000075734 001__ 75734
000075734 005__ 20181113150053.0
000075734 0247_ $$2doi$$a10.1038/s41535-018-0126-z
000075734 0248_ $$2sideral$$a108399
000075734 037__ $$aART-2018-108399
000075734 041__ $$aeng
000075734 100__ $$aKügel, Jens
000075734 245__ $$aReversible magnetic switching of high-spin molecules on a giant Rashba surface
000075734 260__ $$c2018
000075734 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075734 5203_ $$aThe quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an “on demand” control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on “switchable” molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular “habitat” offered by an antiphase boundary of the Rashba system BiAg2 stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.
000075734 536__ $$9info:eu-repo/grantAgreement/EUR/ERDF/EFA194-16TNSI$$9info:eu-repo/grantAgreement/EUR/INTERREG-V-POCTEFA-2014-2020$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78293-C6-6R
000075734 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075734 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075734 700__ $$aKarolak, Michael
000075734 700__ $$aKrönlein, Andreas
000075734 700__ $$0(orcid)0000-0002-3260-9641$$aSerrate, David$$uUniversidad de Zaragoza
000075734 700__ $$aBode, Matthias
000075734 700__ $$aSangiovanni, Giorgio
000075734 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000075734 773__ $$g3 (2018), 53 [7 pp.]$$pnpj quantum mater.$$tnpj quantum materials$$x2397-4648
000075734 8564_ $$s3591283$$uhttps://zaguan.unizar.es/record/75734/files/texto_completo.pdf$$yVersión publicada
000075734 8564_ $$s127976$$uhttps://zaguan.unizar.es/record/75734/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075734 909CO $$ooai:zaguan.unizar.es:75734$$particulos$$pdriver
000075734 951__ $$a2018-11-13-14:21:33
000075734 980__ $$aARTICLE