
ARTICLE

A continuous deployment-based approach for the collaborative
creation, maintenance, testing and deployment of CityGML
models
Iñaki Prieto a, Jose Luis Izkara a and Rubén Béjar b

aSustainable Construction Division, Tecnalia Research & Innovation, Derio, Spain; bAragon Institute of
Engineering Research, Universidad Zaragoza, Zaragoza, Spain

ABSTRACT
Georeferenced 3D models are an increasingly common choice to
store and display urban data in many application areas. CityGML is
an open and standardized data model, and exchange format that
provides common semantics for 3D city entities and their relations
and one of the most common options for this kind of information.
Currently, creating and maintaining CityGML models is costly and
difficult. This is in part because both the creation of the geometries
and the semantic annotation can be complex processes that require
at least some manual work. In fact, many publicly available CityGML
models have errors. This paper proposes a method to facilitate the
regular maintenance of correct city models in CityGML. This method
is based on the continuous deployment strategy and tools used in
software development, but adapted to the problem of creating,
maintaining and deploying CityGML models, even when several
people are working on them at the same time. The method requires
designing and implementing CityGML deployment pipelines. These
pipelines are automatic implementations of the process of building,
testing and deploying CityGML models. These pipelines must be
run by the maintainers of the models when they make changes that
are intended to be shared with others. The pipelines execute
increasingly complex automatic tests in order to detect errors as
soon as possible, and can even automate the deployment step,
where the CityGML models are made available to their end users. In
order to demonstrate the feasibility of this method, and as an
example of its application, a CityGML deployment pipeline has
been developed for an example scenario where three actors main-
tain the same city model. This scenario is representative of the kind
of problems that this method intends to solve, and it is based on
real work in progress. The main benefits of this method are the
automation of model testing, every change to the model is tested
in a repeatable way; the automation of the model deployment,
every change to the model can reach its end users as fast as
possible; the systematic approach to integrating changes made by
different people working together on the models, including the
possibility of keeping parallel versions with a common core; an
automatic record of every change made to the models (who did
what and when) and the possibility of undoing some of those
changes at any time.

ARTICLE HISTORY
Received 14 June 2017
Accepted 13 October 2017

KEYWORDS
CityGML; collaborative edition;
continuous deployment; 3D
city model; automated testing

CONTACT Iñaki Prieto inaki.prieto@tecnalia.com

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2018
VOL. 32, NO. 2, 282–301
https://doi.org/10.1080/13658816.2017.1393543

© 2017 TECNALIA Research & Innovation. Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0002-8407-6023
http://orcid.org/0000-0001-5145-1985
http://orcid.org/0000-0001-7866-3793
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2017.1393543&domain=pdf

1. Introduction

Georeferenced 3D models are an increasingly accepted solution for storing and display-
ing urban data, and the CityGML standard is among the best options for this. It
combines 3D information and semantic information in a single data model, facilitating
the use and interoperability between models (Gröger et al. 2012). This kind of data
model permits representing, handling and managing urban data that can be used in
different applications such as disaster management, urban planning, traffic planning,
security, telecommunications, navigation or tourism (Biljecki et al. 2015b).

Creating high quality CityGML models is costly in regard to time and money (Döllner
et al. 2006). The geometries can be generated with different data acquisition technologies
such as 3D laser scanning, image-based modeling and computer-aided design (Limp et al.
2010). This geometric generation can be performed in a semi-automatic way but it usually
requires at least some manual editing (Malamboa and Hahnb 2010, Cao et al. 2017). The
main limitation of the models generated with these methods is that they lack semantic
information. Some authors consider that the main bottleneck to speeding up the adoption
of CityGML as an open standard is the difficulty of annotating 3D models with semantics,
which requires at least some manual labor (Kang and Hong 2015).

Another important challenge regarding 3D city models is simplifying their mainte-
nance. The models should be kept up-to-date as the real cities change, and should be
extended when new information is available. If making changes to the models were
simpler, the generation of ‘what-if’ scenarios and the analysis of alternatives, such as
finding out the consequences of different changes in a certain neighborhood, would be
more common and less challenging than they are now (Ohori et al. 2015).

Even when CityGML models exist and are actively maintained, there is still another
major issue: most of the existing models have geometric and semantic errors (Biljecki
et al. 2016). For example, in a freely accessible CityGML model of the city of Rotterdam
there are errors such as wrong orientations, intersection of surfaces, missing surfaces or
non-planar surfaces, in 90% of the city objects (Peters et al. 2014).

When the maintenance of CityGML models cannot be done by a single person, for
instance when they become larger and more complex, or when the person responsible for
this has too many other tasks, it is necessary to consider their collaborative creation and
maintenance. This may bring several benefits, but also some problems. These benefits
would include faster results, thanks to the parallelization of the effort, and the possibility
of having different professionals with different expertise working on different aspects of
the same model. Collaborative maintenance also opens the door to developing participa-
tory urbanism initiatives (Grey et al. 2017; Dyer et al. 2017) and makes it possible to
consider the participation of volunteers in the maintenance of the models in the future.
However, this would involve some additional problems, such as the integration of changes
that may be in conflict with each other and the validation of those changes.

This paper presents a solution to facilitate the regular maintenance of 3D city models
in CityGML. This solution is based on the continuous deployment (CD) strategy and tools
used in software development, and adapts them to the problem of creating, maintaining
and deploying correct CityGML models. The paper shows how this solution contributes
to solving the challenges and problems identified before: (1) it reduces manual labor by
automating processes, (2) it facilitates the collaborative maintenance of the models by

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 283

integrating a version control system (VCS) in the workflow, and (3) it reduces geometric
and semantic errors by the systematic and frequent execution of automatic tests.

The rest of the paper is structured as follows: first, some related work is reviewed in
Section 2. The proposed solution, a method to automate the deployment of correct 3D
city models, is presented in Section 3. Section 4 describes an example scenario used to
test the proposed solution. Section 5 discusses the rationale behind some of the
adopted solutions. Finally, the paper ends with some conclusions and future work
recommendations.

2. Related work

Regarding the collaborative creation and maintenance of georeferenced city models, the
OpenStreetMap (OSM) project is currently an excellent example of this for 2D data
(Budhathoki and Haythornthwaite 2012). OSM has its own data model and tools, with
integrated, ad hoc support for multiuser edition and version control. In the case of 3D
cities, there have been a number of proposals. For instance, there is a methodology for
the collaborative, interactive development of 3D building models that considers walls,
roofs, doors and windows as structural elements (Abbasi and Malek 2015). Other authors
have enhanced the OSM data in order to support a third dimension. For example, the
OSM-3D platform has been developed to provide a web-based interactive 3D view of
this data (Goetz and Zipf 2012, Goetz 2012). However, the 3D in OSM is based on
extrusion, so complex geometries cannot be represented. Another solution is 3D Repo,
which is a pioneering open-source version control framework that enables coordinated
management of large-scale engineering 3D data over the Internet, though it does not
currently support CityGML (Scully et al. 2015).

The architecture, engineering and construction industry has developed several meth-
ods and building information modeling (BIM) processes, to facilitate collaboration
among the actors involved in the development process of built assets. As an example,
the aim of ISO 29481 is to facilitate interoperability between software applications used
during all stages of the life cycle of construction works (ISO 2010). The main focus of BIM
is in the building scale (not the city scale) and in the building construction processes
more than in the modeling processes.

Some data models need to be kept up-to-date to be fit for their purpose. In the case
of 3D city models, their obsolescence factors have been studied and some obsoles-
cence–prevention strategies have been proposed. These strategies include considering
factors such as file formats, data interoperability, accessibility or usability.

In addition, the regular maintenance of a city model would create a history of
changes that can be useful to analyze the temporal evolution of the city.
Nevertheless, the CityGML standard currently does not provide us with a way to
store this kind of information, because only the current state values are included
(Morel and Gesquière 2014). An alternative is to extend CityGML to allow for versions
of the entire model, or of some specific city elements, to represent different planning
alternatives (Chaturvedi et al. 2015). There is also a modeling approach and an
implementation for supporting the management of versions and history within
CityGML (Chaturvedi et al. 2015). Another related problem is to keep the changes
under control as the models evolve. Changes are fully controlled if it is well-known

284 I. PRIETO ET AL.

who has changed what, when and for what reason. This issue, in addition to
versioning, has been identified since the beginning of CityGML (Gröger et al. 2005),
but it has not yet been considered in the standard.

Regarding the correctness of CityGML models, there are a good number of pro-
posals to facilitate the detection of errors and the healing of these models. The
detection of geometric errors in 3D city models is necessary to guarantee the output
of processing or manipulation operations such as the calculation of building volumes,
adjoining walls or solar radiation (Sindram et al. 2016, Biljecki et al. 2015a). The SIG 3D
Quality Working Group has defined guidelines with modeling recommendations in
order to avoid errors in the generation of CityGML models (Gröger and Coors 2011).
Even when the data are standard-compliant, some rules for the validation of geo-
metric-semantical consistency are still needed (Wagner et al. 2013, Zhao et al. 2014).
Alam et al. (2013) have developed a tool to repair the errors detected in the CityGML
models automatically. Val3dity is a tool to validate 3D primitives according to the
international standard ISO 19107 (Ledoux et al. 2013). CityDoctor implements meth-
ods and metrics for analysis, testing and correction of syntax, geometry and seman-
tics of virtual 3D city models (Coors and Krämer 2011). Currently, none of these tools
can detect and repair all the possible errors within a CityGML model. The CityGML
Quality Interoperability Experiment provided a set of recommendations on confor-
mance requirements related to quality-checking tools and a validation workflow
(Wagner and Ledoux 2016).

3. CD of CityGML models

This section describes a method to automate the validation and deployment of CityGML
models, which also facilitates the collaborative maintenance of these models by several
people. Subsections 3.1 and 3.2 are completely technology-independent and describe the
entire solution. This method is based on the CD strategy used in software development,
and applying it to a CityGML model mainly consists of carrying out two main tasks:

(1) Designing and implementing a deployment pipeline for that model. This, in short,
will consist of a sequence of linked, automatic stages that transform its input, a
modified CityGML model committed to a VCS repository, to a validated and
deployed CityGML model. These pipelines could be implemented ad hoc, e.g. as
scripts in any programming language, but leveraging specialized tools provides a
good starting point. This just needs to be done once per city model, and parts of
the pipeline may be reused.

(2) Executing that pipeline when a set of changes to a CityGML model that we want
to share is committed. The frequency depends on the number and complexity of
the changes, and also on the number of people working at the same time on the
model, but it would be common to commit changes and execute the pipeline at
least once per day, in order to minimize merge conflicts when simultaneous
changes are made by several maintainers.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 285

The rest of this section describes how to design and implement these deployment
pipelines. As the proposed method is based on CD, we start by briefly describing this
software development strategy.

3.1. Continuous deployment

CD is a methodology used to systematically control and automate the testing and
deployment of software and services (Humble and Farley 2010). Although CD is mainly
used in software development, there are some examples of its application in the
deployment of other artifacts, such as documents (Gentle 2015; Vakharia 2015).

CD is based on the concept of a deployment pipeline, which is an automatic imple-
mentation of the process of building, testing and deploying a software system. A deploy-
ment pipeline usually has several stages (although it may have only one), each one slower
than the previous ones but providing more confidence in the correctness of the software
being deployed. This increasing confidence is provided by the automatic execution of
increasingly complex tests. The implementation of a deployment pipeline requires at least
a VCS repository where the changes to the code are committed by its developers.

A basic deployment pipeline starts with a commit stage that takes some changes
committed to a source code repository, compiles and assembles the binaries (e.g. the
executables) and runs some simple tests. If this fails, the programmer is informed, and if
it succeeds, an acceptance stage is run next, where a test environment is configured, the
binaries are deployed there and some acceptance tests are executed. Once that stage
succeeds, a final production stage that configures the production server and deploys the
binaries there for the end users can be run.

Other stages can also be added, such as a capacity stage to test the performance of
the software being deployed, or a user acceptance stage, where other user-facing tests,
maybe even manual ones, are run.

3.2. CityGML deployment pipelines

The proposal in this paper requires designing and implementing deployment pipelines
for the CityGML models being created, maintained and deployed. These pipelines will
follow a similar structure to the deployment pipelines for software systems described in
the previous section, but many of the tasks carried out will be different because the
problem solved is different. As with software deployment pipelines, the CityGML pipe-
lines will have to be tailored to each city model, but they will share a common structure
with up to four stages as shown in Figure 1:

● Commit Stage: It checks if a CityGML file is structurally correct and standard-compli-
ant. This stage takes a CityGML file committed to the VCS as input, it checks if the file
contains structural errors or nonconformances related to the CityGML standard, and
also calculates some statistics on the elements contained in the file. If the CityGML file
is structurally correct, this stage outputs a number of metrics and statistics on that file.
If the input was an incorrect file, a list of errors is provided as a result.

● Acceptance Stage: The aim of this stage is to deploy the city model in the same
format required by the end user-oriented deployment, in a test environment where

286 I. PRIETO ET AL.

a number of acceptance tests are performed to ensure that the model meets the
user requirements in an environment similar to the production one. This stage
takes a structurally correct CityGML file as input. The tests performed at this stage
are focused on the acceptance criteria, which are based on the user requirements.
This stage produces a list of errors and warnings related to these tests. The more
acceptance criteria are defined and implemented as automated tests in this stage,
the more confidence we may have in the fact that the CityGML model will fulfill the
user requirements in the production environment.

● User Acceptance Test (UAT) Stage: There may be some acceptance tests that have to
be donemanually because they have not yet been automated or because they cannot
be automated (e.g. a visual exploration of a city model can help to detect some
inconsistencies). This stage ensures that these manual UATs are done. This stage
deploys a CityGML file which has been checked by the commit and the acceptance
stages in a user acceptance testing environment. A tester will be informed that there
are manual tests waiting to be performed and the pipeline will be paused until these
tests are done and marked as ‘success’ or ‘failure’. After this the stage will be com-
pleted. The output of this stage is a report with the result of the stage and, in case of
failure, a list of errors found and comments provided by the tester.

● Production Stage: The aim of this stage is to deploy the city model, in the format
required by the end users, in a production environment. This stage takes a CityGML
file that has passed through the commit, acceptance and UAT stages as input;
configures a production environment; and deploys the city model there and runs
some smoke tests, which are very quick and simple tests used to check that a

Figure 1. CityGML deployment pipeline.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 287

process has been carried out without major failures. A report with the results of the
process will be provided as a result of the stage and, in case of success, the
CityGML file will be available to the end users. The term deployment is used here
in a broad sense. This may mean to copy it to a directory accessible via a web
server, to integrate it with a web application that makes use of it, maybe through a
web service interface, or even to pack it as a resource inside a mobile app before
publishing it on an app market.

The tasks carried out in these stages are explained in the following sections.

3.2.1. Commit stage
3.2.1.1. Commit tests. The validation of the structural correctness of the CityGML file
requires: (1) XML schema validation (XML, XSD and CityGML version), (2) geometric
validation to check that the representation of the geometric information is compliant
with the GML standard (that polygons are closed, consecutive points are not repeated
and others), and (3) semantic validation, which includes checking the code lists for
enumerative attributes.

3.2.1.2. Model analysis. This task will calculate various descriptive statistics from the
CityGML file. These metrics will include the number of elements in the model, the
elements for each Level of Detail (LoD) and the number of those elements including a
basic set of attributes (e.g. class, function and usage).

3.2.2. Acceptance stage
3.2.2.1. Configure test environment. The first task of this stage is to set up the
environment in which to conduct the acceptance tests. The environment configuration
data should include the required configuration settings for software components like
the database server and the web server.

3.2.2.2. Deploy in test environment. This task deploys the city model, in the same
format required by the end user-oriented deployment. For example, a database or a file
system could both be options to be used for the deployment.

3.2.2.3. Smoke tests. Smoke tests are very quick and simple tests used to check that a
process has been carried out without major failures. The ones here check that the
deployment process in the test environment has finished without critical errors. For
instance, in the case of database storage, a basic request for data retrieval could be a
sufficient smoke test. If the deployment is performed in a file-based storage, the test
could check whether the file has been correctly uploaded into the repository (e.g. by
checking that the size of the uploaded file is correct).

3.2.2.4. Acceptance tests. This task will check that the city model meets the specifica-
tions defined by the application and the customer, expressed as acceptance criteria
related to the requirements, so it is problem-domain related, and that it works properly
in an environment similar to the one in production. For example, this task will typically
check that the model contains all the required semantic properties (for instance, the area

288 I. PRIETO ET AL.

and orientation of facades and adjoining walls). Within this task, the correct hierarchy of
the buildings can be also checked. As an example of this, the rules in a certain domain
could be that buildings contain parcel information and geometry in LoD0 and LoD1, and
that building parts contain real building information and geometry in LoD2. Other
possible tests here could be to ensure that the geometry height and the height given
in the measuredHeight parameter are similar, or that walls are represented by vertical
surfaces and grounds and roofs are surfaces that tend to be horizontal.

3.2.3. UAT stage
3.2.3.1. Configure, deploy and run smoke tests in the UAT environment. The actions
to be performed in these tasks are like those explained in the Acceptance Stage, but
they are performed in the UAT environment.

3.2.3.2. User acceptance tests. This task will check that the deployed city model is
valid from the user perspective, considering elements that are difficult or impossible to
express as automatically testable acceptance criteria, so they have to be done manually.
First, the model can be checked as an isolated element. Even if the geometric informa-
tion is correct according to the standard, the geometry could be invalid (e.g. courtyards
are not represented or have an incorrect texture mapping). Once the model is checked
as an isolated element, its integration in the final environment can be checked as well,
considering its geolocation and orientation, for instance. A human tester will be
informed that there are manual tests waiting to be performed, and the pipeline will
be paused until these tests are done and marked as success or failure. These tests can be
done by following a script, but exploratory testing (an experimented tester is given the
opportunity to explore the model without a predefined script) can be a valuable tool to
discover unexpected problems.

3.2.4 Production stage
3.2.4.1. Configure, deploy and run smoke tests in the production environment. The
actions to be performed in these tasks are like those explained in the Acceptance Stage,
but they are performed in the Production environment.

3.3. Implementation of CityGML deployment pipelines

This section discusses a possible implementation of CityGML deployment pipelines like
those described in the previous section. The implementation of software is technology-
dependent, but the design described in the previous sections is not, so it could be
implemented with different technologies than those described here. The main structure
of these pipelines can be supported by any VCS and any CD tool. These tools are
advanced, well-documented and there are many to choose from. Being able to make
use of them is one of the advantages of having based our proposal on software
deployment pipelines. The other necessary tools are those that provide the functionality
required by the tasks in the stages of the pipelines, most of them specifically related to
CityGML. These tools are the rough equivalent to the compilers, linkers, code analyzers
or testing frameworks that a software deployment pipeline would use. Some of these
CityGML tools have been developed by us, while others are adaptations of existing ones.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 289

Regarding the pipeline structure, a VCS is required first. VCSs record changes to files
over time so it is possible to recall specific versions later. Nowadays, distributed version
control systems (DVCS) like Git or Mercurial are increasingly popular and provide a
whole set of novel capabilities. Using DVCS, developers can work on local copies of
the repositories, enabling them to work offline while still retaining the full project
history; they can cheaply create and merge branches; and they can share only their
chosen sets of changes.

Besides a VCS, a CD tool is necessary to implement the pipeline structure. There are
many to choose from, being some of the most common Jenkins, Team City, Cruise
Control, Bamboo and GoCD.

Table 1 lists a number of tools for the pipeline implementation, including a short
description, their inputs and outputs and indicating if they have been specifically
developed (D) or are third-party tools (TP). Most of them are specifically developed for
CityGML. These tools have been implemented in Java as simple REST web services that
can be easily called from any CD tool, and are not specific of a certain CityGML model or
pipeline, so they can be reused. These tools are offered as web services, so they could be
implemented in other programming languages. These tools will typically be reusable,
but tools that are specific for a certain model or special problem could be developed.
The currently implemented set of tools is meant to provide a number of functionalities
that allow for implementing a representative CityGML deployment pipeline in order to
validate the proposal in this paper.

A number of third-party libraries and tools have been used, as shown in the Table 1.
Some of these are specifically developed for CityGML, while others are more generic and
have been adapted to be used in a CityGML deployment pipeline by wrapping them as
REST web services in Java.

4. Example scenario

This section applies the solution proposed in this paper, based on CityGML deployment
pipelines, to a scenario that is representative of the kind of problems that this solution
aims to solve. This scenario serves both as a test of the feasibility of the proposal and as
an illustrative example of its possibilities. It is based on real data and on work in progress
related to the energy retrofitting of buildings (Prieto et al. 2015).

In this scenario, several actors collaborate to maintain a city model that is used,
possibly among other things, to identify the most appropriate solutions for the energy
retrofitting of a city neighborhood. The scenario is located in the city of Santiago de
Compostela (Spain), for which a CityGML file has been created. This CityGML model is
updated frequently and it is important that this model is correct at any time. The
maintenance of the CityGML model will be performed by the following actors:

● City hall architect: The city hall architect is in charge of keeping the main elements
of the CityGML up-to-date. He will periodically update the CityGML models with
data provided by other institutions (e.g. the cadaster or the national mapping
agency). The city hall is only concerned with basic semantic properties and the
geometry of the city elements at low levels of detail (LoD0, LoD1 and LoD2).

290 I. PRIETO ET AL.

Table 1. Developed and third-party tools.
Name Description Input Output D/TP

Commit Stage
CityGML version checker CityGML module namespaces

are checked to find out if they
refer to CityGML version 2.0.0.

CityGML file Version is valid
or error list

D

CityGML geometric
checker

Currently, for every surface, this
tool checks that the first and
the last points are equal, and
that there are not any
consecutive repeated points.

CityGML file Geometrically
valid or error
list

D

CityGML semantic
checker

This tool validates the model
against the defined CityGML
code lists.

CityGML file CityGML code
lists are
correct or
error list

D

CityGML statistics
generator

This tool calculates, for all the
buildings in the CityGML
model, how many of them
have each of the following
elements filled in: class,
function, year of construction,
roofType, measuredHeight,
storeysAbove and
storeysBelow.

CityGML file Metrics or error
list

D

Java XML Parsers The CityGML file is parsed to find
out if it is well-formed.

CityGML file CityGML file is
well-formed
or error list

TP

Java SchemaFactory The CityGML file is parsed to find
out if it is schema valid.

CityGML file CityGML file is
schema valid
or error list

TP

Acceptance Stage
Name Description Input Output D/TP
Facade checker This tool checks that each facade

has its area and orientation
parameters calculated.

CityGML file Parameters are
calculated or
error list

D

UAT Stage
Name Description Input Output D/TP
Cesium – Integration in
the real environment
checker

The CityGML model is visualized
in a 3D globe and maps web
application.

URL of the CityGML file
exported to KML

CityGML is
visualized in
Cesium.a

TP

Acceptance, UAT, Production Stage
Name Description Input Output D/TP
WFS request generator In order to smoke test that a

WFS has been correctly set
up, this tool sends a
GetCapabilities request to it
and checks the service has
been correctly set up.

URL of the WFS WFS set up is
correct or
error list

D

3DCityDB – Database
structure generator

Creates the SQL schema
required to store a CityGML
model.

3DCityDB PostgreSQL script
+ coordinate reference
system + connection and
configuration details (e.g.
host, port, user,
password)

Database
generated
with
CityGML
structure or
error list

TP

3DCityDB – CityGML to
DB importer

The CityGML model is imported
to the database. Previously,
the content of this database is
deleted.

CityGML file + connection
and configuration details
(e.g. host, port, user,
password)

CityGML file is
stored in the
database or
error list

TP

Deegree The WFS is set up with the
configuration of the database,
features to make available
and the service.

Project name + connection
and configuration details
(e.g. host, port, user,
password)

The WFS is set
up or error
list

TP

aCesium is a 3D globe and web maps application. http://cesiumjs.org/.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 291

http://cesiumjs.org/

● GIS technician (external to the city hall): She is responsible for completing and
improving the LoD of the city model by adding missing elements and by improving
the LoD of the existing elements up to LoD3 (which includes doors and windows).

● Energy consultant: He is in charge of completing the semantic information of the
CityGML model with some extensions. To get the information, he performs field
work every day, mainly visual inspections of buildings, and edits the CityGML. This
information can be applicable to the building itself or to its elements (e.g. year of
construction, building function, main building material, installations or window
percentage and materials).

4.1. Configuration

Figure 2 shows the configuration used in the example scenario. The setup of the
scenario is not necessarily done by CityGML content developers, because it requires
some experience with system administration. There is a shared Git repository hosted
in GitHub where the latest correct version of the CityGML file will be shared. This is
the reference copy of the CityGML model. It will be copied to the production server
(in XML format and as a PostGIS database) for its exploitation with every successful
execution of the full pipeline. All the actors have read and write permissions to this
repository (i.e. they follow the so-called centralized workflow in Git (Chacon and
Straub 2014)). If there were information that could not be shared among all the
actors, it would be necessary to create a different Git repository with different
permissions and to ensure that changes in both repositories are properly synchro-
nized. They all have a local clone of this shared repository, where they pull from the
shared repository and commit their changes as they work. In order to test that these

Figure 2. Configuration of the example scenario.

292 I. PRIETO ET AL.

changes have not broken any commit tests before sharing them with the others,
they all have a Jenkins CI server in their local machines where they run a simplified
version of the shared deployment pipeline, which only has the Commit Stage. Once a
commit passes through this shortened local pipeline successfully, they may decide to
share it through the GitHub repository by pushing it.

The GitHub repository is linked with a full deployment pipeline in a Jenkins CI
server instance hosted in a computer in the city hall (the integration server). The
integration server has access to a test server, where the tests of the acceptance and
UAT stages are run, and to the production server, where the new version of the
CityGML file will be deployed, and thus made available to the citizens if it passes
through the full pipeline. These servers have a PostgreSQL database with a PostGIS
extension and a WFS service, which are used to publish the CityGML model.
Moreover, the CityGML is also deployed as a downloadable file for users who just
need this. The full pipeline is automatically triggered by every push to the shared
repository. Table 2 lists the tools used in the full pipeline (explained in Section 3.3)

The implementation of the deployment pipeline has been done using Jenkins, which
is an open-source continuous integration application that also supports CD (Berg 2015).
The main functionality provided by Jenkins is to execute a list of steps that can be
executed based on time or events. A large number of plugins is available to extend its
core functionality. For this example, a Git Plugin and an HTTP Request Plugin have been
used. The full code of the Jenkins script used for this example is available at https://
github.com/Tecnalia-CityGML/CityGML-Deployment-Pipeline-Script.

The services listed in Table 2 have been developed for this experiment by hard-
coding the environment configuration data, so they are currently tied to our test and
production environments. A proper, reusable implementation would have this data as a
parameter of the service.

Regarding the UAT Stage, the CityGML is downloaded from the test server and visualized
using Cesium. Figure 3 shows the graphical user interface that Jenkins uses to wait for the
tester input on the left, and on the right, the CityGML model as shown in Cesium.

4.2. Execution and results

In this scenario, the three actors make some changes to the model. When they update
the CityGML model with new geometric and/or semantic information, they check the
model through their local pipelines. Once it passes the local pipeline successfully, the

Table 2. Tasks of each stage within the validation pipeline.
Stage Tools

Commit Stage Java XML Parsers. Java SchemaFactory. CityGML geometric checker. CityGML semantic
checker. CityGML statistics generator.

Acceptance Stage 3DCityDB – Database structure generator. 3DCityDB – CityGML to DB importer. CityGML WFS
deployer. Deegree – WFS request generator. Facade checker.

UAT Stage The deployment and smoke tests are like those in the Acceptance Stage. Also Cesium
integration in the real environment test is performed. A tester interaction is needed at this
step, so the pipeline will be paused until the tester gives some feedback.

Production Stage The same tools developed for the Acceptance Stage, but performed in the Production
environment.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 293

https://github.com/Tecnalia-CityGML/CityGML-Deployment-Pipeline-Script
https://github.com/Tecnalia-CityGML/CityGML-Deployment-Pipeline-Script

changes are pushed to the shared repository and the full pipeline is triggered. In the
following example scenario, five successful deployments of the city model are done, and
five errors (geometric and semantic errors that occur in various LoDs) are automatically
detected before they reach the end users.

The diagram in Figure 4 shows the detailed sequence of actions carried out by the
three actors in the example scenario:

● First, the city hall architect creates the city model with 300 buildings in LoD2 (1).
The local and shared pipelines are successful but some warnings are notified to
point out that there are some facades with areas smaller than 1 m2, so they
probably have to be fixed.

● The energy consultant pulls the city model (1) and adds the semantic informa-
tion of two buildings (2). His local pipeline fails because the function code
types of the buildings are not correct. The energy consultant corrects those
building code types (3) and after that, both the local and the shared pipelines
finish successfully.

● Some days later, the GIS technician pulls the city model (3) and completes the 300
buildings including their LoD0 and LoD1 (4). However, her local pipeline does not
finish successfully because there are errors in some geometries. The GIS technician
starts to fix the geometric errors. Meanwhile, the energy consultant pulls the city
model (3) and completes the semantic information of another building (5). Both the
local and the shared pipelines finish successfully. The GIS technician finishes solving
the geometric errors (6) and her local pipeline works successfully. However, when
she tries to push the city model to the shared repository a conflict occurs because
another set of changes have been pushed in the meanwhile (5), so the GIS
technician has been working locally with an old version. She pulls the current
city model (5), merges that model with the latest changes in her machine (7) and
then both pipelines work successfully.

● After that, the city hall architect pulls the city model (7) and completes it by adding
the LoD0, LoD1 and LoD2 of 263 buildings (8). The shared pipeline fails because
there is a user requirement (checked by an acceptance test) which requires that

Figure 3. UAT visualization in Jenkins and Cesium.

294 I. PRIETO ET AL.

every facade must have an area and an orientation. The architect corrects the errors
(9) and pushes the changes to the shared repository, thus triggering the shared
pipeline. In the UAT Stage of that pipeline, a tester notices that some buildings are
not correctly located, so the pipeline fails at that stage. After fixing these errors (10),
both pipelines pass successfully.

The Git repository used to run this example scenario is hosted in GitHub at https://
github.com/Tecnalia-CityGML/CityGML-Deployment-Pipeline.git. The commit log shown
in Figure 5, on the left, is taken from the master branch of that repository. The different
triggers of the pipeline in Jenkins can be seen on the right side.

Figure 4. Main interactions in the example scenario.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 295

https://github.com/Tecnalia-CityGML/CityGML-Deployment-Pipeline.git
https://github.com/Tecnalia-CityGML/CityGML-Deployment-Pipeline.git

5. Discussion

In this section, we will discuss the rationale behind some of the main decisions made to
develop the proposal in this paper.

First, we have selected CityGML as the data model because we have created a number
of city models for different projects, and this has allowed us to identify an issue with the
maintenance and validation of those models. The CityGML standard was published 9 years
ago but, as reviewed in Section 2, there are still many non-correct, i.e. containing semantic
and geometric errors, CityGML models publicly available. In any case, a deployment pipe-
line based on a VCS and both automatic and manual tests can be applied to other complex
data formats as well, which is something that can be explored in the future.

Currently, validation of the models is usually done manually. This is time-consuming
and, consequently, too often skipped. Having identified manual procedures as one of
the main sources of the problems identified in the maintenance and deployment of valid
CityGML models, we had to choose a strategy to make these procedures automatic.
Instead of designing and implementing an ad hoc solution, the field of software
engineering has provided us with the CD strategy and tools. The main advantage of
adopting this strategy is that we have been able to benefit from the existence of
specialized and powerful tools. Another advantage is that because this strategy is
becoming increasingly common in software development, it may be easier to find
people who already know about it when hiring people to work on the maintenance
and deployment of CityGML models.

Figure 5. Different triggers of the pipeline in Jenkins.

296 I. PRIETO ET AL.

The proposed solution includes the deployment of valid CityGML models, where
deployment means ‘to make the model available to its potential users’. There are not
many CityGML models available now, and their deployments are typically simple (e.g.
making them available through a web server), so it may seem unnecessary to automate
this. However, the proposal in this paper intends to make it easier and faster to make
changes to CityGML models. If changes are easier, they may be done more frequently. If
they are more frequent, deployments, even simple ones, will also be more frequent and
require more time, so making this part of the process automatic (instead of manual and
thus error-prone) makes more sense. In addition, other more complex scenarios (e.g.
cloud based deployment with dynamic load balancing, or those where software and
CityGML models are packaged together) will benefit even more from the automation of
the deployment.

In case 3D data with enrichments need to be shared, it would be necessary to have a
public repository with public data, and one or more private repositories synchronized
with the public one. In this way, users without permissions will work against the public
repository (as is done now or using a fork of the repository and then sharing changes
with the pull requests); while users with permissions would maintain the private repo-
sitory (in which they will include private data) and the public repository synchronized.

Setting up a CD strategy requires a VCS. CD tools are very well integrated with VCS
and thanks to them it is possible to have a record of changes, with information about
who made what change when and for what reason, and it is also possible to go back to
any previous version. Moreover, some kind of version control is required to allow for
collaborative work, though this does not need to be a VCS and can be made part of the
data model, for instance.

As a final advantage of our proposal, it is important to highlight that it can be
adopted in an incremental way, with a VCS repository as a first step, a simple pipeline
with a single Commit Stage as a second one, an extended pipeline with the Acceptance
Stage as a third step and a full pipeline as the final target. All these steps are useful by
themselves (i.e. implementing them provides a solution to some of the identified issues),
and the former are required to set up the latter. Incremental adoption makes it less risky
to try this solution in a real environment.

The interactions between the actors and the exchange of data in workflows that follow
the proposed method could be expressed in different ways, for instance, with Business
Process Modeling Notation (BPMN), which can be used to model generic collaborative
processes (Allweyer 2016). This should be explored in organizations that already use BPMN
for some of their workflows, especially if CD is integrated with some of these workflows.

This research has some limitations that need to be addressed in the future. If there is
a significant number of actors, there will probably be more conflicts among their
changes. This could require a different Git workflow instead of the centralized one
used here. In addition, some scenarios could also require some actors to validate the
changes before they go through the full pipeline. The drawback is that a manual step
would thus be introduced and that may lead to bottlenecks. Moreover, the maintenance
of the code of the pipelines, the associated code (e.g. for the automatic tests) and the
servers is out of the scope of an average CityGML modeler, so someone with more
experience in system administration will be needed. Finally, GIS desktop applications,
CityGML and 3D modelers, Git and automatic testing tools are not integrated nowadays,

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 297

so they must be run as separate tools (unlike the integrated development environments
for software, where code creation, testing and version control are tightly integrated).

6. Conclusions and future work

This paper proposes a method to facilitate the regular maintenance and deployment of
correct 3D city models expressed in CityGML. This method consists of designing, imple-
menting and applying a deployment pipeline for each CityGML model that needs to be
created, maintained and deployed. These CityGML deployment pipelines implement the
procedures and tests required to transform a set of changes to a validated, updated and
deployed CityGML model, or to provide information about the problems found.

A CityGML deployment pipeline has been developed and applied to an example
scenario which is both representative of the kind of problems that this solution aims to
solve and based on real work in progress. It is necessary to point out that the imple-
mentations of some of the CityGML-specific tools for this example have the environment
configuration data hard-coded, so they are currently tied to the test and production
environments used in the experiments. There is a proper, reusable implementation of
these tools currently in development that will take these data as parameters.

The tools implemented to validate this work are currently a proof-of-concept.
However, the full source code of a simple pipeline has been made available, so inter-
ested readers can easily set up a basic pipeline in order to extend it and develop their
own. The code can be found at https://github.com/Tecnalia-CityGML/CityGML-
SimplifiedPipeline.git.

The structure for the CityGML deployment pipelines is based on the CD pipelines
used in software engineering, but it has been modified to fit a different problem. With
this generic structure defined, a specific pipeline for each CityGML model has to be
designed and implemented. The design will choose, or add, stages and tasks depending
on specific constraints and needs, some of them related to the problem domain that the
CityGML model is designed for. Once designed, the specific pipelines could be imple-
mented in any scripting language, but specific CD and VCS tools (such as Jenkins and
Git, used in the example scenario) are very good choices, as they are designed to help
solve this kind of problems.

One of the drawbacks of the CityGML standard is that currently it seems to be difficult
to create totally correct models, as recent research shows (Biljecki et al. 2016). Our
solution intends to make it simpler to create, maintain and deploy correct CityGML
models. Hopefully, this will contribute to improve the quality and availability of CityGML
models and to encourage a wider use of this standard.

As future work, our approach to the CD of 3D city models can be tried in, and
adapted to, more complex scenarios. We will continue completing the pipeline with
more checking tools. The use of CityGML deployment pipelines should make it easier to
set up large, collaborative CityGML maintenance scenarios. For example, a city could
have an infrastructure that permits the CD of the city model by the different depart-
ments of the city hall. External companies, or even volunteer citizens, could be allowed
to contribute some updates and fixes to that city model. Furthermore, semi-open
scenarios and more complex GIT workflows can be developed in case that certain
information cannot be shared between different actors. The facilitation, detection and

298 I. PRIETO ET AL.

https://github.com/Tecnalia-CityGML/CityGML-SimplifiedPipeline.git
https://github.com/Tecnalia-CityGML/CityGML-SimplifiedPipeline.git

integration of conflicts in simultaneous changes of CityGML models could also be
considered for a future line of work.

Participatory urbanism (Isikdag and Zlatanova 2010) is another field where this
proposal can be useful in the future. For example, there could be a public call to
propose the design of a new park, based on the common CityGML model of the city.
Different alternatives could be proposed, compared and mixed based on the flexibility
provided by a DVCS and also based on the safety net against errors provided by the
tests in the deployment pipelines. This kind of environments will require experimenta-
tion to discover which workflows, tools and practices are best for them.

Acknowledgment

The work described in this article is partially funded by the ‘ Optimised Energy Efficient Design
Platform for Refurbishment at District Level’ (OptEEmAL) project, Grant Agreement Number 680676,
2015-2019, as part of the European Union’s Horizon 2020 research and innovation programme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Optimised Energy Efficient Design Platform for Refurbishment at
District Level (OptEEmAL) project, Grant Agreement Number 680676, 2015-2019, as part of the
European Union’s Horizon 2020 research and innovation programme.

ORCID

Iñaki Prieto http://orcid.org/0000-0002-8407-6023
Jose Luis Izkara http://orcid.org/0000-0001-5145-1985
Rubén Béjar http://orcid.org/0000-0001-7866-3793

References

Abbasi, S. and Malek, M.R., 2015. Design and modeling of a 3D volunteered geographic informa-
tion with an interoperable description for fundamental components of a building. Journal of
Geomatics Science and Technology, 4 (4), 15–28.

Alam, N., et al., 2013. Towards automatic validation and healing of CityGML models for geometric
and semantic consistency. In: ISPRS annals of the photogrammetry, remote sensing and spatial
information sciences. Germany: Copernicus GmbH, 27–29.

Allweyer, T., 2016. BPMN 2.0: introduction to the standard for business process modeling. Germany:
BoD–Books on Demand.

Berg, A.M., 2015. Jenkins continuous integration cookbook - second edition. 2nd ed. UK: Packt Publishing
Ltd.

Biljecki, F., et al., 2015a. Propagation of positional error in 3D GIS: estimation of the solar irradiation
of building roofs. International Journal of Geographical Information Science, 29 (12), 2269–2294.
doi:10.1080/13658816.2015.1073292

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 299

https://doi.org/10.1080/13658816.2015.1073292

Biljecki, F., et al., 2016. The most common geometric and semantic errors in CityGML datasets.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 13–22.
doi:10.5194/isprs-annals-IV-2-W1-13-2016

Biljecki, F., et al., 2015b. Applications of 3D city models: state of the art review. ISPRS International
Journal of Geo-Information, 4 (4), 2842–2889. doi:10.3390/ijgi4042842

Budhathoki, N.R. and Haythornthwaite, C., 2012. Motivation for open collaboration: crowd and
community models and the case of openstreetmap. American Behavioral Scientist, 57 (5), 548–
575. doi:10.1177/0002764212469364

Cao, R., et al., 2017. 3D building roof reconstruction from airborne LiDAR point clouds: a framework
based on a spatial database. International Journal of Geographical Information Science, 31 (7), 1–22.

Chacon, S. and Straub, B., 2014. Pro Git. Section 5.1. 2nd ed. Berkely, CA: Apress.
Chaturvedi, K., et al., 2015. Managing versions and history within semantic 3D city models for the

next generation of CityGML. In: Selected papers from the 3D GeoInfo 2015 Conference, Kuala
Lumpur, Malaysia. Switzerland: Springer.

Coors, V. and Krämer, M., 2011. Integrating quality management into a 3D geospatial server. In:
International archives of the photogrammetry, remote sensing and spatial information sciences -
ISPRS archives. Germany: Copernicus GmbH, 7–12.

Döllner, J., et al., 2006. The virtual 3D city model of Berlin-managing, integrating, and commu-
nicating complex urban information. In: Proceedings of the 25th international symposium on
urban data management UDMS 2006 in Aalborg, Denmark, 15-17 May 2006.

Dyer, M., Gleeson, D., and Grey, T., 2017. Framework for collaborative urbanism. In: Citizen
empowerment and innovation in the data-rich city. Switzerland: Springer, 19–30.

Gentle, A., 2015. Continuous integration and delivery for documentation [online]. Available from:
https://opensource.com/business/15/7/continuous-integration-and-continuous-delivery-
documentation

Goetz, M., 2012. Towards generating highly detailed 3D CityGML models from OpenStreetMap.
International Journal of Geographical Information Science, 27 (5), 1–21.

Goetz, M. and Zipf, A., 2012 April. OpenStreetMap in 3D – detailed insights on the current situation
in Germany. In: City, proceedings of the AGILE 2012 international conference on geographic
information science, Avignon. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, 24–27.

Grey, T., Dyer, M., and Gleeson, D., 2017. Using big and small urban data for collaborative
urbanism. In: Citizen empowerment and innovation in the data-rich city. Switzerland: Springer.
31–54.

Gröger, G. and Coors, V., 2011. Modeling guide for 3D objects. SIG 3D Quality Working Group.
Available from: https://files.sig3d.org/file/ag-qualitaet/201311_SIG3D_Modeling_Guide_for_3D_
Objects_Part_1.pdf

Gröger, G., et al., 2012. OpenGIS city geography markup language (CityGML) encoding standard,
version 2.0.0. OGC Document No. 12-019.

Gröger, G., et al., 2005. Integrating versions, history and levels-of-detail within a 3D geodatabase.
In: Proc. of Int. Workshop on Next Generation City Models. Bonn, Germany: EuroSDR publications.

Humble, J. and Farley, D., 2010. Continuous delivery: reliable software releases through build, test,
and deployment automation. Continuous delivery. Boston: Pearson Education Inc.

Isikdag, U. and Zlatanova, S., 2010. Interactive modelling of buildings in Google Earth : a 3D tool
for urban planning. Developments in 3D Geo-Information Sciences, 52–70.

ISO, 2010. BS ISO 29481-1 : 2010 - Building information modelling - Information delivery manual -
Part 1: methodology and format. Switzerland: ISO, 34.

Kang, T.W. and Hong, C.H., 2015. IFC-CityGML LOD mapping automation based on multi-proces-
sing. In: ISARC. Proceedings of the international symposium on automation and robotics in
construction, Canada. 1.

Ledoux, H., et al., 2013. Sessie 5: validation and repair of 2D & 3D data. In: OSGeo. nl dag 2013, 13
November 2013. Delft, The Netherlands: Delft University of Technology.

Limp, W.F., et al., 2010. Approaching 3D digital heritage data from a multi-technology, lifecycle
perspective. In: Proceedings of the 38th annual international conference on computer applications
and quantitative methods in archaeology (CAA), Granada, Spain. Oxford, England: BAR Publishing.

300 I. PRIETO ET AL.

https://doi.org/10.5194/isprs-annals-IV-2-W1-13-2016
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.1177/0002764212469364
https://opensource.com/business/15/7/continuous-integration-and-continuous-delivery-documentation
https://opensource.com/business/15/7/continuous-integration-and-continuous-delivery-documentation
https://files.sig3d.org/file/ag-qualitaet/201311%5FSIG3D%5FModeling%5FGuide%5Ffor%5F3D%5FObjects%5FPart%5F1.pdf
https://files.sig3d.org/file/ag-qualitaet/201311%5FSIG3D%5FModeling%5FGuide%5Ffor%5F3D%5FObjects%5FPart%5F1.pdf

Malamboa, L. and Hahnb, M., 2010. LiDAR assisted CityGML creation. In: Franz-Josef Behr, A.P.
Pradeepkumar, C.A. Beltrán Castañón, eds. 3rd summer applied geoinformatics for society and
environment. Stuttgart: STUTTGART Active Alumni Group.

Morel, M. and Gesquière, G., 2014. Managing temporal change of cities with CityGML. Eurographics
Workshop on Urban Data Modelling and Visualisation, 37–42. Available from: https://dl.acm.org/
citation.cfm?id=2855630

Ohori, K.A., et al., 2015. Modeling a 3D city model and its levels of detail as a true 4D model. ISPRS
International Journal Geo-Inf, 4 (3), 1055–1075. doi:10.3390/ijgi4031055

Peters, R., Stoter, J., and Ledoux, H., 2014. 3D city modelling. European Spatial Data Research, 122.
Available from: http://www.eurosdr.net/sites/default/files/images/inline/eduserv14_3dcitymo
del_precourse.pdf

Prieto, I., et al., 2015. Sustainable refurbishment in urban districts through a web-based tool based
on 3D city model. Sustainable Places, 2015, 31.

Scully, T., et al., 2015. 3drepo. io: building the next generation Web3D repository with AngularJS
and X3DOM. In: Proceedings of the 20th international conference on 3D web technology. 235–243.
New York, NY: ACM.

Sindram, M., et al., 2016. Voluminator 2.0 - speeding up the approximation of the volume of
defective 3d building models. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, III (July), 12–19.

Vakharia, H., 2015. Git, Docker, and continuous integration for TeX documents [online]. Available
from: https://opensource.com/business/15/12/git-docker-continuous-integration-tex-
documents

Wagner, D. and Ledoux, H., 2016. OGC CityGML quality interoperability experiment. Wayland, MA:
Open Geospatian Consortium.

Wagner, D., et al., 2013. Geometric-semantical consistency validation of CityGML models. In: J.
Pouliot, S. Daniel, F. Hubert and A. Zamyadi, eds. Lecture Notes in Geoinformation and
Cartography. Germany: Springer, 171–192.

Zhao, J., Stoter, J., and Ledoux, H., 2014. A framework for the automatic geometric repair of
CityGML models. Lecture Notes in Geoinformation and Cartography book series (LNGC),
Cartography from Pole to Pole, 187–202.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 301

https://dl.acm.org/citation.cfm?id=2855630
https://dl.acm.org/citation.cfm?id=2855630
https://doi.org/10.3390/ijgi4031055
http://www.eurosdr.net/sites/default/files/images/inline/eduserv14%5F3dcitymodel%5Fprecourse.pdf
http://www.eurosdr.net/sites/default/files/images/inline/eduserv14%5F3dcitymodel%5Fprecourse.pdf
https://opensource.com/business/15/12/git-docker-continuous-integration-tex-documents
https://opensource.com/business/15/12/git-docker-continuous-integration-tex-documents

	Abstract
	1. Introduction
	2. Related work
	3. CD of CityGML models
	3.1. Continuous deployment
	3.2. CityGML deployment pipelines
	3.2.1. Commit stage
	3.2.2. Acceptance stage
	3.2.3. UAT stage
	3.2.4 Production stage

	3.3. Implementation of CityGML deployment pipelines

	4. Example scenario
	4.1. Configuration
	4.2. Execution and results

	5. Discussion
	6. Conclusions and future work
	Acknowledgment
	Disclosure statement
	Funding
	References

