000075654 001__ 75654 000075654 005__ 20210121114546.0 000075654 0247_ $$2doi$$a10.1016/j.ijhydene.2015.06.074 000075654 0248_ $$2sideral$$a91191 000075654 037__ $$aART-2015-91191 000075654 041__ $$aeng 000075654 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, M.$$uUniversidad de Zaragoza 000075654 245__ $$aPower to gas-oxyfuel boiler hybrid systems 000075654 260__ $$c2015 000075654 5060_ $$aAccess copy available to the general public$$fUnrestricted 000075654 5203_ $$aOne of the main future energy challenges is the management of electrical supply and demand, mainly motivated by the increase of share renewable energy in electricity mix. Thus, energy storage represents a crucial line of research and innovative solutions are currently being proposed. Power to Gas is a technology which stores excess of electrical energy in form of synthetic natural gas through the methanation of hydrogen produced by electrolysis. Methanation requires a source of CO2 which could be provided from the flue gas of an oxyfuel boiler. A further advantage of this hybridization comes from the supply of the oxygen generated by electrolysis to the oxyfuel combustion. In this study the concept is simulated using Aspen Plus® software and the performance of the combined system is analysed through the definition of a size ratio, ¿¿¿¿, that relates the flow of renewable hydrogen produced in electrolyser and the thermal output of the boiler. This variable has allowed defining different ranges of operation for a PtG- oxycombustion hybridized plant. Thus, for ¿¿¿¿ of 1.33, the air separation unit required as an auxiliary element for the oxyfuel boiler becomes unnecessary while if this ratio is increased up to 2.29, flue gas is completely consumed in the methanation plant and converted to synthetic natural gas. 000075654 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000075654 590__ $$a3.205$$b2015 000075654 591__ $$aCHEMISTRY, PHYSICAL$$b47 / 144 = 0.326$$c2015$$dQ2$$eT1 000075654 591__ $$aENERGY & FUELS$$b28 / 88 = 0.318$$c2015$$dQ2$$eT1 000075654 591__ $$aELECTROCHEMISTRY$$b8 / 27 = 0.296$$c2015$$dQ2$$eT1 000075654 592__ $$a1.27$$b2015 000075654 593__ $$aCondensed Matter Physics$$c2015$$dQ1 000075654 593__ $$aRenewable Energy, Sustainability and the Environment$$c2015$$dQ1 000075654 593__ $$aFuel Technology$$c2015$$dQ1 000075654 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1 000075654 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000075654 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P. 000075654 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L. M.$$uUniversidad de Zaragoza 000075654 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi. 000075654 773__ $$g40, 32 (2015), 10168-10175$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199 000075654 8564_ $$s740137$$uhttps://zaguan.unizar.es/record/75654/files/texto_completo.pdf$$yPostprint 000075654 8564_ $$s68296$$uhttps://zaguan.unizar.es/record/75654/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000075654 909CO $$ooai:zaguan.unizar.es:75654$$particulos$$pdriver 000075654 951__ $$a2021-01-21-11:19:34 000075654 980__ $$aARTICLE