000075685 001__ 75685
000075685 005__ 20181107105319.0
000075685 0247_ $$2doi$$a10.1007/978-3-319-67202-1_7
000075685 0248_ $$2sideral$$a103770
000075685 037__ $$aART-2017-103770
000075685 041__ $$aeng
000075685 100__ $$0(orcid)0000-0003-2538-9027$$aGracia Lozano, José Luis$$uUniversidad de Zaragoza
000075685 245__ $$aSingularly perturbed initial-boundary value problem with a pulse in the initial condition
000075685 260__ $$c2017
000075685 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075685 5203_ $$aA singularly perturbed parabolic equation of reaction-diffusion type is examined. Initially the solution approximates a concentrated source, which causes an interior layer to form within the solution for all future times. Combining a classical finite difference operator with a layer-adapted mesh, parameter-uniform convergence is established. Numerical results are presented to illustrate the theoretical error bounds.
000075685 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-75139-R
000075685 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000075685 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075685 700__ $$aO'Riordan, E.
000075685 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000075685 773__ $$g120 (2017), 87-99$$pLect. notes comput. sci. eng.$$tLecture notes in computational science and engineering$$x1439-7358
000075685 8564_ $$s413460$$uhttps://zaguan.unizar.es/record/75685/files/texto_completo.pdf$$yPostprint
000075685 8564_ $$s51450$$uhttps://zaguan.unizar.es/record/75685/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075685 909CO $$ooai:zaguan.unizar.es:75685$$particulos$$pdriver
000075685 951__ $$a2018-11-07-08:43:24
000075685 980__ $$aARTICLE