000075778 001__ 75778 000075778 005__ 20220223111654.0 000075778 0247_ $$2doi$$a10.1088/1361-6668/aab0c1 000075778 0248_ $$2sideral$$a105465 000075778 037__ $$aART-2018-105465 000075778 041__ $$aeng 000075778 100__ $$0(orcid)0000-0002-3309-5961$$aCubero, A.$$uUniversidad de Zaragoza 000075778 245__ $$aQuench dynamics in MgB2 Rutherford cables 000075778 260__ $$c2018 000075778 5060_ $$aAccess copy available to the general public$$fUnrestricted 000075778 5203_ $$aThe generation and propagation of quench induced by a local heat disturbance or by overcurrents in MgB2 Rutherford cables have been studied experimentally. The analysed cable is composed of 12 strands of monocore MgB2/Nb/Cu10Ni wire and has a transposition length of about 27 mm. Measurements of intra- and inter-strand voltages have been performed to analyse the superconducting-to-normal transition behaviour of these cables during quench. In case of external hot-spots, two different time-dynamic regimes have been observed, a slow stage for the formation of the minimum propagation zone (MPZ), and a fast dynamics once the quench is triggered and propagates to the rest of the cable. Significant local variations of the quench propagation velocity across the strands around the MPZ have been observed, but with average quench propagation velocities closely correlated with the predictions given by one-dimensional-geometry models. For quench induced by overcurrents (i.e. with applied currents higher than the critical current) the nucleation of many normal zones distributed within the cable, which overlap during quench propagation, gives a distinctive and faster quench dynamics. 000075778 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2014-52105-R 000075778 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000075778 590__ $$a2.489$$b2018 000075778 591__ $$aPHYSICS, CONDENSED MATTER$$b31 / 68 = 0.456$$c2018$$dQ2$$eT2 000075778 591__ $$aPHYSICS, APPLIED$$b56 / 148 = 0.378$$c2018$$dQ2$$eT2 000075778 592__ $$a0.879$$b2018 000075778 593__ $$aCeramics and Composites$$c2018$$dQ1 000075778 593__ $$aCondensed Matter Physics$$c2018$$dQ1 000075778 593__ $$aMetals and Alloys$$c2018$$dQ1 000075778 593__ $$aMaterials Chemistry$$c2018$$dQ1 000075778 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1 000075778 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000075778 700__ $$0(orcid)0000-0002-4140-4058$$aNavarro, R.$$uUniversidad de Zaragoza 000075778 700__ $$aKovác, P. 000075778 700__ $$aKopera, L. 000075778 700__ $$aRindfleisch, M. 000075778 700__ $$0(orcid)0000-0003-4839-5286$$aMartínez, E.$$uUniversidad de Zaragoza 000075778 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal. 000075778 773__ $$g31, 4 (2018), 045009 [9 pp]$$pSupercond. sci. technol.$$tSUPERCONDUCTOR SCIENCE & TECHNOLOGY$$x0953-2048 000075778 8564_ $$s1027332$$uhttps://zaguan.unizar.es/record/75778/files/texto_completo.pdf$$yPostprint 000075778 8564_ $$s69680$$uhttps://zaguan.unizar.es/record/75778/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000075778 909CO $$ooai:zaguan.unizar.es:75778$$particulos$$pdriver 000075778 951__ $$a2022-02-23-11:12:53 000075778 980__ $$aARTICLE