Graph-based solution batch management for Multi-Objective Evolutionary Algorithms
Resumen: In Alberto and Mateo [2], 2004, a graph-based structure used for manipulating populations of Multi-Objective Evolutionary Algorithms in a more efficient way than the structures existing at that point was defined. In this paper, an improvement of such tool is presented. It consists of the simultaneous insertion of a set of solutions (solution batch), instead of a single one, into the created graph structure. Furthermore, two experiments devoted to comparing the behavior of the new algorithms with the original version from Alberto and Mateo [2] and with a well-known non-dominated sorting algorithm are carried out. The first shows how the new version outperforms the original one in time and number of Pareto comparisons. The second experiment shows a reduction in the time needed in all the cases and an important reduction in the number of Pareto comparisons when inserting chains of dominated solutions. From these experiments it is verified that, in general, the new proposals save computational time and, in the majority of the cases, the number of Pareto comparisons carried out for the insertion. In addition, when the new proposals outperform the others, they increase their gain over them as the size of the population and/or the size of the batch increases. The new tool can also be used, for example, in parallel genetic algorithms such as the ones based on islands, to carry out the migrations of the solutions.
Idioma: Inglés
DOI: 10.1016/j.asoc.2017.10.042
Año: 2018
Publicado en: APPLIED SOFT COMPUTING 62 (2018), 619-635
ISSN: 1568-4946

Factor impacto JCR: 4.873 (2018)
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 11 / 106 = 0.104 (2018) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 20 / 133 = 0.15 (2018) - Q1 - T1

Factor impacto SCIMAGO: 1.216 - Software (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E58
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77015-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-01-17-21:24:01)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Estadística e Investigación Operativa



 Registro creado el 2018-11-07, última modificación el 2020-01-17


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)