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Abstract. We present a purely algebraic formulation (i.e. polynomial equations only) of the minimum-

cost multi-impulse orbit transfer problem without time constraints, while keeping all the variables with
a precise physical meaning. We apply general algebraic techniques to solve these equations (resultants,

Gröbner bases, etc.) in several situations of practical interest of different degrees of generality. For
instance, we provide a proof of the optimality of the Hohmann transfer for the minimum fuel 2-impulse

circular to circular orbit transfer problem, and we provide a general formula for the optimal 2-impulse

in-plane transfer between two rotated elliptical orbits under a mild symmetry assumption on the two
points where the impulses are applied (which we conjecture that can be removed).

1. Introduction

Since the start of the space age with the first launch of a satellite to space (Sputnik in 1957), the interest
in the study of space maneuvers that use the available resources like time and fuel efficiently has been
growing steadily. In many real life cases, a satellite can serve multiple purposes, requiring for that a
change of its orbit. Some maneuvering is also needed during the initial launch of a satellite, or when a
spare satellite has to be brought to its intended orbit.
Maneuvering a satellite can be done in two different ways: continuous thrust or a sequence of instanta-
neous and discrete impulses. This paper focuses on the latter.
The orbit transfer problem with a fixed time of flight was studied by Lambert, who provided a solution
in the case of two impulses. For a discussion of this problem, see [14].
However, the scarcest resource in space is fuel, since it represents a load on the spacecraft that cannot
be too large to avoid launching problems and to reduce costs. For this reason, we focus our attention on
the minimum fuel transfer problem with unconstrained time. Using the well-known Tsiolkovsky rocket
equation, we consider the sum of the individual impulses (difference between velocities before and after
the thrust is applied) as the cost function. This usually appears in the literature as ∆v.
In the case of a transfer between two circular coplanar orbits, Hohmann gave an explicit solution with
two impulses in [7], which was later proven optimal analytically by Barrar [3]. For the case with three
impulses, Hoelker and Silber [8] have shown that a bi-elliptical transfer has a lower fuel requirement
than the Hohmann transfer for some special initial and final orbits. Roth [10] extended the notion of
bi-elliptical transfer to the case of two inclined orbits.
In this paper, we provide a detailed study of transfers between two circular orbits, including out-of-
plane maneuvers and also the possibility that the initial and final angular momentum point in opposite
directions. In all cases, we have proven algebraically that the Hohmann transfer is optimal for two
impulses.
Another problem of interest is transferring a satellite between predetermined points in the initial and
final orbits. This situation was studied by Avendaño and Mortari in [1], where they provided a closed-
form solution. Here, we reobtain this solution algebraically, applying a much more efficient method.
Previous attempts to solve this problem involved the use of iterative methods or an equation that needs
to be solved numerically (see [2, 6, 9, 12, 13]).

1

ar
X

iv
:1

50
8.

02
24

3v
1 

 [
m

at
h-

ph
] 

 1
0 

A
ug

 2
01

5
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The last problem we study is the optimal transfer between two identical ellipses that are coplanar and
rotated a fixed angle. This case was studied numerically by Bender in [4]. However, we provide an
algebraic solution, which is fully explicit under a mild symmetry assumption.
This paper is organized as follows. In Section 2 we have compiled all the equations of Celestial Mechanics
that we will need in the paper. In Section 3, we present an algebraic approach to the multi-impulse
minimum-cost orbit transfer problem. We have put special emphasis in explaining the physical meaning
of all the variables involved. Three kinds of problems are studied: point to point, point to orbit and
orbit to orbit. We also consider two possible cost functions.
In Section 4, we present our solution to the general point-to-point problem with two impulses and cost
function as in [1]. In Section 5, we provide a solution to a generalized version of the Hohmann transfer
where out-of-plane maneuvers are allowed.
Finally, the orbit-to-orbit problem between identical and coplanar orbits is studied in Section 6. The
solution we obtain requires solving a large system of polynomial equations, which can be solved explicitly
if we assume a symmetry condition. We have done extensive numerical tests showing that the symmetry
condition is always satisfied in them.

2. Keplerian motion

The motion of a particle in a Keplerian gravitational force field is given by the solution of the second-
order differential equation

(1) ~r(t0) = ~r0, ~̇r(t0) = ~v0, ~̈r = − µ

|~r|3
~r,

where µ > 0 is the standard gravitational parameter of the field, ~r0 and ~v0 are the initial position and
velocity, and ~r(t) is the position of the particle as a function of time. For any solution of Eq.(1), the
angular momentum vector

~h = ~r × ~̇r,
the eccentricity vector

(2) ~e =
~̇r × ~h
µ
− ~r

|~r|
,

and the total energy

E =
|~̇r|2

2
− µ

|~r|
are constants with respect of time [11, Ch. 8.3]. The vectors ~h and ~e are always orthogonal, i.e.

~h · ~e = 0,

and any pair of mutually orthogonal vectors ~h and ~e can be obtained for some initial conditions ~r0 and
~v0. Moreover, the total energy satisfies

1− |~e|2 = −2E|~h|2

µ2
,

so its value can be determined from ~h and ~e alone when ~h 6= ~0.
The angular momentum is always orthogonal to ~r, i.e.

(3) ~r · ~h = 0,

so the motion is planar. Besides, it follows from Eq.(2) that

(4) |~r|+ ~e · ~r =
~̇r × ~h
µ
· ~r =

|~h|2

µ
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is also constant, which is the implicit equation of a conic with one focus at the origin, eccentricity e = |~e|
and semilatus rectum p = |~h|2/µ, when p 6= 0. In the case e > 1, i.e. when the conic is a hyperbola, the
equation describes only the branch in which the particle is moving. The degenerate case p = 0 will be

discussed later in this section. Finally, multiplying Eq.(2) by ~h and moving some terms, we obtain an
expression for the velocity of the particle at any given position:

(5) ~̇r = µ
~h

|~h|2
×
(
~e+

~r

|~r|

)
.

It is important to note that, when the orbit is an ellipse (e < 1), any point ~r that satisfies Eq. (3) and
Eq. (4) will be visited by the particle at some time t ≥ t0 since the motion is periodic. However, this is
not true when e ≥ 1 because in the case of a parabolic (e = 1) or hyperbolic (e > 1) trajectory only the
points satisfying the extra condition

(~r × ~r0) · ~h ≤ 0

will be visited.
As we mentioned above, the case p = 0 needs to be discussed separately. Here we have ~h = ~0, so ~r0

is parallel to ~v0. The eccentricity vector ~e = − ~r
|~r| is constant, so the trajectory is contained in the

line through the origin with direction ~e. There are two possible cases: either the initial velocity is high
enough to escape the gravitational attraction of the field or the particle will first move in the direction
~v0 until a point where its velocity becomes zero and then come back towards the origin, thus entering
in a periodic motion.
To avoid the extra complexity needed to handle parabolic and hyperbolic motions, as well as the degen-
erate case p = 0 described above, we restrict our analysis to elliptic orbits, e < 1, and non-degenerate

trajectories, ~h 6= ~0.
In order to work with polynomial equations, we need to remove the divisions, the square roots and the
constant µ from some of the equations above, so we introduce the vectors

~̂r =
~r

|~r|
, ~w =

~̇r
√
µ
, ~l =

√
µ
~h

|~h|2
, ~s = ~l × ~e .

Note that ~l and ~s are orthogonal, i.e.

(6) ~l · ~s = 0,

and that the angular momentum and eccentricity vectors can be simply recovered as

~h =
√
µ
~l

|~l|2
, ~e =

~s×~l
|~l|2

.

Of course, the case ~l = ~0 has to be excluded, and the condition e < 1 translates into |~s| < |~l|.
Any unit vector ~̂r orthogonal to ~l, i.e.

(7) ~̂r · ~̂r = 1, ~̂r ·~l = 0,

determines a point on the orbit. The exact location can be obtained from Eq. (4),

(8)
1

|~r|
= |~l|2 + (~s×~l) · ~̂r,

and the velocity of the particle at that point is, according to Eq. (5),

(9) ~w = ~s+~l × ~̂r .

Finally, note that in the case of elliptic orbits (|~s| < |~l|), the right-hand side of Eq. (8) is always positive,
so no extra inequalities are needed to guarantee a valid value of |~r|−1.
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•
F

•S
~r

~l

~h

~e

~s~̇r

Figure 1. Ellipse with focus F and a satellite S on it.

3. Multi-impulse orbit transfers

An n-impulse orbit transfer is represented algebraically by the vectors

~l0,~l1, . . . ,~ln, ~s0, ~s1, . . . , ~sn, ~̂r0, ~̂r1, . . . , ~̂rn−1

where the pair (~li, ~si) determines the i-th orbit and ~̂ri corresponds to the point where the impulse is
applied to change from the i-th to the (i+ 1)-th orbit. These vectors, according to Eqs.(6),(7) and (8),
are constrained by

~li · ~si = 0,(10)

~li 6= 0,(11)

|~si| < |~li|,(12)

for i = 0, . . . , n, and

~li · ~̂ri = 0,(13)

~li+1 · ~̂ri = 0,(14)

|~̂ri|2 = 1,(15)

|~li|2 + (~si ×~li) · ~̂ri, = |~li+1|2 + (~si+1 ×~li+1) · ~̂ri,(16)

for all i = 0, . . . , n− 1. Conversely, any sequence of vectors satisfying all these restrictions represents a
valid n-impulse transfer. Moreover, all the equations are invariant under rotation by a fixed angle and

rescaling of the ~li and ~si.
The following table shows the number of unknowns and algebraic equations that define the configuration
space for each type of n-impulse transfer (n ≥ 2).

3d-transfer 2d-transfer
#unknowns #equations #unknowns #equations

Point to Point 9n− 12 5n− 5 5n− 7 2n− 2
Point to Orbit 9n− 9 5n− 3 5n− 5 2n− 1
Orbit to Orbit 9n− 6 5n− 1 5n− 3 2n

In the orbit to orbit problem, the vectors ~l0, ~s0, ~ln, ~sn are given and the remaining variables are

considered unknowns. In the point to orbit, the initial point is given, so ~̂r0 is also known, thus reducing
the number of unknowns (and equations). Finally, in the point to point problem, the final point is also

given, i.e. ~̂rn−1 is known.
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The two-dimensional version of these problems considers all orbits in the z = 0 plane, so ~li = (0, 0, liz),

~si = (six, siy, 0) and ~̂ri = (xi, yi, 0), hence the reduced number of variables and equations needed to
handle them.
The velocities at the points ~̂ri, immediately before and after the impulse is applied, are written ~wi and
~w∗i , respectively. It follows from Eq.(9) that

~wi = ~si +~li × ~̂ri,(17)

~w∗i = ~si+1 +~li+1 × ~̂ri.(18)

The cost (fuel-wise) of such a transfer is proportional to the sum of ∆i = |~wi − ~w∗i |, denoted hereafter
by f1. To avoid the square roots that are implicitly present in ∆i, we also consider a cost function f2

which is the sum of the squares of the ∆i:

f1 =

n−1∑
i=0

|~wi − ~w∗i |, f2 =

n−1∑
i=0

|~wi − ~w∗i |2 .

If the vectors ~li and ~si are rescaled by a factor c, then f1 and f2 are multiplied by a factor |c| and |c|2,
respectively.
When the cost function f1 is used, the trick to avoid the square roots consists of considering ∆i as a
variable, redefining the cost function as

f1 =

n−1∑
i=0

∆i

and adding the algebraic equations

∆2
i = |~si − ~si+1|2 + |~li −~li+1|2 + 2((~si − ~si+1)× (~li −~li+1)) · ~̂ri ,

for i = 0, . . . , n − 1. The last equations can be obtained by substituting Eqs.(17) and (18) into the
definition of ∆i :

∆2
i = |~wi − ~w∗i |2 = |~si +~li × ~̂ri − ~si+1 −~li+1 × ~̂ri|2

= |~si − ~si+1|2 + |~li −~li+1|2 + 2((~si − ~si+1)× (~li −~li+1)) · ~̂ri .
At this point we have a classical problem of constrained minimization, which we approach with Lagrange
multipliers.

Theorem 1 (Lagrange multipliers). Let q, q1, . . . , qm : Rk → R in C∞ and p ∈ Rk a common zero
of q1, . . . , qm be such that the vectors ∇q1(p), . . . ,∇qm(p) are linearly independent. Then p is a local
extremum of q on the manifold defined by {q1 = · · · = qm = 0} if and only if there exists λ1, . . . , λm ∈ R
such that ∇q(p) = λ1∇q1(p) + · · ·+ λm∇qm(p).

In our case, we have an algebraic variety V = {q1 = . . . = qm = 0} ⊆ Rk, defined by polynomials
q1, . . . , qm ∈ R[x1, . . . , xk], and another polynomial function q that we want to minimize on V . In order
to apply Theorem 1, we need to exclude first the points where ∇q1(p), . . . ,∇qm(p) are not linearly
independent, which is, by definition, the set of singular points V ∗ of V . Computationally, V ∗ is the set
of points of V where all m×m minors of the matrix [∂qi/∂xj ]1≤i≤m,1≤j≤k have zero determinant:

V ∗ =

{
p ∈ Rk : q1 = · · · = qm = 0 ∧

∣∣∣∣ ∂(q1, . . . , qm)

∂(xj1 , . . . , xjm)

∣∣∣∣ = 0,∀J = {j1, . . . , jm} ⊆ {1, . . . , k}
}
.

These points have to be considered critical points (i.e. they are potential local extrema) and have to be
evaluated separately.
On the remaining points, V \ V ∗, the local extrema can be found directly by Theorem 1, solving the
system of m+ k equations q1 = · · · = qm = 0 and ∇q = λ1∇q1 + · · ·+ λm∇qm in the m+ k unknowns
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x1, . . . , xk, λ1, . . . , λm ∈ R, and disregarding the solutions with (x1, . . . , xk) ∈ V ∗. Removing these
solutions is actually not needed since they are always critical points. The set of solutions of the m+ k
equations described above and the set of all critical points of q are denoted Vq and V crit

q , respectively:

(19)
Vq =

{
(x1, . . . , xk, λ1, . . . , λm) ∈ Rm+k : q1 = · · · = qm = 0 ∧ ∇q = λ1∇q1 + · · ·+ λm∇qm

}
,

V crit
q = V ∗ ∪ πk (Vq) ⊆ Rk,

where πk : Rm+k → Rk is the projection onto the first k coordinates.
Including the Lagrange multipliers, and the extra variables ∆i for i = 0, . . . , n− 1 when minimizing f1

instead of f2, we get the following total number of unknowns (which is equal to the number of equations):

min(f1) min(f2)
3d-transfer 2d-transfer 3d-transfer 2d-transfer

Point to Point 16n− 17 9n− 9 14n− 17 7n− 9
Point to Orbit 16n− 12 9n− 6 14n− 12 7n− 6
Orbit to Orbit 16n− 7 9n− 3 14n− 7 7n− 3

By using standard linear algebra, it is possible to eliminate all the Lagrange multipliers:

(20) V crit
q = V ∗ ∪


q1 = · · · = qm = 0∣∣∣∣ ∂(q, q1, . . . , qm)

∂(xj1 , . . . , xjm+1
)

∣∣∣∣ = 0, ∀J = {j1, . . . , jm+1} ⊆ {1, . . . , k}

 .

The expression above shows that V crit
q can be written as the union of two algebraic varieties in Rk.

4. Minimum ∆v2 Lambert problem

In this problem, the vectors ~r0, ~r1, ~w0, ~w∗1 are known, from which the vectors ~l0, ~l2, ~s0, ~s2 can be

computed directly. The unknowns are ~l1 and ~s1, from which we can deduce ~w∗0 and ~w1. There are two
cases, depending on whether ~r0 and ~r1 are linearly independent or not.
In the first case, we can assume without loss of generality that ~r0 and ~r1 both lie on the xy-plane, so the

unknowns can be written ~l1 = (0, 0, l1z) and ~s1 = (s1x, s1y, 0). We can further assume that ~̂r0 = (1, 0, 0)

and ~̂r1 = (x1, y1, 0) with y1 6= 0 and x2
1 + y2

1 = 1. Finally, if we define k0 = |~r0|−1 and k1 = |~r1|−1, we
obtain the following two restrictions:

q1 := l21z + l1zs1y − k0 = 0,(21)

q2 := l21z + l1z(x1s1y − y1s1x)− k1 = 0.(22)

From Eq. (9), the velocities ~w∗0 and ~w1 are

~w∗0 = ~s1 +~l1 × ~̂r0 = (s1x, s1y + l1z, 0),(23)

~w1 = ~s1 +~l1 × ~̂r1 = (s1x − l1zy1, s1y + l1zx1, 0),(24)

and the impulses ∆0 and ∆1 are given by

∆0 = |~w∗0 − ~w0| = |(s1x − w0x, s1y + l1z − w0y,−w0z)|,(25)

∆1 = |~w∗1 − ~w1| = |(w∗1x − s1x + l1zy1, w
∗
1y − s1y − l1zx1, w

∗
1z)|,(26)

so the cost function q = f2 = ∆2
0 + ∆2

1 is

q := (s1x − w0x)2 + (s1y + l1z − w0y)2 + (w0z)2 + (w∗1x − s1x + l1zy1)2 + (w∗1y − s1y − l1zx1)2 + (w∗1z)2.

We compute the critical points of q using Eq. (20). In this case, V ∗ = ∅ because∣∣∣∣ ∂(q1, q2)

∂(s1x, s1y)

∣∣∣∣ = l21zy1 = 0
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is impossible since l1z 6= 0 and y1 6= 0. Therefore, Eq. (20) reduces to

(27) V crit
q =

{
q1 = q2 =

∣∣∣∣ ∂(q, q1, q2)

∂(s1x, s1y, l1z)

∣∣∣∣ = 0

}
.

We will solve Eqs. (27) using the technique explained in [5, Ch.2]. In order to do that, we com-
puted the Gröbner basis of V crit

q in the polynomial ring K[s1x, s1y, l1z] over the field of fractions

K = Frac
(
Q[k0, k1, x1, y1, ~w0, ~w

∗
1 ]/〈x2

1 + y2
1 − 1〉

)
with respect to the lexicographic monomial order

s1x > s1y > l1z, obtaining I = 〈p1, p2, p3〉, where

p1 = k0y1 · s1x − (k0x1 − k1) · s1y − (k0 − k1) · l1z
p2 = (2(k2

0 − k2
1)2 + 8k2

0k
2
1y

2
1) · s1y

+ (4k3
0x1 + 2k3

0y
2
1 − 4k3

0 + 4k2
0k1x1y

2
1 − 8k2

0k1x1 − 8k2
0k1y

2
1 + 8k2

0k1

+ 4k0k
2
1x1 + 2k0k

2
1y

2
1 − 4k0k

2
1) · l31z

+ (k3
0x1y

2
1w
∗
1y − k3

0x1y1w0x − k3
0x1y1w

∗
1x − k3

0y
3
1w
∗
1x − k3

0y
2
1w
∗
1y + k3

0y1w0x

+ k3
0y1w

∗
1x − 2k2

0k1x1y
3
1w
∗
1x − 2k2

0k1x1y
2
1w
∗
1y + 2k2

0k1x1y1w0x + 2k2
0k1x1y1w

∗
1x

− 2k2
0k1y

4
1w
∗
1y + 2k2

0k1y
3
1w0x + 2k2

0k1y
3
1w
∗
1x + 2k2

0k1y
2
1w
∗
1y − 2k2

0k1y1w0x

− 2k2
0k1y1w

∗
1x + k0k

2
1x1y

2
1w
∗
1y − k0k

2
1x1y1w0x − k0k

2
1x1y1w

∗
1x − k0k

2
1y

3
1w
∗
1x

− k0k
2
1y

2
1w
∗
1y + k0k

2
1y1w0x + k0k

2
1y1w

∗
1x) · l21z

+ (2k4
0 + 8k2

0k
2
1y

2
1 − 4k2

0k
2
1 + 2k4

1) · l1z
− (k4

0x1y1w0x + k4
0x1y1w

∗
1x + k4

0y
2
1w0y + k4

0y
2
1w
∗
1y + 2k3

0k1x1y
2
1w0y + 2k3

0k1x1y
2
1w
∗
1y

− 2k3
0k1y

3
1w0x − 2k3

0k1y
3
1w
∗
1x + k3

0k1y1w0x + k3
0k1y1w

∗
1x − k2

0k
2
1x1y1w0x

− k2
0k

2
1x1y1w

∗
1x + k2

0k
2
1y

2
1w0y + k2

0k
2
1y

2
1w
∗
1y − k0k

3
1y1w0x − k0k

3
1y1w

∗
1x)

p3 = 2y4
1 · l41z + (x1y

4
1w
∗
1y − x1y

3
1w0x + x1y

3
1w
∗
1x − y5

1w
∗
1x + y4

1w
∗
1y − y3

1w0x + y3
1w
∗
1x) · l31z

− (k0x1y
3
1w0x + k0x1y

3
1w
∗
1x − 2k0x1y

2
1w0y − 2k0x1y

2
1w
∗
1y − 2k0x1y1w0x

− 2k0x1y1w
∗
1x + k0y

4
1w0y + k0y

4
1w
∗
1y + 2k0y

3
1w0x + 2k0y

3
1w
∗
1x − 2k0y

2
1w0y

− 2k0y
2
1w
∗
1y − 2k0y1w0x − 2k0y1w

∗
1x + 2k1x1y1w0x + 2k1x1y1w

∗
1x − k1y

3
1w0x

− k1y
3
1w
∗
1x + 2k1y1w0x + 2k1y1w

∗
1x) · l1z

− (4k2
0x1 − 2k2

0y
2
1 + 4k2

0 + 4k0k1x1y
2
1 − 8k0k1x1 + 8k0k1y

2
1 − 8k0k1 + 4k2

1x1 − 2k2
1y

2
1 + 4k2

1)

The equation p3 allows one to solve for l1z, which can be substituted in p2 to get s1y and, finally, in p1

to obtain s1x. This can be done since the leading coefficient in each equation is not zero.

Now we deal with the case when the vectors ~r0 and ~r1 are linearly dependent. We can reduce to either

~̂r0 = ~̂r1 = (1, 0, 0) or ~̂r0 = −~̂r1 = (1, 0, 0). There is no need to use all the machinery that we developed
so far to handle these two degenerate cases. The following discussion shows how to solve both situations
with simple geometric arguments.

In the former case, i.e. ~̂r0 = ~̂r1 = (1, 0, 0), we must have k0 = k1 and ~w∗0 = ~w1 by Eqs. (21)–(24).
The cost function f2 can be expressed entirely in terms of the independent variables w∗0x, w∗0y, w∗0z, as
follows:

f2 = (w0x − w∗0x)2 + (w0y − w∗0y)2 + (w0z − w∗0z)2 + (w∗1x − w∗0x)2 + (w∗1y − w∗0y)2 + (w∗1z − w∗0z)2.
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The critical points can be found by setting the partial derivatives of f2 with respect to w∗0x, w∗0y, w∗0z to
zero and solving the resulting system of equations. Doing so, only one solution appears:

w∗0x = w1x =
w0x + w∗1x

2
, w∗0y = w1y =

w0y + w∗1y
2

, w∗0z = w1z =
w0z + w∗1z

2
.

In the other case, i.e. ~̂r0 = −~̂r1 = (1, 0, 0), the values of k0 and k1 are not necessarily equal, hence
~r0 = (k−1

0 , 0, 0) and ~r1 = (−k−1
1 , 0, 0), but w1 can be expressed in terms of w∗0 . Indeed, the conservation

laws for the angular momentum ~h and eccentricity vector ~e in the intermediate orbit imply that ~r0× ~w∗0 =

~r1 × ~w1 and ~w∗0 × (~r0 × ~w∗0)− ~̂r0 = ~w1 × (~r1 × ~w1)− ~̂r1, respectively, from which it follows that:

w1x = w∗0x, w1y = −k1

k0
w∗0y, w1z = −k1

k0
w∗0z.

The cost function f2 can be written in terms of the independent variables w∗0x, w∗0y, w∗0z, as follows:

f2 = (w0x−w∗0x)2 + (w0y−w∗0y)2 + (w0z−w∗0z)2 + (w∗1x−w∗0x)2 +

(
w∗1y +

k1

k0
w∗0y

)2

+

(
w∗1z +

k1

k0
w∗0z

)2

.

Taking partial derivatives and solving the resulting system of equations, we get the unique solution:

w∗0x =
w0x + w∗1x

2
, w∗0y = k0

k0w0y − k1w
∗
1y

k2
0 + k2

1

, w∗0z = k0
k0w0z − k1w

∗
1z

k2
0 + k2

1

.

5. Optimality of the Hohmann transfer

In this problem, we want to find the optimal 2-impulse transfer between concentric and coplanar circular
orbits. Assuming that the plane that contains both initial and final orbits is orthogonal to (0, 0, 1) and
that the initial point is on the x-axis, we can reduce to the following situation:

~l0 = (0, 0, l0z), ~l2 = (0, 0, l2z), ~s0 = ~s2 = (0, 0, 0), ~̂r0 = (1, 0, 0),

where l0z and l2z are not zero.
The nine unknowns are the components of the vectors ~l1 = (l1x, l1y, l1z), ~s1 = (s1x, s1y, s1z) and ~̂r1 =
(x1, y1, z1). The seven equations relating them are:

l1xs1x + l1ys1y + l1zs1z = 0

l1x = 0

l1xx1 + l1yy1 + l1zz1 = 0

l2zz1 = 0

x2
1 + y2

1 + z2
1 = 1

l20z = l21x + l21y + l21z + s1yl1z − s1zl1y

l22z = l21x + l21y + l21z + x1(s1yl1z − s1zl1y) + y1(s1zl1x − s1xl1z) + z1(s1xl1y − s1yl1x)

Since l2z 6= 0, we have that z1 = 0. Substituting l1x = 0 and z1 = 0 in the third equation, we get
l1yy1 = 0. We will discuss two cases: l1y = 0 and l1y 6= 0 (which means that y1 = 0).

Case l1y = 0. Here we can reduce to ~l1 = (0, 0, l1z), ~s1 = (s1x, s1y, 0) and ~̂r1 = (x1, y1, 0), subject to the
following conditions: 

x2
1 + y2

1 = 1

l20z = l21z + s1yl1z

l22z = l21z + x1s1yl1z − y1s1xl1z
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Since we want to minimize the function f1, we need to introduce the two extra variables ∆0 and ∆1,
which represent the magnitude of each impulse and the following two restrictions:{

∆2
0 = s2

1x + (s1y + l1z − l0z)2

∆2
1 = (s1x − l1zy1 + l2zy1)2 + (s1y + l1zx1 − l2zx1)2

Using Lagrange multipliers as in Eq.(19), we computed the reduced Gröbner basis in the polynomial
ring Q(l0z, l2z)[λ1, . . . , λ5,∆0,∆1, s1x, s1y, l1z, x1, y1] with respect to the lexicographic monomial order
λ1 > · · · > λ5 > ∆1 > ∆0 > s1x > s1y > l1z > x1 > y1, obtaining the following two solutions:

x1 = −1, y1 = 0, l1z = ±
√
l20z + l22z

2
, s1x = 0, s1y =

l20z − l22z
l20z + l22z

l1z .

The cost function f1 = ∆0 + ∆1 at each of those solutions becomes:

(28) f1 =

∣∣∣∣∣ ±
√

2l20z√
l20z + l22z

− l0z

∣∣∣∣∣+

∣∣∣∣∣ ±
√

2l22z√
l20z + l22z

− l2z

∣∣∣∣∣ .
A simple computation shows that the sign of the optimum l1z (and also the sign of the numerators in the
previous expression) coincides with the sign of l0z + l2z. This case corresponds to the classical Hohmann
solution.

Case l1y 6= 0. Since l1yy1 = 0 and x2
1 + y2

1 = 1, this case is only possible when y1 = 0 and x1 = ±1.
When x1 = 1, we have l20z = l22z, so the the orbits are of the same radius. If l0z = l2z, the initial and final
orbits are exactly the same and no maneuver is needed. On the other hand, if l0z = −l2z, the satellite

must change the direction of rotation in two impulses, both at the same point, so ~̂r0 = ~̂r1 and ~w∗0 = ~w1.
There are clearly infinitely many optimal solutions with f1 = ∆1 + ∆2 = 2|~w0|.
It only remains the case x1 = −1. Here the unknowns are ~l1 = (0, l1y, l1z) and ~s1 = (s1x, s1y, s1z),
subject to the equations 

l1ys1y + l1zs1z = 0

l20z = l21y + l21z + s1yl1z − s1zl1y

l22z = l21y + l21z − s1yl1z + s1zl1y.

The impulses are {
∆2

0 = s2
1x + (s1y + l1z − l0z)2 + (s1z − l1y)2

∆2
1 = s2

1x + (s1y − l1z + l2z)2 + (s1z + l1y)2

and the cost function is f1 = ∆0 + ∆1. We computed the Gröbner basis of Eq.(19) in the ring
Q(l0z, l2z)[λ1, . . . , λ5,∆0,∆1, s1x, s1y, s1z, l1y, l1z] with respect to the lexicographic monomial order λ1 >
· · · > λ5 > ∆1 > ∆1 > s1x > s1y > s1z > l1y > l1z, obtaining the following two optimal solutions:

l1z =
l50z + l40zl2z + 4l30zl

2
2z + 4l20zl

3
2z + l0zl

4
2z + l52z

4l0zl2z(l20z + l0zl2z + l22z)

l1y = ±
√
l20z + l22z

2
− l21z

s1z = − l
2
0z − l22z
l20z + l22z

l1y

s1y =
l20z − l22z
l20z + l22z

l1z

s1x = 0
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These solutions are defined only when a1 <
l2z
l0z

< a2, where a1 and a2 are the real roots of a4 +2a3 +2a+

1 = 0. In particular, the sign of l2z
l0z

must be negative. Substituting these solutions in the cost function

f1 and comparing with Eq.(28), it can be checked that the solution of the previous case is always better.

6. Two rotated ellipses

In this orbit-to-orbit transfer problem, we will assume that the initial and final orbits are two identical
ellipses rotated an angle α ∈ (0, π] lying on the same plane. We will restrict our optimization to
intermediate orbits that also lie within the same plane, i.e. to a two-dimensional orbit transfer problem.

Without loss of generality, we can assume that ~l0 = (0, 0, l0z), ~l2 = (0, 0, l2z), ~s0 = (s0x, s0y, 0), ~s2 =

(s2x, s2y, 0) are given, and that we have to find ~̂r0 = (x0, y0, 0), ~̂r1 = (x1, y1, 0), ~l1 = (0, 0, l1z) and
~s1 = (s1x, s1y, 0). In order to guarantee that the initial and final orbits have the same eccentricity and
semi-major axis, and to maximize the symmetry of the equations, we impose l2z = l0z = 1 (since the
problem does not depend on the semi-major axis), s2x = −s0x and s2y = s0y. This ensures that the
orbits are identical, but rotated an angle α = 2 arctan(s0x/s0y). Both orbits are also symmetric with
respect to the x-axis. Finally, we need two extra variables ∆0 and ∆1 to represent the two impulses.

For general ellipses, with arbitrary semi-latus rectum p, all the values~l1, ~s1, ~w∗0 , ~w1, ∆0 and ∆1 calculated
in this section have to be divided by

√
p.

The discussion above reduces the problem to two parameters s0x, s0y, nine unknowns x0, y0, x1, y1, s1x,
s1y, l1z, ∆0, ∆1, six equations

eq1 :=x2
0 + y2

0 = 1

eq2 :=x2
1 + y2

1 = 1

eq3 :=l21z + l1z(x0s1y − y0s1x)− 1− x0s0y + y0s0x = 0

eq4 :=l21z + l1z(x1s1y − y1s1x)− 1− x1s0y − y1s0x = 0

eq5 :=∆2
0 = (s0x − s1x)2 + (s0y − s1y)2 + (1− l1z)2 + 2(1− l1z)(x0(s0y − s1y)− y0(s0x − s1x))

eq6 :=∆2
1 = (s0x + s1x)2 + (s0y − s1y)2 + (1− l1z)2 + 2(1− l1z)(x1(s0y − s1y) + y1(s0x + s1x))

and a cost function f1 = ∆0 + ∆1.
After introducing the Lagrange multipliers, the algebraic problem has 15 equations and 15 unknowns.
Although such a system is expected to have a finite number of solutions, this is not true in our problem,
so some special treatment is needed. We will divide the problem in several cases, which will be discussed
below.

Case 1: We impose the extra condition y0 + y1 6= 0, which is done algebraically by introducing an
additional variable k and adding the equation 1 − k(y0 + y1) to the system. Geometrically, this new
system looks for orbit transfers that are not symmetric with respect to the x-axis. We have no proof that
the system has always a finite number of solutions, but we have collected extensive numerical evidence
that this is indeed true. The best orbit transfer never happened to come from this case, as shown in
Subsection 6.1.

Case 2: Now we consider the remaining case, i.e. y0 +y1 = 0. It follows from eq1 and eq2 that x1 = ±x0,
so we split the analysis again: x0 = x1 (case 2a) and x0 = −x1 (case 2b). The former represents transfers
whose initial and final points are symmetric with respect the x-axis, and the latter is a degenerate case
when the initial point, the final point and the origin are collinear. Both cases have a finite number of
solutions, which we will compute explicitly below.

Case 2a: We assume here that x1 = x0 and y1 = −y0. Subtracting eq4 from eq3, we obtain that
y0s1x = 0. When y0 = 0, we have x0 = x1 = ±1 and the cost function can be written as f1 =
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(s1x − s0x)2 +A +

√
(s1x + s0x)2 +A, where A is an expression that does not involve s1x. Since

s1x vanishes from all the equations when y0 = 0, we can consider it as a free variable. Setting the
derivative of f1 with respect to s1x to zero and solving the equation gives s1x = 0 after some algebraic
manipulation. Now substituting x0 = x1 = ±1, y0 = y1 = 0, s1x = 0 in the equations, leaves us
with only one restriction l21z ± l1zs1y ∓ s0y = 1. Solving for s1y and substituting everything in the cost
function f1, we get a minimization problem with only l1z as a free variable, which gives the following
two solutions:

(29) x0 = x1 = ±1, y0 = y1 = 0, s1x = 0, s1y = s0y, l1z = 1, f1 = 2|s0x|.

It only remains to see what happens when s1x = 0 and y0 6= 0. Comparing eq5 and eq6 shows that
∆0 = ∆1, so we can replace the cost function f1 by

1

2
f2 = ∆2

0 = s2
0x + (s0y − s1y)2 + (1− l1z)2 + 2(1− l1z)(x0(s0y − s1y)− y0s0x).

This reduces the problem to four unknowns x0, y0, s1y, l1z, subject to two equations eq1 and eq3. The
case x0 = 0 leads easily to the following two solutions:

(30)
x0 = x1 = 0, y0 = ±1, y1 = ∓1, s1x = 0, s1y = s0y, l1z =

√
1∓ s0x,

f1 = 2|1∓ s0x ∓
√

1∓ s0x|.

A straightforward verification shows that |s0x| > 2|1∓s0x∓
√

1∓ s0x| for all s0x ∈ (−1, 1), which means
that the solution (30) is always better than (29).
From now on, we assume that x0 6= 0. This allows us to express s1y in terms of x0, y0, l1z using eq3, as
follows:

s1y =
1 + x0s0y − y0s0x − l21z

l1zx0

Substituting the expression for s1y in the cost function 1
2f2, we obtain a rational function c(x0, y0, l1z).

Therefore, we have to minimize c subject to x2
0 +y2

0−1 = 0, which is equivalent to solving the equations

∂c

∂l1z
= 0

x0
∂c

∂y0
− y0

∂c

∂x0
= 0

x2
0 + y2

0 − 1 = 0

We can clear denominators, without losing any information, by multiplying the first equation by l31zx
2
0

and the second one by l21zx
3
0, since l1z and x0 are both non-zero. We define the equations

eq7 :=l31zx
2
0

∂c

∂l1z
= 0

eq8 :=l21zx
3
0

(
x0

∂c

∂y0
− y0

∂c

∂x0

)
= 0

so our system is equivalent to solving eq1, eq7 and eq8. To solve these algebraic equations, we use
resultants. Taking advantage of the fact that eq1 does not contain any term involving l1z, we define
p7,8 := Resl1z (eq7, eq8) ∈ Z(s0x, s0y)[x0, y0] and p1,7,8 := Resx0

(eq1, p7,8) ∈ Z(s0x, s0y)[y0]. Any solution
of our system satisfies both p7,8 and p1,7,8. Conversely, a solution of p1,7,8 = 0 can be extended to a
solution of the original system {eq1, eq7, eq8} using the following procedure:

(1) Find a solution y0 ∈ R of p1,7,8(y0) = 0.
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(2) Write p7,8(x0, y0) =
∑

i≥0 ai(y0)xi0 ∈ Z(s0x, s0y)[y0][x0] and substitute every even power x2j
0

by (1 − y2
0)j and every odd power x2j+1

0 by x0(1 − y2
0)j . This way we obtain a polynomial of

degree one in x0 with coefficients in Z(s0x, s0y)[y0]. This substitution is correct since x0 satisfies
eq1 = x2

0 + y2
0 − 1 = 0.

(3) Assume that the polynomial obtained in the previous step is q1(y0)x0 + q0(y0). Then, calculate
x0 = −q0(y0)/q1(y0) ∈ R.

(4) Apply the Euclidean algorithm to the polynomials of eq7 and eq8 until a polynomial of degree
one in l1z appears.

(5) Assume that the polynomial obtained in the previous step is r1(x0, y0)l1z + r0(x0, y0). Then,
calculate l1z = −r0(x0, y0)/r1(x0, y0).

The theory of resultants (see for instance Section 3 of [5]) guarantees that the polynomials q1(y0) and
r1(x0, y0) are different from zero. Since p1,7,8 is a polynomial of degree 48, there are potentially 48
different solutions to our system of equations. A closer inspection of p1,7,8 shows that it factorizes as

y8
0(y0 − 1)6(y0 + 1)6(y2

0s
2
0x − 2y0s0x + y2

0s
2
0y + 1− s2

0y)4pol20(y0),

where pol20(y0) ∈ Z(s0x, s0y)[y0] is an irreducible polynomial of degree 20. Therefore, the roots of p1,7,8

are 0 with multiplicity 8, 1 and −1 with multiplicity 6, the complex numbers

s0x ± s0y

√
s2

0x + s2
0y − 1

s2
0x + s2

0y

with multiplicity 4, and the 20 different roots of pol20(y0) = 0. The roots 0, 1, −1 are discarded since we
have already excluded these subcases. The complex roots with multiplicity 4 are not real since s2

0x + s2
0y

is the square of the eccentricity, which is always < 1, by assumption. This leaves only the 20 roots of
pol20(y0) to be considered.
Note also that the polynomials pol20, q0, q1, r0 and r1 can be precomputed symbolically (as explained
above), so the solution is:

(31)

y0 = −y1 = a root of pol20, x0 = x1 = −q1(y0)

q0(y0)
, s1x = 0,

s1y =
1 + x0s0y − y0s0x − l21z

l1zx0
, l1z = −r1(x0, y0)

r0(x0, y0)
.

All together, we have 22 different solutions of case 2a: 2 from Eq. (30) and 20 from Eq. (31). Extensive
numerical evidence shows that the best transfer always comes from one of these solutions, as discussed
in Subsection 6.1.

Case 2b: We assume here that y1 = −y0 and x1 = −x0. In this case, we have 1
2 (eq3 + eq4) =

l21z − 1 + y0s0x = 0, which implies that y0 =
1−l21z
s0x

. In the particular case when l1z = 1, the following
two solutions are found directly from the equations:

(32) x0 = ±1, x1 = ∓1, y0 = y1 = 0, l1z = 1, s1y = s0y, s1x ∈ [−|s0x|, |s0x|], f1 = 2|s0x|.

When l1z = −1, then only one solution is possible:

(33)
x0 = 1, x1 = −1, y0 = y1 = 0, s1y = −s0y, s1x = −s0xs0y,

l1z = −1, f1 = (|1 + s0y|+ |1− s0y|)
√

4 + s2
0x .

The solution (33) has f1 ≥ 2
√

4 + s2
0x > 2|s0x|, so it is always worse that (32) and can be discarded. It

can also be shown that solution (32) is always worse than (30), so it can be safely ignored as well.
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The only remaining case is |l1z| 6= 1. Using eq3 − eq4, we can write s1x in terms of the other unknowns:

s1x =
x0(l1zs1y − s0y)s0x

l1z(1− l21z)
.

The problem has now only three variables x0, s1y and l1z and a single constraint eq1, which after

substituting y0 =
1−l21z
s0x

becomes:

eq9 := s2
0x(x2

0 − 1) + (1− l21z)2 = 0 .

The cost function f1 =
√

∆2
0 +
√

∆2
1 is the sum of the square roots of two rational expressions in x0, s1y

and l1z. In this case, we will not introduce the extra variables ∆0 and ∆1, since the square roots can be
removed with an algebraic trick. First, according to the theory of Lagrange multipliers, we should have
∇f1 = λ∇eq9 at each local extrema of f1. This produces the following equations:

(34)



1

2
√

∆2
0

∂∆2
0

∂s1y
+

1

2
√

∆2
1

∂∆2
1

∂s1y
= 0

1

2
√

∆2
0

∂∆2
0

∂x0
+

1

2
√

∆2
1

∂∆2
1

∂x0
= 2λs2

0xx0

1

2
√

∆2
0

∂∆2
0

∂l1z
+

1

2
√

∆2
1

∂∆2
1

∂l1z
= −4λl1z(1− l21z)

We can remove λ by multiplying the last two equations of (34) by 2l1z(1− l21z) and s2
0xx0, respectively,

and adding them.

(35)
1

2
√

∆2
0

(
2l1z(1− l21z)

∂∆2
0

∂x0
+ s2

0xx0
∂∆2

0

∂l1z

)
+

1

2
√

∆2
1

(
2l1z(1− l21z)

∂∆2
1

∂x0
+ s2

0xx0
∂∆2

1

∂l1z

)
= 0

Finally, we remove the square roots in the first equation of Eq. (34) and also in (35) by moving one of the
terms to the right, and then squaring both sides. After some algebraic manipulation and the introduction
of the non-zero factors l31z(l1z + 1)2(l21z − 1)2 and l61z(l1z + 1)(l21z − 1)5 to clear the denominators, we get
the following two polynomials:

eq10 := l31z(l1z + 1)2(l21z − 1)2

[(
∂∆2

0

∂s1y

)2

∆2
1 −

(
∂∆2

1

∂s1y

)2

∆2
0

]
= 0

eq11 := l61z(l1z + 1)(l21z − 1)5

[(
2l1z(1− l21z)

∂∆2
0

∂x0
+ s2

0xx0
∂∆2

0

∂l1z

)2

∆2
1

−
(

2l1z(1− l21z)
∂∆2

1

∂x0
+ s2

0xx0
∂∆2

1

∂l1z

)2

∆2
0

]
= 0

At this point we have reduced the whole case 2b to three polynomial equations {eq9, eq10, eq11} in three
unknowns x0, s1y and l1z. To solve the system, we exploit the fact that eq9 does not contain the
variable s1y. Define p10,11 := Ress1y (eq10, eq11) ∈ Z(s0x, s0y)[x0, l1z] and p9,10,11 := Resx0(eq9, p10,11) ∈
Z(s0x, s0y)[l1z].
A similar procedure to the one used in case 2a allows us to obtain a full solution of the equations
{eq9, eq10, eq11} from a zero of p9,10,11. The procedure is described below:

(1) Calculate a root l1z ∈ R of p9,10,11 = 0. Although p9,10,11 is a polynomial of degree 166 in l1z,
it can be factored as a product of polynomials that are either not zero by assumption or that
have degree lower than 6.
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(2) Use eq9 to obtain the two possible values of x0:

x0 = ±

√
1−

(
1− l21z
s0x

)2

.

If these values are not real numbers, then the following steps can be skipped.
(3) Apply the Euclidean algorithm to the polynomials of eq10 and eq11 to compute their greatest

common divisor. The algorithm stops when a polynomial of degree 1 in s1y appears.
(4) Assume that the polynomial obtained in the previous step is u1(x0, l1z)s1y + u0(x0, l1z). Then

calculate s1y = −u0(x0,l1z)
u1(x0,l1z) .

(5) The value of the remaining variables are:

x1 = −x0, y0 = −y1 =
1− l21z
s0x

, s1x =
x0(l1zs1y − s0y)s0x

l1z(1− l21z)
.

The polynomials p9,10,11, u0 and u1 can be precomputed symbolically, following the same procedure as
above. These polynomials can therefore be reused to calculate the solutions of case 2b for any given s0x

and s0y.

(36)
l1z = a root of p9,10,11, x0 = −x1 = ±

√
1−

(
1− l21z
s0x

)2

, y0 = −y1 =
1− l21z
s0x

,

s1y = −u0(x0, l1z)

u1(x0, l1z)
, s1x =

x0(l1zs1y − s0y)s0x

l1z(1− l21z)
.

We have collected extensive numerical evidence showing that these solutions are always worse than those
of case 2a. Anyways, since there are only a finite number of solutions in this case, which can be computed
by the explicit formula Eq. (36), we recommend that these solutions are included when looking for the
best orbit transfer.

6.1. Numerical tests. In our numerical computations, we explored a wide range of values of s0x and
s0y, in such a way that all possible eccentricities and angles between the ellipses were considered.
When the ellipses are rotated 180 degrees, the optimal solution is always provided by Eq. (30) of case2a.
Indeed, case1 does not have a real solution if the eccentricity is 0.1, 0.2, . . . , 0.9. Solutions of case2b
given by Eq. (36) and case2a given by Eq. (31) exist but are worse.
In the rest of the cases, the solution of case2a given by Eq. (31) is always the best. To check this
efficiently, we used only rational values for s0x and s0y. The trick to achieve this is to set

s0x = e
a2 − b2

a2 + b2
, s0y = e

2ab

a2 + b2

where e is the desired eccentricity and a and b are integers chosen in such a way that the desired angle

α is approximately 2 arctan
(

a2−b2
2ab

)
.

In the following tests, we used e = 0.1, 0.2, . . . , 0.9 and the pairs (a, b) were selected to approximate the
angles α = 5, 10, . . . , 175 degrees. The case α = 180 was discussed above.
For each value of a, b and e, we computed the best solution of case 1 (solving the system numerically),
case2a using both Eq. (31) and Eq. (30), and case2b using Eq. (36). In total, we have explored more
than a thousand test cases. We extracted several conclusions from the data we computed.
First of all, the solution of case2a is indeed the best one, as we mentioned before. In Figure 2 we show
the fuel of this transfer (or rather, the cost function f1 = ∆0 + ∆1, which is proportional to it) obtained
as a function of e and α, and what this transfer would look like when e = 0.7 and the angle between the
ellipses is 85 degrees.
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Figure 2. ∆0 + ∆1 of the best transfer and an example of one of these transfers.

We can also compare the angle between the semi-major axis of the initial orbit and the direction given
by ~r0. We observe in Figure 3(a) that when α is small (less than 40 degrees), this separation is higher
than 50 degrees for eccentricities up to 0.5. When α is near 180 degrees, this separation becomes smaller
(and is zero in the case α = 180).
The separation shown above led us to study how much fuel can be saved by using our optimal transfer
instead of the one from apogee to apogee. Figure 3(b) shows the ratio (in percentage) between the fuel
consumption of both transfers.

(a) (b)

Figure 3. (a) Angle of separation between the semi-major axis of the initial orbit and
the point where the first impulse is applied. (b) Fuel comparison between the best
transfer and the best one from apogee to apogee.

On the other hand, case1 does not always produce a valid real solution. Even in those situations where
case1 provides a solution, it is always very poor compared to the ones of case2a, up to one or two orders
of magnitude worse depending on the eccentricity. Case2b always produces valid solutions, but they are
as bad as those of case1.
Finally, the solutions of case2a given by Eq. (30) are worse than the optimal one, but they are no more
than 10% worse for eccentricities below 0.6 and up to a 55% worse for higher eccentricities, as shown in
Figure 4.
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Figure 4. Fuel comparison between the best transfer and the solutions provided by Eq.(30)

7. Conclusions

Firstly, in Section 3 we have presented an innovative approach to the study of the multi-impulse orbit
transfer problem with minimum fuel, that only requires to solve a system of polynomial equations. No
trigonometrical functions are needed. This allows one to use all the algebraic machinery that is currently
available: Gröbner bases, Resultants, Elimination theory, Root Isolation, etc., which was not possible
with the previous formulations of the problem.
In Section 4 we provided an alternative method for solving the point-to-point two-dimensional orbit
transfer problem studied in [1] by Avendaño and Mortari. The significant advantage of our new approach
is the efficiency of the computation, since only arithmetic operations are used.
Moreover, in Section 5 we used the well-known Hohmann transfer problem between two circular orbits,
to show the power of our technique. We worked under very general assumptions, i.e. letting the transfer
orbit to be out of plane, but we showed that the best transfer is indeed coplanar. The novelty of our
analysis is that we allowed the initial and final orbits to have angular momentum pointing in opposite
directions. Even for such an extreme case, the classical solution is proven optimal.
Furthermore, in Section 6 we analyzed in depth the problem of changing between two identical elliptical
orbits of eccentricity e which are coplanar and rotated a certain angle α. Here we restricted our search
to transfer orbits that are coplanar with the other two. The first surprising result that we got is that
the optimal transfer does not go from apogee to apogee (except when α = 180 deg), but it is separated
from the apogee a certain variable angle that depends on e and α. This angle is higher than 50 degrees
when e ≤ 0.5 and α ≤ 40 deg. For lower eccentricities and small values of α, the separation angle can
be as large as 80 degrees.
The large difference between the best transfer orbit and the best one from apogee to apogee means also
a significant difference in the fuel consumption of both maneuvers. For angles α up to 80 degrees, the
savings obtained by using our transfer orbit are always higher than 25%, and for angles α ≤ 10 deg, our
transfer consumes less than half of the fuel needed to go from apogee to apogee.
Finally, solving the problem has been reduced to the study of several subproblems, each of which consists
of a set of polynomial equations. All but one of the subproblems have been solved symbolically, which
means that an explicit solution is available given any initial and final orbits. The remaining subproblem
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can be solved numerically for any given data, but the optimal solution does not seem to come from this
particular subcase. Indeed, numerical evidence suggests that the optimal solution always comes from
the same subcase, for which we have a symbolic solution.
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author by the MINECO grant MTM2013-45710-C2-1-P and the groups E15 Geometŕıa (DGA, Spain)
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