000075697 001__ 75697
000075697 005__ 20200117221632.0
000075697 0247_ $$2doi$$a10.1002/bit.26574
000075697 0248_ $$2sideral$$a105934
000075697 037__ $$aART-2018-105934
000075697 041__ $$aeng
000075697 100__ $$aYeste, J.
000075697 245__ $$aA perfusion chamber for monitoring transepithelial NaCl transport in an in vitro model of the renal tubule
000075697 260__ $$c2018
000075697 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075697 5203_ $$aTransepithelial electrical measurements in the renal tubule have provided a better understanding of how kidney regulates electrolyte and water homeostasis through the reabsorption of molecules and ions (e.g., H2O and NaCl). While experiments and measurement techniques using native tissue are difficult to prepare and to reproduce, cell cultures conducted largely with the Ussing chamber lack the effect of fluid shear stress which is a key physiological stimulus in the renal tubule. To overcome these limitations, we present a modular perfusion chamber for long-term culture of renal epithelial cells under flow that allows the continuous and simultaneous monitoring of both transepithelial electrical parameters and transepithelial NaCl transport. The latter is obtained from electrical conductivity measurements since Na+ and Cl- are the ions that contribute most to the electrical conductivity of a standard physiological solution. The system was validated with epithelial monolayers of raTAL and NRK-52E cells that were characterized electrophysiologically for 5 days under different flow conditions (i.e., apical perfusion, basal, or both). In addition, apical to basal chemical gradients of NaCl (140/70 and 70/140 mM) were imposed in order to demonstrate the feasibility of this methodology for quantifying and monitoring in real time the transepithelial reabsorption of NaCl, which is a primary function of the renal tubule.
000075697 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2011-28262-C04-02$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-65401-C3-3-R$$9info:eu-repo/grantAgreement/ES/MINECO/SAF2014-62114-EXP
000075697 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000075697 590__ $$a4.26$$b2018
000075697 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b30 / 162 = 0.185$$c2018$$dQ1$$eT1
000075697 592__ $$a1.309$$b2018
000075697 593__ $$aApplied Microbiology and Biotechnology$$c2018$$dQ1
000075697 593__ $$aBiotechnology$$c2018$$dQ1
000075697 593__ $$aBioengineering$$c2018$$dQ1
000075697 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075697 700__ $$aMartínez-Gimeno, L.
000075697 700__ $$aIlla, X.
000075697 700__ $$aLaborda, P.
000075697 700__ $$aGuimerà, A.
000075697 700__ $$aSánchez-Marín, J.P.
000075697 700__ $$aVilla, R.
000075697 700__ $$0(orcid)0000-0002-6043-4869$$aGiménez, I.$$uUniversidad de Zaragoza
000075697 7102_ $$11005$$2410$$aUniversidad de Zaragoza$$bDpto. Farmacología y Fisiolog.$$cÁrea Fisiología
000075697 773__ $$g115, 6 (2018), 1604-1613$$pBiotechnol. bioeng.$$tBIOTECHNOLOGY AND BIOENGINEERING$$x0006-3592
000075697 8564_ $$s746366$$uhttps://zaguan.unizar.es/record/75697/files/texto_completo.pdf$$yPostprint
000075697 8564_ $$s99210$$uhttps://zaguan.unizar.es/record/75697/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075697 909CO $$ooai:zaguan.unizar.es:75697$$particulos$$pdriver
000075697 951__ $$a2020-01-17-22:00:13
000075697 980__ $$aARTICLE