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Abstract

Transepithelial electrical measurements in the renal tubule have provided a better

understanding of how kidney regulates electrolyte andwater homeostasis through the

reabsorption of molecules and ions (e.g., H2O and NaCl). While experiments and

measurement techniques using native tissue are difficult to prepare and to reproduce,

cell cultures conducted largely with the Ussing chamber lack the effect of fluid shear

stress which is a key physiological stimulus in the renal tubule. To overcome these

limitations, we present a modular perfusion chamber for long-term culture of renal

epithelial cells under flow that allows the continuous and simultaneous monitoring of

both transepithelial electrical parameters and transepithelial NaCl transport. The latter

is obtained from electrical conductivity measurements since Na+ and Cl− are the ions

that contribute most to the electrical conductivity of a standard physiological solution.

The systemwas validated with epithelial monolayers of raTAL and NRK-52E cells that

were characterized electrophysiologically for 5 days under different flow conditions

(i.e., apical perfusion, basal, or both). In addition, apical to basal chemical gradients of

NaCl (140/70 and70/140mM)were imposed in order to demonstrate the feasibility of

this methodology for quantifying and monitoring in real time the transepithelial

reabsorption of NaCl, which is a primary function of the renal tubule.
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1 | INTRODUCTION

Transepithelial electrical measurements of the renal tubule—carried out

by in vivomicropuncture (Lorenz, 2012), ex vivo isolatedmicroperfused

tubule (Burg&Green,1973;Mutoet al., 2010;Stockand,Vallon,&Ortiz,

2012), or in vitro cell culture (Furuse, Furuse, Sasaki, & Tsukita, 2001)—

have provided a better understanding of the renal function and its

reabsorption capacity. Although the best methodology is to use native

tissue, these experiments and measurement techniques have poor

reproducibility and are time-limited, and difficult to prepare. In addition,

the size andarchitectureof the renal tubulehasmadedifficult to apply in

vitro tools, like the versatile Ussing chamber (Li, Sheppard, &Hug, 2004;

Ussing & Zerahn, 1951) that has been instrumental in understanding

function of other epithelia (e.g., intestinal or placental epithelia), to

excised tubules. For these reasons and also due to ethical issues of

animal testing, in vitro research for polarized renal epithelium has been

limited to studies on Transwell devices (Terryn et al., 2007; Yu, Enck,

Lencer, & Schneeberger, 2003). Nowadays microfluidic cell cultures
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have become more popular as cells can be exposed to fluid shear stress

(FSS) (Ferrell, Ricci, Groszek, Marmerstein, & Fissell, 2012; Ha, Jang, &

Suh, 2014; Jang et al., 2013), which is an important physiological

stimulus for renal epithelial cells (Weinbaum, Duan, Satlin, Wang, &

Weinstein, 2010). Nevertheless, the integration of electrodes within

these microphysiological systems is an important issue that can impair

the uniform current distribution required for transepithelial measure-

ments (Yeste et al., 2016). Sensing capabilities in these microphysio-

logical systems, similar to those of the Ussing chamber, will be useful to

study the renal function in a more physiological microenvironment.

Transepithelial electrical measurements offer a non-destructive,

label free, and easily applicable technique to measure the electrical

properties of epithelial tissues in real time. In particular, transepithelial

electrical resistance (TEER) provides information about the ion

conductive pathways and is often used to ensure cell barrier integrity

during experiments. TEER is the parallel of the paracellular (between

cells) and transcellular (throughcells) resistances. In “leaky” epithelia, the

paracellular resistance is much lower than the transcellular one,

whereas, it is similar or higher in “tight” epithelia (FröMter & Diamond,

1972). In addition to the TEER, the cell layer capacitance (Ccl) can be also

obtained by means of electrical impedance spectroscopy (EIS) (Benson,

Cramer, & Galla, 2013; Clausen, Lewis, & Diamond, 1979), which can

yield information about the membrane surface area and howmuch it is

folded since the capacitance of unfolded biological membranes is

relatively constant around 1 μF cm−2 (Cole, 1972). This parameter

serves to identify the formation of complex surface morphologies such

as microvilli structures (Wang et al., 1994; Wegener, Abrams,

Willenbrink, Galla, & Janshoff, 2004). Some authors have developed

microfluidic systems with integrated electrodes (Brakeman et al., 2016;

Ferrell et al., 2010) or also organic electrochemical transistors (Curto

et al., 2017) for the evaluation of renal epithelial cells under flow.

Renal epithelial cells are localized in the nephron. This is the

functional unit of the kidney and regulates electrolyte and water

homeostasis by filtering the blood, reabsorbing solutes, and excreting

waste products. Reabsorption takes place in the renal tubule, which is

divided into proximal tubule (PT), loop of Henle, and distal nephron

(comprising the distal convoluted tubule [DCT], connecting tubule, and

collectingducts). Each segment exhibits different absorptive capabilities

and is exposed toparticular electrochemical gradients across epithelium.

For example, the PT reabsorbs the 65%of the filtered Na+, whereas the

thick ascending limb (TAL) segment of the loop of Henle and the DCT

reabsorb the 25% and the 5%, respectively (Greger, 2000). Na+ and Cl−

are reabsorbed in the renal tubule from the luminal space to the

peritubular capillaries. As a result, much of these ions return from the

filtrate to the bloodstream instead of being excreted. Renal epithelial

cells manage this reabsorption. Transepithelial reabsorption can be

mediated by active transport through the transcellular route moving

ions and molecules up its electrochemical gradients or also by passive

diffusion, inwhich the solutes could bemoved down its electrochemical

gradient in either route. In the paracellular pathway, tight junctions

govern the passive diffusion by sealing the intercellular space.

An important mechanical stimulus for renal epithelial cells is FSS.

In tubular epithelial cells cultured in vitro, physiological levels of FSS

alters cytoskeletal organization and transport proteins resulting in

enhanced epithelial cell phenotype (Duan, Weinstein, Weinbaum, &

Wang, 2010; Mohammed et al., 2017; Raghavan, Rbaibi, Pastor-Soler,

Carattino, & Weisz, 2014). On the other hand, pathological levels of

FSS may be responsible for losing of epithelial characteristics that may

account for the progression of chronic kidney disease (Grabias &

Konstantopoulos, 2014; Maggiorani et al., 2015).

In previous work, we developed a chamber systemwith integrated

electrodes to perform impedance analysis of epithelial or endothelial

cell monolayers (Yeste, Illa, Guimerà, & Villa, 2015). As a novelty, we

present a similar system for long-term culture of renal epithelial cells

under flow that allows—using the same electrodes—the continuous

and simultaneous monitoring of transepithelial electrical parameters

and transepithelial NaCl transport. Since Na+ and Cl− are the ions that

contribute most to the electrical conductivity of a standard

physiological solution, their concentration can be estimated from

the conductivity. Therefore, it is possible to determine the transport of

NaCl by measuring the electrical conductivity in the apical and basal

compartments. In the present study, we have electrophysiologically

characterized in the perfusion chamber epithelial monolayers obtained

with two rat cell lines representing the PT (NRK-52E) and TAL (raTAL)

segments in the nephron. This in vitro model of the renal tubule was

used to validate the measurement system capable to measure the

TEER, the Ccl, and the conductivity of apical and basal compartments.

For that purpose, an apical to basal gradient of NaCl in both epithelial

monolayers was imposed in order to follow the transport of NaCl. In

this way, it is possible to monitor in real time the transcellular chemical

gradient of NaCl either imposed or produced by active transporters.

2 | MATERIALS AND METHODS

2.1 | Perfusion chamber design and fabrication

The custom-made perfusion chamber is similar to that described in Yeste

et al.(2015). The device is composed of two plates and a disposable

membrane with three cell culture areas of 0.8 cm2 (4 × 20mm) (Figures

1a and 1b). Plates were completely made of cyclo-olefin polymer (COP)

(Zeonor 1420R, Microfluidic ChipShop GmbH, Jena, DE) and had

integrated electrodes to perform EIS. Pads of the electrodes were

soldered to electric wires and coveredwith epoxy. Fluid inlets and outlets

weredefined in theplatesusingaCNCmillingmachine (MDX-40A,Roland

Digital Group Iberia, S.L., Cerdanyola del Vallès, ES).

Polyethylene terephthalate (PET) porous membranes of 0.4 μm of

poresize (ipCELLCULTUREmembranes, it4ipSA,BE)andpolycarbonate

(PC) porous membranes of 1 μm of pore size (Whatman Cyclopore, GE

Healthcare Europe GmbH, Barcelona, ES) were modified to be

integrated into the perfusion chamber. Two silicone sheets (platinum

cured sheet, Silex Ltd., UK) of 0.5mm in thickness were cut using a

cutting plotter andbonded to both sides of themembraneusingdouble-

side pressure-sensitive adhesive (PSA) (ARcare 8939, Adhesives

Research Ireland Ltd., Limerick, IE). These silicone sheets were used

to define the apical and basal compartments (5 × 25mm in area), both

resulting in a total height of 0.7mm (silicone plus PSA and COP) and a
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volume of ∼87 μl. The final assembly of the device was made by

sandwiching the modified membrane between the plates and, in turn,

between two steel plates that were screwed together to keep the

system fluidically sealed. Altogether, the perfusion chamber comprises

three replicas of a double compartment system separated by a porous

membrane and with independent electrodes; therefore, three experi-

ments can be performed simultaneously.

2.2 | Cell culture

Epithelialmonolayerswere obtainedwith two immortalized rat cell lines

representing PT (NRK-52E, ATCC, Manassas, VA) and TAL (raTAL;

donation from N. Ferreri, New York Medical College Valhalla, NY, Eng

et al., 2007) phenotypes. Both cell lines were adapted to grow on low-

serumculturemediumsupplementedwith insulin (5 μgml−1), transferrin

(5 μgml−1), sodium selenite (60 nM), dexamethasone (0.05 μM), triiodo-

thyronine (1 nM), and epidermal growth factor 10 (ngml−1) (Sigma–

Aldrich, Quimica SL, Madrid, ES), specifically tailored to meet renal

epithelial cell needs (Taub & Sato, 1980). The device culture membrane

was sterilized by exposure to UV light for 30min on each side, and the

rest of the systemwas sterilized by autoclave at 121 °C for 15min. Prior

to cell seeding, membrane was coated with collagen type I (0.4mgml−1,

50μg cm−2 (100 μl per channel) in phosphate-buffered saline (PBS),

incubated at 37 °C for 1 hr, and rinsed three times with PBS. Cells were

seeded on each culture area of the membrane at a concentration of

∼40.000 cells per channel in 300 μl complete culture medium and

maintained inside a Petri dish for 2 hr until cell attachment. In

experiments involving both cell lines, NRK-52E cells were seeded on

one of the three cell culture areas of the membrane, while raTAL cells

were seeded on the other two ones. Then, unattached cells were

carefully aspirated, and thePetri dishwas filledwith culturemediumand

maintained at 37 °C and 5% CO2, refreshing culture medium every 2–3

days. Cells typically reached confluence after 2 days.On coverslips, cells

formedanefficient barrier at the3rddaypost-confluence as revealedby

ZO-1 expression (Figure S4). On day 4–5, membrane and plates were

assembled to expose the cells to flow perfusion and to perform EIS

(Figures 1c and 1d).

Epithelial monolayers were confirmed bymeans of phase-contrast

microscopy and a Ca2+ switch protocol. In the latter procedure, the

culture medium in the chamber was replaced with medium containing

1mM of ethylenediaminetetraacetic acid (EDTA) and without CaCl2.

After maintaining the cells under these conditions for 12min, the

FIGURE 1 Perfusion chamber assembling and experimental set-up. (a) Assembling parts of the system including upper plate, lower plate,
and disposable membrane. There is also included a schematic decomposition of the disposable membrane fabrication. This is formed through
a stack of layers consisted of two silicone sheets (0.5 mm in thickness), two double-sided PSA layers, and a tissue-culture treated
polyethylene terephthalate (PET) porous membrane of 0.4 μm of pore size and 10 μm in thickness. (b) Pictures of the disposable membrane
and a plate. Note that upper and lower plates are identical. (c) Experimental set-up procedure including cell seeding and attachment on the
membrane (2 hr), cell proliferation (4–5 days), and perfusion chamber assembly. (d) Cross-section of the assembled device with detail (pink
arrows) of flow paths. (e) Schematic representation of the fluidic system. Two identical fluidic circuits were mounted to control independently
the apical and basal flow. The three apical or basal compartments were connected in series with silicone tubing, and the circuit was closed
through a reservoir and a peristaltic pump. EIS, electrical impedance spectroscopy; PSA, pressure-sensitive adhesive
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medium in the chamber was returned to the normal culture medium

that includes 1mM of CaCl2.

2.3 | Fluidic set-up and experimental design

Compartments of the device were fluidically connected using silicone

tubing (0.8mm in internal diameter [ID] and 2.4mm in outer diameter

[OD]) as depicted in Figure 1E. Apical and basal compartments were

perfused with independent fluidic circuits using two reservoirs and a

peristaltic pump (Reglo ICC, Cole-Parmer GmbH, Wertheim, DE). The

volume of the culture medium for apical and basal circuits was replaced

every 4 days (10ml for each). Three-way stopcocks were placed at the

inlets and outlets of each compartment to provide a way to collect

samples after experiments with static conditions. Culture medium

samples from the reservoir or collected from the compartments were

analyzed forglucose, lactate, and ionconcentrationsusinganautomated

analyzer (AU680 Chemistry Analyzer, Beckman Coulter Inc., Brea, CA).

After assembling the membrane in the device, cells were apically

and basally perfusedwith culturemedium at a flow rate of 0.2 ml min−1

(FSS of 0.07 dyn cm−2, Figures S1A and S1B) during 1 day to stabilize

the cells exposed to flow before each experiment. Apical and basal

fluids were flowed in the same direction, and effluxes were

recirculated. With this fluidic set-up, the NaCl chemical gradient is

expected to reach a steady state in which the NaCl absorption (apical

to basal) is equal to the NaCl backflow (basal to apical).

2.4 | Imposed transepithelial NaCl chemical gradient

To validate the measurement system to provide an estimate of NaCl

concentration, an experiment was performed imposing different apical to

basal chemical gradients for Na+ and Cl−. This strategy allowed us to aess

the transepithelial ion transport as well as to monitor the transepithelial

electrical parameters under different ion gradients. First, culturemediums

were replaced by Ringer's solutions and left for stabilization for 1 to 2 hr.

Standard Ringer's solution was composed of (inmM) 140 NaCl, 4 KCl, 1

MgCl2, 1 CaCl2, 5 Glucose, 10 Hepes, and pH 7.4. Then, one of the

solutions bathing the apical or basal compartments was replaced by a

modified Ringer's solution containing 70mM of NaCl (substituted

isoosmotically with N-Methyl-Glucamine (NMG)/gluconate), and flow

was stopped to avoid any further diffusion from the compartments.

Meanwhile, the opposite compartment was still perfused with standard

Ringer's solution (140mMNaCl). All solutionswere allowed to equilibrate

to incubator conditions before being used in the fluidic circuit.

2.5 | Electrical conducvity and ionic species

The electrical conductivity (k) of an electrolyte solution is given by

k ¼ ΛmC , ð1Þ

where Λm is the molar conductivity and c is the molar concentration

(Robbins, 1972). According to the Kohlrausch's law of independent

migration of ions, each ionic species contributes to the conductivity

independently of other ions, particularly at infinite dilution (c→0).

Then, Λm can be defined as the sum of all ionic conductivities:

Λm ¼ Σiλi ð2Þ

in which λi is the ionic conductivity of a particular species i. Since ions

contribute differently to the overall conductivity, it is interesting to

quantify the particular contribution of each ion. The fraction of the

conductivity of a given ion i is called its transport number (ti), and it is

calculated as

ti ¼ ciλi
∑iciλi

, ð3Þ

where ci is the molar concentration of i-ions. For strong electrolytes

wheresolutes almost completelydissociates in solution, λi is equal to the

limiting molar conductivity (λ0i ) at infinite dilution and decreases linearly

with the square root of the concentration. Contributions of each

compound in the Ringer's solution to the conductivity are shown as

supplementary information in Table S1 for the approximation of infinite

dilution. Although there are several salts in the solution, conductivity is

dominated by theNaCl pair due to thehighdifference in concentrations.

This is evidenced by a tNaCl close to 1 and a ti close to 0 for the rest

(tNaCl = 0.94 (140mM NaCl); tNaCl = 0.89 (70mM NaCl); tNaCl. = 0.66

(70mM NaCl + 70mM NMG-gluconate)). In this scenario, it is possible

to estimate NaCl concentration from conductivity measurements,

especially if the concentrations of the other salts remain constant.

The electrical conductivity of an electrolyte solution can be

measured using a pair of electrodes exposed to the solution according

to the following equation:

k ¼ Kcell G, ð4Þ

where G is the electrical conductance measured between the pair of

electrodes andKcell is the cell constant, which depends of the geometry of

the electrodes. This methodology is simple and fast, and many

commercially available conductivity meters employ this principle to

measure the k of electrolytic solutions (e.g., EC-Meter GLP 31, Crison

Instruments SA, Barcelona, ES).

2.6 | Impedance analysis

We managed to measure simultaneously transepithelial electrical

parameters and solution conductances by changing the electrical

connections between the device and an impedance analyzer (Guimerà,

Gabriel, Parramon, Calderón, & Villa, 2009). This switching was

performed automatically with a custom-made relaymultiplexer device.

Both electrical connections are shown in Figure 2.

Impedance measurements across an epithelial monolayer can be

interpreted in terms of its electrical properties by the equivalent electric

circuit shown in Figure 2a. This is a simplified model with lumped

elements and consists of the resistance of the medium solution

(including the medium resistance through the pores of the

4 | YESTE ET AL.



semipermeable membrane) (Rs) in series with the parallel of TEER and

Ccl. These parameters were obtained by impedance analysis using EIS.

Impedance spectra were measured at 20 frequencies, ranging from

10Hz to 1MHz, and each measurement was fitted to the equivalent

electric circuit using the least-squares method inMatlab. Formeasuring

apical or basal conductances, impedances were measured between the

two apical (in the upper plate) or the two basal (in the lower plate)

interdigitated electrodes, respectively. Then, impedance datawas fitted

to the equivalent electric circuit consisting of the conductance of the

medium solution (G) in series with a constant phase element

representing the electrode polarization impedances (CPEe) (Figure 2b).

3 | RESULTS AND DISCUSSION

3.1 | Electrophysiological characterization of cells
during long-term culture under flow

We experimentally validated the fabricated chamber system to

electrophysiologically characterize renal cell monolayers under

perfusion. First, we optimized the conditions for achieving rapid

formation of a confluent cell monolayer. PET and PC porous

membranes were evaluated as a support for forming NRK-52E and

raTAL cell monolayer. Phase-contrast images of both cell types on PC

or PET membranes are shown in Figure 3a. Cells growing on PET

membrane reached confluence after 2 days and showed good standing

of perfusion in the device. Otherwise, cells on PCmembranewere able

to attach and spread but not to fully proliferate on the whole

membrane. Thus, best conditions were shown to be seeding NRK-52E

or raTAL cells at high density on collagen type I-coated PET

membranes; the rest of the experiments were done under these

conditions. Application of 0.2ml min−1 flow rates to either one or both

compartments supported long term survival (≥2 weeks) of both cell

lines. With this flow rate, cells were subjected to a FSS of

0.07 dyn cm−2. Although this FSS may not be physiologically relevant

(the in vivo value is approximately 0.2 dyn cm−2), perfusion served to

continuously supply the cells with nutrients and gases (i.e., O2 and

CO2) as well as to take away the waste.

Real-time, continuous TEER recording was used to assess cell

monolayer health during long-term culture. To confirm the formation

of both epithelial monolayers and to demonstrate that TEER values

were dependent on tight junction paracellular resistance, we

performed a Ca2+ switch protocol. This is a well-established method

relying in the calcium-dependency of tight junction formation so that

monolayers cultured in a low Ca2+ medium lack barrier formation

(Gonzalez-Mariscal et al., 1990). During a Ca2+ switch (transition froma

Ca2+ depleted medium to a normal Ca2+ medium), tight junctions

reassemble in few hours. The time course of the TEER during a

reduction and subsequent recovery of theCa2+ concentration is shown

in Figure 3b. TEER values of both NRK-52E and raTAL cells fell and

rose according to Ca2+ reduction and recovery, respectively. Epithelial

monolayer formed with NRK-52E cells exhibited a TEER of

9.1 ± 0.4Ω cm2 and a Ccl of 0.50 ± 0.04 μF cm−2 after being perfused

for 1 day, while they were 600 ± 80Ω cm2 and 1.56 ± 0.14 μF cm−2 for

raTAL cells. Impedance spectra measured through both cell layers

(Figures S2A and S2B) and time course of TEER and Ccl in raTAL cells

under different flow conditions (Figure S3) are shown as supplemen-

tary information. Flow in the basal compartment not only supplies cells

with continuous nutrients at the basolateral side, as occurs in vivo, but

also helps to remove the waste and to maintain a constant

concentration of solutes—an issue that most microfluidic cell cultures

fail to reproduce.

Samples of medium perfusate were analyzed to determine several

metabolic parameters. The metabolism of raTAL cells is summarized in

Table 1. Surprisingly, data shows that cells have polarized energy

metabolism toward the apical site (preferred site to uptake glucose and

dump lactate), the opposite to what could be expected in vivo in the

original tissue. Although we cannot confirm the origin of this abnormal

polarization, this could be because continuous cell lines have been

selected to thrive in 2D culture, where all metabolic exchange takes

place through the apical membrane. Interestingly, we were able to

detect Na+ reabsorption in the perfusion chamber. There was a

significant difference of Na+ concentration; the concentration in the

FIGURE 2 Schematic representation of the measurement system.
Electrical connections between the device and the impedance
analyzer for measuring (a) transepithelial electrical impedance, (b)
apical conductance, and basal conductance. There are included the
equivalent electric circuits with lumped elements. For transepithelial
impedance, this consists in the resistance of the medium solution (Rs)
in series with the parallel of TEER and Ccl. For apical and basal
impedances, this consists of the conductance of the medium solution
(G) in series with a constant phase element that represents the
electrode polarization impedances (CPEe). Note that it is not drawn to
scale and is a section of the perfusion chamber. The resistance of
1 kΩ in series with the sine wave generator limits the maximum
current applied to the cells, so the maximum applied voltage and
current are 10mV and 10 μA, respectively. V, voltmeter; A,
ammeter;∼, sine wave voltage perturbations at different frequencies
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apical side was ∼5mM lower than in the basal side (∼4mM for Cl−).

This gradient, measured after 4 days in the perfusion chamber,

corresponds to a net transport of NaCl of ∼0.15 nmol cm−2 s−1.

Despite this is much lower than the transport in isolated perfused TAL

segments (1–10 nmol cm−2 s−1; rat, mouse, and rabbit) (Burg, 1982), it

proves the existence of activemechanisms ofNa+ transport. The TAL is

known as the diluting segment because it is able to reduce luminal NaCl

concentrations up to 30mM. This is achieved through the combination

of active NaCl transepithelial transport and a very tight barrier that is

water impermeable. Our findings confirm the high barrier formed by

raTAL, but the magnitude of NaCl transport does not appear to be

similar to that observed in vivo, most likely because we could not

demonstrate expression of the major protein responsible for active

transport (NKCC2) in these cells. In any case, this example illustrates

the validity of the system to readily acquire valuable information about

the renal epithelium health and function. Metabolic rates did not

change significantly over the course of long-term culture.

Electrical conductance and NaCl concentration Renal epithelium in

vitro should reproduce the in vivo function, which basically consists in

reabsorbing large quantities of solutes and ions. Differences in ion

selectivity and water permeability induce the formation of electro-

chemical transepithelial gradients, especially in the TAL. That prompted

us to propose using a different configuration of the TEER electrodes to

determine medium conductance in both compartments (corresponding

to apical and basolateral cell poles) and, in turn, to estimate NaCl

transport and its potential active transport across the epithelium.

Electrical characterization of the measurement system using different

NaCl concentrations is shown inFigure4a. Toavoid the systematic error

due to slightly variations in the cell constant of the electrodes placed at

each compartment, conductancewas normalized to the valuemeasured

at 140mM of NaCl. The relation between variation in the conductance

and the concentration of NaCl were linear at least for values lower than

140mM (Figure 4b). The maximum uncertainty in the percentage of

conductance was ±0.93 %, which was equivalent to ±2.4mM in the

estimation of the NaCl. The measured Na+ concentration gradient for

raTAL cells cultured in the perfusion chamber was ∼5mM. As

mentioned above, other ion species also influences conductance. In

the range from 70 to 140mM, the conductance of the Ringer's solution

is dominated by the NaCl due to the high concentration and mobility of

Na+ and Cl− against other ions.

3.2 | Transepithelial transport of NaCl

Since raTAL epithelium in the chamber system did not exhibit the large

active NaCl transport characteristic of native TAL (only a 5mM NaCl

gradient), we designed an experiment (Figure 5a) to validate the

conductance measurement system as a method to analyze the role of

tight junctions in NaCl transepithelial transport in a renal cell

monolayer. Instead of relying on active transport, artificial trans-

epithelial NaCl gradientswere imposed by replacing themedium in one

of the compartments with an isoosmotic solution containing 70mM

NaCl, while keeping the opposite compartment in a standard Ringer's

solution (140mMNaCl). Thus, the electrochemical gradient lead to the

movement of NaCl from the concentrated compartment toward the

diluted one, whereas ion diffusion rates should be determined by the

tightness of the epithelium.

Measurements of the conductance in both compartments allowed

us to follow in real time the transepithelial transport of NaCl while

measuring simultaneously transepithelial electrical parameters. Time

FIGURE 3 (a) Phase-contrast images of NRK-52E and raTAL cells growing on PC or PET membranes for TEER device. Cells were seeded at
high density in 300 μl per channel and allowed to attach for 2 hr before filling the dish with culture medium. Cells growing on PET reached
confluence after 2 days and showed good standing of perfusion in the device. (b) Time course of the TEER during a Ca2+ switch protocol for
raTAL (blue dashed line) and NRK-52E (orange line) cells. Arrows point the time of Ca2+ removal plus the administration of 1mM of
ethylenediaminetetraacetic acid (EDTA) and Ca2+ recovery plus EDTA removal. PC, polycarbonate; PET, Polyethylene terephthalate

TABLE 1 Metabolism of raTAL cells cultured in the device

Basal Apical

Glucose flux (μmol h−1 cm−2) 0.054 ± 0.04 0.092 ± 0.051

Lactate flux (μmol h−1 cm−2) 0.048 ± 0.031* 0.100 ± 0.055*

[Na+]o (mM) 152.3 ± 5.9* 147.5 ± 4.6*

[K+]o (mM) 4.08 ± 0.82 4.44 ± 0.56

[Cl−]o (mM) 141.9 ± 9.9 138.2 ± 8.2

These values were analyzed from samples collected at the reservoirs after

the cells were perfused in the bioreactor for 4 days (*p < 0.05 by unpaired
student's t-test) (n = 3).
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course measurements of electrical conductance, NaCl concentration,

TEER, and Ccl are shown in Figure 5 for epithelial monolayers obtained

with NRK-52E and raTAL cells. Note that the y-axis of Figure 5b shows

the NaCl concentration calculated through the linear regression line

included in Figure 4b. Immediately after decreasing the NaCl

concentration in basal (+ gradient experiment, apical NaCl > basal

NaCl) or apical (− gradient experiment, apical NaCl < basal NaCl)

compartments and stopping the flow, the recovery of NaCl

concentration in the 70mM compartment occurred driven by the

electrochemical force between both comportments (Figure 5b). This

rise was much faster for NRK-52E cells than for raTAL cells. NaCl

concentrations of the 70mM compartment at 1 and 2.5 hr are

summarized in Figure 5c. In detail, NaCl concentrations after 2.5 hr

were 138 (+Grad.) and 129 ± 2mM (−Grad.) for NRK-52E cells, while

concentration were 101 ± 7 (+Grad.) and 80 ± 5mM (−Grad.) for raTAL

cells. Otherwise, opposite compartments maintained 140mM as

expected from the continuous flowwith the Ringer's solution (140mM

NaCl). Note that the porousmembrane, where cells are cultured, partly

contributes to maintain the concentration gradient. Therefore, there is

a slow recovery of the gradient even with a very leaky epithelium, such

as that formed by NRK-52E cells.

The metabolic values of the main ionic species in the solution are

shown in Table 2. For both cell types, cells had again polarized energy

metabolism toward the apical site. Furthermore, there was a

significant difference for the Na+ and Cl− concentration between

NRK-52E and raTAL cells, which is in accordance with the results

obtained by conductance measurements. However, such values were

lower in the case of NRK-52E cells; it may be accounted for the

medium contained in the tubes, which can be unbalanced with the

medium in the compartment. This highlights the importance of in-line

measurements since it is often difficult to collect samples from a

specific place within microfluidic channels. In the PT, Na+ is absorbed

through the Na+/H+ exchanger (NHE3) and the Na+/glucose

cotransporter in the apical membrane cooperating with the

Na+-K+-ATPase and the Na+/HCO3
− cotransporter in the basolateral

membrane. Concurrently, most of the Cl− is reabsorbed paracellularly

due to the generated electrochemical gradient, although Cl− channels

and Cl−-coupled transporters also contribute to Cl- reabsorption

(Planelles, 2004). NRK-52E cell line is derived from PT and express

Na+/glucose cotransporter (Dong, Chen, He, Yang, & Zhang, 2009).

The epithelium of PT has low transepithelial resistance and is

considered a “leaky” epithelium, in which the paracellular resistance is

much lower than the transcellular resistance. This means that

paracellular pathway is very permeable to ions and a chemical

gradient will tend to equalize rapidly, as it happened in our

experiments. In vivo, the PT achieves to maintain the reabsorbed

Na+ by the drag of water and Cl− into the peritubular space because

of osmosis and electrodiffusion, respectively; otherwise, Na+ would

return to the filtrate (Palmer & Schnermann, 2015). On the other

hand, raTAL cells were derived from the TAL—the initial segment in

the distal nephron. In the TAL, the NaCl is transported into cells via

the apical Na+-K+-2Cl− cotransporter (NKCC2), and Na+ and Cl− are

secreted into the basolateral side through the Na+-K+-ATPase pump

and the chloride channel Kb (ClC-Kb)/barttin channel, respectively.

Both transport proteins, required for Na+ reabsorption (i.e., NKCC2

and Na+-K+-ATPase), have been detected in raTAL cells (Eng et al.,

2007). TAL is a tight epithelium and impermeable to water, being

among the tighter epithelia in the human body. In such epithelia, the

value of the paracellular resistance may be similar to transcellular one.

This is an important requirement to efficient transepithelial transport

since a leaky paracellular pathway that would allow for ion backflow

would dissipate the chemical energy accumulated as NaCl trans-

epithelial gradient, which is achieved through a secondary active

transport through ATP consumption. Differences between time

courses for passive transepithelial NaCl transport in NRK-52E and

raTAL cells are in good agreement with what is expected from PT and

TAL epithelia. Moreover, the NaCl transport was faster during

positive gradients than during negative gradients for both cells.

FIGURE 4 Electrical characterization of the estimation of NaCl through EIS. (a) Impedance spectra at different NaCl concentrations
using a blank porous membrane. Chambers were filled with Ringer's solutions of 70 (blue line), 87.5 (green line), 105 (red line), 122.5
(cyan line), and 140mM (magenta line) of NaCl, and impedance spectra were measured at 37 °C and 12 frequencies, ranging from 100 Hz
to 100 kHz. The fitting data according to the equivalent electric circuit is shown in dashed line. (b) Variation in conductance as a function
of the NaCl concentration (solid line) and linear regression line (dashed line) (n = 6). Data is normalized to the conductance measured at
140mM of NaCl (100%)
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In addition to the conductance, TEER (Figure 5d) and Ccl

(Figure 5e) parameters were also measured during both gradient

experiments by transepithelial impedance analysis. TEER values for

NRK-52E cells at 2.5 hr were 10.3 (+Grad.) and 12.7 ± 9.3Ω cm2

(−Grad.), which are in accordance with low values expected from the

PT and with the literature for NRK-52E cells (12–13Ω cm2) (Limonciel

et al., 2012; Prozialeck, Edwards, Lamar, & Smith, 2006). For raTAL

cells, TEER values were 245 ± 123 (+Grad.) and 844 ± 397Ω cm2

(−Grad.). There are no reported values for this cell line, but TEER for

freshly isolated rat medullary TAL tubules is one order of magnitude

lower (7,722Ω cm, corresponding to 48Ω cm2 for lumen diameter of

20 μm) (Monzon, Occhipinti, Pignataro, & Garvin, 2017). Interestingly,

TEER of raTAL cells increased during the negative gradient and

decreased during the positive gradient although not significantly. This

means that ion permeabilities changed to be leakier during the positive

gradient and vice versa, which may account for the faster NaCl

transport along the positive gradient. The rate of NaCl reabsorption in

the TAL segment is dynamic and depends on the luminal NaCl load,

that is, cells ceases to reabsorb NaCl when the luminal NaCl

concentrations is diluted and if the flow rate is very low, otherwise

NaCl reabsorption increases (Greger, 1985). Based on our results, we

speculate that raTAL cells might sense ion concentrations on either

side and adjust tight junction permeability accordingly. A leaky

epithelia would contribute to reabsorb a positive gradient (avoiding

salt waste from the body), whereas a tight epithelia would help to

maintain the gradient achieved through active transport (which is the

normal function in vivo for TAL cells). Unlike TEER, Ccl remained

unchanged during gradient experiments suggesting that membrane

FIGURE 5 Time course of the NaCl concentration during imposed apical to basal positive (apical NaCl > basal NaCl) and negative (apical
NaCl < basal NaCl) gradients. (a) Experimental procedure. At time 0, the apical or basal solution containing Ringer's solution of 140mM of NaCl
was replaced by one of 70mM of NaCl, and the flow was stopped. The opposite compartment was still perfused with Ringer's solution of
140mM of NaCl. (b) Time course of the electrical conductance at the apical (blue empty circles [raTAL] and red empty triangles [NRK-52E]) and
basal (cyan filled circles [raTAL] and magenta filled triangles [NRK-52E]) compartments during positive and negative gradients in raTAL and NRK-
52E cells (n = 4 except for raTAL cells from 0 to 1 hr (n = 11) and for NRK-52E cells from 1 to 2.5 hr (n = 1). Data was obtained from two (NRK-
52E) and four (raTAL) independent experiments. Conductance was normalized to the data measured at 140mM of NaCl (100%), and the NaCl
concentration was obtained by means of the linear regression line obtained in the electrical characterization. (c) Estimated NaCl concentration at
1 and 2.5 hr after the imposed gradient in both cell types (ns p > 0.05; **p < 0.01; ***p < 0.001 by unpaired student's t-test). Time course of the
(d) transepithelial electrical resistance (TEER) and the (e) cell layer capacitance (Ccl) during positive (black empty diamonds) and negative (gray
filled squares) gradients. TEER differences between positive and negative gradients were p = 0.90 at 0 hr; p = 0.39 at 1 hr; p = 0.29 at 2.5 hr
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surface areas were maintained. Ccl is a lumped element resulting from

luminal and basolateral membrane capacitances in series. Its value is

approximately 0.5 μF cm−2 for cells with unfolded membranes and

increases with the formation of complex surface morphologies. For

tubular epithelial cells, which have very particular microvilli and cilium

formations, Ccl is a useful parameter to electrically differentiate

between cell types and to evidence tissue formation and persistence in

vitro.

4 | CONCLUSIONS

Monitoring of transepithelial electrical parameters and simultaneous

assessment of the ion concentration in real time has been achieved in

the presented perfusion chamber using an innovative measurement

approach. In particular, both methodologies can be easily combined

with an appropriated electrode configuration in microfluidic cell

cultures, as it is demonstrated in this work.

Here, we present the feasibility of this methodology for

quantifying the concentration of NaCl. Therefore, it is possible the

in-line and real-time monitoring of transcellular chemical gradient of

NaCl produced by active transporters, which is a primary function of

the renal tubule (NaCl reabsorption). In addition, it is essential to

integrate sensing capabilities—similar to those of theUssing chamber—

in microphysiological systems that can apply FSS to study renal

epithelial cells in a more physiological microenvironment.
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