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A parity-time (PT )-symmetric system emerging from a quantum dynamics is highly desirable in order to
understand the possible implications of PT symmetry in the next generation of quantum technologies. In this
work, we address this need by proposing and studying a circuit-QED architecture that consists of two coupled
resonators and two qubits (each coupled to one resonator). By means of external driving fields on the qubits, we
are able to tune gains and losses in the resonators. Starting with the quantum dynamics of this system, we show
the emergence of the PT symmetry via the selection of both driving amplitudes and frequencies. We engineer the
system such that a non-number-conserving dipole-dipole interaction emerges, introducing an instability at large
coupling strengths. The PT symmetry and its breaking, as well as the predicted instability in this circuit-QED
system, can be observed in a transmission experiment.
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I. INTRODUCTION

One of the mathematical axioms of quantum mechanics
is that the Hamiltonian H of a system should be Hermitian,
i.e., H = H †. This axiom ensures real energy eigenvalues
and, correspondingly, a unitary time evolution, for which the
probability to find the system at some state is conserved.
Physical systems described by Hermitian Hamiltonians rep-
resent closed systems. However, physical systems in general
are open and they are in continuous energy exchange with
other systems, experiencing dissipation (or absorption, loss)
or receiving energy (gain) from a source. Such systems with
gain or loss are described by non-Hermitian Hamiltonians, i.e.,
H �= H †, for which the probability, in general, is not conserved
and its time evolution is not unitary. It is worth pointing out
here that open systems at zero temperature can effectively be
described by non-Hermitian Hamiltonians.

In 1998, it was shown [1], however, that Hermiticity is
not a necessary condition for H to have real eigenvalues. In
fact, a whole class of Hamiltonians can have real eigenvalues
without being Hermitian, if they arePT symmetric in the sense
that they commute with the PT operator, i.e., [PT ,H ] = 0,
where P is the unitary parity operator and T is the antiunitary
time-reversal operator [2]. It is now understood that one
can interpret PT -symmetric systems as nonisolated physical
systems having balanced absorption (loss) and amplification
(gain). Remarkably, such systems exhibit a phase transition—
spontaneous PT -symmetry breaking—at an exceptional point
(EP), where both the eigenvalues and the corresponding eigen-
states of the system coalesce, if the parameter that controls the
degree of non-Hermiticity exceeds a critical value. Beyond
this critical threshold, the spectrum is no longer real, and

eigenvalues become complex even though [PT ,H ] = 0 is still
satisfied. In other words, the system experiences a real-to-
complex spectral phase transition.

The presence of an EP (or aPT phase transition) drastically
affects the dynamics of the system leading to counterintuitive
features which can help to control wave transport and light-
matter interactions. Thus, the field surrounding the concepts of
PT symmetry and EPs (that started as a purely mathematical
concept) has turned into a rapidly growing field with many
interesting experiments [3–22], most of them in the field of
optics. Among the nontrivial phenomena observed in these
experiments are unidirectional invisibility in fiber networks
[8], nonreciprocal light transport in whispering gallery mi-
croresonators [7], single-mode lasing in otherwise multimoded
lasers with PT symmetry [23,24], loss-induced lasing [6],
control of emission direction of lasing in microring lasers
[9], a mobility edge in disordered optical waveguide arrays
[25,26], as well as chiral dynamics [16] and topological
energy transfer when encircling an EP [19]. Recent years have
also seen a number of very interesting theoretical proposals
revealing how PT symmetry can be used to enhance and
control optomechanical interactions, and how PT symmetry
affects quantum phase transitions and information retrieval in
quantum systems [27–29]. For example, the works of Jing
et al. with optomechanical microresonators have revealed the
possibility of thresholdless phonon lasing [30], group veloc-
ity control via optomechanically induced transparency [31],
enhanced optomechanical cooling at high-order exceptional
points [32], as well as phonon analog of loss-induced lasing in
optomechanical systems with two-level system defects [33].
Another interesting phenomenon, the jamming anomaly or
the anomalous transport in the large gain-loss regime, has
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also been studied [34]. The above-mentioned theoretical and
experimental works are just a few examples showing the
enormous and growing interest in PT -symmetric systems and
their realizations.

In the reported experimental works on PT symmetry and
EPs, open classical systems are engineered such that the
dynamics for the variables of interest obey the PT symmetry.
A study of PT symmetry and its breaking in experimentally
accessible quantum systems is highly desirable to understand
the pros and cons of PT symmetry for developing quantum
technologies. In this work, we address this need by proposing
a circuit-QED architecture—a superconducting circuit operat-
ing in the quantum limit [35–40]. Starting with a microscopic
and unitary description, we demonstrate that the dynamics
of this circuit-QED system can be described by an effective
non-Hermitian PT -symmetric Hamiltonian.

The proposed circuit-QED architecture is experimentally
accessible because the main ingredients, a tunable coupling
between resonators [41] as well as tunability of a qubit gap
[42–47], have already been experimentally demonstrated and
are readily available. A circuit-QED architecture for studying
PT symmetry will not only bring the field into the quantum
realm, but will also offer numerous advantages. For example,
so far allPT -symmetry experiments (except Ref. [18]) involve
two components, one with loss and the other with gain. These
systems are not scalable and thus it is very difficult to expand
them to a larger number of components in order to study
collective behavior or the effect of global and local PT
symmetries on wave transport and light-matter interactions.
Circuit-QED architectures with their scalability (e.g., fabri-
cating arrays of PT -symmetric resonators and coupled qubits
with a small footprint should not be a big challenge with current
state-of-the-art technologies) and versatility (e.g., engineering
different Hamiltonians by tuning the strength and the frequency
of external drives is a natural scenario in circuit-QED) will help
to overcome such shortcomings and fabrication difficulties
of current platforms used in PT experiments. Moreover,
circuit-QED provides flexibility to explore different parameter
regimes which are difficult to reach in current PT platforms,
for instance, the ultra- and deep-strong-coupling regimes in
resonator-qubit interactions.

This paper is organized as follows. In Sec. II, we introduce
the circuit-QED platform that we propose for the realization
of PT symmetry and its breaking. In Sec. III, we show
how one can engineer interactions that either conserve or
do not conserve the number of excitations. In Secs. IV and
V, we derive the effective PT -symmetric Hamiltonian for
the system and study its dynamics in the exact and broken
PT phases. In Sec. VI, we discuss how one can probe the
behavior of this circuit-QED platform in the exact and broken
PT phases by transmission experiments. We conclude the
manuscript in Sec. VII by giving a summary of our findings
and future prospects. The manuscript is also accompanied
by Appendices A and B where details of the derivations are
provided.

II. THE CIRCUIT

The circuit-QED architecture we propose for studying PT
symmetry is sketched in Fig. 1. It consists of two coupled
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2R 

FIG. 1. A graphical illustration of the proposed circuit-QED ar-
chitecture to study the physics of PT symmetry. Two superconductor
resonators are coupled to each other with a coupling strength J , and
two qubits with decay rates of γ , each coupled to one resonator with
a coupling strength g, form the basic ingredients of this architecture.
The inset in orange shows the structure of the qubits, whereas the inset
in blue shows a possible implementation of tunable coupling between
the resonators.

resonators (blue in the figure) whose coupling can be tuned over
time. An experimental demonstration of a tunable coupling
through a three-junction loop (sketched in the center of Fig. 1
and zoomed in the right top corner) was recently reported
[41,48]. Each resonator is coupled to one qubit (orange boxes
in Fig. 1) that has a tunable gap (e.g., flux qubits [44,45] or
capacitively shunted qubits [46,47]). The system is described
by the Hamiltonian

H (t) = H0(t) + Hc(t), (1)

where

H0(t) =
∑
j=1,2

ωja
†
j aj + εj (t)

2
σ z

j (2)

represents the free part of the Hamiltonian. Here, ωj are the
bare frequencies of the resonators and εj (t) represent the qubit
gaps that can be tuned in time. These building blocks are
coupled via the interaction Hamiltonian

Hc(t) =
∑
j=1,2

gjσ
x
j (aj + a

†
j ) + J (t)(a†

1 + a1)(a†
2 + a2), (3)

with coupling strengths gj and J (t). The time tunability of the
gaps εj (t) and the resonator-resonator coupling J (t) becomes
crucial in what follows.

Apart from the unitary evolution governed by H (t), both
qubits and resonators are coupled to the circuitry environment.
The influence of the latter in circuit QED is weak (compared
to the order of the bare system frequencies) and, therefore, it
suffices to treat it with a master equation of the optical type,

d

dt
� = −i[H (t),�] +

∑
j

γjD[σj ]� + κjD[aj ]�, (4)
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where γ −1
j (κ−1

j ) accounts for the timescale of relaxation to

equilibrium (γ −1
j ∼ Tj ) driven by the dissipators, D[on]� =

on�o
†
n − 1

2 (o†non� + �o
†
non).

III. HAMILTONIAN ENGINEERING

In the following, we will work in the interaction picture with
respect to H0(t), and assume that the qubit gap is modulated
as

εj (t) = ε
(0)
j +

∑
α=±

λj,α cos(
j,αt), (5)

for j = 1, 2, where 
j,± represent the driving frequencies
given by


j,± = ε
(0)
j ± (ωj + δ). (6)

In order to validate our approximations, we are going to
restrict ourselves to the following hierarchy in parameter space:

ε
(0)
j � γj � ωj � gj , J, δ; and 
j,± > λj,±. (7)

Finally, we assume that ω1 = ω2 = ω, which is more than
plausible due to the well-established and highly reproducible
fabrication of superconducting resonators [49]. In our numeri-
cal tests, we set εj

∼= 5ω, γ ∼= 2ω, and g ∼ J ∼= 10−2ω. These
parameters are reasonable from the experimental point of view
and serve to justify all the approximations made below.

The interaction Hamiltonian in the interaction picture with
respect to H0(t) [cf. Eqs. (1)–(3) and (5)] is

H̃c(t) = J (a†
1a2e

i(ω1−ω2)t + a1a2 e−i(ω1+ω2)t )

+ gσx
1 (t)a1e

−iω1t + gσx
2 (t)a2e

−iω2t + H.c., (8)

where

σx
j (t) = σ+

j exp

[
iε

(0)
j t +

∑
α

2i
λj,α


j,α

sin(
j,αt)

]
+ H.c.

= σ+
j eiε

(0)
j t
∏
α

∑
n

Jn

(
2λj,α


j,α

)
eitn
j,α + H.c., (9)

with Jn representing the nth Bessel function of the first kind.
By choosing 
j,± according to (6) and recalling the neces-
sary hierarchy (7), the Hamiltonian (8) can be approximated
(neglecting terms oscillating with ε

(0)
j ) as

H̃c(t) ∼= J (a†
1a2e

i(ω1−ω2)t + a1a2 e−i(ω1+ω2)t )

+
∑

j

gj (Gj+σ+
j aj e

iδt + Gj−σ+
j a

†
j e

−iδt ) + H.c.,

(10)

with Gj,± given as

Gj,± = J0

(
2

λj,±

j,±

)
J1

(
2

λj,∓

j,∓

)
. (11)

A. Engineering a number-conserving interaction

If the resonator-resonator coupling J is constant, the second
term inside the first set of parentheses of (10) can be neglected
following the hierarchy (7). Here, we assume that ω1 = ω2.
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FIG. 2. Time evolution of (a),(b) 〈N〉, (c),(d) 〈σz〉, and (e),(f) 〈σx〉
in the proposed circuit-QED architecture according to Eqs. (8) (black)
and (12) (blue). For the numerical simulations, we set ω = 1 as the
unit. The rest of the parameters used areλ+ = λ− = 2, ε = 5, δ = 0.1,
g = 0.05, G−/G+ = 0.58, for (a), (c), (e) the initial state |ψ(0)〉 =
|↑〉|1〉 and (b), (d), (f) the initial state |ψ(0)〉 = (|↑〉 + |↓〉)|1〉/√2.

In order to get rid of the extra time dependence (due to δ),
we move to a frame rotating with this frequency. Then, the
effective Hamiltonian can be written as

H ′
eff

∼= −
∑

j

δa
†
j aj + J (a†

1a2 + H.c.)

+
∑

j

gj [(Gj+σ+
j aj + Gj−σ+

j a
†
j ) + H.c.]. (12)

The validity of the approximations [following the hierarchy
(7)] was tested and the results are shown in Figs. 2 and 3
for a single resonator coupled to a qubit. There we show
the time evolution under H̃c(t) (8) in black and H ′

eff (12) in
blue. Initial states are |φ(t = 0)〉 = |↑〉|1〉 (left) and |φ(0)〉 =

1√
2
[|↑〉|1〉 + |↓〉|1〉] (right). Here, |↓〉 and |↑〉 are the ground

and excited states of the qubit, respectively, and |n〉 are the
Fock states. We compare the time evolution of one resonator of
frequency ω = 1 coupled to one qubit driven with frequencies

+ and 
−, assuming δ = 0.1. The driving amplitudes λ+ =
λ− in Fig. 2 are chosen equal, giving a ratio G−/G+ < 1. In
Fig. 3, we choose the λ± in such a way that G−/G+ > 1.
It is seen that our approach holds for both the loss- and
gain-dominant cases. The fluctuations of the time-dependent
Hamiltonian (8) are relatively small and can be made even
smaller by decreasing g or increasing ε. This is shown on the
left-hand side of Figs. 2 and 3, where the values of g and ε are
smaller and larger, respectively, than their counterparts on the
right-hand side.

B. The nonconserving number case

Here we want to exploit the possibility of an on-time tuning
of the resonator-resonator coupling [50,51]. By setting

J (t) = J {cos[(ω1 + ω2 + 2δ)t] + cos[(ω1 − ω2)t]}, (13)
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FIG. 3. Time evolution of (a), (b) 〈N〉, (c), (d) 〈σz〉, and (e), (f) 〈σx〉
in the proposed circuit-QED architecture according to Eqs. (8) (black)
and (10) (blue). For the numerical simulations, we set ω = 1 as the
unit. The rest of the parameters used are λ+ = 3,λ− = 1, ε = 5, δ =
0.1, g = 0.05, G−/G+ = 2.1, for (a), (c), (e) the initial state |ψ(0)〉 =
|↑〉|1〉 and (b), (d), (f) the initial state |ψ(0)〉 = (|↑〉 + |↓〉)|1〉/√2.

the effective Hamiltonian becomes

Heff ≡ Hδ,J + H eff
gj

∼= −
∑

j

δa
†
j aj + J (a†

1a2 + a1a2)

+
∑

j

gj [(Gj+σ+
j aj + Gj−σ+

j a
†
j ) + H.c.], (14)

where the coupling between resonators includes both the
number-preserving terms a

†
1a2 + a1a

†
2 and the counter-rotating

terms a
†
1a

†
2 + a1a2. Recall that within the rotating-wave ap-

proximation (RWA), the counter-rotating terms are neglected
[cf. Eq. (12)]. Therefore, we have an effective model which
allows us to study physics (beyond the RWA) in the so-
called ultra- and deep-strong-coupling regimes (borrowing
the nomenclature from the light-matter Rabi model). In our
case, it is not the actual coupling strength but the time
dependence J (t) or the ratio J/δ which determines whether
or not the RWA is valid. The scenario described here serves as
a controllable example where RWA versus non-RWA physics
may be investigated.

In the following, we will concentrate on the dynamics
governed by Eq. (14), but we will compare it with the number-
conserving case given in Eq. (12), which is the one mainly
studied in the literature.

IV. EFFECTIVE PT EQUATIONS

A. Adiabatic elimination

Let us now deal with the dissipative part of Eq. (4). The
effective timescales in (14) are given by δ, J , and gj . In the
range defined by Eq. (7), the fastest dynamics corresponds
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FIG. 4. Numerical verification of the adiabatic elimination for a
single resonator coupled to a qubit with decay rates of γ = 1 and
γ = 10. We use a Fock space of dimension NFock = 300. In (a), we
plot the relative error for σ+σ− as a function of G−/G+. In (b), we
plot the relative error for n = a†a.

to the dissipative evolution of the (bad) qubits: γj . In this
regime, we can adiabatically eliminate the qubit’s degrees of
freedom. In doing so, we end up with the slow part, which
solely describes an effective dynamics for the two resonators.
The technicalities of the adiabatic elimination were already
discussed in Ref. [52] and adapted for a similar setup in
Ref. [53]. In Appendix A, we give the details of lengthy
manipulations, and here we prefer to directly write the effective
equations for the first moments of the resonators’ operators
after eliminating the qubit degrees of freedom,

d

dt
〈aj 〉 = i〈[Hδ,J ,aj ]〉 +

∑
j

2g2
j

γj

〈D†[bj ]aj 〉. (15)

The bj operators are defined as [cf. Eq. (11)]

b1 = G1,+ a1 + G1,− a
†
1, b2 = G2,+ a2 + G2,− a

†
2. (16)

In order to test the validity of the adiabatic elimination,
we compare the stationary values obtained from (15) with
those obtained from the full quantum master equation given
in Eq. (4). In Fig. 4, we plot the relative error between the
results obtained from both equations for the stationary values
of 〈σ+σ−〉 and 〈a†a〉. We do it for the case of a single resonator
coupled to a qubit and as a function of the ratio G−/G+.
This is the squeezing parameter in the dissipative dynamics
of (15) which fully determines the stationary solutions [54].
Our numerical results support the validity of the adiabatic
elimination.
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B. Verifying the symmetries

To write Eq. (15) in a more convenient way, we define
the vector αt := (〈a1〉,〈a†

1〉,〈a2〉,〈a†
2〉), as well as the effective

decay rates

γ̃j := (−1)j+1
2g2

j

γj

(
G2

j,− − G2
j,+
)
. (17)

Note the (−1)j+1 prefactor in the above equation. By setting
G1,− > G1,+ and G2,− < G2,+, we have γ̃j > 0 always. These
relations among the G’s imply that resonator 1 is dissipating
(i.e., losses are larger than the gain) and resonator 2 is
amplifying (i.e., gain is larger than losses). In doing so, Eq. (15)
defines the set,

i
d

dt
α = M α, (18)

with

M =

⎛⎜⎝δ − iγ̃1 0 J J

0 −δ − iγ̃1 − J −J

J J δ + iγ̃2 0
− J −J 0 −δ + iγ̃2

⎞⎟⎠. (19)

By representing the unitary parity operator by

PMP = (σx ⊗ I2) M (σx ⊗ I2), (20)

and the antiunitary time reversal one by

T MT = M∗, (21)

one can directly verify that in the balanced gain-loss case γ̃1 =
γ̃2 = γ̃ , the matrix M is PT symmetric, i.e., [PT ,M] = 0.

V. BROKEN PT -SYMMETRY PHASE

As stated in the introduction, PT -symmetric Hamilto-
nians may exhibit a real spectrum for certain parameter
combinations. The (phase) transition from a complex to
a real-valued spectrum occurs at a so-called exceptional
point (EP), which marks the degeneracy of a non-Hermitian
system, including PT -symmetric systems. At an EP, both
the eigenvalues and the corresponding eigenvectors of the
Hamiltonian coalesce (i.e., become degenerate). Consequently,
the non-Hermitian Hamiltonian governing the system be-
comes nondiagonalizable. This is significantly different than
eigenvalue degeneracies of Hermitian systems where one
can always assign orthogonal eigenvectors to degenerate
eigenvalues.

In the case of balanced gain and loss, we expect the matrix
M to have real eigenvalues in the exact PT -symmetric phase
and complex conjugate eigenvalue pairs in the broken PT -
symmetric phase. Diagonalizing Eq. (19), we obtain

ω±± = ±[δ2 − γ̃ 2 ± 2δ(J 2 − γ̃ 2)1/2]1/2. (22)

By simple inspection, one can immediately see that for J 2 −
γ̃ 2 < 0, the eigenvalues expressed in Eq. (22) are complex,
i.e., the system is in the broken PT phase. We note that even
in this phase, [PT ,M] = 0 still holds. The eigenvalues of M

are real whenever

J > Jc1 = γ̃ , (23)
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FIG. 5. Evolution of the eigenvalues of the proposed circuit-QED
architecture as a function of the resonator-resonator coupling strength
J . The background colors distinguish among three regions: J < Jc1

(white), Jc1 < J < Jc2 (light gray), and Jc2 < J (light yellow). The
eigenfrequency ω+− is plotted in black, while ω++ is plotted in blue
[cf. Eq. (22)]. The dashed lines correspond to the RWA (12), while
the solid lines correspond to the most general case (14). In (a), we plot
the real part of ω+± and, in (b), the imaginary part of the eigenvalues.
Here we set δ = 1 as the unit and the effective decay rates are γ̃1 =
γ̃2 = 0.1.

where Jc1 corresponds to the PT -transition point (i.e., real-to-
complex spectral phase transition point) typically observed in
experiments (e.g., in [6,7,55]). Figure 5 shows the evolution of
the eigenvalues given in Eq. (22) as a function of the coupling
strength J . Here, the dashed lines correspond to the RWA in the
resonator-resonator coupling. It is clearly seen that in the RWA
model, there is only one transition point located at J = Jc1 ,
where the spectra transits from complex to real eigenvalues. In
agreement with our discussion of EP’s, we notice that at J =
Jc1 , both eigenvalues coincide. In Fig. 5, we can also verify that
for the general model given in Eq. (14) (which is beyond the
RWA model), there is a second transition at J = Jc2 beyond
which the eigenvalues become complex again. Thus, in our
circuit-QED architecture, real eigenvalues are obtained in the
parameter space defined by

γ̃ � Jc1 < J < Jc2 = γ̃ 2 + δ2

2δ
. (24)

However, we must be cautious in associating this second tran-
sition to a breaking of the PT symmetry. This is because the
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effective Hamiltonian Hδ,J is not positive definite. Therefore,
in the absence of dissipation, the eigenfrequencies ω±− are
only real for J < δ/2. This bound corresponds to Eq. (24) for
γ̃ = 0. In the dissipative case, the fact that the eigenvalue ω+−
(solid black line in Fig. 5) becomes complex for J > Jc2 (blue
region) is a reminiscence of the latter. Therefore, this second
transition should be understood as an instability point of the
driven dissipative system. Another argument to support our
claim is that J = Jc2 is not an EP.

In Appendix B, we give the general expression for the eigen-
values of the matrix M when the gain and loss are not balanced
(γ̃1 �= γ̃2). In this case, there is always a nonzero imaginary
contribution to the normal frequencies [cf. Eq. (B1)]. Apart
from this offset, the transitions discussed above can also be
traced (see Fig. 7).

VI. INPUT-OUTPUT: TRANSMISSION EXPERIMENTS

In the proposed circuit-QED setup, the PT symmetry can
be probed with a simple transmission experiment. Typically,
a low-power coherent input 〈Ain〉 is sent into one of the
resonators, as depicted in Fig. 1. We label the four ports as
1L, 1R, 2L, and 2R, where the number indicates resonator 1
or 2 to which the fields are coupled, and the letter R (or L)
points out whether the field enters or leaves the circuit from
the right (or left) (see Fig. 1). In the figure, the input is sent
through 1L. The transmitted signals (emerging at 1R,2L,2R)
or the reflected one (emerging at 1L) can be measured with a
vector network analyzer. Indeed, a two-resonator architecture
has already been experimentally studied using transmission
experiments [41]. Thus, the same techniques can be directly
used for the experimental realization of our proposal. Such
experiments are described by the input-output theory [56].
The system of interest, in our case the two-resonator two-qubit
layout, is coupled to external leads (open transmission lines).
We treat both the system and the signals (input and output)
quantum mechanically. The fields in the leads are assumed to
be bosonic free fields given by

Hleads =
∑
j,λ

∫
dωA

†
j,λ(ω)Aj,λ(ω), (25)

where [Aj,λ(ω),Aj ′,λ′ (ω′)†] = δj,j ′ δλ,λ′ δ(ω − ω′), with j =
1,2 and λ = L,R. Note that the leads act as extra baths for
the resonators (adding leakage to the system).

The interaction between the system and the transmission
lines (in the case of the proposed setup, a capacitive interaction)
is described by the Hamiltonian

Hint =
∑
j,λ

∫
dω κ(ω)[ajA

†
j,λ(ω) + H.c.]. (26)

To obtain the relation for the input and output fields, the
Heisenberg equations for the fields A

†
j,λ are considered and

Fourier transformed. The input fields, defined as Ain
j,λ(t) =∫∞

0 dω/
√

2π Aj,λ(ω,t0) e−iωt , take into account contributions
from the leads from a time t0 before the interaction between the
input and the system actually occurs. On the other hand, the out-
put fields, defined as Aout

j,λ(t) = ∫∞
0 dω/

√
2π Aj,λ(ω,tf ) e−iωt ,

consider contributions up to a time tf after the interaction
took place. Without loss of generality, a monochromatic signal

FIG. 6. Logarithm of the power transmitted from port 1L to 2R:
ln(|T1L,2R|2), as a function of the input frequency ω and resonator-
resonator coupling J (in units of frequency). The parameters used
in the simulation are γ̃1 = γ̃2 = 0.1 and κ = 0.02. The units are the
same as those in Fig. 5.

〈Ain
1L〉 = αeiωd t can be used. Following Ref. [56], the input-

output relation is〈
Aout

j,λ

〉 = 〈Ain
j,λ

〉− i
√

K χAin

aj
, j = 1,2; λ = L,Rm, (27)

where K = 2πκ2(ωd ) is the superconducting resonator leak-
age through the capacitors, and χAin

aj
is the linear response of

the two-resonator system driven by the input fields. The actual
form ofχAin

aj
is rather cumbersome to give here and can be found

in Appendix C. Putting all together, the transmitted signal for
any of the three ports, jλ = 1R,2R,2L, is given by

T1L,jλ =
〈
Aout

j,λ

〉〈
Ain

1L

〉 . (28)

The transmission with an input through any of the other ports
can be calculated in the same way.

In Fig. 6, we depict T1L,2R as a function of the coupling and
the input frequency. As expected, the contour plot resembles
the real frequency plot in Fig. 5(a). The maximum in the trans-
mission coincides with the resonance frequencies. Therefore,
in a transmission experiment, thePT symmetry can be directly
tested.

VII. CONCLUSIONS

In this work, we have shown that a circuit-QED architecture
provides a flexible and highly versatile platform, with a small
footprint, to explore the physics of non-HermitianPT systems.
Understanding that the latter is an effective theory, we have
demonstrated how PT symmetry and its breaking emerges
by engineering two-resonator two-qubit Hamiltonian systems
using tunable external drives, which is a natural strategy in
circuit-QED systems.

This architecture has allowed us to probe the resonator-
resonator interactions in various regimes of interaction strength
thanks to the ability to achieve tunable coupling strength in
circuit QED, provided tunable gain and loss to delicately
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control the gain-loss ratio of the resonators, and opened the way
to probe non-Hermitian dynamics in coupling regimes, ranging
from weak to deep coupling not only in the interaction between
the resonators but in the interaction between the resonators
and the qubits coupled to them for achieving gain and loss.
We have shown that in the weak-coupling regime of the
resonator-resonator interaction, the PT symmetry is broken,
i.e., the effective Hamiltonian exhibits nonreal eigenvalues.

By increasing the coupling, non-number-conserving terms
start to play a significant role. This is the ultrastrong-coupling
regime that has already been explored experimentally in su-
perconducting circuits [41,57]. In the PT scenario, this region
corresponds to the unbroken (or the exact) PT -symmetric
phase. At much higher coupling strengths, the resonators
become unstable. Crucially, this last transition is absent if we
neglect the counter-rotating terms. This regime corresponds
to the deep-strong-coupling regime. More importantly, weak,
strong, ultrastrong, and deep-strong regimes are differentiated
by transition points (either breaking symmetry or instability).
We note that in previous studies (Rabi model [58–61]) where
the qubit-resonator coupling was investigated in various cou-
pling regimes, the borders between different regimes were
diffuse. Revisiting those studies by considering the PT -
symmetric resonator-resonator configuration proposed here
may shed light on how different regimes in resonator-resonator
coupling affect the quantum dynamics.

Finally, we have shown that the proposed circuit-QED
architecture is experimentally accessible; no fine tuning of
the experimental parameters is necessary in order to observe
the phenomenology imposed by PT symmetry, and the basic
concepts and applications that have been demonstrated in other
platforms can be accessed and realized in this circuit-QED
platform with a simple transmission experiment. We thus
believe that this work will open the way to use circuit QED
as an ideal testbed to explore PT -symmetric physics in the
quantum domain.
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APPENDIX A: ADIABATIC ELIMINATION

Here we provide the details of the adiabatic elimination.
We consider a system (resonator) coupled to the environment

through an ancillary element (qubit). The adiabatic elimination
is rooted in the fact that the relaxation timescale of the ancilla
is much faster than the typical timescale in which the system
evolves [cf. the hierarchy given by Eq. (7)].

1. Single-resonator case

For the case of a single resonator, after driving the qubit and
neglecting the rotating terms, we are left with the following
Hamiltonian (in the interaction picture):

H̃c = g(bσ+ + b†σ−), b := G−a + G+a† (A1)

[cf. Eq. (12); for a single resonator J = 0 and we consider
δ = 0]. Coupling the qubit to an environment and assuming
Markovianity leads to the following nonunitary evolution for
the combined system of the resonator and the qubit (this is
valid provided that ε � γ � g):

dt� = L0[�] + L1[�], (A2)

where the state � lives in the total Hilbert space (H) of the
resonator (Hres) and the qubit (Hqub): H = Hres ⊗ Hqub. In
addition, we have defined the Liouvillian operators,

L0[�] = γ

2
(2σ−�σ+ − {σ+σ−,�}) (A3)

and

L1[�] = −i[H̃c,�]. (A4)

We will treat the L1 part of the Liouvillian as a perturbation
over L0 (recall that γ � g). For this, we define the operator

�̄ = exp(−L0t)�, (A5)

which evolves in time according to

dt �̄ = L̄1�̄, (A6)

with

L̄1 = e−L0tL1e
L0t . (A7)

In order to deal with (A6), we will make use of projection op-
erator techniques. The idea behind this method is to introduce
two orthogonal projections, represented by the superoperators
R and Q, with R2 = R, Q2 = Q, RQ = QR = 0, and R +
Q = I. This allows us to split the total density matrix � in a
relevant part μ describing the resonator and in an irrelevant
part describing the qubit �qub. The action of R and Q on �̄ is
defined by

R�̄ = trqub(�̄) ⊗ �qub = μ ⊗ �qub, (A8)

Q�̄ = (I − R)�̄. (A9)

Here, �qub denotes some fixed state of the qubit. If we assume
that the qubit undergoes a strongly dissipative dynamics, and
in the absence of a pump, we can safely assume this state to
be the ground state, �qub = |↓〉〈↓|. As L0 acts on the space
of the qubit and R projects on the orthogonal space, these
two superoperators commute, [L0,R] = 0. This guarantees
that R�̄ = R�. Applying R and Q to (A6), we arrive at the
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following system:

dtR�̄ = RL̄1R�̄ + RL̄1Q�̄, (A10)

dtQ�̄ = QL̄1Q�̄ + QL̄1R�̄. (A11)

We first solve (A11),

Q�̄(t) = G(t,0)Q�̄(0) +
∫ t

0
ds G(t,s)QL̄1(s)R�̄(s), (A12)

where G denotes the time-ordered exponential,

G(t,s) = T exp

[∫ t

s

ds ′QL̄1(s ′)
]
, (A13)

which is the formal solution of

dtQ�̄ = QL̄1Q�̄, (A14)

where L̄1 is time dependent. We now substitute (A12) into
(A10) to obtain the so-called Nakajima-Zwanzig equation,

dtR�̄ = RL̄1R�̄ + RL̄1G(t,0)Q�̄(0)

+RL̄1

∫ t

0
ds G(t,s)QL̄1(s)R�̄(s). (A15)

We can further simplify this equation as follows: from (A5),
it follows that �̄(0) = �(0). If we assume an initial factorized
state, the action of R on it is equal to the action of the identity
operator, and therefore Q�̄(0) = 0. We now turn back to the
equation for the state �. From (A5), it follows

Re−L0t dt� = dtR�̄ + L0R�̄. (A16)

Replacing (A15) in the former equation leads to

Re−L0t dt� = RL̄1R�̄ + RL̄1

∫ t

0
ds G(t,s)QL̄1(s)R

+RL0R�̄(s), (A17)

where we have made use of the fact thatRQ� = R� − R2� =
0. As usual, we will assume RLR = 0 [62] for the full
Liouvillian L = L0 + L1. In our case, this implies

RL̄1R�̄ + RL0R�̄ = 0. (A18)

Thus, we are left with

Re−L0t dt� = RL̄1

∫ t

0
ds G(t,s)QL̄1(s)R. (A19)

The lowest-order expansion in the perturbation L1 involves
taking G(t,s) = I. This corresponds to second-order perturba-
tion theory as L1 already appears twice in the right-hand side.
Thus, from (A7), we finally have

dtR� = RL1

∫ t

0
ds exp[L0(t − s)]L1R�(s). (A20)

Tracing over the qubit, we arrive at a quantum master equation
(QME) describing the effective dissipative dynamics of the
resonator,

dtμ = −
∫ t

0
ds trqub{H̃c , exp[L0(t − s)][H̃c ,μ(s) ⊗ �qub]}.

(A21)

We perform the following change of variables s ′ = t − s and
apply the Markov approximation, that is, μ(t − s ′) → μ(t).
The final step consists of tracing out the qubit degrees of
freedom. For this, we notice that σ± are eigenoperators of
L0 with eigenvalue −γ /2 [L0σ

± = −(γ /2)σ±]. Then, it is
straightforward to show

[H̃c ,eL0s(H̃c ,μ ⊗ �qub)]

= exp[−(γ /2)s]g2([b†,bμ] − [b,μb†])

= exp[−(γ /2)s]g2(−2bμb† + {b†b,μ}). (A22)

Then, Eq. (A21) reduces to

dtμ =
∫ t

0
ds exp[−(γ /2)s]g2(2bμb† − {b†b,μ}). (A23)

Finally, integrating over time, in the limit t → ∞ we obtain
our desired result,

dtμ = 2g2

γ
(2bμb† − {b†b,μ}). (A24)

The role of the b operators is clear now. Using the drive
on the auxiliary qubits, the effective dissipative dynamics
on the resonator can have a nontrivial (not Gibbs) long-
time dynamics. For example, whenever G2

− − G2
+ = 1, the b

operators become squeezed vacuum annihilator operators and,
therefore, the stationary solution of Eq. (A24) is a squeezed
vacuum state.

2. Coupled resonators

Here we generalize the results derived for the single-
resonator case to a chain of coupled cavities. We consider one-
dimensional, regular, and nearest-neighbor coupling between
resonators in an array. We consider two types of coupling. The
first is what we call the RWA coupling, ∼a

†
j aj+1 + H.c. This

conserves the total number of excitations in the lattice.
The second type is called the non-RWA coupling, which

does not conserve the number of excitations, ∼(aj +
a
†
j )(aj+1 + a

†
j+1). This appears naturally in dipole-dipole or

displacement couplings in electromagnetic or mechanical sys-
tems.

Usually, the RWA coupling corresponds to the non-RWA
in the weak-coupling regime. We emphasize that here both
types of couplings are engineered. Therefore, it is not the
interaction strength [always small; see (7)] but the driving fields
(cf. Secs. III and III B) which dictate the type of coupling.

a. RWA coupling

We start by manipulating the coherent part of H in Eq. (1),

H = H0 + Hc + Hdrive, (A25)

with

H0 =
∑

j

(ε

2
σ z

j + ωa
†
j aj

)
, (A26)

Hc =
∑

j

gσ x
j (a†

j + aj ) + J (a†
j + aj )(a†

j+1 + aj+1), (A27)

Hdrive =
∑

j

∑
α

λα cos(
αt)σ z
j , (A28)
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where, for simplicity, we assume that all resonators have
the same frequency ωr and all qubits have the same tran-
sition frequency ε. Also, we assume that every resonator is
coupled to its own qubit with the same strength g and that
the driving amplitudes are site independent. Expanding the
resonator operators in momentum space (plane-wave basis),
ak = N−1/2∑

j e−ikj aj , with k ∈ 2π/N × Z, we can rewrite
the total Hamiltonian as

H = H ′
0 + H ′

c + Hdrive, (A29)

where

H ′
0 =

∑
j

ε

2
σ z

j +
∑

k

εka
†
kak, (A30)

H ′
c =

∑
k,j

g(e−ijkσ x
j a

†
k + H.c.), (A31)

with εk = ω + 2J cos(k). The latter is valid whenever ωr � J .
In this limit, the plane-wave basis diagonalizes the intercavity
interaction. In the interaction picture with respect to H ′

0 +
Hdrive, the interaction Hamiltonian is written as

H̃ ′
c(t) =

∑
k,j

g{eijk(σ+
j e2if (t) + σ−

j e−2if (t))ake
−iεk t + H.c.},

(A32)

where the time-dependent term is given by

f (t) = ε

2
t +
∑

α

λα


α

sin(
αt), (A33)

as can easily be obtained by integration. Now, we make
use of the Jacobi-Anger expansion for the exponential

terms,

exp[2if (t)] = exp

{
i

[
εt + 2

∑
α

λα


α

sin(
αt)

]}
(A34)

= exp(iεt)
∏
α

exp

[
2i

λα


α

sin(
αt)

]
(A35)

= exp(iεt)
∏
α

+∞∑
n=−∞

Jn

(
2

λα


λ

)
exp[in(
αt)],

(A36)

where Jn is the nth Bessel function of the first kind. Up to
first order in the ratio λα/
α → 0, we can safely neglect
all orders of Jn, except n = ±1, 0. In addition, we select
two driving frequencies (α = −,+) 
− = ε − (ω + δ) and

+ = ε + (ω + δ). According to our established hierarchy,
ε � ω, we can neglect all the fast rotating terms. Therefore,
we are left with

exp[2if (t)] = J0

(
2

λ−

−

)
J1

(
2

λ+

+

)
exp[−i(ωr + δ)t]

+ J0

(
2

λ+

+

)
J1

(
2

λ−

−

)
exp[i(ωr + δ)t].

(A37)
In order to simplify the notation, we will define

G+ = J0

(
2

λ+

+

)
J1

(
2

λ−

−

)
, (A38)

G− = J0

(
2

λ−

−

)
J1

(
2

λ+

+

)
. (A39)

Thus,

exp [2if (t)] = G− exp [−i(ω + δ)t] + G+ exp [i(ω + δ)t].

(A40)

Substituting (A40) in (A32) yields

H̃ ′
c(t) =

∑
kj

g(G+eikj exp[i(ω − εk + δ)t]ak + G−e−ikj exp[−i(ω − εk + δ)t]a†
k)σ+

j + H.c.

=
∑
kj

g(G+eikj exp{−i[2J cos(k) − δ]t}ak + G−e−ikj exp{i[2J cos(k) − δ]t}a†
k)σ+

j + H.c. (A41)

or

H̃ ′
c(t) =

∑
j

g(bj (t)σ+
j + H.c.), (A42)

with bj (t) given by

bj (t) =
∑

k

(G+eikj exp{−i[2J cos(k) − δ]t}ak

+G−e−ikj exp{i[2J cos(k) − δ]t}a†
k). (A43)

We will now proceed with the master equation,

d�

dt
= L0(�) + L1(�). (A44)

Here, L0 describes the dissipation induced by the bath on
the qubits (recall that we only take into account spontaneous-
emission processes), and therefore

L0(�) =
∑

j

γ

2
(2σ−

j �σ+
j − σ+

j σ−
j � − �σ+

j σ−
j ), (A45)

while L1 describes the unitary evolution due to the coupling:
L1� = −i[H̃ ′

c(t),�].
We want to study the dissipative dynamics induced on the

resonators by the qubits. For a strong dissipative dynamics
of the qubits, it is safe to assume that they remain fixed in
the ground state. Therefore, we can adiabatically eliminate
the degrees of freedom of the qubits. We start by defining the
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projector P ,

P� = μ ⊗ �q,ss = μ ⊗ �q1,ss ⊗ · · · ⊗ �qi,ss · · · ⊗ �qN,ss .

(A46)

Here, μ describes the system of resonators and we take the
ground state of all the qubits �qi,ss = |↓〉ii〈↓| as a fixed state.
In second-order perturbation theory (in L1), we obtain the
following effective dynamics for the resonators:

dμ

dt
= −

∫ ∞

0
dτ Trq{H̃ ′

c(t),eL0τ [H̃ ′
c(t − τ ),μ(t) ⊗ �q,ss]},

(A47)

where the Born-Markov approximation has already been per-
formed. Expanding the commutators in (A47), we can perform
the partial trace over the qubits. For this, we must take into
account (A42) and that σ+

j and σ−
j are eigenstates of the

superoperator L0, both with eigenvalue −γ /2. Thus, we are
left with

dμ

dt
=
∫ ∞

0
dτ e−γ /2τ

∑
j

g2{[b†j (t),bj (t − τ )μ(t)]

− [bj (t),μ(t)b†j (t − τ )]}. (A48)

Expanding the bj (t) operators and performing the integration
over the variable τ yields∫ ∞

0
dτ exp(−{γ /2 ± i[2J cos(k) + δ]}τ )

= 2/γ

1 ± 2i[2J cos(k) + δ]/γ
= 2

γ
, (A49)

which follows from the hierarchy of energies considered in
this work [cf. Eq. (7)]. From this, we arrive at the QME in the
interaction picture in position space,

dμ

dt
= 2g2

γ

∑
j

2bj (t)μ(t)b†j (t) − {b†j (t)bj (t),μ(t)}. (A50)

We note that γ � J is required to arrive at (A50). In fact,
the time evolution of the bj operators could be more in-
tricate, i.e., nonreducible to an analytic expression. For a
general evolution operator U , the time evolution is given
by bj (t) = U †(t)bj (0)U (t). Assuming a time-independent
Hamiltonian H , we have U (t) = exp(−iH t). Decomposing
the latter into eigenstates of H (H |α〉 = Eα|α〉) leads to
U (t) =∑α exp(−iEαt)|α〉〈α|. Performing the time integra-
tion in (A48) will lead to terms of the form∫ ∞

0
dτ e−γ /2τ bj (t − τ )

=
∑
αβ

ei(Eβ−Eα )t
∫ ∞

0
dτ e−[γ /2−i(Eα−Eβ )]τ |β〉〈β|bj (0)|α〉〈α|.

(A51)

If the characteristic energies associated to H are much smaller
than the coupling to the environment (γ � Eα), we again have,

for the integral,∫ ∞

0
dτ exp{−[γ /2 − i(Eα − Eβ)]τ }

= 2/γ

1 − 2i(Eα − Eβ)/γ
= 2

γ
. (A52)

Therefore, ∫ ∞

0
dτ exp(−γ /2τ )bj (t − τ )

= 2

γ

∑
αβ

ei(Eβ−Eα)t |β〉〈β|bj (0)|α〉〈α|

= 2

γ
bj (t), (A53)

and similarly for the Hermitian conjugated terms. This leads
again to Eq. (A50).

The final step consists of going back to the Schrödinger pic-
ture and expressing the QME in momentum space. From (A43),
the momentum-space operators ak evolve in time according
to ak exp{−i[2J cos(k) − δ]t}. Going back to the Schrödinger
picture implies canceling out these rotating terms. We can
fulfill this condition by applying the following transformation:

ak = U0(t)ak(t)U †
0 (t), (A54)

with U0(t) = exp{−i[2J cos(k) − δ]t}, to both sides of (A50).
Doing so, we arrive to the desired result,

dμ

dt
=
∑

k

−iωk[a†
kak,μ] + 2g2

γ
(2bk�b

†
k − {b†kbk,μ}),

(A55)

where we have defined ωk = 2J cos(k) − δ, and bk = G+ak +
G−a

†
−k .

b. Non-RWA coupling

Following Sec. III B, after engineering H by means of a two-
color driving and a time-dependent coupling J (t), we arrive at
the effective Hamiltonian,

H nRWA
eff = −

∑
j

δa
†
j aj + J (a†

j + aj )(a†
j+1 + aj+1)

+
∑

j

g(Gj+σ+
j aj + Gj−σ+

j a
†
j + H.c.). (A56)

In order to obtain the dissipative dynamics for the resonators,
we proceed as we did in the previous section. However, instead
of moving to the momentum space, we rewrite H nRWA

eff in an
interaction picture with respect to H̄ = −∑j δa

†
j aj + J (a†

j +
aj )(a†

j+1 + aj+1). This leads to

H nRWA
eff (t) =

∑
j

g[Gj+aj (t)σ+
j + Gj−a

†
j (t)σ+

j + H.c.],

(A57)
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where aj (t) = eiH̄ t aj e
−iH̄ t . By introducing the operators

bj (t) = Gj+aj (t) + Gj−a
†
j (t), the above yields

H nRWA
eff (t) =

∑
j

g[bj (t)σ+
j + H.c.]. (A58)

Here, we do not know the explicit time dependence of the
bj operators. Assuming again a strong dissipation for the
qubits, we can follow the general steps in Eqs. (A44)–(A48).
Regardless of the explicit evolution of the bj ’s, whenever the
energy scale associated with the transformation Hamiltonian
(in this case H̄ ) is much smaller than γ [as dictated by Eq. (7)],
we can always reduce (A48) to (A50). Going back to the
Schrödinger picture, we obtain

dμ

dt
= −i

⎡⎣∑
j

−δa
†
j aj + J (a†

1 + a1)(a†
2 + a2),μ

⎤⎦
+ 2g2

γ

∑
j

2bjμb
†
j − {b†j bj ,μ}. (A59)

APPENDIX B: EIGENVALUES FOR THE CASE
OF UNBALANCED GAIN AND LOSS

Diagonalizing Eq. (18) for the general (i.e., unbalanced gain
and loss) case γ̃1 �= γ̃2, we obtain the eigenfrequencies

ω′
±± = ±

{
δ2 − (γ̃1 + γ̃2)2

4
± 2δ

[
J 2− (γ̃1 + γ̃2)2

4

]1/2
}1/2

+ i
γ̃2 − γ̃1

2
. (B1)

It is seen that whenever γ̃1 �= γ̃2, there is no region in the
parameter space where (B1) is real (i.e., no complex part).
However, the eigenvalues may or may not coincide in their
real or imaginary parts, depending on the square roots in (B1).
The generalizations of the critical values (23) and (24) to the
imbalanced case therefore are

J < J ′
c1 = γ̃1 + γ̃2

2
(B2)

and

J ′
c2 = (γ̃1 + γ̃2)2 + 4δ2

8δ
< J. (B3)

This general behavior, for both RWA and non-RWA cases,
is shown in Fig. 7. There is always a nonzero imaginary
contribution to the normal frequencies [cf. last term in (B1)].
Even in this case, the phase transitions are clearly seen.

APPENDIX C: INPUT-OUTPUT

In a fully quantum treatment, the system (in our case, the
two-resonator two-qubit circuit) and the input-output transmis-
sion lines (cf. Fig. 1) are formally described by the Hamiltonian

H = Hsys +
∑
j,λ

∫
dωA

†
j,λ(ω)Aj,λ(ω)

+
∑

j

κj,λ(ω)[ajA
†
j,λ(ω) + H.c.], (C1)

(a)

J'c1

J'c2J'c2

0.0

0.5

1.0
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R
e(
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(b)
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(
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)

FIG. 7. Eigenfrequencies for the case of unbalanced gain and loss
between the resonators (B1) as a function of the resonator-resonator
coupling strength J . The background colors distinguish among three
regions: J < J ′

c1
(white), J ′

c1
< J < J ′

c2
(light gray), and J ′

c2
< J

(light yellow) [cf. Eqs. (B2) and (B3)]. The eigenfrequency ω′
+−

is plotted in black, while ω′
++ is plotted in blue. The dashed lines

correspond to the RWA (12), while the solid lines correspond to the
most general case (14). In (a), we plot the real part of ω′

+± and, in
(b), the imaginary part. Here we set δ = 1 as the unit and the effective
decay rates are γ̃1 = 0.1, γ̃2 = 0.3.

with [Aj,λ(ω),Aj ′,λ′(ω′)†] = δj,j ′ δλ,λ′ δ(ω − ω′) the quantized
modes in the input lines. Here we use the same labeling
j = 1,2, and λ = L,R, for different ports, as described in the
main text. For the sake of simplicity, we will consider that
both resonators are equally and symmetrically coupled to the
corresponding transmission lines.

The Heisenberg equations for the operators Aj,λ(ω), to-
gether with the definitions,

Ain
j,λ(t) =

∫ ∞

0
dω/

√
2π Aj,λ(ω,t0) e−iωt , (C2)

Aout
j,λ(t) =

∫ ∞

0
dω/

√
2π Aj,λ(ω,tf ) e−iωt , (C3)

yield the following relation for the output and input fields:

Aout
j,λ(t) = Ain

j,λ(t) − i

∫ ∞

0

dω√
2π

e−iωtκ(ω)
∫ ∞

−∞
dτeiωτ aj (τ ),

(C4)

where aj (τ ) = eiHτ aj e
−iHτ .
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In order to calculate the evolution of aj (τ ), we assume
coherent and low-power input signals. This allows us to write
the evolution for aj analogous to Eqs. (15),

d

dt
〈aj 〉 = i〈[Heff ,aj,λ]〉 − i

∑
λ

〈
Ain

j,λ(t)
〉

+ 2

γ
〈D†[bj ]aj 〉 + 2κ〈D†[aj ]aj 〉. (C5)

Compared to (15), the above expression includes an extra
dissipation channel (always loss) due to the coupling to the
feed lines, plus the driving due to the input signal. Without
loss of generality, we can work with a monochromatic signal
(any signal can be written in terms of monochromatic ones),〈

Ain
1,L(t)

〉 = α exp(iωdt). (C6)

Using linear response theory (LRT), we find

〈aj (τ )〉 = χAin

aj
exp(−iωdt),

χAin

aj
= 1

α

[
�ar (0) − iω

∫ ∞

0
dt�ar (t) exp(−iωt)

]
,

(C7)

where �ar (t) = 〈aj (t)〉 − 〈aj (t → ∞)〉 is the so-called re-
laxation response evolving with (15), without the drive. The
initial condition 〈aj (0)〉 is the equilibrium solution of (15) with
a constant drive 〈Ain

1R(t)〉 = α. This is the well-known LRT
result where the ac response can be related to a dc relaxation
experiment. With this result at hand, the calculation for 〈aj (τ )〉
is reduced to solving, in our case, a linear set of four coupled
differential equations.

The RWA case

Here we will discuss some simplifications that can be used
for computing 〈aj 〉 in the RWA case. The triumph of LRT is
to avoid the time-dependent problem (15) in the ac response
by using the formula in Eq. (C7). However, in the RWA case,
we do not need to use this general formalism. The calculations
are simpler by noting that we can work in a rotating basis
with the drive ωd [cf. Eq. (C6)]. In Eq. (C5), we have the
terms aj and a

†
j ′ appearing together. Thus, the equations are

time independent with just a shift in the frequency, δ − ωd .

Introducing the notation

αj := 〈aj 〉, (C8)

we can write

idtα1 = (δ − ωd )α1 + Jα2 − i(γ̃1 + κ)α1 − i
√

κ
〈
Ain

1,L

〉
,

idtα2 = (δ − ωd )α2 + Jα1 + i(γ̃2 − κ)α2. (C9)

There is an analogous set for the complex conjugates. Let us,
without loss of generality, consider the case where the input is
sent through the port 1L. Then, we have the following matrix
form:

idtα = (MRWA − iκI2)α + j, (C10)

with

j = −i
√

κ

(〈
Ain

1L

〉
0

)
. (C11)

In the rotating basis, the coherent input state (C6) is 〈Ain
1L〉 =

α. Then we find the response function,

χAin

aj
= α

eq
j , (C12)

with

α
eq
1 = i

√
κα

ω+ω−
[δ + i(γ̃2 − κ)], (C13)

α
eq
2 = − i

√
κα

ω+ω−
J, (C14)

where ω± is given by

ω± = δ + 1
2 [i(γ̃2 − γ̃1 − 2κ) ±

√
4J 2 − (γ̃1 + γ̃2)2].

(C15)

Then it is not difficult to solve the input-output relations in
Eq. (27). For example, we can measure the transmitted signal
in port 2L or 2R, obtaining〈

Aout
2R

〉 = iκεJ

ω+ω−
. (C16)
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