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José Luis Gracia and Eugene O’Riordan

Abstract A singularly perturbed parabolic equation of reaction-diffusion type is ex-
amined. Initially the solution approximates a concentrated source, which causes an
interior layer to form within the solution for all future times. Combining a clas-
sical finite difference operator with a layer-adapted mesh, parameter-uniform con-
vergence is established. Numerical results are presented to illustrate the theoretical
error bounds.

1 Introduction

In [4], a singularly perturbed parabolic problem, of convection diffusion type,

−εuxx +aux +bu+ cut = f , ε,a(x, t),b(x, t),c(x, t)> 0,

with a layer (having a Gaussian profile) present in the initial condition u(x,0) =
φ(x;ε), was examined. The initial layer induced an interior layer in the solution of
the parabolic problem. To establish that the numerical method (constructed in [4])
was parameter-uniform [2], the scale of the interior layer was set to be of order
O(ε); in other words, the scale of the initial layer corresponded to the scale of any
boundary layer present in the solution. In this paper, we examine the possibility
of an initial layer of a different scale being transported through time. To simplify
the matter, we consider a parabolic problem with no convection present. In order to
retain parameter-uniform convergence, it is established below that the layer width in
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2 José Luis Gracia and Eugene O’Riordan

the initial condition can have a scale wider than the scale induced by the differential
equation. However, if the scale of the initial layer is significantly thinner than the
scale of any boundary layer then the rate of convergence is adversely effected by the
presence of such an excessively thin layer in the initial condition, when a uniform
mesh in time is utilized in the numerical method. Numerical results for a numerical
method utilizing a particular piecewise-uniform mesh in both space and time suggest
a potential improvement in the convergence rate in the case of a very thin pulse. In
this paper C denotes a generic constant that is independent of the parameter ε and
the mesh parameters N and M. For any function z, we set ‖z‖Ḡ :=max(x,t)∈Ḡ |z(x, t)|.

2 Reaction-diffusion problem

Consider the following singularly perturbed parabolic problem of reaction-diffusion
type : Find u such that

Lu := (−εuxx +bu+ cut)(x, t) = f (x, t), (x, t) ∈Ω := (−1,1)× (0,T ], (1a)

u(x,0) = g1(x)+g2(x)e−θ
x2
ε ,−1≤ x≤ 1, θ > 0; (1b)

u(−1, t) = φL(t), u(1, t) = φR(t), 0 < t ≤ T, b(x, t)≥ 0, c(x, t)> 0; (1c)

g(i)2 (−1) = g(i)2 (1) = 0, i = 0,1,2; (1d)

where b(x, t),c(x, t), f (x, t),g1(x),g2(x) are sufficiently smooth functions. In this
problem, in contrast to the case of a convection-diffusion problem [4], there are
no immediate restrictions on the final time T , as the interior layer will not interact
with the boundaries of the domain. However, the bounds in the final error estimate
given in Theorem 2 do depend on eθT and hence, for θ > 1, these bounds become
large as T increases.

To highlight the interplay between the width of the pulse and the scale of the
layers emanating from the presence of the singular perturbation parameter in the
differential equation, we consider the following simple problem

−εuxx +ut = 0, (x, t) ∈ Q := (−1,1)× (0,0.5], (2a)

u(x,0) = (1− x2)2e−
θx2

ε , −1≤ x≤ 1; u(0, t) = u(1, t) = 0, 0 < t ≤ 0.5. (2b)

A closed form representation of the solution of this problem is

u(x, t) =
1

2
√

επt
e−

θx2
ε(1+4θ t)

∫ 1

s=−1
(1− s2)2e−

(1+4θ t)
4εt ( x

1+4θ t−s)2
ds.

As ε

θ
→ 0+, we note that the solution behaves like

u(x, t)→ 1√
1+4θ t

e−
θx2

ε(1+4θ t)

(
1− x2

(1+4θ t)2

)2

.
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Observe that the layer width initially is visible in the bound

e−
θx2

ε ≤ e−
θx2

ε(1+4θ t) ≤ e−
θx2
2ε , 0 < t ≤ 1

4θ
;

and the range of applicability for this inequality increases as the value of θ de-
creases. For any θ ≥ 1 we also have, for intermediate values of time, that

e−
x2
ε ≤ e−

θx2
ε(1+4θ t) ≤ e−

x2
2ε ,

1
4
− 1

4θ
≤ t ≤ 1

2
− 1

4θ
, θ ≥ 1.

The layer width associated with the function e−
θx2

ε(1+4θ t) evolves from an initial width
of O(

√
ε/θ) to a width of O(

√
ε) as time increases, in the case where θ ≥ 1. In the

case where θ < 1, we simply have

e−
x2
5tε ≤ e−

θx2
ε(1+4θ t) ≤ e−

x2
6tε ,

1
2θ
≤ t ≤ 1

θ
.

Over a finite time range 4T θ ≤ 1, there will be no significant change in the layer
width for θ < 1. In both cases θ < 1,θ ≥ 1, note that the amplitude of the pulse at
x = 0 decreases with time and with respect to θ . This effect is illustrated in the two
figures displayed in Figure 1. Finally, note that ut(0,0) < 0, but ut(x,0) > 0, x ∈
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Fig. 1 Problem (2): Zoom into the interior layer region of the computed solution UN,M generated
by the numerical scheme (5) for N = 32,M = 128. In the left figure, θ = 0.01,T = 50 and ε = 2−15

and in the right figure θ = 100, T = 0.1 and ε = 2−5.

(−1,1)\ (−C
√

ε/θ ,C
√

ε/θ). Hence, the initial time derivative has different signs
within and outside the layer region.

In our subsequent numerical analysis, we shall see that a piecewise-uniform
Shishkin mesh, with a transition point related to the width of the pulse, coupled with
a uniform mesh in time, suffices to obtain parameter-uniform convergence only in
the case where θ ≤ 1.
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3 Bounds on the derivatives of the continuous solution

The general solution of (1) can be decomposed into the sum u = v+wL +wR + z,
where v,wL,wR,z ∈ C 4+γ(Ω̄) and

Lv = f , v(x,0) = g1(x), v(−1, t),v(1, t) suitably chosen;
LwL = 0, wL(−1, t) = (u− v)(−1, t), wL(1, t) = 0, wL(x,0) = 0;
LwR = 0, wR(1, t) = (u− v)(1, t), wR(−1, t) = 0, wR(x,0) = 0;

Lz = 0, z(x,0) = g2(x)e−θ
x2
ε , z(−1, t) = z(1, t) = 0.

For the regular and boundary layer components the following bounds can be
established, as in [6]: For 0≤ j+2m =: n≤ 4,

∥∥∥ ∂ j+mv
∂x j∂ tm

∥∥∥
Ω

≤ C
(

1+ ε
1− j/2

)
, (3a)∣∣∣∂ j+mwL

∂x j∂ tm (x, t)
∣∣∣≤Cε

− j/2e−
(1+x)√

ε ,
∣∣∣∂ j+mwR

∂x j∂ tm (x, t)
∣∣∣≤Cε

− j/2e−
(1−x)√

ε . (3b)

In passing we note that the interior layer component z is smoother than in the case
of the convection-diffusion problem [4] as [z](0, t) = [zx](0, t) = 0.

Theorem 1. Assume that θT ≤C and θ ≥Cε . For 0≤ j+2m =: n≤ 4,

|z(x, t)| ≤ Ceθ t/c0e−
√

θ |x|√
ε , (4a)∥∥∥ ∂ j+mz

∂x j∂ tm

∥∥∥
Ω

≤ CeθT/c0(1+θ
n/2)ε− j/2, (4b)

where c0 := minc(x, t). In addition, if Cε ≤ θ ≤ 1, then∥∥∥ ∂ j+mz
∂x j∂ tm

∥∥∥
Ω

≤Cε
− j/2

θ
j/2. (4c)

Proof. From the maximum principle, |z(x, t)| ≤Ce
t

c0 , ∀(x, t) ∈Ω . Note that for all
s and any κ > 0

e−κs2 ≤ e
1
4 e−

√
κ|s|.

Then using the obvious barrier functions, we establish the bounds (4a) on z sepa-
rately on Ω− = [−1,0]× [0,T ] and Ω+ = [0,1]× [0,T ], while noting that |z(0, t)| ≤
Ce

t
c0 has been already established. In order to obtain parameter-explicit bounds on

the derivatives of z in the entire region Ω , and to deal with the cases of cε ≤ θ < 1
and θ ≥ 1 together, we introduce the stretched variables

η :=
√

θ∗x√
ε

, τ = θ∗t with θ∗ := max{1,θ} and ǔ(η ,τ) := û(s, t).
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Hence the differential equation can be written in the form

−žηη +
b̌
θ∗

ž+ č žτ = 0, (η ,τ) ∈
(
−
√

θ∗/
√

ε,
√

θ∗/
√

ε

)
× (0,θ∗T ],

with zero boundary conditions and an initial condition of the form

ž(η ,0) = g2

(√
εη/
√

θ

)
e−η2

if θ∗ = θ , and ž(η ,0) = g2(
√

εη)e−θη2
if θ∗ = 1.

To obtain bounds on the derivatives of the interior layer, we now use the interior
estimates from [5, p. 352], to deduce that∣∣∣ ∂ j+mž

∂η j∂τm (η ,τ)
∣∣∣≤CeθT/c0 +C

∣∣∣ ∂ j ž
∂η j (η ,0)

∣∣∣.
Returning to the original variables, we get

∥∥∥ ∂ j+mz
∂x j∂ tm

∥∥∥
Ω

≤CeθT/c0θ
m
(

θ

ε

) j/2(
1+
√

ε

θ

) j

≤CeθT/c0θ
( j+2m)/2

ε
− j/2, if θ∗ = θ ,∥∥∥ ∂ j+mz

∂x j∂ tm

∥∥∥
Ω

≤CeθT/c0ε
− j/2

(√
ε +
√

θ

) j
≤CeθT/c0ε

− j/2
θ

j/2, if θ∗ = 1.

In the last inequality we have used the fact that Cε ≤ θ .

Remark 1. Note that in the case where θ ≤ Cε , then in the above proof, we can
replace θ∗ by θ and consequently deduce that all the partial derivatives of z are
uniformly bounded. Thus, when θ ≤Cε , there is no interior layer present.

4 Numerical method and error analysis

We employ a classical fully implicit finite difference operator on a piecewise -
uniform Shishkin mesh [2]. The finite difference scheme is given by

LN,MU :=−εδ
2
x U +bU + cD−t U = f (xi, t j), (xi, t j) ∈Ω

N,M, (5a)
U(xi,0) = u(xi,0), U(−1, t j) = u(−1, t j), U(1, t j) = u(1, t j). (5b)

Note that nothing special is required at the mesh points (0, t j), where the interior
layer is located. Based on the above bounds on the layer components of the solution,
we split the space domain [−1,1] into the five subintervals

[−1,−1+σR]∪ [−1+σR,−τ]∪ [−τ,τ]∪ [τ,1−σR]∪ [1−σR,1], (5c)

τ := min
{

1
8
,2
√

ε√
θ

lnN
}
, σR := min

{
1
8
,2
√

ε lnN
}
, (5d)
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where N is the spatial discretisation parameter. The grid points, in space, are uni-
formly distributed within each subinterval such that

−x0 = xN = 1, −xN/8 = x7N/8 = 1−σR, −x3N/8 = x5N/8 = τ, xN/2 = 0.

We use M mesh elements uniformly distributed in time and the mesh Ω̄ N,M is the
tensor product of the spatial and time meshes.

The discrete counterparts of the components v, wL, wR and z are denoted by
V,WL,WR and Z, which are defined in a standard way. Bounds on the errors in the
discrete regular component (V ), boundary layers components (WL and WR) follow
from a standard truncation argument and suitable barrier functions [1, 6]. Thus, we
have that

‖V − v‖
Ω̄ N,M ≤C(N−1 lnN)2 +CM−1, ‖WL−wL‖Ω̄ N,M ≤CN−2 +CM−1, (6)

and the boundary layer component WR satisfies similar error estimates as WL. For
M ≥ O(ln(N)), the discrete interior layer function satisfies the bounds

(a) |Z(xi, t j)| ≤ CeθT/c0
N/2

∏
k=i

(
1+

√
θhk

2
√

ε

)
, xi ≤ 0,

(b) |Z(xi, t j)| ≤ CeθT/c0
i

∏
k=N/2

(
1+

√
θhk

2
√

ε

)−1

, xi ≥ 0,

where hk := xk−xk−1, for k = 1,2, . . . ,N. From these bounds we establish that when
8τ < 1

|Z(xi, t j)| ≤CeθT/c0N−2, xi ∈ (−1,1)\ (−τ,τ).

In addition, for xi ∈ (−τ,τ)

|LN,M(Z− z)(xi, t j)| ≤

{
CeθT/c0

(
θ(N−1 lnN)2 +θ 2M−1

)
, if 1≤ θ ,

CeθT/c0
(
θ(N−1 lnN)2 +M−1

)
, if θ < 1.

Using a suitable barrier function we deduce that

‖Z− z‖(−τ,τ) ≤

{
CeθT/c0

(
θ(N−1 lnN)2 +θ 2M−1

)
, if 1≤ θ ,

CeθT/c0
(
θ(N−1 lnN)2 +M−1

)
, if θ < 1.

(7)

From the error bounds (6) and (7), the following nodal error bound follows by the
triangular inequality.

Theorem 2. Assume M ≥ O(ln(N)). Let be U the solution of the discrete prob-
lem (5) and u the solution of the continuous problem (1). Then,

‖U−u‖
Ω̄ N,M ≤

{
CeθT/c0

(
θ(N−1 lnN)2 +θ 2M−1

)
, if 1≤ θ ,

CeθT/c0
(
(N−1 lnN)2 +M−1

)
, if θ < 1.
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5 Numerical experiments

Consider the following test problem

−εuxx +u+ut = (1− x2)t, (x, t) ∈ Q := (−1,1)× (0,1], (8)

u(x,0) = (1− x2)2(1+ x)2e−
θx2

ε , −1≤ x≤ 1, u(0, t) = u(1, t) = 0, 0 < t ≤ 1,

where we shall consider some sample values for the parameter θ . In Figures 2 and
3 we display the computed solutions generated by the numerical scheme (5) with
ε = 2−5,2−10 and N =M = 32. The values of the parameter θ in the initial condition
are θ = 1,100 and we observe again the influence of this parameter in the profile of
the solution. Note that the time derivative |ut(0,0)| increases with θ .
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Fig. 2 Test problem (8): Computed solution UN,M generated by the numerical scheme (5) for
N = M = 32, θ = 1 and ε = 2−5 (left figure) and ε = 2−10 (right figure)
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Fig. 3 Test problem (8): Computed solution UN,M generated by the numerical scheme (5) for
N = M = 32, θ = 100 and ε = 2−5 (left figure) and ε = 2−10 (right figure)
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The exact solution of this problem is unknown and we use the two-mesh prin-
ciple [2] to estimate the orders of convergence by first computing the two-mesh
differences

FN,M
ε := max

{
‖UN,M−Ū2N,2M‖

Ω̄ N,M ,‖ŪN,M−U2N,2M‖
Ω̄ 2N,2M

}
,

where ŪN,M denotes the bilinear interpolant of the solution. These values are used
to compute the approximate orders of global convergence using

QN,M
ε := log2(F

N,M
ε /F2N,2M

ε ).

The uniform global orders of convergence are estimated by computing

FN,M := max
ε∈S

FN,M
ε , QN,M := log2(F

N,M/F2N,2M),

with S = {20,2−1,2−2, . . . ,2−30}. The numerical results presented in Tables 1
and 2 are in line with our theoretical findings. In Table 3 we fix the value of
the singular perturbation parameter to ε = 2−16 and we take different values of
θ = 2−20,2−18, . . . ,210. We observe that the method is convergent but the maxi-
mum two-mesh differences are greater as θ increases and the orders of convergence
have deteriorated.

Table 1 Numerical method (5): Computed two-mesh differences FN,M
ε and uniform differences

FN,M with their corresponding orders of convergence QN,M
ε , QN,M for problem (8) with θ = 1.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
ε = 20 0.742E-01 0.528E-01 0.339E-01 0.197E-01 0.107E-01 0.557E-02

0.492 0.639 0.785 0.882 0.939
ε = 2−2 0.558E-01 0.326E-01 0.179E-01 0.944E-02 0.486E-02 0.247E-02

0.777 0.867 0.920 0.957 0.978
ε = 2−4 0.373E-01 0.225E-01 0.125E-01 0.656E-02 0.337E-02 0.171E-02

0.727 0.855 0.925 0.961 0.980
ε = 2−6 0.556E-01 0.228E-01 0.118E-01 0.602E-02 0.304E-02 0.153E-02

1.284 0.949 0.974 0.987 0.993
ε = 2−8 0.698E-01 0.317E-01 0.141E-01 0.652E-02 0.312E-02 0.152E-02

1.140 1.164 1.117 1.064 1.035
ε = 2−10 0.110E+00 0.615E-01 0.239E-01 0.922E-02 0.381E-02 0.169E-02

0.836 1.360 1.376 1.277 1.173
ε = 2−12 0.861E-01 0.103E+00 0.562E-01 0.196E-01 0.660E-02 0.241E-02

-.264 0.881 1.522 1.568 1.456
ε = 2−14 0.827E-01 0.847E-01 0.672E-01 0.304E-01 0.116E-01 0.427E-02

-.033 0.332 1.145 1.387 1.445

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ε = 2−30 0.827E-01 0.816E-01 0.662E-01 0.302E-01 0.116E-01 0.426E-02
0.020 0.301 1.134 1.381 1.442

FN,M 0.110E+00 0.103E+00 0.677E-01 0.311E-01 0.116E-01 0.557E-02
QN,M 0.085 0.612 1.121 1.420 1.063

Remark 2. Given the initial large time derivatives visible in Figure 3 and also present
in the bounds (4b) on the time derivatives of the solution, it is natural to consider a
piecewise uniform mesh in time where the transition parameter is taken to be
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Table 2 Numerical method (5): Computed two-mesh differences FN,M
ε and uniform differences

FN,M with their corresponding orders of convergence QN,M
ε , QN,M for problem (8) with θ = 100.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
ε = 20 0.587E-01 0.526E-01 0.436E-01 0.461E-01 0.467E-01 0.399E-01

0.156 0.273 -.080 -.020 0.226
ε = 2−2 0.557E-01 0.517E-01 0.428E-01 0.462E-01 0.463E-01 0.394E-01

0.108 0.271 -.108 -.005 0.236
ε = 2−4 0.781E-01 0.572E-01 0.444E-01 0.470E-01 0.466E-01 0.393E-01

0.451 0.363 -.080 0.011 0.244
ε = 2−6 0.122E+00 0.703E-01 0.503E-01 0.501E-01 0.478E-01 0.398E-01

0.800 0.484 0.006 0.067 0.265
ε = 2−8 0.122E+00 0.703E-01 0.497E-01 0.508E-01 0.486E-01 0.403E-01

0.799 0.502 -.033 0.064 0.270
ε = 2−10 0.122E+00 0.703E-01 0.497E-01 0.508E-01 0.486E-01 0.403E-01

0.798 0.502 -.032 0.064 0.270
ε = 2−12 0.122E+00 0.703E-01 0.497E-01 0.508E-01 0.486E-01 0.403E-01

0.797 0.502 -.031 0.064 0.269
ε = 2−14 0.122E+00 0.703E-01 0.497E-01 0.507E-01 0.485E-01 0.403E-01

0.797 0.502 -.031 0.064 0.269

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ε = 2−30 0.122E+00 0.703E-01 0.497E-01 0.507E-01 0.485E-01 0.403E-01
0.797 0.502 -.030 0.064 0.269

FN,M 0.127E+00 0.703E-01 0.503E-01 0.509E-01 0.486E-01 0.404E-01
QN,M 0.849 0.484 -.016 0.065 0.269

Table 3 Numerical method (5): Computed two-mesh differences FN,M
ε and their corresponding

orders of convergence QN,M
ε for problem (8) with ε = 2−16.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
θ = 2−16 0.317E-01 0.130E-01 0.576E-02 0.269E-02 0.130E-02 0.638E-03

1.290 1.171 1.096 1.051 1.027
θ = 2−12 0.266E-01 0.134E-01 0.557E-02 0.236E-02 0.106E-02 0.517E-03

0.988 1.265 1.237 1.156 1.037
θ = 2−8 0.656E-01 0.225E-01 0.771E-02 0.292E-02 0.123E-02 0.553E-03

1.547 1.542 1.402 1.252 1.146
θ = 2−4 0.904E-01 0.105E+00 0.544E-01 0.170E-01 0.494E-02 0.152E-02

-.209 0.943 1.681 1.778 1.701
θ = 20 0.827E-01 0.831E-01 0.667E-01 0.303E-01 0.116E-01 0.427E-02

-.007 0.317 1.140 1.384 1.443
θ = 22 0.113E+00 0.829E-01 0.683E-01 0.355E-01 0.159E-01 0.685E-02

0.449 0.280 0.946 1.158 1.214
θ = 24 0.127E+00 0.772E-01 0.690E-01 0.470E-01 0.281E-01 0.154E-01

0.714 0.162 0.553 0.744 0.869
θ = 26 0.132E+00 0.694E-01 0.562E-01 0.536E-01 0.456E-01 0.339E-01

0.932 0.306 0.069 0.231 0.430
θ = 28 0.890E-01 0.640E-01 0.570E-01 0.479E-01 0.449E-01 0.473E-01

0.476 0.167 0.251 0.093 -.075
θ = 210 0.437E-01 0.411E-01 0.493E-01 0.532E-01 0.523E-01 0.459E-01

0.090 -.263 -.108 0.023 0.189

τt := min{T/2,(1/θ) lnM} , (9)

and to distribute uniformly M/2 + 1 points in the time subdomains [0,τt ] and
[τt ,T ]. We repeat only two of the previous Tables 2 (where θ = 100) and 3 (where
ε = 2−16); their companion Tables are 4 and 5. We observe an improvement in
the numerical results compared to using a uniform mesh in time. The question of
whether the inclusion of a piecewise-uniform mesh in time produces a parameter-
uniform (with respect to both ε and θ ) remains an open question.
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Table 4 Finite difference scheme (5) coupled with a piecewise-uniform mesh in time (9): Com-
puted two-mesh differences FN,M

ε and uniform differences FN,M with their corresponding orders
of convergence QN,M

ε , QN,M for problem (8) with θ = 100.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
ε = 20 0.844E-01 0.565E-01 0.339E-01 0.183E-01 0.912E-02 0.513E-02

0.579 0.738 0.886 1.006 0.830
ε = 2−2 0.917E-01 0.593E-01 0.347E-01 0.185E-01 0.919E-02 0.506E-02

0.630 0.772 0.904 1.014 0.860
ε = 2−4 0.881E-01 0.745E-01 0.369E-01 0.185E-01 0.975E-02 0.529E-02

0.243 1.012 0.996 0.925 0.881
ε = 2−6 0.127E+00 0.840E-01 0.699E-01 0.317E-01 0.136E-01 0.634E-02

0.594 0.266 1.139 1.220 1.104
ε = 2−8 0.127E+00 0.819E-01 0.666E-01 0.347E-01 0.163E-01 0.758E-02

0.632 0.298 0.941 1.093 1.101
ε = 2−10 0.127E+00 0.808E-01 0.662E-01 0.346E-01 0.162E-01 0.757E-02

0.651 0.287 0.938 1.092 1.100
ε = 2−12 0.127E+00 0.802E-01 0.660E-01 0.345E-01 0.162E-01 0.756E-02

0.661 0.281 0.936 1.091 1.100
ε = 2−14 0.127E+00 0.800E-01 0.659E-01 0.345E-01 0.162E-01 0.756E-02

0.665 0.278 0.935 1.090 1.099

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ε = 2−30 0.127E+00 0.797E-01 0.658E-01 0.345E-01 0.162E-01 0.756E-02
0.670 0.275 0.934 1.090 1.099

FN,M 0.141E+00 0.953E-01 0.699E-01 0.348E-01 0.163E-01 0.761E-02
QN,M 0.565 0.448 1.007 1.095 1.096

Table 5 Finite difference scheme (5) coupled with a piecewise-uniform mesh in time (9): Com-
puted two-mesh differences FN,M

ε and their corresponding orders of convergence QN,M
ε for problem

(8) with ε = 2−16.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
θ = 22 0.113E+00 0.829E-01 0.683E-01 0.355E-01 0.159E-01 0.685E-02

0.449 0.280 0.946 1.158 1.214
θ = 24 0.124E+00 0.805E-01 0.687E-01 0.432E-01 0.250E-01 0.140E-01

0.628 0.227 0.671 0.789 0.837
θ = 26 0.127E+00 0.794E-01 0.678E-01 0.425E-01 0.245E-01 0.137E-01

0.679 0.228 0.675 0.793 0.840
θ = 28 0.128E+00 0.791E-01 0.676E-01 0.423E-01 0.244E-01 0.136E-01

0.693 0.227 0.675 0.794 0.840
θ = 210 0.128E+00 0.790E-01 0.675E-01 0.423E-01 0.244E-01 0.136E-01

0.697 0.227 0.675 0.794 0.841
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