ≤ 0 so that Imh(y) ≥ 10.
Hence,

∣⟨v∣h(y)v⟩∣ ≥ ∣ Im⟨v∣h(y)v⟩∣ = ⟨v∣ Imh(y)v⟩ ≥ ∥v∥2, v ∈ H0.

Rewriting this inequality in terms of u = h(y)v –a vector of H0 which is as arbitrary as v–
yields

∥ym(iy)u∥∥u∥ ≥ ∣⟨ym(iy)u∣u⟩∣ ≥ ∥ym(iy)u∥2, u ∈ H0.

Therefore, ∥ym(iy)u∥ ≤ ∥u∥ for u ∈ H0, which means that y∥m(iy)∥ ≤ 1.

(ii) ⇒ (iv)
Suppose that f(z) = z−110 +m(z−1)−1 for every non-real z, with m the m-function of a

finite measure µ on R such that µ(R) ≤ 1. Let us see first that µ(R) is invertible. This
follows from the fact that m is an invertible Nevanlinna function, which implies that

0 < Imm(z)
Im z

= ∫
dµ(t)
∣t − z∣2

≤ ∫
dµ(t)
(Im z)2 = µ(R)

(Im z)2 , z ∈ C ∖R.

Therefore, we can define the measure µ0 = µ(R)−1/2 µ µ(R)−1/2, which is normalized
by µ0(R) = 10. Naimark’s dilation theorem guarantees that µ0 = PEP , where E is a
spectral measure on R with values in operators on a Hilbert space H ⊃ H0 and P is
the orthogonal projection of H onto H0. Then, the self-adjoint operator T = ∫ t dE(t)
generates the m-function m0(z) = P (T − z)−1P = ∫ dµ0(t)/(t − z) for H0, related to the
Nevanlinna FR-function f0(z) = PT (1− zQT )−1P by f0(z) = z−1 +m0(z−1)−1, according to
(41). Since m(z) = µ(R)1/2m0(z)µ(R)1/2, we find that
f(z) = z−110 + µ(R)−1/2m0(z−1)−1µ(R)−1/2 = z−1(10 − µ(R)−1) + µ(R)−1/2f0(z)µ(R)−1/2.

Consider the self-adjoint operator T̃ = T̂0T T̂0, where T̂0 = T0 ⊕ 1�0 is the sum of T0 =
µ(R)−1/2 on H0 and the identity 1�0 on H �

0 . Applying Theorems 6.2.(ii) and 6.2.(iii) we find
that the FR-function of H0 with respect to T̃ is f̃(z) = T0f0(z)T0 = µ(R)−1/2f0(z)µ(R)−1/2.
Therefore,

f(z) = −dz−1 + PT̃ (1 − zQT̃ )−1P, d = µ(R)−1 − 10,

where d = µ(R)−1/2(10 − µ(R))µ(R)−1/2 ≥ 0 because µ(R) ≤ 10.

(iv) ⇒ (iii)
Let f(z) = −dz−1 + PT (1 − zQT )−1P for z ∈ C ∖ R, with T a self-adjoint operator on

H ⊃ H0, P the orthogonal projection onto H0, Q = 1 − P and d ≥ 0. From (41), the FR-
function PT (1 − zQT )−1P can be expressed as PT (1 − zQT )−1P = z−1 + m̂(z−1)−1, where
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m̂ is the m-function of the spectral measure µ̂ of H0 with respect to T , which satisfies
µ̂(R) = 10. Therefore,

f(z) = cz−1 + m̂(z−1)−1, c = (10 − d)z−1,

with c ≤ 10 because d ≥ 0.

(iii) ⇒ (i)
Assume that f(z) = cz−1 + m̂(z−1)−1 for every non-real z, with c ≤ 10 and m̂ the m-

function of a measure µ̂ on R such that µ̂(R) = 10. Since m̂ is a Nevanlinna function and c
is self-adjoint, f is analytic on C∖R and f(z)† = f(z). To show that Im f(z)/ Im z ≥ 0 we
will use again Naimark’s dilation theorem to get a spectral measure E on R with values
in operators on a Hilbert space H ⊃ H0 such that µ̂ = PEP , where P is the orthogonal
projection of H onto H0. Then, the self-adjoint operator T = ∫ t dE(t) yields the operator
representation m̂(z) = P (T − z)−1P . Using this representation we find that

Im m̂(z) = 1
2iP ((T − z)−1 − (T − z)−1)P = (Im z)P (T − z)−1(T − z)−1P.

Hence,

Im f(z−1) = c Im z − (m̂(z)†)−1(Im m̂(z)) m̂(z)−1

= (Im z) (c − (m̂(z)†)−1P (T − z)−1(T − z)−1P m̂(z)−1)
= −(Im z) (m̂(z)†)−1P (T − z)−1(1 − PcP )(T − z)−1P m̂(z)−1

= −(Im z) (m̂(z)†)−1P (T − z)−1(P (10 − c)P +Q)(T − z)−1P m̂(z)−1.

This expression shows that Im f(z−1)/ Im z ≤ 0, which is equivalent to Im f(z)/ Im z ≥ 0,
proving that f is a Nevanlinna function.

Concerning the values of the operators c and d, note that the proof of (iv) ⇒ (iii) has
shown that, if d satisfies (iv), then c = 10 −d satisfies (iii). Besides, if c satisfies (iii), using
(45) for the m-function m̂, we find for the function f given by (iii) that we have

lim
y→0

−iyf(iy) = −c + (lim
y→0

iy−1m̂(−iy−1))
−1
= −c + µ̂(R) = 10 − c.

This finishes the proof of the theorem. �

The degree of freedom of the integral representation (ii) in the normalization of the
measure is translated into the degree of freedom in the coefficient of z−1 for the integral
representation (iii). The impossibility to guarantee the simultaneous normalization of
both terms has to do with the fact that FR-functions of self-adjoint operators give all the
Nevanlinna functions but only up to −z−1 terms, as (iv) states.

The above theorem uncovers a surprising result about the set of Nevanlinna functions: all
its elements can be recovered from those of the proper subset of m-functions by performing
the simple transformation m(z) ↦ z−110 +m(z−1)−1. This result is the reason behind the
following definition.



A GENERALIZATION OF SCHUR FUNCTIONS 32

Definition 4.2. To each Nevanlinna function f with values in operators on a finite-
dimensional Hilbert space H0 we associate a measure µ on R such that µ(R) ≤ 10 through
the integral representation I in Theorem 4.1.(ii), i.e. µ is the only of such measures satis-
fying

∫
dµ(t)
1 − zt = (10 − zf(z))−1, z ∈ C ∖R.

We say that µ is the measure of the Nevanlinna function f , or that f is the Nevan-
linna function of the measure µ.

The measure µ of a Nevanlinna function, as defined previously, is different from the mea-
sure given by the integral representation II in Theorem 4.1.(iii) unless µ(R) = 10. It is also
different from the measure appearing in the usual integral representation (42), and from
the measure of an m-function given by (44). In contrast to these other measures, according
to Theorem 4.1, that one given in Definition 4.2 establishes a one-to-one correspondence
between the set of all matrix Nevanlinna functions and a subset of matrix measures on R,
namely, the subset of measures µ such that µ(R) ≤ 10. Definition 4.2 is the exact analogue
of the relation (6) characterizing the measure of a Schur function.

It is worth to remark that we would not have reached the almost equivalence –only up
to −z−1 terms– between Nevanlinna functions and FR-functions for self-adjoint operators
if the latter ones were defined by the transfer/characteristic function representation given
by Proposition 2.7.(ii). The reason for this is that the expressions of FR-functions given
by this proposition are limited to subspaces included in the domain of the operator. As
Lemma A.1 in Appendix A shows, this requires for the Nevanlinna functions to have a
well defined normal limit at the origin, something violated by some Nevanlinna functions
different from −z−1, such as for instance ln(z).

As a direct consequence of Theorem 4.1, we get the following characterization of the
Nevanlinna FR-functions, that is, the Nevanlinna functions for which there is an operator
representation such as in (iv) of the previous theorem with d = 0. This is equivalent to
stating that c = 10, which means that µ̂ = µ, i.e. the integral representations I and II
of such theorem coincide. In other words, Nevanlinna FR-functions are those Nevanlinna
functions whose measure µ –as given by Definition 4.2– satisfies µ(R) = 10.

Corollary 4.3 (characterizations of matrix Nevanlinna FR-functions). If H0 is a
finite-dimensional Hilbert space, the following statements are equivalent:

(i) f is a Nevanlinna function with values in B(H0) such that limy→0 y Im f(iy) = 0.
(ii) f has an integral representation (42) whose measure ν has no mass point at the

origin.
(iii) Integral representation: There exists a positive measure µ on R with values in

operators on H0 such that µ(R) = 10 and, for z ∈ C ∖R,

f(z) = z−1 (10 − (∫
dµ(t)
1 − zt)

−1
) = (∫

t dµ(t)
1 − zt )(∫

dµ(t)
1 − zt)

−1

= z−110 +m(z−1)−1, m(z) = ∫
dµ(t)
t − z

.
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(iv) Operator representation: f is strictly the FR-function of a closed subspace with
respect to a self-adjoint operator, i.e. there exists a self-adjoint operator T on a
Hilbert space H ⊃ H0 such that, for z ∈ C ∖R,

f(z) = PT (1 − zQT )−1P,
P = orthogonal projection of H onto H0,

Q = 1 − P.
The correspondence between Nevanlinna FR-functions and measures on R established by
the representation (iii) is one-to-one.

Proof. In view of Theorem 4.1, it only remains to see the equivalence (i) ⇔ (ii). This
follows from the fact that a matrix valued function f given by the integral representation
(42) satisfies

lim
y→0

−iyf(iy) = lim
y→0∫

1 + iyt
1 + iy−1t

dν(t) = ν({0}).

The last equality is a consequence of the dominated convergence theorem, bearing in mind
that

lim
y→0

1 + iyt
1 + iy−1t

= {0, t ∈ R ∖ {0},
1, t = 0,

∣ 1 + iyt
1 + iy−1t

∣
2
= 1 + y2t2

1 + y−2t2
≤ 1 + y4, y ∈ R ∖ {0}.

�

In the case of a Nevanlinna FR-function f , the measure µ given by Definition 4.2 coin-
cides with the spectral measure of the subspace related to an operator representation of f
as FR-function.

Some of the examples in Section 8.1 provide operator representations of Nevanlinna
functions because there we calculate FR-functions related to stochastic matrices, which in
some instances are symmetrizable. We complete this discussion with some examples of the
integral representations I and II of Nevanlinna functions.

4.1. Examples of measures of Nevanlinna functions. To illustrate the previous re-
sults, let us uncover the measures of some simple scalar Nevanlinna functions. For this
purpose we must identify the measure µ of the m-function m related to the Nevanlinna
function f in question by the integral representation I, i.e.

∫
dµ(t)
t − z

=m(z) = 1
f(z−1) − z

.

Example 4.4. Constant Nevanlinna functions.
Every constant Nevanlinna function is real. The m-function associated with a function

f(z) = c ∈ R is given by

m(z) = 1
c − z

= ∫
δ(t − c)dt
t − z

.

Therefore the measure of a constant Nevanlinna function f(z) = c is a single Dirac delta
dµ(t) = δ(t − c)dt at the constant c. Since µ(R) = 1, constant Nevanlinna functions are
FR-functions.
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Example 4.5. Nevanlinna polynomials of degree one.
These Nevanlinna functions are those of the form f(z) = λz + c with λ > 0 and c ∈ R.

The corresponding m-function is given by

m(z) = z

λ + cz − z2 .

The polynomial z2−cz−λ = (z−a)(z−b) has roots a, b of different sign because λ = −ab > 0.
Hence,

m(z) = ma

a − z
+ mb

b − z
= ∫

(maδ(t − a) +mbδ(t − b))dt
t − z

,
ma +mb = 1,
mab +mba = 0,

which shows that the measures dµ(t) = (maδ(t−a)+mbδ(t−b))dt, constituted by two Dirac
deltas at the roots of z2 − cz − λ, are the measures of these Nevanlinna polynomials. As
in the previous example, these polynomials are Nevanlinna FR-functions becasue µ(R) =
ma +mb = 1.

As a particular case, dµ(t) = 1
2(δ(t − 1) + δ(t + 1))dt is the measure of f(z) = z.

Example 4.6. The Nevanlinna function
f(z) = −λz−1, λ > 0,

yields the m-function

m(z) = − 1
(λ + 1)z = 1

(λ + 1) ∫
δ(t)dt
t − z

,

thus dµ(t) = (λ + 1)−1δ(t)dt is the corresponding measure. In contrast to the previous
examples, this Nevanlinna function is not an FR-function for any λ > 0 because µ(R) =
(λ+1)−1 < 1. To obtain the normalized measure µ̂ of the alternative integral representation
II note that c = 1 − limy→0 −iyf(iy) = 1 − λ, hence

m̂(z) = 1
f(z−1) − cz

= −1
z
= ∫

δ(t)dt
t − z

,

so that dµ̂(t) = δ(t)dt. This corresponds to the integral representation II given by

f(z) = (1 − λ)z−1 + 1
m̂(z−1)

.

Example 4.7. The Nevanlinna function

f(z) = z

λ − z2 , λ > 0,

has an associated m-function with the form

m(z) = λz2 − 1
2z − λz3 = z2 − a2/2

z(a2 − z2)
, a =

√
2
λ
,

which can be expressed as

m(z) = 1
4 ( 1

a − z
− 1
a + z

) − 1
2z = ∫

(1
4δ(t − a) +

1
4δ(t + a) +

1
2δ(t))dt

t − z
.
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This identifies dµ(t) = (1
4δ(t − a) +

1
4δ(t + a) +

1
2δ(t))dt as the measure of f , which is an

FR-function because µ(R) = 1.
As for the Nevanlinna function −1/f(z) = z−λz−1, its m-functionm(z) = 1/(z−1−(λ+1)z),

rewritten as

m(z) = 1
2(λ + 1) ( 1

a − z
− 1
a + z

) = 1
2(λ + 1) ∫

(δ(t − a) + δ(t − a))dt
t − z

, a = 1√
λ + 1

,

shows that the corresponding measure is dµ(t) = 1
2(λ+1)(δ(t − a) + δ(t − a))dt. In constrast

to f , the Nevanlinna function −1/f is not an FR-function because µ(R) = (λ + 1)−1 < 1.
The integral representation II follows from the value of c = 1− limy→0 −iy(−1/f(iy)) = 1−λ
and the expression of the m-function

m̂(z) = 1
−1/f(z−1) − cz

= 1
z−1 − z

= 1
2 ( 1

1 − z −
1

1 + z) =
1
2 ∫

(δ(t − 1) + δ(t + 1))dt
t − z

.

This identifies dµ̂(t) = 1
2(δ(t − 1) + δ(t + 1))dt as the measure of the alternative integral

representation II for −1/f ,

− 1
f(z)

= (1 − λ)z−1 + 1
m̂(z−1)

.

Example 4.8. As a final example, let us consider a non-rational Nevanlinna function to
show how to proceed in such a general case. Let f(z) =

√
z be given by the branch which

is analytical on C ∖ (−∞,0], i.e. f(z) =
√

∣z∣ eiθ/2 with z = ∣z∣ eiθ, θ ∈ (−π,π). The Stieltjes
inversion formula [36,63] for the corresponding m-function

m(z) = 1√
z−1 − z

= ∣z∣1/2 eiθ/2
1 − ∣z∣3/2 ei3θ/2

allows us to recover the measure µ of f . The absolutely continuous part w(t)dt is given
by the weight

w(t) = 1
π

lim
y↓0

Imm(t + iy) = 1
π

√
∣t∣

1 + ∣t∣3
, t ∈ (−∞,0],

while the singular part is concentrated on the points t ∈ R such that limy↓0m(t + iy) = ∞,
with the mass points being those such that µ({t}) = limy↓ −iy(m({t + iy}) ≠ 0. Therefore,
the sigular part is in this case a Dirac delta at 1 with mass 2/3, so that the measure of

√
z

is given finally by
dµ(t) = w(t)dt + 2

3δ(t − 1)dt.

The Nevanlinna function
√
z is an FR-function because limy→0 y

√
iy = 0, which means that

µ(R) = 1 as can be easily verified.

It is worth remarking that none of the first two examples –Nevanlinna polynomials of
degree not bigger than one– is characterized by a measure neither by the general rep-
resentation (42) nor by the m-function representation (44). Besides, the correspondence
between constant Nevanlinna functions and single Dirac deltas supported on the real line
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is in perfect analogy with the case of constant Schur functions, whose associated measures
are the single Dirac deltas supported on the unit circle.

5. Schur algorithm on the real line

We will see that in the self-adjoint case there exists a natural analogue of the Schur
algorithm for the Nevanlinna FR-function of a subspace. Schur algorithms for Nevanlinna
functions using interpolation points outside of the real line, including the point at infinity,
have been already proposed in the literature, see [3, Chapter 3] and [4–6,30]. Based on our
FR-function approach, we will present here a very simple and natural version of the Schur
algorithm for Nevanlinna functions which interpolates them at points on the real line. We
will refer to it as the ‘Schur algorithm on the real line’. As we will see in Sections 7 and 8,
this Schur algorithm turns out to be especially useful for applications to OPRL and RW.

The Schur algorithm for Schur functions can be seen as a way to extract iteratively
the parameters of a related canonical unitary, namely, the Verblunsky coefficients (Schur
parameters) of the CMV matrix associated with the related measure on T. CMV matrices
are the unitary analogue of Jacobi matrices [21, 75] (see also [65, Chapter 4]), so a Schur
algorithm for FR-functions in the self-adjoint case should extract from them the Jacobi
parameters of the related measure on R.

Let T be a self-adjoint operator on a Hilbert space H . For simplicity, consider first
the related Nevanlinna FR-function f of a one-dimensional subspace H0 = span{v}. Its
spectral measure µ on R is given in terms of the spectral decomposition T = ∫ t dE(t) by

µ = ⟨v∣Ev⟩,

while the integral representation of Theorem 4.1.(ii) reads as

f(z) = 1
z

⎛
⎜⎜⎜
⎝

1 − 1

∫
dµ(t)
1 − zt

⎞
⎟⎟⎟
⎠
=
∫

t dµ(t)
1 − zt

∫
dµ(t)
1 − zt

, z ∈ C ∖R. (47)

Since f is completely determined by µ, we obtain the same FR-function for any other
operator with a subspace having µ as a spectral measure. An example of this is the
self-adjoint multiplication operator in L2

µ given by

Tµ∶ L2
µ Ð→ L2

µ

h(t) ↦ th(t)
(48)

which assigns to the function h(t) = 1 the spectral measure µ. Therefore, f becomes the
FR-function of span{1} with respect to Tµ.

Since Tµ has simple spectrum, it can be represented as a Jacobi matrix, the canonical
object we need to build up a Schur algorithm. Nevertheless, in the case of µ with unbounded
support the Jacobi representation may require a basis excluding the function h(t) = 1,
which can make it difficult to recover the Stieltjes function s of µ –hence the FR-function
f– from the Jacobi matrix.
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To introduce a useful Jacobi matrix in this set up we need an assumption, non-trivial
only in the unbounded case: we will suppose that v lies in the domain of every positive
power of T . Then, the equality ∫ tndµ(t) = ⟨v∣T nv⟩ shows that µ has finite moments, so
one can consider the corresponding OPRL pn. The related three term recurrence relation
is encoded by a Jacobi matrix

J =
⎛
⎜⎜⎜
⎝

b0 a0
a0 b1 a1

a1 b2 a2
⋱ ⋱ ⋱

⎞
⎟⎟⎟
⎠
, an > 0, bn ∈ R. (49)

If µ is finitely supported, there will be a finite number of orthonormal polynomials pn, so
the Jacobi matrix J will be finite. Otherwise, it will be an infinite Jacobi matrix.

We will identify the Jacobi matrix J with the operator v ↦ J v on `2 with maximal
domain D(J ) = {v ∈ `2 ∶ J v ∈ `2}. To avoid getting away from self-adjointness, let us
suppose that J is self-adjoint, again a non-trivial assumption only in the unbounded case.
In this situation J is unitarily equivalent to Tµ because then the polynomials are dense
in L2

µ [3]. This unitary equivalence amounts to the identification of pn ∈ L2
µ with the

canonical vector en = (δk,n)k≥0 ∈ `2. As a consequence, the Nevanlinna FR-function f of
span{p0(t)} = span{1} with respect to Tµ coincides with that of span{e0} with respect to
J . Therefore we get f by substituting

T → J , P →
⎛
⎜⎜⎜
⎝

1
0

0
⋱

⎞
⎟⎟⎟
⎠
,

PTP → b0,

PTQ→ (a0 0 0 ⋯) ,

QTP → (a0 0 0 ⋯)T ,
QTQ→ J (1) =

⎛
⎜⎜⎜
⎝

b1 a1
a1 b2 a2

a2 b3 a3
⋱ ⋱ ⋱

⎞
⎟⎟⎟
⎠
,

in the expression given by Proposition 2.7.(ii). This yields
f(z) = b0 + a2

0zs1(z), (50)
where s1 is the Stieltjes function for the orthogonality measure of the Jacobi matrix J (1)

obtained from J by coefficient stripping.
The renewal equation (47) implies that the Stieltjes function s1 is related to the cor-

responding FR-function f1 (of the subspace spanned by the first canonical vector with
respect to J (1)) by s1(z) = (1 − zf1(z))−1. Inserting this into (50) yields

f(z) = b0 +
a2

0z

1 − zf1(z)
. (51)

Equivalently,

f1(z) =
1
z
(1 + a2

0z

b0 − f(z)
) = 1

z

f(z) − b0 − a2
0z

f(z) − b0
, (52)

which is the version of the Schur transformation for FR-functions related to self-adjoint
operators. Since we are dealing with a subspace included in the domain of J , the stripped
Jacobi matrix J (1) = QJQ is also self-adjoint according to the proof of Theorem 3.1.(ii).
Thus f1 is also a Nevanlinna function and the above Schur transformation can be iterated.
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It is important to notice that the Schur algorithm for Schur functions does not resort
to any external object such as a CMV matrix, rather the Schur parameters come from the
evaluation at the origin of the Schur functions generated by the algorithm itself. As for the
self-adjoint case, being considered now, how do the Jacobi parameters b0, a0 come from
the original FR-function f?

Suppose for the moment that J is bounded so that f is analytic around the origin, and
the same holds for f1 because J (1) is bounded too. Then, the parameters b0 and a0 have
a remarkable meaning which follows from (51),

f(z) = b0 + a2
0z +O(z2) ⇒ b0 = f(0), a2

0 = f ′(0).
This result remains almost unchanged in the unbounded case, despite the lack of analyticity
at the origin: the evaluations at the origin must be substituted by normal limits along the
imaginary axis, z = iy → 0. More precisely, as a consequence of Lemma A.1 in Appendix A,
the assumption v ∈ D(T 2) implies that

f(0) ∶= lim
y→0

f(iy) = PJP = b0, f ′(0) ∶= lim
y→0

f(iy) − f(0)
iy

= (QJP )†(QJP ) = a2
0. (53)

Actually, since we are assuming that v ∈ D(T n) for every n ∈ N, Lemma A.1 implies that
f has normal derivatives of all orders at the origin.

Iterating the process, we find from (52) a ‘Schur algorithm’ for Nevanlinna FR-functions
related to self-adjoint operators, which is given by

f0(z) = f(z),

fn+1(z) =
1
z

fn(z) − bn − a2
nz

fn(z) − bn
, bn = fn(0), a2

n = f ′n(0), n ≥ 0.
(54)

As follows from Proposition 3.3, the algorithm stops whenever a degenerate Nevanlinna
iterate fn arises since then fn(z) = fn(0) for every z ∈ C ∖R, otherwise fn(z) − fn(0) does
not vanish anywhere on C ∖ R and the algorithm continues. The terminating situation
corresponds to a finite Jacobi matrix related to a finitely supported measure.

The above result identifies the ‘Schur parameters’ of this Schur algorithm as the first
two Taylor coefficients of the iterates, which also coincide with the coefficients of the
corresponding Jacobi matrix. This constitutes the self-adjoint version of Geronimus theo-
rem [34] (see also [65, Chapter 3]) relating Schur parameters and Verblunsky coefficients
in the unitary case.

If b0, a0, b1, a1, . . . are the Schur parameters of f , then its n-th iterate fn is again a Nevan-
linna FR-function with Schur parameters bn, an, bn+1, an+1, . . . . This is in perfect analogy
with the unitary case. While the unitary Schur algorithm (10) removes from a Schur func-
tion the first term of its power expansion around the origin, the self-adjoint version (54)
needs to remove the first and second terms of a similar expansion for Nevanlinna func-
tions. Notice that in both cases we substract from the power expansion of the FR-function
information corresponding to two real parameters.

The Schur algorithm (54) is easily generalized to the case of a higher finite-dimensional
subspace H0. A choice of an orthonormal basis in H0 allows us to identify its spectral



A GENERALIZATION OF SCHUR FUNCTIONS 39

measure as a matrix valued one. This leads to matrix valued OPRL [27] when H0 ⊂ D(T n)
for every n ≥ 1. The corresponding recurrence relation leads to a block Jacobi matrix which
takes the place of (49). It has the same form as (49), but now the coefficients are square
matrices bn = b†

n and an > 0 of size dimH0. Assuming J self-adjoint –as an operator on `2

with maximal domain–, similar arguments to those of the one-dimensional case show that
(50) and (51) read now as follows

f(z) = b0 + za0s1(z)a0 = b0 + za0(10 − zf1(z))−1a0, 10 = identity matrix of size dimH0.

Here s1 is the Stieltjes function of the matrix measure associated with the block Jacobi
matrix J (1) with blocks bn, an, n ≥ 1. Also, f1 is the FR-function with respect to J (1) for
the subspace of `2 on which the first block column of J (1) acts. We finally find the fol-
lowing form for the Schur algorithm in the case of matrix valued Nevanlinna FR-functions
associated with self-adjoint operators,

f0(z) = f(z),
fn+1(z) = z−1a−1

n (fn(z) − bn − a2
nz)(fn(z) − bn)−1an, bn = fn(0),

= z−1an(fn(z) − bn)−1(fn(z) − bn − a2
nz)a−1

n , a2
n = f ′n(0),

n ≥ 0.
(55)

In the unbounded case fn(0) and f ′n(0) must be understood as normal limits along the
imaginary axis analogous to (53), as follows from Lemma A.1 in Appendix A.

The above algorithm does not stop unless an iterate fn is degenerate because Propo-
sition 3.3 shows that non-degeneracy is equivalent to the invertibility of fn(z) − fn(0), a
property which holds simultaneously for every z ∈ C ∖R.

As in the one-dimensional case, the n-th iterate fn is again a Nevanlinna FR-function
whose matrix Schur parameters bn, an, bn+1, an+1, . . . are obtained by stripping those of f .

When compared with the Schur algorithm (54) for scalar Nevanlinna functions, the
only additional ingredients of the matrix valued version (55) are the left and right factors
a±1
n which obviously cancel in the scalar case. This in in perfect analogy with the Schur

algorithm for Schur functions, whose matrix valued version involves the matrix Möbius
transformations (12). The factors a±1

n are the Nevanlinna analogues of the left and right
factors of the type ρ±1

α appearing in such matrix Möbius transformations, which cancel in
the the scalar case leading to the Schur algorithm defined by the scalar Möbius transfor-
mations (11).

The FR-functions introduced in this paper are not the only Nevanlinna functions that
can be considered in the self-adjoint case. For instance, the m-function m is also a Nevan-
linna function. Indeed, m-functions for measures on R are sometimes considered as an
analogue of Schur functions for measures on T. That is, m-functions fit with the re-
quirement (B) in the introduction concerning the similarity with the properties of Schur
functions. Regarding the requirement (C) about the existence of a Schur algorithm, using
the relation (41) between Stieltjes functions and FR-functions it can be easily seen that
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the Schur algorithm (54) is equivalent to
m0(z) =m(z),

mn+1(z) =
1
a2
n

(bn − z −
1

mn(z)
) ,

bn = lim
y→∞

(iy + 1/mn(iy)),

a2
n = lim

y→∞
iy(iy + 1/mn(iy) − bn),

n ≥ 0.
(56)

This algorithm requires the existence of the limits giving bn and a2
n at every step, a condition

which is not guaranteed for the m-function m of an arbitray normalized measure on R,
as the examples in the next subsection show. When such conditions hold, the algorithm
yields a terminating sequence of m-functions if an = 0 for some n, and an infinite sequence
otherwise.

The algorithm (56) is considered sometimes as the Schur algorithm for Nevanlinna func-
tions of Stieltjes form, see [3, Chapter 3] and [5, 31]. However, (54) seems a more natural
version of the standard Schur algorithm (10). Besides, (54) provides a transparent mean-
ing for the ‘Schur parameters’ of Nevanlinna functions –quite close to that of the Schur
parameters for Schur functions– which is obscured in (56). Rewriting (54) as (56) is as
unnatural as rewriting the Schur algorithm for Schur functions in terms of Stieltjes or
Carathéodory functions.

The Schur algorithms (54) and (56) are equivalent once the relation between FR-
functions and m-functions is taken into account. Nevertheless, if we think of them simply
as Schur algorithms for Nevanlinna functions, they have a different range of applicabil-
ity. The usual Schur algorithm (56) applies to Nevanlinna functions with an asymptotic
behaviour at infinity controlled by (46) and such that the limits involved in (56) exist.
Indeed, this convergence requirement is needed also for each iterate, which amounts to
asking for the analyticity at infinity of the Nevanlinna function restricted to the imaginary
axis [3, Chapter 3].

On the other hand, the Schur algorithm (54) requires of the Nevanlinna function and its
iterates certain regularity at the origin, where they must have a well defined normal limit
and derivative. However, as we will see below, the applicability of (54) at every step can
be easily determined from the beginning, because this new algorithm works as long as the
original Nevanlinna function has normal derivatives of all orders at the origin. Therefore,
(54) applies for instance to every Nevanlinna function which is analytic at the origin. All
these comments remain true even in the matrix valued case, as the next theorem shows.

For convenience, we introduce the following definition.

Definition 5.1. We denote by Nr(x) the set of matrix valued Nevanlinna functions
f with r-th normal derivative at x ∈ R, which means that the limits below do exist

f (0)(x) = f(x) ∶= lim
y→0

f(x + iy),

f (k)(x) ∶= lim
y→0

f (k)(x + iy) − f (k)(x)
iy

, k = 1,2, . . . , r.

With this notation, we can state the alluded result about the Schur algorithm (54) and
its matrix version (55).
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Theorem 5.2. The transformation
f(z) ↦ g(z) = z−1f ′(0)−1/2(f(z) − f(0) − f ′(0)z)(f(z) − f(0))−1f ′(0)1/2,

= z−1f ′(0)1/2(f(z) − f(0))−1(f(z) − f(0) − f ′(0)z)f ′(0)−1/2,

f ′(0)1/2 = non-negative definite square root of f ′(0),
satisfies the following properties:

(i) f ∈N1(0) non-degenerate ⇒ g is a Nevanlinna function.
(ii) f ∈Nr(0) non-degenerate ⇒ g ∈Nr−2(0), r ≥ 2.

As a consequence, the scalar and matrix Schur algorithms (54) and (55) are valid for every
f ∈ N∞(0), and in this case generate finitely or infinitely many Nevanlinna iterates fn
depending whether a degenerate iterate arises or not.

Proof.
(i) The transformation is well defined for every non-degenerate f ∈ N1(0) because, by
Proposition 3.3, f(z) − f(0) is invertible for every z ∈ C ∖ R, while f ′(0) is not only
invertible but also positive definite due to Proposition 3.2. In this case, the equality
between the two alternative expressions of g follows from the fact that both of them can
be rewritten as

g(z) = z−110 − f ′(0)1/2(f(z) − f(0))−1f ′(0)1/2.

Therefore,
g(z) = z−110 +m(z−1)−1, m(z) = f ′(0)−1/2(f(0) − f(z−1))f ′(0)−1/2.

Since −f(z−1) is a Nevanlinna function and, from Proposition 3.2, f(0) and f ′(0) are
self-adjoint, we conclude that m is also a Nevanlinna function. Besides, the limit

lim
y→∞

−iym(iy) = lim
y→∞

f ′(0)−1/2f(−iy−1) − f(0)
−iy−1 f ′(0)−1/2 = 10,

proves that m satisfies the condition (43) which identifies it as an m-function, being the
related measure µ such that µ(R) = limy→∞ −iym(iy) = 10. Therefore, Theorem 4.1 implies
that g is a Nevanlinna function.
(ii) Let us write g(z) = f ′(0)−1/2h1(z)h0(z)−1f ′(0)1/2 with

h0(z) =
f(z) − f(0)

z
, h1(z) =

f(z) − f(0) − f ′(0)z
z2 ,

which are analytic on C ∖R. Actually, for every non-degenerate f ∈ N2(0), the functions
h0 and h1 have normal limits at the origin given by

h0(0) = f ′(0), h1(0) =
1
2f

′′(0).

Since h0(0) is invertible, g ∈ Nr−2(0) whenever the normal derivatives h(k)
0 (0) and h(k)

1 (0)
exist for k = 1,2, . . . , r − 2. This follows from the condition f ∈Nr(0) because

h
(k)
0 (0) = 1

k + 1f
(k+1)(0), h

(k)
1 (0) = 1

(k + 1)(k + 2)f
(k+2)(0).
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�

There exists an additional advantage of the Schur algorithm (54). Using a real shift
f(z) → f(z + x), x ∈ R, we see that (54) can be generalized to a Schur algorithm with
a wider applicability, which requires the existence of normal derivatives at an arbitrarily
chosen point x ∈ R. Such an algorithm amounts to substituting the origin by x ∈ R in (54)
and (55) for the scalar and matrix valued case respectively.

Definition 5.3. The Schur algorithm on the real line is defined for a given x ∈ R and
every Nevanlinna function f ∈N∞(x) by

f0(z) = f(z),

fn+1(z) =
1

z − x
fn(z) − fn(x) − f ′n(x)(z − x)

fn(z) − fn(x)
, n ≥ 0,

(57)

in the scalar case, while its matrix valued extension reads as follows
f0(z) = f(z),

fn+1(z) =
1

z − x
f ′n(x)−1/2(fn(z) − fn(x) − f ′n(x)(z − x))(fn(z) − fn(x))−1f ′n(x)1/2,

= 1
z − x

f ′n(x)1/2(fn(z) − fn(x))−1(fn(z) − fn(x) − f ′n(x)(z − x))f ′n(x)−1/2,
n ≥ 0.

Since this Schur algorithm works for every f ∈N∞(x), it is valid in particular for all the
Nevanlinna functions with x ∈ R as an analyticity point. This is for instance the case of
every FR-function with respect to a bounded self-adjoint operator T when ∣x∣ < ∥T ∥−1.

This Schur algorithm for Nevanlinna functions opens up many other questions in par-
allel with the theory of Schur functions, such as continued fraction expansions and Wall’s
polynomials for Nevanlinna functions, determinacy issues for the parametrization of Nevan-
linna functions by Schur parameters or the relation of this algorithm with interpolation
and moment problems on the real line. For instance, in contrast to the Schur algorithm
interpolating at the point of infinity, the Schur algorithm on the real line offers the pos-
sibility of using a different interpolation point at each step –very much in line with the
Nevanlinna-Pick algorithm–, a fact which links to interpolation problems on the real line.

Although these topics will be discussed elsewhere, for convenience we will briefly com-
ment here on the uniqueness of the Nevanlinna function related to given Schur parameters.
First, suppose for simplicity that the sequences of Schur parameters bn, an derived from
the Schur algorithm (54) are bounded. There is a one-to-one correspondence between
such bounded sequences, the bounded Jacobi matrices and the normalized measures with
a bounded support on the real line [3]. Bearing in mind the correspondence between
measures on the real line and Nevanlinna functions established in Theorem 4.1 and Corol-
lary 4.3 we conclude that any sequence of bounded Schur parameters determines a unique
Nevanlinna function –which is indeed an FR-function– via the Schur algorithm (54). This
result generalizes obviously to the matrix Schur algorithm (55), while the use of a real
shift shows that it also holds for the corresponding shifted versions of the algorithm. In
general, the uniqueness of the Nevanlinna function for not necessarily bounded sequences
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of Schur parameters bn, an holds as long as the corresponding Jacobi matrix is associated
with a unique normalized measure on the real line, i.e. when the corresponding moment
problem is determinate [3]. This situation is characterized by the fact that the Jacobi
matrix, considered as an operator on `2 with maximal domain, is self-adjoint.

5.1. Examples of the Schur algorithm on the real line. Let us briefly compare the
above Schur algorithm on the real line with the standard one for m-functions using a few
simple examples.

Example 5.4. The Nevanlinna function z goes well with the Schur algorithm (54) on the
real line but not the standard one (56) because it is not an m-function according to the
characterization (43). The opposite holds for the Nevanlinna function −z−1, which has no
normal limit at the origin. This leads to the following terminating sequences of iterates,

f(z) = z → f1(z) = 0, m(z) = −z−1 → m1(z) = 0.
However, −z−1 is analytic outside of the origin, thus it goes well with the shifted version
(57) of the new algorithm for any x ≠ 0, giving also a terminating sequence of iterates,

f(z) = −z−1 → f1(z) = 1 − x−2.

Example 5.5. The Nevanlinna function
z

λ − z2 , λ > 0,

goes well with both, the standard Schur algorithm (56) for m-functions and the Schur
algorithm (54) on the real line. The corresponding sequences of iterates are given by

m(z) = z

λ − z2 → m1(z) = −z−1 → m2(z) = 0,

f(z) = z

λ − z2 → f1(z) =
z

λ
→ f2(z) = 0.

However, none of these algorithms work for the Nevanlinna function
z2 − λ
z

, λ > 0,

which instead goes well with the shifted Schur algorithm (57) for any x ≠ 0, leading to the
sequence of iterates

f(z) = z
2 − λ
z

→ f1(z) = −
λ

x2z + xλ
→ f2(z) = −

x

x2 + λ
.

Example 5.6. Consider for n ∈ N the Nevanlinna m-functions of the normalized measures
nt−(n+1)dt on [1,∞), given explicitly by

f(n; z) = ∫
∞

1

n

tn+1
dt

t − z
= n

zn+1 ∫
∞

1
( 1
t − z

− 1
t
− z

t2
− z

2

t3
− z

3

t4
−⋯ − zn

tn+1)dt

= − n

zn+1 (ln(1 − z) + z + z
2

2 + z
3

3 +⋯ + z
n

n
) .
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Applying the standard Schur algorithm (56) to f(n; z) we obtain the following results for
the first values of n:

n = 1 b0 = ∞

n = 2 b0 = 2, a0 = ∞

n = 3 b0 = 3/2, a0 =
√

3/2, b1 = ∞

n = 4 b0 = 4/3, a0 =
√

2/3, b1 = 14/3, a1 = ∞

In general, f(2k+1; z) has well defined values of bj and aj for j = 0,1, . . . , k−1 but bk = ∞,
while f(2k + 2; z) has also a well defined value of bk but ak = ∞. Therefore, although
f(n; z) is a Nevanlinna m-function, the standard Schur algorithm (56) does not apply to
it for any value of n. The reason for this is the lack of analiticity of f(n; iy) at infinity,
which is related to the fact that only the first n moments of the related measure exist.

On the contrary, since f(n; z) is analytic for z ∈ C ∖ [1,∞), the shifted Schur algorithm
(57) on the real line is applicable for any x < 1. For instance, using the power expansion
f(n; z) = n∑k≥0 z

k/(n+ k + 1) it is possible to see that the choice x = 0 yields the following
Schur parameters for f(n; z),

b0 =
n

n + 1 , a0 =
n

n + 2 ,

bk =
n2 + (2k + 1)n + 2k2

(n + 2k)2 − 1 , ak =
k2(n + k + 1)2

(n + 2k + 1)2((n + 2k + 1)2 − 1) , k ≥ 1.

Since f(n; z) is analytic at the origin, it is an FR-function with an operator representation
given by the Jacobi matrix built out of the above Schur parameters. The boundedness
of these parameters with respect to k implies the boundedness of the support of the cor-
responding orthogonality measure, which is not the original one supported on [1,∞) and
defining f(n; z) as an m-function, but that one attached to the Nevanlinna function f(n; z)
by Definition 4.2.

Example 5.7. In this example we will proceed in reverse order, obtaining the Nevanlinna
function with a prescribed sequence of Schur parameters for the Schur algorithm (54).
In particular, we will determine the Nevanlinna function with constant Schur parameters
bn = b, an = a for any a, b ∈ R. Such a constant sequence is obviouly bounded, thus it
determines a unique Nevanlinna function f . Since the first iterate f1 has the same Schur
parameters as f we conclude that f1 = f , so that

f(z) = 1
z

f(z) − b − a2z

f(z) − b
.

Solving this equation yields

f(z) =
1 + bz −

√
(1 − bz)2 − 4a2z2

2z , (58)
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where the branch for the square root is that one which takes the value 1 at z = 0 because
f must have a well defined normal limit b at the origin.

Coming back to the role of Nevanlinna m-functions as the self-adjoint version of Schur
functions, as we pointed out, m-functions of measures on R have been already considered
as an analogue of Schur functions of measures on T. At this point it is worth mentioning
the discussion in B. Simon’s monograph [65, Appendix B.2] about the variety of OPUC
analogs for the m-function of OPRL, which includes Schur functions among them. We
go in the opposite direction, trying find the right OPRL analogue of Schur functions for
OPUC. The results in the present paper intend to show that this OPRL analogue, although
close to m-functions –the renewal equation links both of them– is given instead by what
we call FR-functions.

Regarding the requirements stated in the Introduction for the generalization of Schur
functions, even if one is pleased with the fact that m-functions satisfy the requirements
(B) and (C), they do not meet requirement (A), unlike FR-functions. As we pointed
out, in the bounded case the Stieltjes function represents a return generating function,
while the corresponding first return generating function is an FR-function which becomes
a Schur/Nevanlinna function in the unitary/self-adjoint case. This interpretation is key
in understanding the interest of FR-functions for the study of RW and QW, as the ap-
plications discussed in Sections 8, 9 and 10 will show. The FR-functions for both, QW
and RW, turn out to be Schur functions, but with values in operators on Hilbert and
Banach spaces respectively. Besides, for a large class of RW –those which are irreducible
and reversible– the corresponding evolution operator is self-adjoint with respect to a suit-
able inner product [74, Chapter 6] and hence the first return probabilities generate an
FR-function which is simultaneously a Schur and a Nevanlinna function. None of these
results hold for m-functions.

Above and beyond the previous remarks, the best argument in support for the FR-
functions as the right generalization of Schur functions beyond unitarity will be given in
the next section. There is a clear asymmetry in the fact that Schur functions are known
to satisfy very useful factorization properties, but no Nevanlinna analogue exists so far.
This asymmetry reappears in other contexts, for instance, when noticing that Khrushchev
factorization formula for Schur functions related to OPUC has no OPRL version. This is
not merely an aesthetic question since Schur factorizations have been key in the invariant
subspace problem of operator theory [16,51] and realizabilty in linear system theory [12,39],
while Khrushchev formula is the origin of a recent revolution in OPUC theory with deep
impact and far-reaching consequences [44,45,65], even beyond OPUC theory –for instance
with applications in QW [15,37].

We will see that splitting formulas similar to the alluded factorizations of Schur functions
appear also for Nevanlinna FR-functions associated with self-adjoint operators. Actually,
we will find that such kind of splitting formulas are a general feature of FR-functions for
arbitrary operators. This opens the possibility of applying these splittings, not only to
OPRL theory, but also to other areas like for instance the study of RW and open QW.
The suitability of FR-functions –under the more restricted notion of transfer/characteristic
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functions– for factorizations formulas was already recognized since the 50’s in works on
system theory, dilation theory and related areas, where they have been profusely exploited
in the context of unitary colligations [17, 51]. A much more recent result very much
influenced by the connection with QW –and indeed at the root of this paper– has shown
that Khrushchev factorization formula for OPUC can be generalized to arbitary unitary
operators [25]. In the next section we will see that FR-functions are not only suitable for
factorizations, but also for other kinds of splittings which mimic similar splittings of the
underlying operator. Moreover, these splittings rules require no symmetry at all for the
related operator, which makes them a powerful tool for developing splitting techniques in
different applications of FR-functions, see Sections 7, 8, 9 and 10.

6. Splitting rules for FR-functions

The objective of this section is to prove that the FR-functions related to arbitrary
bounded projections and arbitrary closed operators on Banach spaces satisfy a couple of
splitting rules with respect to the sum and product of operators. Natural extensions of
Khrushchev factorization formulas for unitaries found in [25], these splitting rules –given
in Theorem 6.1– are central for the applications discussed in Sections 7, 8, 9 and 10.

An essential ingredient of these rules is the assumption of an overlapping splitting of
the underlying operator T ∶D(T ) →B on a Banach space B, i.e. a splitting into operators
TL∶D(TL) → BL and TR∶D(TR) → BR on subspaces related to a decomposition B =
B− ⊕B0 ⊕B+ with BL = B− ⊕B0 and BR = B0 ⊕B+. The splitting rules in question
state that such an overlapping splitting of an operator induces a similar splitting on the
FR-function of the projection of B onto the overlapping subspace B0 = BL ∩ BR along
the complementary one B− ⊕B+. We will deal with two situations corresponding to the
following operator overlapping splittings

T =
⎛
⎜
⎝

TL

0+

⎞
⎟
⎠
+
⎛
⎜
⎝

0−

TR

⎞
⎟
⎠
, T =

⎛
⎜
⎝

TL

1+

⎞
⎟
⎠

⎛
⎜
⎝

1−

TR

⎞
⎟
⎠
,

where 0± and 1± stand for the null and identity operators on H± respectively. We will refer
to HL,R and TL,R as the ‘left/right’ subspaces and operators respectively.

Theorem 6.1 (splitting rules for FR-functions). Let B = B−⊕B0 ⊕B+ be a decom-
position of a Banach space into a direct sum of closed subspaces and TL, TR operators on
BL = B− ⊕ B0, BR = B0 ⊕ B+ respectively. Denote by 0k and 1k the null and identity
operators on Bk for any subindex k, while

P = projection of B onto B0 along B− ⊕B+, Q = 1 − P,
PL = projection of BL onto B0 along B−, QL = 1L − PL
PR = projection of BR onto B0 along B+, QR = 1R − PR.

Then, if B0 ⊂ D(TL,R) and fL,R is the FR-function of PL,R with respect to TL,R, we have
the following splitting rules:
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(i) Decomposition: T = (TL ⊕ 0+) + (0− ⊕ TR) has domain D(T ) = D(TL) +D(TR)
and the FR-function of P with respect to T is given by

f(z) = fL(z) + fR(z), z−1 ∈$(QLTLQL) ∩$(QRTRQR).

(ii) Factorization: T = (TL ⊕ 1+)(1− ⊕ TR) has domain D(T ) = D(TL) +D(TR) and
the FR-function of P with respect to T is given by

f(z) = fL(z)fR(z), z−1 ∈$(QLTLQL) ∩$(QRTRQR).

Proof.
(i) For convenience, let us write the overlapping splitting of T as

T = T̂L + T̂R, T̂L = TL ⊕ 0+, T̂R = 0− ⊕ TR,
using the enlarged left/right operators T̂L,R. The condition B0 ⊂ D(TL,R) implies that

D(TL) = (D(TL) ∩B−) ⊕B0, D(TR) = B0 ⊕ (D(TR) ∩B+),
hence

D(T ) = D(T̂L) ∩D(T̂R) = (D(TL) ∩B−) ⊕B0 ⊕ (D(TR) ∩B+) = D(TL) +D(TR). (59)
The condition B0 ⊂ D(TL,R) ensures that fL,R admit expressions like the one in Propo-

sition 2.7.(ii), i.e.
fL(z) = PLTLPL + zPLTLQL(QL − zQLTLQL)−1QLTLPL, z−1 ∈$(QLTLQL),
fR(z) = PRTRPR + zPRTRQR(QR − zQRTRQR)−1QRTRPR, z−1 ∈$(QRTRQR).

(60)

The FR-functions fL,R can be rewritten in terms of the enlarged operators as
fL(z) = PT̂LP + zP T̂LP−(P− − zP−T̂LP−)−1P−T̂LP, z−1 ∈$(P−T̂LP−),

fR(z) = PT̂RP + zP T̂RP+(P+ − zP+T̂RP+)−1P+T̂RP, z−1 ∈$(P+T̂RP+),
(61)

with P± the projection of B onto B± along BL,R.
The above results imply that B0 ⊂ D(T ), which guarantees that the expression in

Proposition 2.7.(ii) is also valid for the FR-function f , i.e.
f(z) = PTP + zPTQ(Q − zQTQ)−1QTP, Q = P− + P+. (62)

Besides, from (59) we know that D(T ) ∩ (B−⊕B+) = (D(T ) ∩B−)⊕ (D(T ) ∩B+), which
implies that D(Q − zQTQ) = (D(Q − zQTQ) ∩B−) ⊕ (D(Q − zQTQ) ∩B+). This means
that Q− zQTQ has a block representation with respect to the direct sum B−⊕B+, which
is given by

Q − zQTQ = (P− − zP−T̂LP− 0
0 P+ − zP+T̂RP+

) ,

where we have taken into account that
P+T̂L = T̂LP+ = P−T̂R = T̂RP− = 0. (63)

Therefore, the domain of definition of f(z) is
z−1 ∈$(QTQ) =$(P−T̂LP−) ∩$(P+T̂RP+) =$(QLTLQL) ∩$(QRTRQR),
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and in this domain we can rewrite f in terms of block representations as follows

f(z) = PT̂LP+PT̂RP+z (PT̂LP− PT̂RP+)(
(P− − zP−T̂LP−)−1 0

0 (P+ − zP+T̂RP+)−1)(P−T̂LP
P+T̂RP

) ,

where we have used (63) again. The decomposition f(z) = fL(z) + fR(z) follows from the
above block representation of f and the expression of fL,R given in (61).
(ii) The splitting of T is now an overlapping factorization

T = T̂LT̂R, T̂L = TL ⊕ 1+, T̂R = 1− ⊕ TR,
where the enlarged left/right operators T̂L,R have been redefined. Concerning the domain
of T , note that R(T̂R) = B− ⊕R(TR) and D(T̂L) = (D(TL) ∩B−) ⊕BR. Hence, bearing
in mind that T̂R acts as the identity on B− we get

D(T ) = (D(TL) ∩B−) ⊕D(TR) = D(TL) +D(TR).
The assumption B0 ⊂ D(TL,R) implies that the expressions (61) for fL,R also hold in

this case with the redefined operators T̂L,R.
As a consequence of the previous results, B0 ⊂ D(T ), thus f is given again by (62)

but with the new meaning of T . Analogously to the case (i), Q − zQTQ has a block
representation with respect to the direct sum B− ⊕B+, which in this case looks like

Q − zQTQ = (P− − zP−T̂LP− −zP−T̂LT̂RP+
0 P+ − zP+T̂RP+

) .

The analogue of Lemma 1.2 for upper triangular block operators provides the inverse of
Q − zQTQ for

z−1 ∈$(QLTLQL) ∩$(QRTRQR) =$(P−T̂LP−) ∩$(P+T̂RP+) ⊂$(QTQ),
leading to the following expression of f in such a domain,

f(z) = PT̂LT̂RP + z (PT̂LP− PT̂LT̂RP+)(
S− zS−P−T̂LT̂RP+S+
0 S+

)(P−T̂LT̂RP
P+T̂RP

) ,

S− = (P− − zP−T̂LP−)−1, S+ = (P+ − zP+T̂RP+)−1.

(64)

Here we have used the new relations
P+T̂L = T̂LP+ = P+, P−T̂R = T̂RP− = P−,

satisfied by the redefined enlarged operators. These relations also imply that
T̂LT̂R = T̂L(P− + P + P+)T̂R = T̂LP− + T̂LPT̂R + P+T̂R,

so that
PT̂LT̂RP = (PT̂LP )(PT̂RP ), P T̂LT̂RP+ = (PT̂LP )(PT̂RP+),

P−T̂LT̂RP = (P−T̂LP )(PT̂RP ), P−T̂LT̂RP+ = (P−T̂LP )(PT̂RP+).
(65)

Inserting (65) into the block representation (64) of f and comparing with the expressions
(61) of fL,R yields the factorization f(z) = fL(z)fR(z). �
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Other useful but less surprising splitting rules for FR-functions appearing in the next
theorem deal with the following situations,

T̃ = T +
⎛
⎜
⎝

0−
T0

0+

⎞
⎟
⎠
, T̃ =

⎛
⎜
⎝

1−
T0

1+

⎞
⎟
⎠
T, T̃ = T

⎛
⎜
⎝

1−
T0

1+

⎞
⎟
⎠
,

where T0 is an operator on the subspace B0.
Theorem 6.2. Let T be an operator on a Banach space B, P a bounded projection of B
onto B0 along B1 and Q = 1 − P . Denote by 01 and 11 the null and identity operators on
B1. Then, if T0 is an operator on B0 and f is the FR-function of P with respect to T , we
have the following rules:

(i) The FR-function of P with respect to T̃ = T + (T0 ⊕ 01) is given by
f̃(z) = f(z) + T0, z−1 ∈$(QT ).

(ii) The FR-function of P with respect to T̃ = (T0 ⊕ 11)T is given by
f̃(z) = T0f(z), z−1 ∈$(QT ).

(iii) The FR-function of P with respect to T̃ = T (T0 ⊕ 11) is given by
f̃(z) = f(z)T0, z−1 ∈$(QT ).

Proof.
(i) By definition,

f̃(z) = PT̃ (1 − zQT̃ )−1P, z−1 ∈$(QT̃ ), (66)
where T̃ = T + T̂0 in terms of the enlarged operator T̂0 = T0 ⊕ 01. Since PT̂0 = T̂0 = T̂0P and
QT̂0 = 0 we find that QT̃ = QT and

f̃(z) = PT (1 − zQT )−1P + PT̂0P (1 − zQT )−1P = f(z) + T0, z−1 ∈$(QT ),
where we have used that (1− zQT )−1 = 1+ zQT (1− zQT )−1 and PT̂0P = T0 as an operator
on B0.
(ii) The FR-function f̃ is given again by (66), but with T̃ = T̂0T in terms of the redefined
operator T̂0 = T0 ⊕ 11. This redefined operator satisfies PT̂0 = T0 ⊕ 01 = T̂0P and QT̂0 = Q,
which lead to QT̃ = QT and

f̃(z) = PT̂0PT (1 − zQT )−1P = T0f(z), z−1 ∈$(QT ),
where we have used that (1− zQT )−1 = 1+ zQT (1− zQT )−1 and PT̂0P = T0 as an operator
on B0.
(iii) Now the FR-function f̃ is given by (66) with T̃ = T T̂0 and the same redefined operator
T̂0 = T0 ⊕ 11 as in (ii). Using T̂0Q = Q we get the identity

(1 − zQT )T̂0 = T̂0(1 − zQT T̂0), z ∈ C.
Since (1 − zQT T̂0)(1 − zQT T̂0)−1 = 1 for z ∈$(QT ), we obtain

(1 − zQT )T̂0(1 − zQT T̂0)−1 = T̂0.
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When z ∈$(QT ), the operator (1−zQT T̂0)−1 has domain B and range equal to D(T T̂0) =
{v ∈ B ∶ T̂0v ∈ D(T )}. Hence, T̂0(1− zQT T̂0)−1 has domain B and range D(T ), so that we
can use the fact that (1 − zQT )−1(1 − zQT ) is the identity in D(T ) to conclude that

T̂0(1 − zQT T̂0)−1 = (1 − zQT )−1T̂0, z−1 ∈$(QT ).
Multiplying on the left by PT and on the right by P , this leads to

f̃(z) = PT (1 − zQT )−1PT̂0P = f(z)T0, z−1 ∈$(QT ),

once we take into account that PT̂0 = T̂0P and PT̂0P is T0 as an operator on B0. �

The previous splitting rules constitute a characteristic feature of FR-functions which is
not shared by other relevant functions such as Stieltjes of m-functions. This is an indication
of the fact that FR-functions do a better job at codifying important properties of those
“systems” to which they are linked. This is the case for instance for the return properties
of RW and QW, as Sections 8, 9 and 10 will show. The above splitting properties of
FR-functions become recurrence splitting rules for such walks. The next section will show
the importance of the above splitting rules also for the theory of orthogonal polynomials:
the choice of a right OPRL analogue of Schur functions for OPUC allows us to obtain for
the first time an OPRL version of Khrushchev factorization formula for OPUC.

7. Applications to orthogonal polynomials on the real line:
OPRL Khrushchev formula

The aim of this section is to obtain an OPRL analogue of Khrushchev formula for OPUC,
which should be the starting point of a Khrushchev theory for OPRL. The bulk of OPUC
Khrushchev theory appeared in S. Khrushchev’s papers [44, 45], but the reader may also
consult the monograph [65, Chapters 4 and 9].

Let us describe first the OPUC version of Khrushchev formula. Consider a probabil-
ity measure µ on T –i.e. a positive measure normalized by µ(T) = 1– with Verblunsky
coefficients α0, α1, α2, . . . . These coefficients not only determine the corresponding CMV
matrix, but also the Schur function f related to µ because its Schur parameters coincide
with the Verblunsky coefficients due to Geronimus theorem [34] (see also [65, Chapter
3]). This establishes a one-to-one correspondence among probability measures on T, Schur
functions and sequences in D with the last term on T in the case of a terminating sequence.

Khrushchev formula answers the following question: if ϕn is the orthonormal polyno-
mial of degree n in L2

µ, what is the Schur function of the probability measure ∣ϕn∣2 dµ?
Khrushchev formula states that this Schur function factorizes as the product

gnfn, { fn = Schur function with Schur parameters αn, αn+1, αn+2, . . . ,

gn = Schur function with Schur parameters − αn−1,−αn−2, . . . ,−α0,1.
(67)

While fn are the Schur iterates of f , the rational Schur functions gn are called the inverse
Schur iterates of f . It can be proved that the inverse Schur iterates are given by

gn =
ϕn
ϕ∗n
, ϕ∗n(z) = znϕn(1/z),
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so that the Schur function of dµn ∶= ∣ϕn∣2 dµ becomes
ϕn
ϕ∗n
fn,

where ϕ∗n is known as the reversed polynomial of ϕn. Writing OPUC Khrushchev formula
as a formula by itself, it takes the form

∫
t dµn(t)
1 − zt

∫
dµn(t)
1 − zt

= ϕn(z)
ϕ∗n(z)

fn(z), z ∈ D.

In the FR-function approach, Khrushchev factorization formula for OPUC is a special
instance of the factorization of FR-functions given in Theorem 6.1.(ii), and comes from a
natural overlapping factorization of CMV matrices into smaller ones [25]. It is natural to
expect an OPRL version of Khrushchev formula linked to a splitting of Jacobi matrices.
Since self-adjointness is in general not preserved by products but only by sums, we expect
a Khrushchev formula for OPRL based on the decomposition of FR-functions given in
Theorem 6.1.(i).

Let J be a Jacobi matrix with Jacobi coefficients b0, a0, b1, a1, b2, a2, . . . , and consider
the related sequence of orthonormal polynomials pn starting at p0(t) = 1. Suppose that J
is self-adjoint as an operator on `2 with maximal domain. Then, the moment problem is
determinate [3], which means that pn are orthonormal with respect to a unique probability
measure µ on R. Also, the polynomials are dense in L2

µ [3], thus J represents the self-
adjoint multiplication operator Tµ given in (48) with respect to the basis pn. The Jacobi
matrix J determines the basis pn, thus the measure µ, which becomes the spectral measure
of p0(t) = 1 with respect to Tµ, equivalently the spectral measure of e0 = (δk,0)k≥0 ∈ `2 with
respect to J . Therefore, the FR-function f of the subspace span{p0} with respect to Tµ
is the Nevanlinna function of the measure µ, in the sense of Definition 4.2.

Since pn ∈ D(Tµ), it makes sense to ask about the Nevanlinna function of the prob-
ability measure on R given by p2

n dµ. This is precisely the FR-function of the subspace
span{pn} with respect to the multiplication operator Tµ, i.e. the FR-function of the sub-
space span{en}, en = (δk,n)k≥0 ∈ `2, with respect to J .

The answer to the above question should give the OPRL version of OPUC Khrushchev
formula. To obtain such a formula let us consider the following overlapping decomposition
of the Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b0 a0
a0 b1 a1
⋱ ⋱ ⋱

an−2 bn−1 an−1
an−1 bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

bn an
an bn+1 an+1

an+1 bn+2 an+2
⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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In a more compact notation
J = (Jn+1 ⊕O) + (On ⊕J (n)) − (On ⊕ bn ⊕O), (68)

where O and On stand for the null∞×∞ and n×n matrices respectively, Jn is the principal
n × n submatrix of J and J (n) is the Jacobi matrix obtained from J by deleting the first
n rows and columns.

We can apply Theorem 6.2.(i) to the operators on the Hilbert space H = `2 involved
in (68), taking T̃ = J , T = (Jn+1 ⊕ O) + (On ⊕ J (n)) and T0 being the operator on the
overlapping subspace H0 = span{en} given by T0en = −bnen. According to Theorem 6.2.(i),
the Nevanlinna FR-function f̃ of span{en} with respect to J is given by

f̃(z) = h(z) − bn, z ∈ C ∖R,

where h is the FR-function of span{en} with respect to (Jn+1 ⊕O) + (On ⊕J (n)).
On the other hand, the FR-function h comes about from Theorem 6.1.(i) applied to TL =
Jn+1 acting on HL = span{e0, e1, . . . , en} and TR = J (n) acting on HR = span{en, en+1, . . .}.
We find that h is the sum of the FR-functions of H0 = span{en} with respect to Jn+1 and
J (n).

Remember that the Nevanlinna function f of the measure µ coincides with the FR-
function of span{e0} with respect to J . Obviously, the FR-function of span{en} with
respect to J (n) follows from applying to f the Schur algorithm (54) for a total of n steps.
Therefore, such an FR-function is the corresponding n-th iterate fn of f , a Nevanlinna
FR-function whose Schur parameters are bn, an, bn+1, an+1, . . . with respect to the Schur
algorithm (54) at the origin.

As for the FR-function of span{en} with respect to Jn+1, the renewal equation (41)
allows us to express it as

z−1 + 1
⟨en∣(Jn+1 − z−1In+1)−1en⟩

= z−1 + det(Jn+1 − z−1In+1)
det(Jn − z−1In)

, z ∈ C ∖R, (69)

where In stands for the n × n identity matrix. Using the expression of the orthonormal
polynomials in terms of truncated Jacobi matrices

pn(z) = κn det(zIn − Jn), κn =
1

a0a1⋯an−1
, (70)

the FR-function (69) becomes

z−1 − an
pn+1(z−1)
pn(z−1)

, z ∈ C ∖R.

Combining all the previous results we find that the FR-function of span{en} with respect
to J is given by

f̃(z) = z−1 − an
pn+1(z−1)
pn(z−1)

+ fn(z) − bn =
(z−1 − bn)pn(z−1) − anpn+1(z−1)

pn(z−1)
+ fn(z),

= an−1
pn−1(z−1)
pn(z−1)

+ fn(z), z ∈ C ∖R,
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that is,

f̃(z) = gn(z) + fn(z), gn(z) ∶=
κn−1

κn

pn−1(z−1)
pn(z−1)

, z ∈ C ∖R. (71)

This can be considered as the OPRL version of Khrushchev formula, because f̃ is precisely
the Nevanlinna function of the measure p2

n dµ, a statement which we enunciate separately
below. Before doing that we will make a couple of remarks.

First, remember that behind the previous arguments there was the self-adjointness as-
sumption for the Jacobi matrix. This is equivalent to the determinacy of the corresponding
moment problem –i.e. the uniqueness of the orthogonality measure for the polynomials
generated by the three term recurrence relation associated with the Jacobi matrix– and
guarantees the uniqueness of the Nevanlina function whose Schur parameters –with respect
to the Schur algorithm (54)– are the Jacobi coefficients. This uniqueness holds simulta-
neously for a Nevanlinna function and its iterates, as follows by the connection among
themselves due to the Schur algorithm on the real line.

Furthermore, we could have arrived at OPRL Khrushchev formula alternatively by ap-
plying Theorem 6.1.(i) directly to the decomposition

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b0 a0
a0 b1 a1
⋱ ⋱ ⋱

an−2 bn−1 an−1
an−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

bn an
an bn+1 an+1

an+1 bn+2 an+2
⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= (Ĵn+1 ⊕O) + (On ⊕J (n)).

Therefore, gn must be the Nevanlinna FR-function of span{en} with respect to Ĵn+1. Re-
ordering the basis of span{e0, e1, . . . , en} as {en, . . . , e1, e0} we conclude that gn is the Nevan-
linna function characterized by the terminating sequence of Schur parameters given by
0, an−1, bn−1, an−2, bn−2, . . . , a0, b0. Comparing with (67) we see that gn should be considered
as the inverse Schur iterates of the Nevanlinna function f .

Although the validity of OPRL Khrushchev formula (71) requires the self-adjointness of
the underlying Jacobi matrix, the fact that gn is a Nevanlinna function is indeed true even if
J is not self-adjoint since it refers to a property of the modified finite submatrix Ĵn+1, which
is always self-adjoint. Therefore, the quotient pn−1(z−1)/pn(z−1) is a Nevanlinna function
for every sequence pn of orthonormal polynomials. This means that pn−1(z)/pn(z) maps
C± into C∓, so that −pn−1(z)/pn(z) is again a Nevanlinna function.

The conclusion of the previous discussion is summarized in the following theorem, which
is stated in general for matrix valued OPRL. Since we are now in the matrix valued case,
attention should be paid to commutativity issues.
Theorem 7.1 (Khrushchev formula for matrix valued OPRL). Let f be the matrix
Nevanlinna function of a positive matrix measure µ on R such that µ(R) = 10 is the
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identity matrix. Suppose that there exists a sequence of matrix orthonormal polynomials
pn(z) = κnzn +⋯ with respect to ⟨p∣q⟩ = ∫ p†dµq and that the related block Jacobi matrix is
self-adjoint as an operator on `2 with maximal domain. Then, the Nevanlinna function of
the matrix measure dµn ∶= p†

n dµpn is given by the following sum of Nevanlinna functions

gn + fn,
⎧⎪⎪⎨⎪⎪⎩

gn(z) = pn(z−1)−1pn−1(z−1)κ−1
n κn−1,

fn = n-th iterate of f for the Schur algorithm (55).

Equivalently,

(∫
t dµn(t)
1 − zt )(∫

dµn(t)
1 − zt )

−1
= gn(z) + fn(z), z ∈ C ∖R,

{ fn = Nevanlinna function with Schur parameters bn, an, bn+1, an+1, bn+2, an+2, . . . ,

gn = Nevanlinna function with Schur parameters 0, an−1, bn−1, an−2, bn−2, . . . , a0, b0,

where b0, a0, b1, a1, b2, a2, . . . are the corresponding Jacobi coefficients, i.e. the Schur pa-
rameters of f with respect to (55).

Proof. The steps of the proof are similar to those of the scalar case discussed previously,
but now the Jacobi matrix J is made up of d × d-matrix blocks bn = b†

n, an > 0 where d is
the size of the matrix measure. These blocks provide the three term recurrence relation
for the orthonormal polynomials [27],

zpn(z) = pn+1(z)an + pn(z)bn + pn−1(z)an−1, n ≥ 0 (a−1 = 0, p0(z) = 10), (72)

hence the leading matrix coefficients satisfy κn+1an = κn.
When J is self-adjoint –as an operator on `2 with maximal domain– it represents, in the

basis given by the columns of the orthonormal polynomials, the self-adjoint multiplication
operator Tµ defined in (48), where L2

µ is now the Hilbert space of square-summable d-vector
valued functions with inner product ⟨f ∣g⟩ = ∫ f † dµg. Hence, J is unitarily equivalent to
Tµ. This unitary equivalence identifies the columns {p(0)n , p

(1)
n , . . . , p

(d−1)
n } ⊂ L2

µ of pn with
the n-th d-block Bn ∶= {end, end+1, . . . , end+d−1} ⊂ `2 of canonical vectors en = (δk,n)k≥0.

Since p†
n dµpn is the spectral measure of the subspace spanned by the columns of pn

with respect to Tµ, it is also the spectral measure of spanBn with respect to J . Therefore,
the Nevanlinna function of p†

n dµpn is the FR-function of spanBn with respect to J . As
in the scalar case, the rest of the proof consists in identifying such an FR-function by
decomposing it using Theorems 6.1.(i) and 6.2.(i).

The steps for this identification are similar to those of the scalar case. The only quirk in
the matrix valued situation comes from the identification of the FR-function gn of spanBn

with respect to the (n+1)d×(n+1)d principal submatrix Jn+1, which now will not rely on
determinant identities. Instead, we will use Schur complements to obtain the m-function

mn(z) = Pn(Jn+1 − zI(n+1)d)−1Pn,
Pn = orthogonal projection of `2 onto spanBn,

Ik = k × k identity matrix,
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giving gn via the renewal equation gn(z) = z−1Id+mn(z−1)−1. The application of Lemma 1.1
to the block representation

Jn+1 − zIn+1 = (Jn − zInd v†
n

vn bn − zId
) , vn = (Od Od ⋯ an−1) , Ok = k × k null matrix,

leads to the recurrence

mn(z)−1 = bn − zId − an−1mn−1(z)an−1, n ≥ 0 (a−1 = 0).

Comparing this recurrence with (72) rewritten as

−pn(z)−1pn+1(z)an = bn − zId + pn(z)−1pn−1(z)an−1, n ≥ 0 (a−1 = 0, p0(z) = Id),

yields the identity
mn(z) = −a−1

n pn+1(z)−1pn(z), n ≥ 0.
Therefore, using (72) again we obtain

gn(z) − bn = z−1Id −mn(z−1)−1 − bn = pn(z−1)−1(pn(z−1)(z−1Id − bn) − pn+1(z−1)an)
= pn(z−1)−1pn−1(z−1)an−1 = pn(z−1)−1pn−1(z−1)κ−1

n κn−1.

�

The use of the Khrushchev formula above to develop a Khrushchev theory for OPRL
remains as a challenge.

In the next sections we will discuss several applications of FR-functions which are at
the heart of their origin: the study of recurrence –i.e. return properties– in RW and QW.
While the context of FR-functions in Hilbert spaces will be enough for the analysis of
recurrence in unitary QW, the general discussion of recurrence in RW as well as in open
QW will require the setting of FR-functions in Banach spaces.

A common feature of all these applications is the fact that the evolution is governed by a
contraction and the related projections have norm one. Hence, the FR-functions involved
in these applications are analytical on the open unit disk. Besides, at least in the case of
RW and unitary QW, the FR-functions have values in contractions –on a Banach and a
Hilbert space respectively– so they turn out to be Schur functions. As for RW, there is
large class –which includes all those which are irreducible and reversible– whose stochastic
matrices are also self-adjoint with respect to suitable inner products [74, Chapter 6], thus
the corresponding FR-functions are simultaneously Schur and Nevanlinna functions.

As we will see, the Hilbert FR-function approach to recurrence in unitary QW clearly
differs from that of RW recurrence. However, the density operator formalism in which open
QW are usually described establishes a close parallelism between the Banach FR-function
approaches to recurrence in RW and open QW.

When applied to stochastic matrices, the relation between operator valued FR-functions
and Stieltjes functions given in Theorem 2.5 becomes the generalization of the classical
renewal equation for RW, first obtained in [56] (see also [33, 74]), to the recurrence of a
subset of states. The unitary situation leads to the version of the renewal equation for
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QW, already uncovered in [15, 37] (see also [20]). The fact that Theorem 2.5 holds for
arbitrary operators on Banach spaces implies that open QW also have a renewal equation.

In this context, the splitting rules for FR-functions become splitting rules for the study
of recurrence properties in a walk: they tell us how to split a walk into overlapping smaller
walks so that the return properties of the overlapping piece in the original walk are deter-
mined by its return properties in the smaller walks.

8. Applications to random walks: RW recurrence

There is a huge literature on RW. For good references which highlight the return aspects
and the connection with self-adjoint operators see [33,74].

Consider a RW on a countable set S of states. By this, we mean a Markov chain on S
whose evolution is given at any time by a stochastic matrix Π = (Πi,j)i,j∈S , i.e. a matrix
with non-negative entries whose rows sum up to 1,

Πi,j ≥ 0 ∀i, j ∈ S , ∑
j∈S

Πi,j = 1 ∀i ∈ S .

Since multiplication preserves stochasticity, Πn is again stochastic and its entry Πn
i,j gives

the n-step probability transition i→ j.
In general, the stochastic matrix Π defines an operator v ↦ vΠ on the Banach space

`1(S ) rather than on a Hilbert space since

∥vΠ∥ = ∑
j∈S

∣∑
i∈S

viΠi,j∣ ≤ ∑
i∈S

∣vi∣ ∑
j∈S

Πi,j = ∥v∥, v ∈ `1(S ),

where the norm is that of `1(S ) and the commutation of sums is possible even in case of
infinitely many terms because they are non-negative. The above identity also shows that
Π is bounded with ∥Π∥ ≤ 1, i.e. Π is a contraction on `1(S ).

With any –finite or infinite– subset Ω ⊂ S we can associate the projection P of `1(S )
onto `1(Ω) along `1(S ∖Ω), represented by the matrix

Pi,j = {1 i = j ∈ Ω,
0 otherwise,

∥P ∥ = 1, (73)

as well as the complementary projection Q = 1−P , which also has norm ∥Q∥ = 1. In short,
we will refer to P as the projection of S onto Ω.

The FR-function f of P with respect to Π is the function with values in operators on
`1(Ω) given by

f(z) = PΠ(1 − zQΠ)−1P = ∑
n≥0

znPΠ(QΠ)nP, z ∈ D,

where the validity of the above expressions for z ∈ D follows from ∥QΠ∥ ≤ 1. We will also
refer to f as the FR-function of Ω with respect to Π. The interest of this FR-function lies
in its relation with the return properties of the subset Ω, in particular with the following
recurrence concepts.
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Definition 8.1. Given a subset Ω ⊂ S , we define the following notions for a RW on the
set of states S :
π(i→ Ω) = probability of returning to Ω when starting at the state i ∈ Ω.
π(i ΩÐ→ j) = probability of landing on the state j ∈ Ω when returning to Ω starting at the

state i ∈ Ω.
πn(i → Ω) = probability of returning for the first time in n steps to Ω when starting at

the state i ∈ Ω.
πn(i

ΩÐ→ j) = probability of landing on the state j ∈ Ω when returning for the first time
in n steps to Ω starting at the state i ∈ Ω.

τ(i→ Ω) = expected return time to Ω when starting at the state i ∈ Ω.
When Ω = {i} we write π(i→ i), πn(i→ i) and τ(i→ i) for the corresponding quantities.

These probabilistic notions are related with each other, with the stochastic matrix Π
and with the FR-function f of Ω with respect to Π, as follows

πn(i
ΩÐ→ j) = ∑

jk∈S ∖Ω
Πi,j1Πj1,j2⋯Πjn−1,j = (Π(QΠ)n−1)i,j, πn(i→ Ω) = ∑

j∈Ω
πn(i

ΩÐ→ j),

f(z)i,j = ∑
n≥1

zn−1πn(i
ΩÐ→ j), ∑

j∈Ω
f(z)i,j = ∑

n≥1
zn−1πn(i→ Ω), z ∈ D, (74)

π(i ΩÐ→ j) = ∑
n≥1

πn(i
ΩÐ→ j) = f(1)i,j, π(i→ Ω) = ∑

n≥1
πn(i→ Ω) = ∑

j∈Ω
π(i ΩÐ→ j) = ∑

j∈Ω
f(1)i,j,

τ(i→ Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if π(i→ Ω) < 1,

∑
n≥1

nπn(i→ Ω) = lim
x↑1

(∑
j∈Ω

xf(x)i,j)
′

= 1 +∑
j∈Ω

f ′(1)i,j, if π(i→ Ω) = 1,

f(1)i,j ∶= lim
x↑1

f(x)i,j, f ′(1)i,j ∶= lim
x↑1

f ′(x)i,j, x ∈ [0,1).

The exchange of sums is legitimate by their absolute convergence. The commutation of
limits and derivatives with eventual infinite sums follows from the fact that f(x)i,j and
their derivatives are non-decreasing in x for x ∈ [0,1).

The relations (74) identify the FR-function f as a true generating function of first time
return probabilities to Ω (up to multiplication by z). The corresponding Stieltjes function

s(z) = P (1 − zΠ)−1P = ∑
n≥0

znPΠnP, z ∈ D,

is instead the generating function of the return probabilities to Ω because Πn
i,j is the

probability of the transition i → j in n steps. The generalized renewal equation (26)
becomes now

s(z)−1 = 10 − zf(z), 10 = identity of order the size of Ω, z ∈ D,
which is the extension of the standard renewal equation for the return to a state in a
RW [33,56,74] to the case of the return to a subset of states.

While the expected time τ(i→ Ω) is given essentially by the sum of the i-th row of the
weak derivative f ′(1), the probability π(i→ Ω) is the sum of the i-th row of f(1). Hence,
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f(1) should be a substochastic matrix, i.e. a matrix with non-negative entries whose rows
sum up to no more than 1. The absence of negative entries is obvious, but a bound for the
sum of the rows requires a proof. As a byproduct, we will find that f is a Schur function.

Proposition 8.2. The FR-function f of a subset Ω ∈ S with respect to a stochastic matrix
Π on S satisfies

∣∑
j∈Ω

f(z)i,j∣ ≤ ∑
j∈Ω

f(1)i,j ≤ 1, i ∈ Ω, z ∈ D.

Therefore, ∥f(z)∥ ≤ 1 for z ∈ D, so that f is a Schur function with values in operators on
the Banach space `1(Ω).

Proof. The inequality ∣∑j∈Ω f(z)i,j ∣ ≤ ∑j∈Ω f(1)i,j for z ∈ D follows from

∣f(z)i,j ∣ ≤ ∑
n≥1

∣z∣n−1πn(i
ΩÐ→ j) ≤ ∑

n≥1
πn(i

ΩÐ→ j) = f(1)i,j, ∣z∣ < 1.

As for the remaining inequality,

∑
j∈Ω

f(1)i,j ≤ 1 ⇔ π1(i→ Ω) + π2(i→ Ω) +⋯ + πn(i→ Ω) ≤ 1 ∀n ∈ N.

Let us first see by induction on r = 0,1, . . . , n − 2 that

πn−r(i→ Ω) +⋯ + πn−1(i→ Ω) + πn(i→ Ω) ≤ ∑
jk∈S ∖Ω

Πi,j1Πj1,j2⋯Πjn−r−2,jn−r−1 . (75)

The result follows for r = 0 from the inequality ∑j∈Ω Πjn−1,j ≤ ∑j∈S Πjn−1,j = 1, which gives
πn(i→ Ω) ≤ ∑jk∈S ∖Ω Πi,j1Πj1,j2⋯Πjn−2,jn−1 . Assuming (75) for some r < n − 2 we obtain

πn−r−1(i→ Ω) + πn−r(i→ Ω) +⋯ + πn(i→ Ω)
≤ ∑
jk∈S ∖Ω
j∈Ω

Πi,j1Πj1,j2⋯Πjn−r−2,j + ∑
jk∈S ∖Ω

Πi,j1Πj1,j2⋯Πjn−r−2,jn−r−1

= ∑
jk∈S ∖Ω
j∈S

Πi,j1Πj1,j2⋯Πjn−r−2,j = ∑
jk∈S ∖Ω

Πi,j1Πj1,j2⋯Πjn−r−3,jn−r−2 ,

where in the last equality we have used that ∑j∈S Πjn−r−2,j = 1. This proves (75) for r + 1.
Therefore, (75) holds for r ≤ n − 2. In particular, this inequality reads for r = n − 2 as

follows
π2(i→ Ω) +⋯ + πn(i→ Ω) ≤ ∑

j∈S ∖Ω
Πi,j,

which, combined with π1(i→ Ω) = ∑j∈Ω Πi,j, yields

π1(i→ Ω) + π2(i→ Ω) +⋯ + πn(i→ Ω) ≤ ∑
j∈S

Πi,j = 1.

Since the operator norm of the operator on `1(Ω) given by v ↦ vf(z) is ∥f(z)∥ =
supi∈Ω∑j∈Ω ∣f(z)i,j ∣, the previous results prove that ∥f(z)∥ ≤ 1 for z ∈ D. �
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The previous proposition shows that every FR-function f for a RW is a Schur function
with values f(z) in operators on a `1 Banach space, i.e. taking for f(z) the operator norm
with respect to the `1 norm. Nevertheless, in many situations they are also Nevanlinna
functions. This is the case for instance when the RW is simultaneously irreducible and
reversible because in this situation the stochastic matrix Π defines a self-adjoint operator
on certain Hilbert space [74, Chapter 6]. A particular case of this are the birth-death
processes, which will appear later on as an example illustrating the use of FR-function
splitting techniques for RW.

The splitting formulas for FR-functions lead to splitting rules for recurrence properties
of RW. Such splitting rules follow from the splitting of a RW into overlapping ones, cor-
responding to one of the following overlapping splittings for the related stochastic matrix
Π,

Π =
⎛
⎜
⎝

ΠL

0+

⎞
⎟
⎠
+
⎛
⎜
⎝

0−

ΠR

⎞
⎟
⎠
−
⎛
⎜
⎝

0−
Π0

0+

⎞
⎟
⎠
, Π =

⎛
⎜
⎝

ΠL

1+

⎞
⎟
⎠

⎛
⎜
⎝

1−

ΠR

⎞
⎟
⎠
.

Following the terminology in Theorem 6.1, we refer below to these two cases as a decom-
position and a factorization respectively.

The second situation, which deals with the factorization of a stochastic matrix Π into
a product of overlapping ones ΠL,R, needs no clarification since the product of stochastic
matrices is again stochastic. In the first case however, the sum of overlapping matrices
does not preserve the stochasticity. Actually, a sum of two overlapping stochastic matrices
ΠL,R has rows summing up to 1, except for the overlapping rows which sum up to 2. Hence,
subtracting an additional stochastic matrix Π0 on the overlapping subset yields a matrix Π
whose rows sum up to 1 all of them. This matrix Π is stochastic as long as the subtraction
of Π0 does not lead to any negative matrix entry.

Theorem 8.3 (splitting rules for RW recurrence). Let S = Ω− ∪Ω∪Ω+ be a decom-
position of a set of states into disjoint subsets, P the projection (73) of S onto Ω and
ΠL, ΠR, Π0 stochastic matrices on SL = Ω− ∪Ω, SR = Ω ∪Ω+ and Ω respectively. Then,
using the subscript L,R to distinguish the quantities related to the RW given by ΠL,R and
denoting by 0± and 1± the null and identity matrices on Ω±, we have the following splitting
rules:

(i) Decomposition: Π = (ΠL⊕ 0+) + (0−⊕ΠR) − (0−⊕Π0 ⊕ 0+) is a stochastic matrix
on S whenever the block PΠP has non-negative entries. Then, the corresponding
return probabilities and expected return times to Ω are given by

π(i→ Ω) = πL(i→ Ω) + πR(i→ Ω) − 1,
τ(i→ Ω) = τL(i→ Ω) + τR(i→ Ω) − 1, i ∈ Ω.

As a consequence, for each i ∈ Ω,

π(i→ Ω) = 1 ⇔ πL(i→ Ω) = πR(i→ Ω) = 1.
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(ii) Factorization: Π = (ΠL ⊕ 1+)(1− ⊕ ΠR) is a stochastic matrix on S and the
corresponding return probabilities and expected return times to Ω are given by

π(i→ Ω) = ∑
k∈Ω

πL(i
ΩÐ→ k)πR(k → Ω),

τ(i→ Ω) = τL(i→ Ω) + ∑
k∈Ω

πL(i
ΩÐ→ k) τR(k → Ω) − 1,

i ∈ Ω,

where, in case of indetermination πL(i
ΩÐ→ k) τR(k → Ω) = 0.∞, we set

πL(i
ΩÐ→ k) τR(k → Ω) = {0 if πR(k → Ω) = 1,

∞ if πR(k → Ω) < 1.

As a consequence, for each i ∈ Ω,

π(i→ Ω) = 1 ⇔ πL(i→ Ω) = πR(k → Ω) = 1 ∀k ∈ Ω.

Proof.
(i) The rows of the matrix Π sum up to 1 because ΠL, ΠR, Π0 are stochastic and

∑
j∈S

Πi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑j∈SL
(ΠL)i,j i ∈ Ω−,

∑j∈SL
(ΠL)i,j +∑j∈SR

(ΠR)i,j −∑j∈Ω(Π0)i,j i ∈ Ω,
∑j∈SR

(ΠR)i,j i ∈ Ω+.

Hence, Π is stochastic whenever the entries of the block PΠP are non-negative because
they are the only entries of Π which differ from those of ΠL or ΠR.

The decomposition rules follow from Theorem 6.1.(i) applied to ΠL and ΠR as operators
on the Banach spaces `1(SL) and `1(SR) respectively, combined with Theorem 6.2.(i)
applied to the perturbation Π0. Such theorems imply that the FR-function of P with
respect to Π is given by f = fL + fR −Π0, where fL,R is the FR-function of the projection
of SL,R onto Ω with respect to ΠL,R. Therefore,

π(i→ Ω) = ∑
j∈Ω

f(1)i,j = ∑
j∈Ω

fL(1)i,j +∑
j∈Ω

fR(1)i,j +∑
j∈Ω

(Π0)i,j = πL(i→ Ω) + πR(i→ Ω) − 1.

Hence, π(i→ Ω) = 1 iff πL(i→ Ω) + πR(i→ Ω) = 2, i.e. πL(i→ Ω) = πR(i→ Ω) = 1.
The expression for the expected return time holds trivially when π(i → Ω) < 1 because

this is equivalent to πL(i → Ω) < 1 or πR(i → Ω) < 1. In such a situation τ(i → Ω) = ∞ =
τL(i→ Ω) + τR(i→ Ω) − 1.

Suppose now that π(i→ Ω) = 1. Then,

τ(i→ Ω) = 1 +∑
j∈Ω

f ′(1)i,j = 1 +∑
j∈Ω

f ′L(1)i,j +∑
j∈Ω

f ′R(1)i,j = τL(i→ Ω) + τR(i→ Ω) − 1.

(ii) As a product of stochastic matrices, Π is also stochastic.
The factorization rules are a consequence of Theorem 6.1.(ii) for ΠL and ΠR. This

theorem states that the FR-function of P with respect to Π is given by f = fLfR, in terms
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of the FR-functions fL,R introduced in (i). Thus,

π(i→ Ω) = ∑
j∈Ω

f(1)i,j = ∑
j,k∈Ω

fL(1)i,kfR(1)k,j = ∑
k∈Ω

πL(i
ΩÐ→ k)πR(k → Ω). (76)

This implies that π(i → Ω) ≤ ∑k∈Ω πL(i
ΩÐ→ k) = πL(i → Ω), so that π(i → Ω) = 1 leads to

πL(i → Ω) = 1. Also, πR(k → Ω) < 1 for some k ∈ Ω yields π(i → Ω) < ∑k∈Ω πL(i
ΩÐ→ k) =

πL(i → Ω) ≤ 1. Hence, π(i → Ω) = 1 also implies that πR(k → Ω) = 1 for every k ∈ Ω.
Conversely, if πL(i → Ω) = πR(k → Ω) = 1 for every k ∈ Ω, then the relation (76) becomes
π(i → Ω) = ∑k∈Ω πL(i

ΩÐ→ k) = πL(i → Ω) = 1. These arguments prove the equivalence
between π(i→ Ω) = 1 and πL(i→ Ω) = πR(k → Ω) = 1 for every k ∈ Ω.

Concerning the expected return time, τ(i → Ω) = ∞ when π(i → Ω) < 1. This situation
corresponds to πL(i → Ω) < 1 or πR(k → Ω) < 1 for some k ∈ Ω. In any of these cases
τL(i → Ω) + ∑k∈Ω πL(i

ΩÐ→ k) τ(k → Ω) − 1 = ∞ with the convention established in the
statement (ii) of the theorem for the indetermination πL(i

ΩÐ→ k) τ(k → Ω) = 0.∞.
Assume now that π(i → Ω) = 1. Then, using that ∑k∈Ω fL(1)i,k = πL(i → Ω) = 1 and
∑j∈Ω fR(1)k,j = πR(k → Ω) = 1 for all k ∈ Ω, we get

τ(i→ Ω) = 1 +∑
j∈Ω

f ′(1)j,k = 1 +∑
j∈Ω

(∑
k∈Ω

f ′L(1)i,kfR(1)k,j + ∑
k∈Ω

fL(1)i,kf ′R(1)k,j)

= 1 + ∑
k∈Ω

f ′L(1)i,k +∑
j∈Ω
∑
k∈Ω

fL(1)i,kf ′R(1)k,j

= τL(i→ Ω) + ∑
k∈Ω

πL(i
ΩÐ→ k) (τR(k → Ω) − 1)

= τL(i→ Ω) + ∑
k∈Ω

πL(i
ΩÐ→ k) τR(k → Ω) − 1.

The only potential problem with the above manipulations arises in the case of an in-
determination πL(i

ΩÐ→ k) τR(k → Ω) = 0.∞ for some k ∈ Ω. Nevertheless, in this situ-
ation fL(1)i,k = 0, which gives ∑j∈Ω∑k∈Ω fL(1)i,kf ′R(1)k,j = 0 regardless of the value of
∑j∈Ω f ′R(1)k,j. This is in agreement with the convention established for the indetermina-
tion in question. �

Under the hypothesis of Theorem 8.3, we will refer to the RW driven by ΠL,R as the
left/right subsystems in which the RW governed by Π splits. We will also say that these
left/right subsystems overlap on the subset Ω.

In the case of the recurrence of a single state, the splitting rules for the factorization of
Theorem 8.3.(ii) are particularly simple.

Corollary 8.4. With the same notation as in Theorem 8.3, if Ω = {i} we have the following
splitting rules for Π = (ΠL ⊕ 1+)(1− ⊕ΠR):

π(i→ i) = πL(i→ i)πR(i→ i),
τ(i→ i) = τL(i→ i) + τR(i→ i) − 1.
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As a consequence,

π(i→ i) = 1 ⇔ πL(i→ i) = πR(i→ i) = 1.

The previous results have a remarkable consequence: if a RW splits into subsystems
which overlap at a subset Ω, the return probabilities to Ω are independent of the details of
those subsystems for which Ω has certain recurrence properties. The precise statements of
these results are given by the corollary below, but for convenience we first introduce the
following recurrence concepts concerning states and subsets of states.

Definition 8.5. Given i ∈ S and Ω ⊂ S , we define the following notions for a RW on the
set of states S :

The state i ∈ S is recurrent if π(i→ i) = 1.
The state i ∈ Ω is Ω-recurrent if π(i→ Ω) = 1.
The subset Ω ⊂ S is recurrent if all its states are Ω-recurrent.

Using this terminology, Theorem 8.3 and Corollary 8.4 have the following immediate
consequences.

Corollary 8.6. With the same notation as in Theorem 8.3, we have the following results:

(i) The return probability π(i → Ω) for a RW whose stochastic matrix decomposes as
Π = (ΠL⊕0+)+(0−⊕ΠR)−(0−⊕Π0⊕0+) is independent of the left or right subsystem
whenever the state i is Ω-recurrent for such a subsystem. More precisely,

πL(i→ Ω) = 1 ⇒ π(i→ Ω) = πR(i→ Ω),
πR(i→ Ω) = 1 ⇒ π(i→ Ω) = πL(i→ Ω).

(ii) The return probabilities to Ω for a RW whose stochastic matrix factorizes as Π =
(ΠL ⊕ 1+)(1− ⊕ΠR) are independent of the right subsystem whenever the subset Ω
is recurrent for such a subsystem. More precisely,

πR(i→ Ω) = 1 ∀i ∈ Ω ⇒ π(i→ Ω) = πL(i→ Ω) ∀i ∈ Ω.

If Ω = {i}, a similar independence with respect to the left subsystem holds, i.e.

πL(i→ i) = 1 ⇒ π(i→ i) = πR(i→ i).

Hence, the return probability of the overlapping state i is independent of any of the
left/right subsystems for which i is recurrent.

8.1. Examples of RW recurrence. We will illustrate the splitting rules for RW recur-
rence with a few examples. As previously, in what follows O and I stand for the infinite
null and identity matrices, while their n×n versions are denoted by On and In respectively.
When the size of these matrices is undetermined we will denote them by O and I.

Example 8.7. The first example is a simple RW on a finite set of states where we will
illustrate both the decomposition and factorization rules. The RW in question is given by
the following diagram of one-step probability transitions,
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1

3 5

2 4

6

1
2 b1

2

1
2

1
2

a

1
2

1
2

1
2

1
2

1
2

1
2

a, b ≥ 0,
a + b = 1,

thus it is governed by the stochastic matrix

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 0 1

2 0 0 0
1
2 0 1

2 0 0 0
0 1

2 0 0 1
2 0

0 1
2 0 0 1

2 0
0 0 0 1

2 0 1
2

0 0 0 a 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This matrix can be decomposed as

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 0 1

2 0 0 0
1
2 0 1

2 0 0 0
0 1

2 0 1
2 0 0

0 1
2 0 1

2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

2 0 1
2 0

0 0 1
2 0 1

2 0
0 0 0 1

2 0 1
2

0 0 0 a 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

2
1
2 0 0

0 0 1
2

1
2 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

ΠL

O2

⎞
⎟
⎠
+
⎛
⎜
⎝

O2

ΠR

⎞
⎟
⎠
−
⎛
⎜
⎝

O2
Π0

O2

⎞
⎟
⎠
,

corresponding to an overlapping decomposition of the RW into left, right and center ones
represented by

1

3

2

4

1
2

1
21

2
1
2

1
2

1
2

1
2

1
2 3

5

4

6

1
2 b1

2
1
2

a1
2

1
2

1
2 3 4

1
2

1
21

2

1
2

The overlap is on the states 3 and 4, a fact that, according to Theorems 6.1.(i) and 6.2.(i),
guarantees the decomposition f = fL + fR −Π0 of the FR-function of the subset of states
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Ω = {3,4} for the original RW,

f(z) = P (Π(1 − zQΠ)−1)P, P =
⎛
⎜
⎝

0
0

1
1

0
0

⎞
⎟
⎠
, Q = I6 − P, (77)

into similar FR-functions for the left and right RW,

fL(z) = PL(ΠL(1 − zQLΠL)−1)PL, PL = (
0

0
1

1
) , QL = I4 − PL,

fR(z) = PR(ΠR(1 − zQRΠR)−1)PR, PR = (
1

1
0

0
) , QR = I4 − PR.

(78)

The relation f = fL+fR−Π0 can be checked by a direct computation of these FR-functions,
which leads to the expressions

f(z) =
⎛
⎝
− z

2(z−2)
z(2az−z+1)
4(az−z+1)

− z
2(z−2)

z(2az−z+1)
4(az−z+1)

⎞
⎠
, fL(z) =

⎛
⎝
− z

2(z−2)
1
2

− z
2(z−2)

1
2

⎞
⎠
, fR(z) =

⎛
⎝

1
2

z(2az−z+1)
4(az−z+1)

1
2

z(2az−z+1)
4(az−z+1)

⎞
⎠
. (79)

Their limits at z = 1,

lim
x↑1

f(x) = lim
x↑1

fL(x) = lim
x↑1

fR(x) = (
1
2

1
2

1
2

1
2
) if a ≠ 0,

lim
x↑1

f(x) = lim
x↑1

fR(x) = (
1
2

1
4

1
2

1
4
) , lim

x↑1
fL(x) = (

1
2

1
2

1
2

1
2
) , if a = 0,

give the probabilities of returning to Ω = {3,4} landing on a particular state, so that for
i, j ∈ Ω,

π(i ΩÐ→ j) = πL(i
ΩÐ→ j) = πR(i

ΩÐ→ j) = 1
2 except for π(i ΩÐ→ 4) = πR(i

ΩÐ→ 4) = {
1
2 if a ≠ 0,
1
4 if a = 0.

The sum of the rows of such limits provide the return probabilities to the set Ω = {3,4},
given for any i ∈ Ω by

πL(i→ Ω) = 1, π(i→ Ω) = πR(i→ Ω) = {1 if a ≠ 0,
3
4 if a = 0.

Therefore, the subset Ω is recurrent for the left RW and, if a ≠ 0, also for the original and
right RW.

In the recurrent cases, the expected return times are given by the sums of the rows of
the following matrices

lim
x↑1

(xf(x))′ = (
3
2 1 + 1

4a
3
2 1 + 1

4a
) , lim

x↑1
(xfL(x))′ = (

3
2

1
2

3
2

1
2
) , lim

x↑1
(xfR(x))′ = (

1
2 1 + 1

4a
1
2 1 + 1

4a
) ,

which yield for i ∈ Ω

τ(i→ Ω) = 5
2 +

1
4a, τL(i→ Ω) = 2, τR(i→ Ω) = 3

2 +
1
4a.
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The sum of each row of f yields the FR-function for the returns to Ω, which coincides
for the states 3 and 4. The coefficients of its power expansion around the origin provide
the probability of returning to Ω for the first time in n steps, given for i = 3,4 by

πn(i→ Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n = 1,
1
2 if n = 2,
1

2n + 1
4a(1 − a)n−3 if n ≥ 3.

These results can be inferred also from path counting, but the splitting techniques
become an invaluable tool for the analysis of recurrence in more complex RW, like those
described in the next examples.

The decomposition rules do not work for the return properties of the single state 4
because there is no decomposition of Π with overlaps only at such state. However, the
factorization rules are available for that purpose due to the overlapping factorization

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 0 1

2 0 0 0
1
2 0 1

2 0 0 0
0 1

2 0 1
2 0 0

0 1
2 0 1

2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1

2 0 1
2

0 0 0 a 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

ΠL

I2

⎞
⎟
⎠

⎛
⎜
⎝

I3

ΠR

⎞
⎟
⎠

(80)

into the left and right RW diagrammatically represented by

1

3

2

4

1
2

1
21

2
1
2

1
2

1
2

1
2

1
2

5

4

6

b1
2

a

1 1
2

When applied to this overlapping factorization, Theorem 6.1.(ii) provides the factorization
f = fLfR for the FR-functions of the state 4, where such FR-functions are as in (77), (78),
but substituting ΠR by the new right stochastic matrix and the projections P , PL, PR by

P =
⎛
⎜
⎝

0
0

0
1

0
0

⎞
⎟
⎠
, PL = (

0
0

0
1
) , PR = ( 1

0
0
) .

The result

f(z) = z(z − 2)(2az − z + 1)
2(az − z + 1)(z2 + 2z − 4) , fL(z) =

z − 2
z2 + 2z − 4 , fR(z) =

z(2az − z + 1)
2(az − z + 1) ,
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makes evident the factorization f = fLfR. From the FR-functions we find the return
probabilities of the state 4 taking limits at z = 1,

πL(4→ 4) = 1, π(4→ 4) = πR(4→ 4) = {1 if a ≠ 0,
1
2 if a = 0.

Hence, the sate 4 is recurrent for the left RW and, if a ≠ 0, also for the original and right
RW.

The limit at z = 1 of the derivatives of the FR-functions provide the expected return
times in the recurrent situations,

τ(4→ 4) = 5 + 1
2a, τL(4→ 4) = 4, τR(4→ 4) = 2 + 1

2a.

The overlapping factorization (80) can be also used to factorize the FR-function of the
subset of states Ω = {3,4}. For this we must simply enlarge the right RW including the
site 3, which amounts to reconsider the factorization (80) in the following way

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 0 1

2 0 0 0
1
2 0 1

2 0 0 0
0 1

2 0 1
2 0 0

0 1
2 0 1

2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1

2 0 1
2

0 0 0 a 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

ΠL

I2

⎞
⎟
⎠

⎛
⎜
⎝

I2

ΠR

⎞
⎟
⎠
.

Then, the FR-functions for the subset Ω = {3,4} are the same as in (79) except for that of
the right RW,

f(z) =
⎛
⎝
− z

2(z−2)
z(2az−z+1)
4(az−z+1)

− z
2(z−2)

z(2az−z+1)
4(az−z+1)

⎞
⎠
, fL(z) =

⎛
⎝
− z

2(z−2)
1
2

− z
2(z−2)

1
2

⎞
⎠
, fR(z) = (

1 0
0 z(2az−z+1)

2(az−z+1)
) .

This makes explicit the factorization f = fLfR.
The return probabilities and expected return times for the subset Ω = {3,4} with respect

to the new right RW follow from the above FR-function fR as in the previous cases,

πR(3→ Ω) = 1, πR(4→ Ω) = {1 if a ≠ 0,
1
2 if a = 0,

τR(3→ Ω) = 1, τR(4→ Ω) = 2 + 1
2a.

It is instructive to check in this simple example the general splitting rules given in
Theorem 8.3, which in more complicated situations become an useful tool to deal with
recurrence properties of RW.

Example 8.8. We will use the birth-death processes to illustrate the use of Khrushchev
formula for OPRL obtained in the previous section as an application of the splitting rules
for FR-functions. This is possible because birth-death processes, represented by tridiagonal
matrices, are always symmetrizable and thus lead to OPRL via Jacobi matrices. Actually,
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the fact that such Jacobi matrices define self-adjoint contractions on a Hilbert space implies
that the related FR-functions are not only Schur functions, but also Nevanlinna functions.

Consider the RW on the non-negative integers S = {0,1,2, . . .} given by the tridiagonal
stochastic matrix

Π =

⎛
⎜⎜⎜⎜⎜⎜
⎝

b0 q0

p 0 q

p 0 q

p 0 q
⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

,
p, q, q0 > 0, b0 ≥ 0,

p + q = 1, b0 + q0 = 1,

which we can represent diagramatically as

0 1 2 3

b0
q0

p

q

p

q

p

We can symmetrize Π by conjugation with a diagonal positive matrix Λ so that J = ΛΠΛ−1

is a Jacobi matrix,

J =

⎛
⎜⎜⎜⎜⎜⎜
⎝

b0 a0

a0 0 a

a 0 a

a 0 a
⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

,
a0 =

√
pq0,

a = √
pq.

The fact that Λ is diagonal guarantees that Π and J have the same FR-function f(n; z)
for each single state n,

f(n; z) = (Π(1 − zQ(n)Π)−1)n,n = (J (1 − zQ(n)J )−1)n,n, Q
(n)
i,j = {0 i = j = n,

1 otherwise.

Consequently, f(n; z) is simultaneously a Schur and a Nevanlinna function. Bearing in
mind the comments in Section 7, f(n; z) is the Nevanlinna function of p2

n dµ, where pn is
the OPRL of degree n generated by the three term recurrence relation associated with J
and µ is the related orthogonality measure on the real line. The values of the FR-function
f(n; z) and its derivative at z = 1 give the return probability and expected return time for
the state n.

The FR-function f(z) ∶= f(0; z) for the first state follows easily from the fact that it is
a Nevanlinna function with Schur parameters b0, a0,0, a,0, a, . . . with respect to the Schur
algorithm (54) at the origin, so that its first iterate f1 has constant Schur parameters
0, a,0, a,0, a, . . . . From Example 5.7 we find that

f1(z) =
1 −

√
1 − 4a2z2

2z , (81)
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where the branch for the square root is that one taking the value 1 at z = 0. Therefore,

f(z) = b0 +
a2

0z

1 − zf1(z)
= b0 +

a2
0
a2f1(z). (82)

Using that
√

1 − 4a2 =
√

1 − 4p(1 − p) = ∣1 − 2p∣ = ∣p − q∣ we get

f1(1) =
1 − ∣p − q∣

2 = min{p, q}, lim
x↑1

(xf1(x))′ =
2pq

∣p − q∣
.

Hence, the return probability for the first state is given by

π(0→ 0) = f(1) = b0 +
q0

q
min{p, q} =

⎧⎪⎪⎨⎪⎪⎩

1 if p ≥ q,
1 − q0(1 − p

q ) if p < q,

and, in the recurrent case p ≥ q, the return to the first state happens in an expected return
time

τ(0→ 0) = lim
x↑1

(xf(x))′ = b0 +
2pq0

p − q
= 1 + q0

p − q
.

However, the recurrence properties of an arbitrary state n ≥ 1 of such a semi-infinite
chain are not so easy to obtain. Here, the splitting rules for FR-functions come to our
rescue via Khrushchev formula for OPRL, which states that f(n; z) = gn(z)+fn(z), where
fn is the n-th iterate of the Nevanlinna function f for the Schur algorithm (54) at the origin,
while gn(z) = κn−1pn−1(z−1)/κnpn(z−1) and κn = 1/a0an−1 is the leading coefficient of pn.
According to the discussion of Section 7, the splitting f(n; z) = (gn(z)+ q)+ (p+fn(z))−1
is associated with the overlapping decomposition Π = (ΠL⊕O)+(On⊕ΠR)−(On⊕1⊕O),
where ΠL and ΠR are stochastic matrices diagrammatically depicted as

n n+1 n+2nn−110

b0

q0

p

q

p

q p

q

p

q

p

The iterates fn coincide with f1 because they have the same Schur parameters for (54).
As for the Nevanlinna function gn, we need the OPRL pn.

The OPRL pn satisfy for n ≥ 1 the same three term recurrence relation as the rescaled
Chebyshev polynomials of the second kind Un(x/2a), where Un is given by the recurrence

2xUn(x) = Un+1(x) +Un−1(x), U0 = 1, U−1 = 0.
This allows to express

pn(x) =
x − b0

a0
Un−1( x

2a) −
a0

a
Un−2( x

2a), n ≥ 1,

so that

gn(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a2
0z

1−b0z
if n = 1,

a
a(1−b0z)Un−2(1/2az)−a2

0z Un−3(1/2az)
a(1−b0z)Un−1(1/2az)−a2

0z Un−2(1/2az) if n ≥ 2.
(83)
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Using the properties of the Chebyshev polynomials Un and their derivatives we find that

gn(1) = p, lim
x↑1

g′n(x) =
p

q0
wn−2 (wn + q0

q
Un−2( 1

2a)) , w =
√

p

q
, n ≥ 1.

Therefore, for any state n ≥ 1, the return probability is given by

π(n→ n) = gn(1) + fn(1) = p +min{p, q} = {1 if p ≥ q,
2p if p < q,

and, in the recurrent case p ≥ q, the corresponding expected return time has the expression

τ(n→ n) = lim
x↑1

(xgn(x))′ + lim
x↑1

(xfn(x))′ = p +
p

q0
wn−2 (wn + q0

q
Un−2( 1

2a)) +
2pq
p − q

= p

q0
[wn−2 (wn + q0

q
Un−2( 1

2a)) +
q0

p − q
] .

The splitting rules are also useful to obtain the FR-function of a subset of states in this
example. For instance, the subset Ω = {0,1} naturally generates an overlapping splitting
of the RW

0 1 1 2 3

b0
q0

p

q p
q

p

q

p

which originates the following overlapping decomposition of the stochastic matrix Π,

Π =

⎛
⎜⎜⎜⎜⎜
⎝

b0 q0
p q

0
0
⋱

⎞
⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜
⎝

0
p q
p 0 q

p 0 q
⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
1

0
0
⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

Π0

O

⎞
⎟
⎠
+
⎛
⎜
⎝

0

ΠR

⎞
⎟
⎠
−
⎛
⎜
⎝

0 0
0 1

O

⎞
⎟
⎠
.

Hence, using Theorem 8.3.(i) we find that the FR-function h of the subset Ω = {0,1} with
respect to Π decomposes as h = hR +Π0 − ( 0 0

0 1 ), where hR is the FR-function of the same
subset with respect to 0⊕ΠR. Obviously, hR = 0⊕ f , with f the FR-function of the single
state 1 with respect to ΠR, which is given by (82) with b0 = p and a0 = a. Therefore,
f(z) = p + f1(z) with f1 as in (81), so we conclude that

h(z) = (b0 q0
p f1(z)

) .
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The values

h(1) = (b0 q0
p min{p, q}) , lim

x↑1
(xh(x))′ = (

b0 q0
p 2pq

∣p−q∣

) ,

provide the following return probabilities and expected return times to Ω = {0,1},

π(0→ Ω) = 1, π(1→ Ω) = {1 if p ≥ q,
2p if p < q,

τ(0→ Ω) = 1, τ(1→ Ω) = p

p − q
if p ≥ q.

When Ω = {n,n + 1} with n ≥ 1, a similar decomposition based on the splitting

n n+1 n+1 n+2 n+3nn−110

b0

q0

p

q

p

q p

q

p

q p

q

p

q

p

identifies the corresponding FR-function with respect to Π as

h(n; z) = (gn(z) q
p fn(z)

) ,

where fn = f1 is the n-th iterate of f for the Schur algorithm (54) and gn is given by (83).
This yields for Ω = {n,n + 1} exactly the same return probabilities and expected return
times as in the case of the subset {0,1}, except for the expected return time of the state
n to Ω = {n,n + 1}, given by

τ(n→ Ω) = lim
x↑1

(xgn(x))′ + q = 1 + q + p

q0
wn−2 (wn + q0

q
Un−2( 1

2a)) , n ≥ 1.

Example 8.9. Suppose that a RW on a set S = Ω1 ∪ {0} ∪ Ω2 has a single state 0 that
separates two subsets of states, Ω1 and Ω2, which are not communicated by one-step
transitions. In other words, the RW has a one-step diagram of the following type

Ω1 Ω20

b0

q1

q2p1

p2

b0 + q1 + q2 = 1,

where the thick arrows summarize all the transitions between the subsets Ωi and the state
0, and we denote by pi, qi the sums of the probabilities of the corresponding transitions.
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This is equivalent to state that the RW is driven by a stochastic matrix with the shape

Π =

⎛
⎜⎜⎜⎜⎜
⎝

A1 B1

C1 b0 C2

B2 A2

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

A1 B1

C1 b1

⎞
⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜
⎝

b2 C2

B2 A2

⎞
⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜
⎝

1

⎞
⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

Π[1] ⎞
⎟
⎠
+
⎛
⎜
⎝ Π[2]

⎞
⎟
⎠
−
⎛
⎜
⎝

1
⎞
⎟
⎠
, b1 = 1 − q1, b2 = 1 − q2.

As the previous relation shows, up to a trivial −1 term acting on the state 0, the evolution
matrix Π decomposes into a sum overlapping stochastic matrices Π[i] on Si = Ωi ∪ {0},
with 0 as overlapping sate. In other words, the RW essentially decomposes into a couple
of smaller ones which diagrammatically look like

Ωi 0

bi

qi

pi

bi + qi = 1. (84)

Therefore, as a consequence of Theorems 6.1.(i) and 6.2.(i), the FR-function f of the state
0 with respect to Π decomposes as f = f [1] + f [2] − 1 in terms of similar FR-functions
f [i] for Π[i]. Hence, Theorem 8.3.(i) implies that the return probabilities and expected
return times to the state 0 are related by π(0 → 0) = π[1](0 → 0) + π[2](0 → 0) − 1 and
τ(0→ 0) = τ [1](0→ 0) + τ [2](0→ 0) − 1.

The iteration of these relations leads to the decomposition f = f [1] + f [2] + f [3] − 2 for
the FR-function of the state 0 when the RW has the structure

Ω1

Ω2

Ω3

0

b0

q1

q2

q3

p1
p2

p3

b0 + q1 + q2 + q3 = 1,

and f [i] is the FR-function of the state 0 for the RW represented by (84).
In general, if S ∖ {0} = Ω1 ∪ ⋯ ∪Ωn splits into n subsets of states, Ω1, . . . ,Ωn, without

one-step transitions among them, the previous relation among FR-functions generalizes
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to f = f [1] + ⋯ + f [n] − (n − 1), hence a similar relation holds for the probabilities and
expected return times, namely, π(0 → 0) = π[1](0 → 0) + ⋯ + π[n](0 → 0) − (n − 1) and
τ(0→ 0) = τ [1](0→ 0) +⋯ + τ [n](0→ 0) − (n − 1).

We will illustrate this multiple use of the splitting rules for FR-functions in the case of
RW on spider graphs. A simple example of such a RW has a one-step diagram with the
shape

0
q1

p

q

p
q2

p

q
p

q3
p

q
p

p, q, q1, q2, q3 > 0,

p + q = 1,

q1 + q2 + q3 = 1.

As the general case previously discussed shows, the FR-function f = f [1] + f [2] + f [3] − 2 of
the state 0 follows from those f [i] of the smaller RW given by

0

bi

qi

p

q

p

q

p

p, q, qi > 0, bi ≥ 0

p + q = 1, bi + qi = 1.
(85)

In the case of a RW on a similar spider graph with n legs, we have the relation f =
f [1] + ⋯ + f [n] − (n − 1), where f [i] is the FR-function of the state 0 for the RW given by
(85), which is exactly the kind of birth-death processes studied in the previous example.
Therefore, we already know that

f [i](z) = bi +
qi
q

1 −
√

1 − 4pqz2

2z .

We find that the FR-function of the central state for the spider RW is independent of the
number of legs, as well as from the probabilities qi of the transitions starting at such a
central state,

f(z) =
1 −

√
1 − 4pqz2

2qz .

So this independence also holds for the return probability and the expected return time,

π(0→ 0) = {1 if p ≥ q,
p/q if p < q,

τ(0→ 0) = 1 + 1
p − q

if p ≥ q.
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Example 8.10. Consider now a RW on a set of states S = Ω1 ∪ {0,1,2,3} ∪ Ω2 with the
following structure of one-step transitions,

Ω1 Ω20

1

2

3
p0

q0

q0

b1

q1

p1

b2

p2
q1

p3

q3q

p

p0 + 2q0 = 1,
b1 + p1 + q1 = 1,
b2 + p2 + q1 = 1,
p3 + q3 = 1,

p2 = b1 + b2,

where the thick arrows represent all the transitions between the subsets Ω1,Ω2 and the
states 0,3, while p, q, p0, q3 are the sums of the corresponding probabilities.

The condition p2 = b1 + b2 guarantees that the related evolution stochastic matrix Π
factorizes into a couple of smaller stochastic matrices, ΠL and ΠR, on the subsets SL =
Ω1 ∪ {0,1,2} and SR = {1,2,3} ∪Ω2 respectively,

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 B1

C1 0 q0 q0 0
p1 b1 0 q1
0 p2 b2 q2
0 0 p3 0 C2

B2 A2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 B1

C1 0 2q0 0
p1 0 b1+q1

0 2b2 b1+q1

1
1
1 ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱
1
1

1
1
2

1
2 0

b1
b1+q1

0 q1
b1+q1

0 p3 0 C2

B2 A2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

ΠL

I

⎞
⎟
⎠

⎛
⎜
⎝

I

ΠR

⎞
⎟
⎠
,

where I denotes an identity matrix of appropriate size for each factor. The left and right
RW given by ΠL and ΠR are represented diagrammatically by
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Ω1 Ω20 1 2 1 2 3
p0

2q0

p1

b1+q1

2b2

b1+q1
1
2

1
2

b1
b1+q1

q1
b1+q1

p3

q3q

p

Since the left and right RW overlap on the set of states Ω = {1,2}, the factorization of
Π translates into a factorization f = fLfR for the FR-function of Ω with respect to Π in
terms of similar FR-functions fL, fR for ΠL, ΠR.

Let us apply this result to a non-trivial perturbation of a birth-death process on the
integers S = Z given by

−2 −1 0

1

2

3 4 5
q

p

q

p

q/2
q/2

q/2

q/2

p

p/2

1
2 q/2

p

q

p

q

p

p, q > 0,
p + q = 1.

According to the previous general result, this RW factorizes into the following left and
right birth-death processes on a semi-infinite chain,

2 1 0 −1 −2

1 2 3 4 5

q

p

q

p

q

p

q

p

q
1
2

1
2

1
2

1
2

p

q

p

q

p

p, q > 0,
p + q = 1.

The FR-function of the subset Ω = {1,2} with respect to these birth-death processes follows
from a slight generalization of the final results in Example 8.8, which yields

fL(z) = (q p
q g(z)) , fR(z) =

1
2 (1 1

1 g(z)/q) , g(z) =
1 −

√
4pqz2

2z .
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The function fL is naturally given for the ordered set {2,1}. Changing the order of the
states to {1,2} we find that

f(z) = 1
2 (g(z) q

p q
)(1 1

1 g(z)/q) = 1
2 (

g(z) + q 2g(z)
1 g(z) + p) .

Summing the rows of

f(1) = (
min{q, 1

2} min{p, q}
1
2 min{p, 1

2}
) , lim

x↑1
(xf(x))′ = 1

2
⎛
⎝

2pq
∣p−q∣ + q

4pq
∣p−q∣

1 2pq
∣p−q∣ + p

⎞
⎠
,

we obtain the following return probabilities and expected return times to Ω = {1,2},

π(1→ Ω) = {2q,
p + 1

2 ,
π(2→ Ω) = {1 if p ≥ q,

p + 1
2 if p < q.

τ(2→ Ω) = 1
2 (1 + p

p − q
) if p ≥ q.

Hence, the states 1 and 2 are Ω-recurrent for p = q = 1/2 and p ≥ q respectively, but the
return to Ω happens in a finite expected time only for the state 2 when p > q.

9. Applications to quantum walks: QW recurrence

We will move now to the more novel subject of QW. Born in the early ninetees as the
quantum analogue of RW [1], the interest in QW has been continuously increasing due to
their role in quantum information processing. In particular, QW are central for the design
of quantum algorithms of up to exponential speed ups over classical ones [7, 26, 42, 43].
This has triggered and intense research activity around QW from the experimental and
theoretical points of view.

Concerning return properties of QW, several different notions of recurrence have been
recently introduced [15, 18, 37, 71–73]. A key difference with respect to their classical
analogue, the RW, is that the quantum collapse due to the measurement necessary to define
first time returns alters the natural evolution of a QW, and therefore different schemes have
been introduced to deal with such a situation. We will follow here a monitoring approach,
first presented in [37] (see also [15,18]), in which the collapse is taken as a natural ingredient
of quantum recurrence, which is in the spirit of Quantum Mechanics and the prominent role
of measurements in its postulates. Fortunately, despite the conceptual differences between
recurrence for RW and QW, the quantum collapse due to a measurement is mathematically
represented by the action of a projection, so that in the end both, classical and quantum
recurrence, are controlled by a similar object, an FR-function, but defined in different
contexts.

QW are discrete time quantum models. As in any quantum system, the states of a QW
are the rays of a complex Hilbert space H , i.e. its one-dimensional subspaces span{ψ},
which for convenience are identified with any of their normalized generator vectors ψ ∈ H ,
∥ψ∥ = 1. The corresponding discrete time quantum evolution is given by a unitary operator
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U ∶H →H , so that ∣⟨φ∣Unψ⟩∣2 is the n-th step probability transition ψ → φ. The complex
quantity ⟨φ∣Unψ⟩ is called the amplitude of such a transition.

The probability of obtaining a state in a closed subspace H0 ⊂ H after a measurement
at a state ψ ∈ H is controlled by the orthogonal projection P of H onto H0. Such
a probability is given by ∥Pψ∥2, and after a positive outcome of the measurement –i.e.
finding the system in the subspace H0– the system collapses to the state Pψ/∥Pψ∥.

Suppose that we are interested in the probability of returning to H0 when starting at
ψ ∈ H0. In the case of first time returns, a measurement must be performed after each step
to know if the system has returned to H0 or not. Then, the application of the projection
P after each step conditions on the event ‘return to H0’, while the application of the
complementary projection Q = 1 − P conditions on the event ‘no return to H0’.

The above remarks are key in the monitoring approach to recurrence because then the
total return probability is obtained as a sum of first time return probabilities. Actually,
the projections involved in the first time returns are central ingredients in the explicit
expressions for each of the following precise notions about QW recurrence.

Definition 9.1. Given a closed subspace H0 ⊂ H , we define the following notions for a
QW on the Hilbert space H :
π(ψ →H0) = probability of returning to H0 when starting at the state ψ ∈ H0.
π(ψ H0Ð→ φ) = probability of landing on the state φ ∈ H0 when returning to H0 starting

at the state ψ ∈ H0.
πn(ψ →H0) = probability of returning for the first time in n steps to H0 when starting

at the state ψ ∈ H0.
πn(ψ

H0Ð→ φ) = probability of landing on the state φ ∈ H0 when returning for the first
time in n steps to H0 starting at the state ψ ∈ H0.

τ(ψ →H0) = expected return time to H0 when starting at the state ψ ∈ H0.
When H0 = span{ψ} we write π(ψ → ψ), πn(ψ → ψ) and τ(ψ → ψ) for the corresponding

quantities.

These quantities are closely related to the FR-function f of the projection P with respect
to the unitary step U , given by

f(z) = PU(1 − zQU)−1P = ∑
n≥1

zn−1an, an = PU(QU)n−1P, z ∈ D,

which is indeed a Schur function with values in operators on the Hilbert space H0, as
noticed in [15, 37]. According to the rules discussed above, we have the following explicit
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expressions,

πn(ψ
H0Ð→ φ) = ∣⟨φ∣U(QU)n−1ψ⟩∣2 = ∣⟨φ∣anψ⟩∣2,

πn(ψ →H0) = ∥PU(QU)n−1ψ∥2 = ∥anψ∥2,

π(ψ H0Ð→ φ) = ∑
n≥1

πn(ψ
H0Ð→ φ) = ∑

n≥1
∣⟨φ∣anψ⟩∣2 = ∫

2π

0
∣⟨φ∣f(eiθ)ψ⟩∣2 dθ2π ,

π(ψ →H0) = ∑
n≥1

πn(ψ →H0) = ∑
n≥1

∥anψ∥2 = ∫
2π

0
∥f(eiθ)ψ∥2 dθ

2π ,

τ(ψ →H0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞, if π(ψ →H0) < 1,
∑
n≥1

nπn(ψ →H0) = ∑
n≥1

n∥anψ∥2, if π(ψ →H0) = 1,

f(eiθ) ∶= lim
r↑1

f(reiθ), r ∈ [0,1), θ ∈ [0,2π).

Just as in the case of RW, the inequality ∑n≥1 ∥anψ∥2 ≤ 1 requires a proof which can be
found in [15].

The expected return time for the case π(ψ →H0) = 1 also has the integral representation

τ(ψ →H0) = lim
r↑1 ∫

2π

0
⟨a(reiθ)ψ ∣∂θa(reiθ)ψ⟩

dθ

2πi, a(z) = zf(z) = ∑
n≥1

znan,

which in terms of the original Schur function f reads as

τ(ψ →H0) = 1 + lim
r↑1 ∫

2π

0
⟨ψ ∣ f(reiθ)†∂θf(reiθ)ψ⟩

dθ

2πi.

Some readers will see here a connection with Berry’s phase, see for instance [15].
The radial boundary values f(eiθ) of a Schur function exist a.e. on the unit circle [57,

Chapter 11], but this is not necessarily true for its derivative ∂θf(reiθ). This is the reason
for expressing the integral representation of the expected return time with the limit r ↑ 1
outside the integral.

While the FR-function f is the generating function of the first return amplitudes an, the
Stieltjes function

s(z) = P (1 − zU)−1P = ∑
n≥0

znPUnP, z ∈ D,

is the generating function of the return amplitudes without monitoring. The specialization
of the generalized renewal equation (26) to unitary operators gives the renewal equation
for QW, first obtained in [15,37].

Regarding the splitting rules for QW recurrence, since products preserve the unitarity,
such splitting rules take the form of factorizations of Schur functions due to overlapping
factorizations of the corresponding unitary operator U ,

U =
⎛
⎜
⎝

UL

1+

⎞
⎟
⎠

⎛
⎜
⎝

1−

UR

⎞
⎟
⎠
.
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In contrast to the case of RW, the factorization of Schur functions does not give a simple
relation among the return probabilities for the whole QW and the left/right ones. Never-
theless, some of the results of Theorem 8.3 and Corollary 8.4 have a quantum analogue.

Theorem 9.2 (splitting rules for QW recurrence). Let H = H− ⊕ H0 ⊕ H+ be
an orthogonal decomposition of a Hilbert space and UL, UR unitary operators on HL =
H−⊕H0, HR = H0⊕H+ respectively. Consider the QW given by U = (UL⊕ 1+)(1−⊕UR),
where 1± stands for the identity on H±. Then, using the subscript L,R to distinguish the
quantities related to the QW given by UL,R, for any state ψ ∈ H0,
πL(φ→H0) = πR(ψ →H0) = 1 ∀φ ∈ H0 ⇒ π(ψ →H0) = 1 ⇒ πR(ψ →H0) = 1.
In particular, if H0 = span{ψ},

π(ψ → ψ) = 1 ⇔ πL(ψ → ψ) = πR(ψ → ψ) = 1.

Proof. From Theorem 6.1.(ii) we know that the FR-function of H0 with respect to U is
given by f = fLfR, where fL,R is the FR-function of H0 with respect to UL,R. Hence, since
fL is a Schur function,

π(ψ →H0) = ∫
2π

0
∥fL(eiθ)fR(eiθ)ψ∥2 dθ

2π ≤ ∫
2π

0
∥fR(eiθ)ψ∥2 dθ

2π = πR(ψ →H0).

On the other hand, πL(φ → H0) = 1 means that ∥fL(eiθ)φ∥ = 1 a.e. on the unit circle.
Hence, H0 is recurrent with respect to the left QW iff the boundary values of fL satisfy
fL(eiθ)†fL(eiθ) = 10 a.e. on the unit circle. In this case,

π(ψ →H0) = ∫
2π

0
⟨fR(eiθ)ψ ∣ fL(eiθ)†fL(eiθ)fR(eiθ)ψ⟩

dθ

2π = πR(ψ →H0),

so that π(ψ →H0) and πR(ψ →H0) are equal to one simultaneously.
Besides, if H0 = span{ψ}, then

π(ψ → ψ) = ∫
2π

0
∣fL(eiθ)fR(eiθ)∣2

dθ

2π .

Therefore, π(ψ → ψ) = 1 is equivalent to stating that ∣fL(eiθ)∣ = ∣fR(eiθ)∣ = 1 a.e. on the
unit circle, which means that πL(ψ → ψ) = πR(ψ → ψ) = 1. �

The following recurrence notions, similar to those already defined for RW, can be intro-
duced for QW.

Definition 9.3. Given a state ψ ∈ H and a closed subspace H0 ⊂ H , we define the
following notions for a QW on H :

The state ψ ∈ H is recurrent if π(ψ → ψ) = 1.
The state ψ ∈ H0 is H0-recurrent if π(ψ →H0) = 1.
The subspace H0 ⊂ H is recurrent if all its states are H0-recurrent.

With this terminology, the same arguments as those given in the proof of Theorem 9.2
lead directly to the following results, which constitute the quantum version of Corollary 8.6.
These results state that, given an overlapping factorization of a QW, its return probabilities
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to the overlapping subspace H0 do not depend on the details of certain subsystems for
which H0 is recurrent.

Corollary 9.4. With the same notation as in Theorem 9.2, the return probabilities to H0
for the QW given by U = (UL⊕1+)(1−⊕UR) are independent of the left subsystem whenever
the subspace H0 is recurrent for such a subsystem. More precisely,

πL(ψ →H0) = 1 ∀ψ ∈ H0 ⇒ π(ψ →H0) = πR(ψ →H0) ∀ψ ∈ H0.

If H0 = span{ψ}, a similar independence with respect to the right subsystem holds, i.e.

πR(ψ → ψ) = 1 ⇒ π(ψ → ψ) = πL(ψ → ψ).

Hence, the return probability of the overlapping state ψ is independent of any of the
left/right subsystems for which ψ is recurrent.

As it is proved in [15], a finite-dimensional subspace is recurrent for a QW iff it is included
in the singular subspace of the related unitary evolution operator. In particular, every
subspace is recurrent for a QW on a finite-dimensional Hilbert space because this situation
gives only pure point spectrum. Hence, Corollary 9.4 has the following consequence.

Corollary 9.5. With the same notation as in Theorem 9.2, the return probabilities to H0
for the QW given by U = (UL⊕1+)(1−⊕UR) are independent of the left subsystem whenever
HL is finite-dimensional. More precisely,

dimHL < ∞ ⇒ π(ψ →H0) = πR(ψ →H0) ∀ψ ∈ H0.

If H0 = span{ψ}, a similar independence with respect to the right subsystem holds, i.e.

dimHR < ∞ ⇒ π(ψ → ψ) = πL(ψ → ψ).

Hence, the return probability of the overlapping state ψ is independent of any of the
left/right subsystems whose underlying Hilbert space is finite-dimensional.

A key result of [25] states that, if either dimHL < ∞ or dimHR < ∞, the existence of an
overlapping factorization U = (UL ⊕ 1+)(1− ⊕UR) is characterized by the simple condition
P+UP− = 0, where P± is the orthogonal projection of H onto H±. This means that, if
at least one the subspaces HL, HR is finite-dimensional, the existence of splitting rules
for the recurrence of a QW on H = H− ⊕H0 ⊕H+ is easily determined by checking the
absence of one-step transition from H− to H+, a situation represented pictorically by the
following diagram of one-step transitions,
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H− H+

H0

Explicit examples of the generating function approach to QW recurrence appear in
[15,20,37]. Additional aspects of the splitting techniques for unitary operators are discussed
in [25], where one can find concrete examples of these splittings, including the case of CMV
matrices, which provide the general form of a one-dimensional coined QW [18,20].

10. Applications to open quantum walks: OQW recurrence

We have seen that the notion of FR-function has an important role to play in the study
of return properties of RW and QW. To emphasize the wide applicability of the machinery
developed in this paper, we indicate now very briefly that this notion is also useful in
the context of a much newer topic, namely the open QW (OQW) introduced in [9] as
a kind of iterated quantum channels. A careful discussion of the use of FR-functions
for the analysis of recurrence in OQW and general iterated quantum channels will be
the purpose of a joint effort with Carlos Lardizabal and Albert Werner. For details on
OQW the reader may consult the original reference [9] as well as some of the contributions
fostered by that one, see for instance [10,22–24,47,48,64,66–70]. In particular, [24,47,70]
deal with recurrence problems in OQW and iterated quantum channels. Quick guides to
general quantum channels are [14,76] and [8, Lectures 5 and 6] for the finite- and infinite-
dimensional settings respectively.

OQW model QW in interaction with the enviroment. Every step of an OQW is a
particular case of the so called quantum channels which, instead of the pure quantum
states of a closed quantum system, represented by unit vectors of a Hilbert space H , deal
with mixed quantum states, i.e. statistical ensembles of pure quantum states. A mixture of
pure states ψi ∈ H with probability distribution pi is represented by the so called density
operator

ρ = ∑
i

pi ∣ψi⟩⟨ψi∣, ψi ∈ H , pi ≥ 0, ∑
i

pi = 1,

so that pure states ψ correspond to rank one orthogonal projections ρ = ∣ψ⟩⟨ψ∣. Density
operators can be characterized as the non-negative definite operators on H with trace
one. The connection with open quantum systems comes from another characterization:
the density operators coincide with those obtained from a pure state Ψ in a dilated Hilbert
space H ⊗He by taking the partial trace of ∣Ψ⟩⟨Ψ∣ over He (see [14,76] and [8, Lecture 5]).
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This allows us to treat an open system –with Hilbert space H – coupled to an enviroment
–with Hilbert space He– using only objects built out of the intial open system.

The mixed quantum states are the non-negative operators of the unit sphere in the Ba-
nach spaceB1(H ) of trace class operators on H . A quantum channel must preserves such
states, hence it is given by a trace preserving (TP) linear map T∶B1(H ) →B1(H ) which
is positive, i.e. mapping non-negative operators into non-negative operators. Actually,
this should be the case even considering the system as a part of any dilated one H ⊗He,
so T ⊗ 1e must be positive for the identity on any He, which is abbreviated by saying
that T must be completeley positive (CP). CPTP maps can be equivalently described as
the result of a unitary evolution on a dilated Hilbert space H ⊗He when reduced to H
by taking the partial trace over He (see [14, 76] and [8, Lecture 6]). This corresponds to
the evolution of an open quantum system with Hilbert space H under the influence of
an enviroment with Hilbert space He. It can be shown that CP maps have the general
form Tρ = ∑jKjρK

†
j with Kj bounded operators on H , and then the trace preserving

condition means that ∑j Tr(K†
jKj) = 1 in the strong sense (see [14,76] and [8, Lecture 6]).

The additional condition T(1) = ∑j Tr(KjK
†
j ) = 1 defines the so called unital CPTP maps,

an example of which are the transformations Tρ = UρU † induced by unitary operators U .
Regarding the measurement problem in the density operator formalism, the probability

of finding a state in a closed subspace H0 ⊂ H after a measurement at a mixed quantum
state represented by a density operator ρ is given by Tr(Pρ), where P stands for the
orthogonal projection of H onto H0. After a positive outcome of such a measurement the
system collapses to the mixed state given by the new density operator PρP /Tr(ρP ).

OQW appear by iterating certain kind of quantum channels [9], thus their dynamics
is given by the powers of a CPTP map T. Actually, although for illustration we will
use examples of OQW, the FR-function approach to recurrence in OQW presented below
holds in general for iterated quantum channels. Bearing in mind the previous comments,
the translation to OQW of the monitoring process to define return properties of a closed
subspace H0 in a QW amounts to the following substitutions:

QW OQW
Evolution ψ → Uψ ρ→ Tρ

Measurement
⎧⎪⎪⎨⎪⎪⎩

Return

No return

ψ → Pψ

ψ → Qψ

ρ→ Pρ ∶= PρP

ρ→ Qρ ∶= QρQ

P = orthogonal projection
of H onto H0

Q = 1 − P

The operators PT ∶= PTP and QT ∶= QTQ define projections of B1(H ) onto B1(H0) and
B1(H �

0 ) respectively, understood as subspaces of B1(H ). Therefore, P +Q ≠ 1 because
R ∶= 1 − P −Q is given by

RT = ( 0 PTQ
QTP 0 )

and defines a projection of B1(H ) onto the subspace of operators mapping H0 on H �
0

and viceversa. Hence, P and Q are not complementary projections, although PQ = QP = 0.
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Besides, for every T ∈B1(H ) we have that ∥PT ∥1 ≤ ∥P ∥2∥T ∥1 = ∥T ∥1, where ∥ ⋅ ∥ and ∥ ⋅ ∥1
stand for the operator and trace norm respectively. Hence, the operator norm of these
projections with respect to the trace norm in B1(H ) is ∥P∥ = ∥Q∥ = 1. We will refer
to P as the projection on B1(H ) induced by the orthogonal projection P on H , and
analogously for Q.

The corresponding recurrence notions for OQW are related to FR-functions too, but
for operators on the Banach space B1(H ) rather than on the Hilbert space H . The
generating function which encodes the return properties of the closed subspace H0 is the
function with values in operators on B1(H0) given by

F(z) = PT(1 − zQT)−1P = ∑
n≥1

zn−1An, An = PT(QT)n−1P, z ∈ D, (86)

which is analytic and bounded for every z ∈ D because ∥QT∥ ≤ 1 since ∥T∥ = 1 for every
CPTP map T on B1(H ) [22]. The expression (86) does not define a strict FR-function
because Q ≠ 1 − P. Nevertheless, F is the result of projecting a true FR-function, namely
the FR-function f of the projection 1 −Q with respect to the operator T,

F(z) = Pf(z)P, z ∈ D,
f(z) = (1 −Q)T(1 − zQT)−1(1 −Q) = ∑

n≥1
zn−1an, an = (1 −Q)T(QT)n−1(1 −Q). (87)

By a slight abuse of language, we will also refer to f as the FR-function of H0 with respect
to T, while F will be called the corresponding reduced FR-function.

We will use an obvious adaptation of the notation and terminology for QW recurrence
to the case of OQW. Then, the following relations summarize the connections between
the reduced FR-function (86) and the return properties of the closed subspace H0 in an
OQW driven by T. In these relations we assume that ρ is a density operator in B1(H0)
–understood as a subspace of B1(H )– and ψ is a pure state in H0.

πn(ρ
H0Ð→ ψ) = Tr(∣ψ⟩⟨ψ∣T(QT)n−1ρ) = ⟨ψ∣Anρψ⟩,

πn(ρ→H0) = Tr(PT(QT)n−1ρ) = Tr(Anρ),
An = PT(QT)n−1P,

π(ρ H0Ð→ ψ) = ∑
n≥1

πn(ρ
H0Ð→ ψ) = ∑

n≥1
⟨ψ∣Anρψ⟩ = lim

x↑1
⟨ψ∣F(x)ρψ⟩,

π(ρ→H0) = ∑
n≥1

πn(ρ→H0) = ∑
n≥1

Tr(Anρ) = lim
x↑1

Tr(F(x)ρ),

τ(ρ→H0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞, if π(ρ→H0) < 1,

∑
n≥1

nπn(ρ→H0) = lim
x↑1

d

dx
xTr(F(x)ρ)

= 1 + lim
x↑1

d

dx
Tr(F(x)ρ), if π(ρ→H0) = 1.

The similarity among the above relations and the analogous ones for RW is remarkable. As
it was shown in Sections 8 and 9, while the recurrence properties of RW are controled by the
behaviour of the related Banach FR-functions around the single point 1, QW recurrence
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depends on the values of the corresponding Hilbert FR-functions on the whole unit circle.
Nevertheless, as in the RW case, the recurrence properties of OQW are codified by the
values of the related Banach FR-functions around 1. This does not mean that RW and
OQW recurrence must be similar. Actually, unitary QW can be formulated as iterated
quantum channels, hence the above Banach FR-function approach may be used to describe
their recurrence properties, which are surprisingly different from those of RW, as shown
in [15,37]. Maybe the only useful conclusion to draw is that the density operator formalism
places the generating function approach to quantum recurrence formally closer to that of
classical recurrence.

The FR-function f given in (87) is not only different from the reduced one F, but has
values in a larger subspace of B1(H ), namely the range of the projection

(1 −Q)T = (PTP PTQ
QTP 0 ) ,

which is the subspace of operators mapping H �
0 on H0. Nevertheless, all the previous

relations which express return probabilities and expected return times in terms of F and
its Taylor coefficients An remain valid when substituting them by the FR-function f and
its Taylor coefficients an respectively. The reason for this is that such relations always
involve either inner products ⟨ψ∣Anρψ⟩ or traces Tr(Anρ), where ρ ∈B1(H0) and ψ ∈ H0.
Since 1 −Q = P +R with Rρ = PρQ +QρP projecting onto operators mapping H0 on H �

0
and viceversa, we find that ⟨ψ∣anρψ⟩ = ⟨ψ∣Anρψ⟩ and Tr(anρ) = Tr(Anρ).

The reduced FR-function F is more convenient for practical calculations, like those
shown in the examples below. However, the true FR-function f becomes a key tool for
theoretical discussions since it allows one to take advantage of the machinery developed for
FR-functions. For instance, the generalized renewal equation (26) relates the FR-function
f , generating function of the first return operators an, and the generating function of the
return operators without monitoring given by the Stieltjes function

s(z) = (1 −Q)(1 − zT)−1(1 −Q) = ∑
n≥0

zn(1 −Q)Tn(1 −Q), z ∈ D. (88)

Such a relation can be considered as the renewal equation for OQW. An analogue of this
renewal equation for the reduced FR-function F should state that the Stieltjes function

S(z) = P(1 − zT)−1P (89)

and 10 − zF(z) are inverses of each other for z ∈ D, where 10 stands for the identity on
B1(H0). However, this relation is not true because F is not an FR-function. Furthermore,
the splitting rules of Theorem 6.1 apply directly to f since it is an FR-function. We will
illustrate all this in the examples below, but a detailed discussion of the corresponding
splitting rules for OQW and general iterated quantum channels will be explored in our
joint collaboration with C. Lardizabal and A. H. Werner.

Analogously to the case of RW and QW, we should prove that ∑n≥1 Tr(anρ) ≤ 1 for every
density operator ρ in B1(H0). This is a direct consequence of the following result.
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Proposition 10.1. Let P be the orthogonal projection of a Hilbert space H onto a closed
subspace H0, and QT = QTQ the projection on B1(H ) induced by Q = 1 − P . Then, the
Taylor coefficients an = (1 −Q)T(QT)n−1(1 −Q) of the FR-function f for the projection
1 −Q with respect to a CPTP map T on B1(H ) satisfy

∑
n≥1

Tr(anT ) ≤ TrT, T ∈B1(H0), T ≥ 0.

Proof. Using the decomposition
T(QT)n−1 = an + (QT)n,

and the fact that T is trace preserving we get
Tr(anT ) = Tr((QT)n−1) −Tr((QT)n).

Hence,
N

∑
n=1

Tr(anT ) = Tr(T ) −Tr((QT)NT ), T ∈B1(H ).

If T ≥ 0, the above equality proves that ∑Nn=1 Tr(anT ) ≤ Tr(T ) because Tr((QT)NT ) ≥ 0
since Q and T are positive maps. On the other hand, if P is the projection on B1(H )
induced by P , then An = PanP = PT(QT)n−1P is also a positive map such that Tr(anT ) =
Tr(AnT ) whenever T ∈ B1(H0), hence ∑n≥1 Tr(anT ) is a series of non-negative terms for
T ≥ 0, which therefore converges to a sum bounded by TrT . �

10.1. Examples of OQW recurrence. We illustrate the use of generating functions
with a few examples of unital and non-unital OQW, kindly provided to us –together with
the corresponding diagrams below– by C. Lardizabal. It is a pleasure to thank him for
very useful guidance on the topic of OQW.

In all these examples the underlying Hilbert space H = C2⊗ span{∣1⟩, ∣2⟩, . . .} is consti-
tuted by several copies of C2 which describe the internal degrees of freedom at each site
∣i⟩ of a network. According to [9], the corresponding OQW evolution of a general density
operator ρ on H is given by the following CPTP map

Tρ = ∑
i,j

M i
jρM

i
j

†
, M i

j = Bi
j ⊗ ∣i⟩⟨j∣,

where the 2 × 2 complex matrices Bi
j, which act on the C2 factor of H , satisfy the trace

preserving condition ∑iBi
j
†
Bi
j = I2 for all i, with I2 the 2 × 2 identity matrix. The unital

examples satisfy the additional condition ∑j Bi
jB

i
j
† = I2 for all j. In any case, this kind of

evolution makes the density operator 2 × 2-block diagonal after the first step because [9]

Tρ = ∑
i

(∑
j

Bi
jρjB

i
j
†) ⊗ ∣i⟩⟨i∣, ρj ∶= ⟨j∣ρ∣j⟩,

so we can suppose without loss of generality that the mixed states have this block diagonal
form ρ = ∑i ρi ⊗ ∣i⟩⟨i∣. This means that we will consider T as an operator on the trace
class subspace of ⊕iC2,2 ⊗ ∣i⟩⟨i∣ rather than on the larger space B1(H ). Concerning the
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trace class condition, it will play no role in the following examples because they are all
finite-dimensional.

Example 10.2. The first example is a unital OQW in a network with two sites. The one-step
transitions considered are graphically represented in the following diagram,

1 2

B1
1

B2
1

B1
2

B2
2

where the matrices Bj
i are given as follows,

B1
1 = B2

2 =
1√
3
(1 1

0 1) , B2
1 = B1

2 =
1√
3
( 1 0
−1 1) .

The reduced FR-function F for the site ∣1⟩ follows from (86) by using the projection P =
I2 ⊗ ∣1⟩⟨1∣. This leads to the expression

F(z) = 1
(z − 3)3

⎛
⎜⎜⎜
⎝

−(z+3)(z2−3z+3) z3−3z2+9z−9 z3−3z2+9z−9 −(4z2−9z+9)
2z(z2−3z+3) −(z+3)(z2−3z+3) −z2(z−1) z3−3z2+9z−9
2z(z2−3z+3) −z2(z−1) −(z+3)(z2−3z+3) z3−3z2+9z−9

−z(3z2−11z+12) 2z(z2−3z+3) 2z(z2−3z+3) −(z+3)(z2−3z+3)

⎞
⎟⎟⎟
⎠
,

which is understood as a function with values in operators ρ = ρ1 ⊗ ∣1⟩⟨1∣ ↦ σ = σ1 ⊗ ∣1⟩⟨1∣
acting as follows,

F(z)
⎛
⎜⎜⎜
⎝

ρ11
ρ12
ρ13
ρ14

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

σ11(z)
σ12(z)
σ13(z)
σ14(z)

⎞
⎟⎟⎟
⎠
, ρ1 = (ρ11 ρ12

ρ13 ρ14
) , σ1 = (σ11 σ12

σ13 σ14
) . (90)

For instance, starting at the pure state ψ = (1,0)t ⊗ ∣1⟩, which corresponds to the density
operator ρ = ∣ψ⟩⟨ψ∣ = ( 1 0

0 0 ) ⊗ ∣1⟩⟨1∣, we have that

ρ1 = (1 0
0 0) ⇒ σ1 = (σ11 σ12

σ13 σ14
) ,

⎛
⎜⎜⎜
⎝

σ11(z)
σ12(z)
σ13(z)
σ14(z)

⎞
⎟⎟⎟
⎠
= F(z)

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

F11(z)
F21(z)
F31(z)
F41(z)

⎞
⎟⎟⎟
⎠
.

Therefore, the probability of returning to site ∣1⟩ starting at the state ψ is given by the
value at z = 1 of

Trσ1(z) = F11(z) + F41(z) = −
4z3 − 11z2 + 6z + 9

(z − 3)3 .

Hence π(ρ → ∣1⟩) = 1, i.e. the state ψ is ∣1⟩-recurrent. The corresponding expected return
time, obtained by taking the derivative of zTrσ1(z) at z = 1, turns out to be τ(ρ→ ∣1⟩) = 2.
Besides, the n-th coefficient of the Taylor expansion of zTrσ1(z) around the origin is the
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probability of the first return to site ∣1⟩ in n steps. This leads to the following probabilities
for the first values of n,

n 1 2 3 4 5 6 7
πn(ρ→ ∣1⟩) 1/3 5/9 1/27 1/81 5/243 13/729 25/2187

We can also ask about the probability of returning to site ∣1⟩ landing on the initial state
ψ. This is given by the value at z = 1 of

σ11(z) = F11(z) = −
(z + 3)(z2 − 3z + 3)

(z − 3)3 ,

which yields π(ρ ∣1⟩
Ð→ ψ) = 1/2, while its power expansion provides the n-step first return

probabilities

n 1 2 3 4 5 6 7

πn(ρ
∣1⟩
Ð→ ψ) 1/3 1/9 0 1/81 4/243 1/81 16/2187

The above probabilities should be distinguished from those of just returning to the state
ψ –without any thought being given to returning to site ∣1⟩–, which is calculated from a
new reduced FR-function (86) built out of the projection P = ∣ψ⟩⟨ψ∣ = ( 1 0

0 0 )⊗ ∣1⟩⟨1∣ instead
of P = I2 ⊗ ∣1⟩⟨1∣. The result is the following generating function of first returns

F(z) = − z4 − 2z3 + 5z2 − 9z + 9
z4 + z3 − 15z2 + 36z − 27 , (91)

whose value at z = 1 gives π(ρ → ψ) = 1, thus the state ψ is also recurrent. Evaluating
the derivative of zF(z) at z = 1 we find the expected return time τ(ρ → ψ) = 4. Also, the
Taylor expansion of F(z) yields

n 1 2 3 4 5 6 7
πn(ρ→ ψ) 1/3 1/9 4/27 2/27 17/243 5/81 113/2187

To clarify the difference between the reduced FR-function F and the true FR-function
f we will also present the last one for the state ψ, which is given by (87) with Q the
projection on (C2,2 ⊗ ∣1⟩⟨1∣) ⊕ (C2,2 ⊗ ∣2⟩⟨2∣) defined by Qρ = (1 − P )ρ(1 − P ), i.e.

Qρ = (( 0 0
0 1 )ρ1 ( 0 0

0 1 ) ⊗ ∣1⟩⟨1∣) ⊕ (ρ2 ⊗ ∣2⟩⟨2∣), ρ = (ρ1 ⊗ ∣1⟩⟨1∣) ⊕ (ρ2 ⊗ ∣2⟩⟨2∣).
Therefore, 1 −Q is the rank 3 projection

(1 −Q)ρ = (ρ11 ρ12
ρ13 0 ) ⊗ ∣1⟩⟨1∣, ρ1 = (ρ11 ρ12

ρ13 ρ14
) ,

and, according to (87), leads to the following 3 × 3 matrix FR-function

f(z) = − 1
z4+z3−15z2+36z−27

⎛
⎜⎜⎜
⎝

z4−2z3+5z2−9z+9 −(z−1)(z3−3z+9) −(z−1)(z3−3z+9)

z(z−1)(z2−6z+6) − (z2−3z+3)(z3−4z2−3z+9)
z−3 − z

2(z3−6z2+13z−9)
z−3

z(z−1)(z2−6z+6) − z
2(z3−6z2+13z−9)

z−3 − (z2−3z+3)(z3−4z2−3z+9)
z−3

⎞
⎟⎟⎟
⎠
.
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The value of f(z) must be understood as the operator ρ = ρ1 ⊗ ∣1⟩⟨1∣ ↦ σ = σ1 ⊗ ∣1⟩⟨1∣ on
R(1 −Q) given by

f(z)
⎛
⎜
⎝

ρ11
ρ12
ρ13

⎞
⎟
⎠
=
⎛
⎜
⎝

σ11(z)
σ12(z)
σ13(z)

⎞
⎟
⎠
, ρ1 = (ρ11 ρ12

ρ13 0 ) , σ1 = (σ11 σ12
σ13 0 ) ,

so that F = f1,1. A direct calculation shows that the corresponding Stieltjes function (88)
has the expression

s(z) = 1
3(z2−3)(2z2−3z+3)

⎛
⎜⎜⎜
⎝

2z5−8z4+3z3+24z2−45z+27
z−1 −z(z3−3z+9) −z(z3−3z+9)

z2(z2−6z+6) 2z5−12z4+3z3+54z2−108z+81
2z−3 − z

3(4z2−15z+15)
2z−3

z2(z2−6z+6) − z
3(4z2−15z+15)

2z−3
2z5−12z4+3z3+54z2−108z+81

2z−3

⎞
⎟⎟⎟
⎠
,

and is related to the FR-function f by the renewal equation s(z) = (I3−zf(z))−1. However,
the Stieltjes function (89), which reads in this case as

S(z) = s(z)1,1 =
2z5 − 8z4 + 3z3 + 24z2 − 45z + 27

3(z − 1)(z2 − 3)(2z2 − 3z + 3) ,

has no analogous relation with the reduced FR-function F in (91) since we have

(1 − zF(z))−1 = z4 + z3 − 15z2 + 36z − 27
(z − 1)(z4 + 6z2 − 18z + 27) .

Example 10.3. Unital OQW are the closest ones to unitary QW. For instance, the previous
example illustrates a general property of finite-dimensional unital OQW, actually proved
in [70] for the general setting of iterated quantum channels and first uncovered for the
unitary case in [37]: every state has an integer expected return time which coincides with
the dimension of the subspace of the Hilbert space explored by the state, thus it can not
be greater than the dimension of the whole Hilbert space. As the next example shows, this
does not hold in the non-unital case.

The non-unital example is again an OQW with two sites, but the one-step transition
matrices are now as follows,

B11 =
1√
2
(1 1

0 0) , B12 =
1√
2
(0 0

1 −1) , B21 =
1√
3
(1 1

0 1) , B22 =
1√
3
( 1 0
−1 1) .

The corresponding reduced FR-function for the pure state ψ = (1,0)t ⊗ ∣1⟩ is given by

F(z) = − 3
z2 + 2z − 6 ,

and yields return probability 1 but with non-integer expected return time 7/3. The related
n-step first return probabilities appear in the following table.

n 1 2 3 4 5 6 7
πn(ρ→ ψ) 1/2 1/6 5/36 2/27 31/648 55/1944 203/11664
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Example 10.4. The return properties of OQW with two sites can be tackled with more
direct methods since the path counting is not too difficult for them. However, this situa-
tion changes dramatically for OQW with three or more sites. As another example we will
present an OQW with three sites which will show more clearly the advantages of the gen-
erating function approach. This example appeared originally in [23] and its relevance was
suggested to us by C. Lardizabal. The corresponding one-step transitions are represented
in the following diagram,

1

2 3

B1
1

B2
1

B1
2

B2
2

B3
2

B2
3

B3
3

B1
3

B3
1

where the matrices Bj
i are chosen as

B2
1 = B3

2 = B1
3 =

1
2 ( 1 0

−1 1) , B3
1 = B2

3 = B1
2 =

1
2 (1 1

0 1) , B1
1 = B2

2 = B3
3 =

1
2 (1 0

0 1) .

For this example we have computed again the reduced FR-function for the pure state
(1,0)t ⊗ ∣1⟩, which is explicitly given by

F(z) = − 2z7 + 7z6 − 37z5 − 10z4 + 112z3 − 512z2 + 768z − 512
z7 − 13z6 + 10z5 + 184z4 − 1024z3 + 2560z2 − 3584z + 2048 .

This leads to a return probability equal to 1 and an integer expected return time equal
to 6, in agreement with the general result in [70]. The corresponding n-step first return
probabilities look like

n 1 2 3 4 5 6 7
πn(ρ→ ψ) 1/4 1/16 3/64 19/256 87/1024 371/4096 1361/16384

Example 10.5. We now tackle the problem of OQW splitting and its impact on the reduced
FR-function. We will illustrate this splitting by decomposing a three site OQW into a
“sum” of a couple of two site OQW which overlap on a single site. Although CP maps are
preserved by sums, this is not the case for trace preserving ones. Hence, the compatibility
of trace preservation for the original OQW and the “sumands” will require an extra term
for the overlapping site, very much in line with the case of the splitting rules for RW
recurrence. It is worth noticing that the older result is a very good guide of how to
proceed in this new situation.
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The alluded three site OQW is an example with nearest neighbour interactions depicted
in the following diagram

1 2 3

A
B

C

D
E

A

B

where

A = 1√
2
(1 1

0 0) , B = 1√
2
(0 0

1 −1) , C =
√

1 − εB, D =
√

1 − εA, E =
√
εI2,

for some ε ∈ [0,1]. The corresponding CP map

Tρ = (Aρ1A
†+Cρ2C

†)⊗∣1⟩⟨1∣+(Bρ1B
†+Eρ2E

†+Aρ3A
†)⊗∣2⟩⟨2∣+(Dρ2D

†+Bρ3B
†)⊗∣3⟩⟨3∣

is trace preserving because A†A +B†B = C†C +D†D +E†E = I2, although it is unital only
for ε = 0. In the example given here we will take ε = 1/2.

We proceed to construct two OQW with an overlap on the middle site, so that they
respect most of the existing transitions in the larger OQW, in fact all of them except the
self-transitions at the overlapping site. These QW are given by the diagrams

1 2

A
B

C

X

2 3

D
Y

A

B

and, in agreement with the previous terminology, we will refer to them as the left and right
OQW respectively. The new transition matrices X and Y must be chosen such that the
associated CP maps

TLρ = (Aρ1A
† +Cρ2C

†) ⊗ ∣1⟩⟨1∣ + (Bρ1B
† +Xρ2X

†) ⊗ ∣2⟩⟨2∣,
TRρ = (Y ρ2Y

† +Aρ3A
†) ⊗ ∣2⟩⟨2∣ + (Dρ2D

† +Bρ3B
†) ⊗ ∣3⟩⟨3∣,

are also trace preserving, i.e. C†C +X†X = Y †Y +D†D = I2. Both X and Y are not unique
and a possible choice is given by

X = −1
2 (

√
2

√
2

1 −1) , Y = −1
6 (

√
2 3

√
2

5 −3 ) .

Obviously, the left and right OQW yield the following decomposition of the original one,

Tρ = (TL ⊕ 03)ρ + (01 ⊕TR)ρ + (Eρ2E
† −Xρ2X

† − Y ρ2Y
†) ⊗ ∣2⟩⟨2∣,

where 0i = O2⊗∣i⟩⟨i∣ is the null operator on the site ∣i⟩. Hence, Theorems 6.1.(i) and 6.2.(i)
imply that the FR-function f of the overlapping site ∣2⟩ for the original OQW decomposes
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analogously in terms of the FR-functions fL,R of the same site with respect to the left/right
OQW, i.e.

f(z)ρ = fL(z)ρ + fR(z)ρ − (Xρ2X
† + Y ρ2Y

† −Eρ2E
†) ⊗ ∣2⟩⟨2∣. (92)

Bearing in mind (87), this decomposition can be equivalently rewritten using the cor-
responding reduced FR-functions F and FL,R. Following a convention similar to (90) for
the representation of F and FL,R, one can check that these generating functions have the
explicit form

F(z) = 1
4

⎛
⎜⎜⎜
⎝

z−4
z−2 − z

z−2 − z
z−2 − z

z−2
0 2 0 0
0 0 2 0

− z
z−2

z
z−2

z
z−2

z−4
z−2

⎞
⎟⎟⎟
⎠
,

FL(z) =
1
2

⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 1
1√
2 − 1√

2
1√
2 − 1√

2
1√
2

1√
2 − 1√

2 − 1√
2

− 1
z−2

1
z−2

1
z−2 − 1

z−2

⎞
⎟⎟⎟⎟⎟
⎠

, FR(z) =
1
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

− 7z+4
18(z−2) − z+4

6(z−2) − z+4
6(z−2)

z−4
2(z−2)

5
9
√

2 − 1
3
√

2
5

3
√

2 − 1√
2

5
9
√

2
5

3
√

2 − 1
3
√

2 − 1√
2

25
18 −5

6 −5
6

1
2

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Under this convention, the splitting (92) becomes

F(z) = FL(z) + FR(z) − (X ⊗X + Y ⊗ Y −E ⊗E),

a relation that can be directly verified.
Consider the probability of returning to site ∣2⟩ when starting at a mixed state ρ =

ρ2 ⊗ ∣2⟩⟨2∣. The previous decomposition implies that such a probability π(ρ → ∣2⟩) for the
original OQW is determined by the corresponding ones πL,R(ρ → ∣2⟩) for the left/right
OQW. The precise relation is given by

π(ρ→ ∣2⟩) = lim
x↑1

Tr(f(x)ρ) = lim
x↑1

Tr(fL(x)ρ) + lim
x↑1

Tr(fR(x)ρ) −Tr((X†X+Y †Y −E†E)ρ2)

= πL(ρ→ ∣2⟩) + πR(ρ→ ∣2⟩) − 1,

where we have used that X†X + Y †Y − E†E = X†X + Y †Y + C†C + D†D − I2 = I2 and
Trρ2 = 1. The above relation is formally equal to the first splitting rule for RW recurrence
given in Theorem 8.3.(i).
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Appendix A. Derivatives of Nevanlinna FR-functions

The power expansion of FR-functions given in Proposition 2.9.(vii) is valid in a neigh-
bourhood of the origin for every bounded operator. The following result is a weak version
of such an expansion for self-adjoint operators on Hilbert spaces which is valid even in the
unbounded case.

Lemma A.1. If f is the FR-function of a closed subspace H0 with respect to a self-adjoint
operator T , the following limits exist as operators in B(H0),

f (0)(0) = f(0) ∶= lim
y→0

f(iy) = PTP, if H0 ⊂ D(T ),

f (n)(0) ∶= lim
y→0

f (n−1)(iy) − f (n−1)(0)
iy

= n!PTQ(QTQ)n−1QTP, if H0 ⊂ D(T n+1), n ≥ 1,

where y ∈ R, P is the orthogonal projection onto H0 and Q = 1 − P . These normal limits
must be understood as weak limits, thus they become limits in norm when dimH0 < ∞.

Proof. Suppose H0 ⊂ D(T ). Then, from the proof of Theorem 3.1.(ii) we know that D is
self-adjoint, so that C∖R ⊂ %(QTQ). Hence, using the notation (14), Proposition 2.7.(iii)
yields for z ∈ C ∖R,

f(z) = A + zB(1 − zD)−1C, A = PTP, B = PTQ, C = QTP, D = QTQ, (93)

where the relation C ⊂ B† becomes an equality because D(C) = H0 since H0 ⊂ D(T ).
Taking z = iy, y ∈ R, in the above expression we get

∣⟨u∣(f(iy) −A)v⟩∣ = ∣y⟨Cu∣(i + yD)−1Cv⟩∣, ∀u, v ∈ H0.

The inequality ∥(z − T )−1∥ ≤ 1/∣ Im z∣, valid for every self-adjoint operator T , leads to
∥(i + yD)−1∥ ≤ 1. Thus, from the previous identity we find that

∣⟨u∣(f(iy) −A)v⟩∣ ≤ ∣y∣∥Cu∥∥Cv∥ y→0ÐÐ→ 0, ∀u, v ∈ H0.

This proves that f(0) = A as a weak limit.
As for the rest of the limits, we will see first that the condition H0 ⊂ D(T n+2) ensures that

D(DnC) = H0 and DnCH0 ⊂ ∑n+1
k=0 T

kH0 ⊂ D(T ), thus R(DnC) ⊂ H �
0 ∩D(T ) = D(B) so

that BDnC is everywhere defined on H0.
Let us argue by induction on n.
For n = 0, this follows by rewriting H0 ⊂ D(T 2) as H0 ⊂ D(T ), TH0 ⊂ D(T ), which

give D(C) = H0 and

R(C) = QTH0 = (T − PT )H0 ⊂ TH0 +H0 ⊂ D(T ), if H0 ⊂ D(T 2). (94)

Assume now that D(Dn−1C) = H0 and Dn−1CH0 ⊂ ∑nk=0 T
kH0 whenever H0 ⊂ D(T n+1).

Then, since the condition H0 ⊂ D(T n+2) implies H0 ⊂ D(T n+1) and T kH0 ⊂ D(T ) for
0 ≤ k ≤ n + 1, such a condition guarantees that R(Dn−1C) ⊂ H �

0 ∩D(T ) = D(D), hence
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D(DnC) = H0 and

R(DnC) = QTDn−1CH0 ⊂ (T − PT )
n

∑
k=0

T kH0

⊂
n+1
∑
k=0

T kH0 ⊂ D(T ), if H0 ⊂ D(T n+2).
(95)

Let us prove now the existence and give the explicit expression of f (n)(0) for n ≥ 1
by induction on n. If H0 ⊂ D(T 2), then H0 ⊂ D(T ) so that f(0) = A according to the
previous result. Using (93) we get for z ∈ C ∖R,

f(z) − f(0)
z

−BC = B((1 − zD)−1 − 1)C = zB(1 − zD)−1DC,

which makes sense on the whole subspace H0 because, from (94), R(C) ⊂ H �
0 ∩D(T ) =

D(D). Setting z = iy, y ∈ R, we find that

∣⟨u∣(f(iy)−f(0)iy −BC)v⟩∣ = ∣y⟨Cu∣(i + yD)−1DCv⟩∣ ≤ ∣y∣∥Cu∥∥DCv∥ y→0ÐÐ→ 0, ∀u, v ∈ H0,

concluding that f ′(0) = BC as a weak limit.
Suppose now that, for some n ≥ 1, f (n)(0) = n!BDn−1C whenever H0 ⊂ D(T n+1), and

let us obtain f (n+1)(0) under the stronger condition H0 ⊂ D(T n+2). From (93) we get the
following identity for z ∈ C ∖R,

f (n)(z) − f (n)(0)
z

= n!z−1B((1 − zD)−(n+1) − 1)Dn−1C

= n!z−1B
n

∑
k=0

(1 − zD)−k((1 − zD)−1 − 1)Dn−1C

= n!B
n+1
∑
k=1

(1 − zD)−kDnC,

a relation valid on the whole subspace H0 because we have proved that DnC is everywhere
defined on H0 for H0 ⊂ D(T n+2). This allows us to rewrite

f (n)(z) − f (n)(0)
z

− (n + 1)!BDnC = n!B
n+1
∑
k=1

((1 − zD)−k − 1)DnC.

Taking z = iy, y ∈ R, and using the inequality ∥(i−yD)−k∥ ≤ ∥(i−yD)−1∥k ≤ 1, we find that

∣⟨u∣(f
(n)(iy)−f(n)(0)

iy − (n + 1)!BDnC)v⟩∣ ≤ n!
n+1
∑
k=1

∣⟨((1 + iyD)−k − 1)Cu∣DnCv⟩∣

= n!
n+1
∑
k=1

∣⟨(i − yD)−k(1 − (1 + iyD)k)Cu∣DnCv⟩∣

≤ n!
n+1
∑
k=1

∥(1 − (1 + iyD)k)Cu∥∥DnCv∥ y→0ÐÐ→ 0, ∀u, v ∈ H0,
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where we have used that, in view of (95), the condition H0 ⊂ D(T n+2) implies that DkC
is everywhere defined on H0 for 0 ≤ k ≤ n + 1. Therefore, f (n+1)(0) = (n + 1)!BDnC as a
weak limit.

Finally, we will see that f (n)(0) ∈ B(H0) if H0 ⊂ D(T n+1). Note that A,C ∈ B(H0)
whenever H0 ⊂ D(T ) because then TP is closed and everywhere defined on H0. Since
f(0) = A, this proves the result for n = 0. Besides, for any operator S ∈ B(H0) such that
D(BS) = H0, we have that BS = PTQS ∈B(H0) because TQS is closed and everywhere
defined on H0. A similar argument shows that DS ∈ B(H0) whenever S ∈ B(H0) and
D(DS) = H0. This gives by induction on n ≥ 1 that f (n)(0) = n!BDn−1C ∈B(H0) if H0 ⊂
D(T n+1) because we have proved that this condition ensures that D(BDn−1C) = H0. �

Appendix B. Characterizations of degenerate Nevanlinna functions

This appendix is devoted to the study of properties of Nevanlinna functions with empha-
sis on the distinction between degenerated and non-degenerated ones. Or aim is to prove
Proposition 3.3. For this purpose we will need an additional characterization of scalar
degenerated Nevanlinna functions.

Lemma B.1. A scalar Nevanlinna function f is degenerate iff

lim
y→0

Im f(iy)
y

= 0.

Proof. Degenerate scalar Nevanlinna functions are the real constant functions, so their
imaginary part is null and trivally satisfy the asymptotic condition.

To prove the converse we resort to the standard integral representation (42) of Nevan-
linna functions, specialized to the scalar case, which states that f is given by

f(z) = a + bz + ∫
1 + zt
t − z

dν(t), a ∈ R, b ≥ 0,

with ν a finite measure on the real line. Then,
Im f(z)

Im z
= b + ∫

1 + t2
∣t − z∣2

dν(t).

Setting z = iy we obtain
Im f(iy)

y
= b + ∫

1 + t2
t2 + y2 dν(t).

The above expression increases when ∣y∣ decreases, thus the only way to have a zero limit
for y → 0 is if both, b and the measure ν, vanish. Then, f(z) = a is a real constant. �

Now we can prove Proposition 3.3 for operator valued Nevanlinna functions.

Proof of Proposition 3.3. It is enough to prove the first three equalities of this proposition:
if f ∶C ∖R→B(H0) is a Nevanlinna function and x ∈ R, then

ker Im f(z) = {v ∈ H0 ∶ fv constant on C ∖R} = ker(f(z) − f(x)) = ker f ′(x), z ∈ C ∖R,
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where f(x) ∶= limy→0 f(x + iy) and f ′(x) ∶= limy→0(f(x + iy) − f(0)))/iy are assumed
to exist as weak limits everywhere defined on H0. The characterizations (i) to (vi) of
Proposition 3.3 are direct consequences of the above three equalitites.

By using the shifted Nevanlinna function f(z − x) we can reduce the proof to the case
x = 0, bearing in mind that a real shift preserves Nevanlinna functions as well as their
degenerate character. Hence, we will suppose without loss that x = 0.

Let ker Im f ∶= ker Im f(z). This is a closed subspace of H0 which we know is independent
of z ∈ C ∖R. The orthogonal projections p, q of H0 onto ker Im f and ker Im f� generate
the block representation

f(z) = (a(z) b(z)
c(z) d(z)) = (pf(z)p pf(z)q

qf(z)p qf(z)q) , z ∈ C ∖R.

Since (Im f(z))p = 0, we find that a(z)† = a(z) and b(z)† = c(z). Hence, a(z), c(z) and
their adjoints are analytic on C∖R. This implies that a(z) = a± and c(z) = c± are constant
functions for z ∈ C±. Also, f(z) = f(z)† gives a(z) = a(z) and c(z) = c(z), thus a+ = a− and
c+ = c−. That is, a(z) = a and c(z) = c are constant operator valued functions for z ∈ C∖R,
so that

f(z) = (a c†

c d(z)) , z ∈ C ∖R.

Therefore, f(z)v = (a + c)v is independent of z ∈ C ∖R for each v ∈ ker Im f .
Conversely, if fv is constant on C ∖R then f(z)v = f(z)v = f(z)†v for z ∈ C ∖R, which

implies that v ∈ ker Im f . This finishes the proof of the first equality in the proposition,
ker Im f = {v ∈ H0 ∶ fv is constant on C ∖R}.

Suppose now that f(0) exists as an operator everywhere defined on H0. Let v ∈ H0
such that fv is constant on C∖R. Then, given z ∈ C∖R, we have that ⟨u∣(f(z)−f(0))v⟩ =
limy→0⟨u∣(f(z) − f(iy))v⟩ = 0 for every u ∈ H0, thus (f(z) − f(0))v = 0. Bearing in mind
the previous result, this means that ker Im f ⊂ ker(f(z) − f(0)).

To prove the opposite inclusion remember that f(0) is self-adjoint by Proposition 3.2.
Therefore, v ∈ ker(f(z) − f(0)) for some z ∈ C ∖R not only yields ⟨v∣(f(z) − f(0))v⟩ = 0,
but also ⟨v∣(f(z)† − f(0))v⟩ = ⟨(f(z) − f(0))v∣v⟩ = 0. Combining these two equalities we
get ⟨v∣ Im f(z)v⟩ = 0, which proves that v ∈ ker Im f(z) because Im f(z)/ Im z ≥ 0.

Finally, assume the existence of f ′(0) everywhere defined on H0. If v ∈ H0 makes fv
constant on C ∖R, then (f(iy) − f(0))v = 0 for every y ∈ R, so f ′(0)v = 0. In other words,
ker Im f ⊂ ker f ′(0).

Conversely, suppose that v ∈ ker f ′(0) and consider the scalar Nevanlinna function g(z) =
⟨v∣f(z)v⟩. Then, using that f(iy)† = f(−iy) for y ∈ R, we get

lim
y→0

Im g(iy)
y

= 1
2 lim
y→0

(⟨v∣f(iy)−f(0)iy v⟩ + ⟨v∣f(−iy)−f(0)
−iy v⟩) = ⟨v∣f ′(0)v⟩ = 0.

By Lemma B.1, g is a real constant function, so ⟨v∣ Im f(z)v⟩ = Im g(z) = 0 for z ∈ C ∖R,
which implies that v ∈ ker Im f . �
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