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Abstract
Weexplore the block nature of thematrix representation ofmultiplex networks, introducing a new
formalism to deal with its spectral properties as a function of the inter-layer coupling parameter. This
approach allows us to derive interesting results based on an interpretation of the traditional eigenvalue
problem. Specifically, our formalism is based on the reduction of the dimensionality of amatrix of
interest but increasing the power of the characteristic polynomial, i.e, a polynomial eigenvalue
problem. This approachmay sound counterintuitive atfirst, but it enable us to relate the quadratic
eigenvalue problem for a 2-Layermultiplex networkwith the spectra of its respective aggregated
network. Additionally, it also allows us to derive bounds for the spectra, amongmany other interesting
analytical insights. Furthermore, it also permits us to directly obtain analytical and numerical insights
on the eigenvalue behavior as a function of the coupling between layers. Our study includes the supra-
adjacency, supra-Laplacian and the probability transitionmatrices, which enables us to put our results
under the perspective of structural phases inmultiplex networks.We believe that this formalism and
the results reportedwillmake it possible to derive new results formultiplex networks in the future.

1. Introduction

Complexnetwork theory has becomeone of themain tools for the analysis of complex systems, allowing the
representation of awide range of systems composedby interacting discrete elements [1].However, real-life systems
are also organized in layers, which represent different channels of interaction. In order to incorporate these
characteristics, one shouldworkwithmultilayer networks, which allows for a proper representationofmultiplex
and interconnected systems [2–4]. The introduction of this extra level of complexity also imposes newchallenges
on the analysis of its structural anddynamical properties. Furthermore, a key element on the analysis of networks is
their spectral properties [5]. In fact, they play an important role in explaining the connection between structure and
dynamics. For instance, in epidemic spreading the critical point belowwhich the infection prevalence is null is
predicted to be the inverse of the leading eigenvalue of the adjacencymatrix, inboth, single [6] andmultiplex
networks [7]. Additionally, its nature also seems to be connected to thoseproperties [7–9]. Although the literature
about the spectra of single-layer networks iswell developed [5], the theory of spectral properties ofmultiplex
networks is still in its infancy. Thismotivates us to propose a different formalismaimed atfilling this gap.

In this paper,wewill consider thematrix representation ofmultiplex networks, constraining ourselves tofinite
matrices. First of all, we are interested inweighting differently inter and intra-layer edges. This implies that those
matriceswill also be a function of the inter-layer coupling parameter, here called p. Consequently, the associated
eigensystemwill be a functionof that sameparameter. Additionally, thematrix approach is especially interesting in
this context since it allowsus to directly use linear algebra and spectral graph results already available.

When varying the coupling parameter, amultiplex systemmight present different structural phases, which
are characterized in terms of eigenvalue crossings and eigengaps and are intuitively defined as: (i) decoupled
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phase, for small values of p, where the layers are virtually decoupled and act by themselves, with a negligible
interaction between layers, (ii)multiplex/multilayer phase, where the system is coupled and the intra-layer
edges play an important role and (iii) the aggregate network phase, where the systembehaves as the
superposition of all layers. It is clear that a good understanding of the eigenvalues’ behaviormight be useful since
we couldmove our system into different structural regimes, aiming at different goals such as improved
robustness, better performance regarding diffusion or spreading, amongmany other possible applications.

The different structural phases above are related through the interlacing properties of quotient graphs
[10, 11].More specifically, in [10] the authors showed that the spectra of different scales of amultiplex network
(aggregated network, the network of layers and individual layers) characterize the three phases. In practical
terms, the interlacing provides us bounds for the spectra [10, 11], but also emphasizes that the different scales are
intrinsically connected. Indeed, it is impossible to tune the leading eigenvalue of the network of layers without
also increasing the leading eigenvalue of thewholemultiplex. Furthermore, in [12] the authors characterized
multiple topological scales using the supra-Laplacianmatrix.More specifically, they analyzed eigengaps to
characterize them.

Following a different approach, in [13], the author evaluated the normalized Laplacianmatrix, which, in
fact, shares the same set of eigenvalues of the probability transitionmatrix (see section 4.3), and proposed a
similar classification.However, it is worthmentioning that in [13], a different nomenclaturewas used and a
fourth phasewas defined. Namely, the proposed structural regimeswere: (i) bipartite phase, (ii) decoupled
phase, (iii) indistinguishable, where the author argues that the system is topologically and dynamically
indistinguishable[13], and (iv) amixed phase, (called BD in [13]—bipartite and decoupled phases)where the
layers are structurally and dynamically distinguishable. Although herewe do notmake a distinction between the
regimes (iii) and (iv) and consider both asmultiplex regimes, we acknowledge the differences pointed out in
[13]. It is also noteworthy that [13] considered structural correlations for the analysis, which is a key ingredient
for the reported results. On the other hand, herewe focus on uncorrelated networks and amultiplex structure.

The paper is organized as follows. In section 2, we present the polynomial eigenvalue formalism, giving its
general definitions and properties in section 2.1.Next, we formalize the 2-Layer problem into a quadratic
eigenvalue problem in section 3, analytically exploring its behavior as a function of the coupling parameter. In
section 3.1, obtaining some bounds, in section 3.2, and discussing the simplified symmetric problem
in section 3.3.We present ourmain applications in section 4, wherewe explore the supra-Laplacianmatrix, in
section 4.1, the supra-adjacencymatrix in section 4.2 and the probability transitionmatrix in section 4.3. To
round off this paper, we discuss the physical consequences of ourfindings, summarize ourmain results and
perspectives in section 5.

2. Polynomial eigenvalue problem

In this section, we formally define the polynomial eigenvalue problem and present some of its fundamental
properties. The aimof this section is to generically define ourmainmathematical object, establishing its basic
properties. Thus, this will allow us to properly study thematrices associatedwith 2-Layermultiplex networks,
whichwill naturally appear as a consequence of a simplemanipulation of a linear systemdescribing the network.
From this simple approach, we expect to provide a different perspective on the spectral properties ofmultiplex
networks.

2.1. General definition andproperties
Amatrix polynomial of order l is amatrix-valued function of a complex variable of the form [14]

ål l=
=

( ) ( )R M , 1
i

l

i
i

0

where ¼M M M, , , l0 1 are n×nmatrices and they are said coefficientmatrices. If =M Il the identitymatrix
the polynomial R is said to bemonic. The eigenvalues of R are the solution to the characteristic equation

l =( ( )) ( )Rdet 0. 2

Therefore, right and left eigenvectors are defined as

l =( ) ( )xR 0, 3

l =( ) ( )y R 0, 4T

where x and y are the right and left eigenvectors associated to the eigenvalueλ. It reduces to the standard
eigenvalue problemwhen ( )lR is amonicmatrix polynomial with l=1 and = -M A0 , for anymatrix A. A
generalization of the Jordan form theory to a generalmatrix polynomial is possible and is briefly presented in the
appendix.
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Aparticular case of general interest is the quadratic eigenvalue problem (QEP), which is directly related to
the 2-Layer case of our interest in this work. A quadraticmatrix polynomial can bewritten as [14–16]

l l l= + +( ) ( )Q A B C. 52

Besides, without loss of generality, we assume that the eigenvectors are unitary.However, observe that if the
right eigenvector x is unitary, thus, the left eigenvector y is not. Therefore, herewe assume that x is unitary, which
simplifies the equations.

Furthermore, if A B, and C areHermitian a special class of problems, called hyperbolic quadratic
eigenvalue problem (HQEP) [16], is obtained. Unfortunately,most of the problems in our context does not fall
in this class.

3. A general 2-Layer case: a blockmatricial problem

The general formof anymatrix associated to amultiplex network composed by two layers (supra-adjacency,
supra-Laplacian and transitionmatrices for example) can bewritten as a blockmatrix. The resulting eigenvalue
problem is the following

l=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )v

v
v
v

M M
M M

, 611 12

21 22

1

2

1

2

where =M MT
12 21. Recognizing it as a systemof equations and isolating v1 on the second row,we have

l= - -- ( ) ( )v vM M I . 71 21
1

22 2

Thus, inserting it in thefirst rowwe have

l l- - - =-[( ) ( ) ] ( )vM I M M I M 0. 811 21
1

22 12 2

This expression defines aQEP,whose coefficientmatrices are

= - ( )A M , 921
1

= - +- -( ) ( )B M M M M , 1011 21
1

21
1

22

= -- ( )C M M M M , 1111 21
1

22 12

which poses a restriction on the inter-layer couplingmatrix M12, i.e., itmust be invertible. Additionally, in our
context, exchanging M11 and M22 wedonot change the system, nor their solutions. Note that this operation is
equivalent to relabeling the layers.However, denoting l( )Q the polynomial of thefirst, thus, for the second case
the polynomial is simply l( )Q T . In this waywe also establish a relationship between the right and left
eigenvectors and these two possible configurations. Formally, it implies that x=v2 and y=v1. As usual, we
consider couplingmatrices that are functions of a coupling parameter, p, i.e., = ( )pM Mij ij , for ¹i j. In fact,
throughout this paper we explore how the spectral properties of our network evolve as we change such coupling
parameter. As a constraint, we shouldmention that we only consider finitematrices.

Furthermore, note that B in equation (9) is intimately related to the aggregated and the loop-less aggregated
networks of the originalmultiplex network (formore, see [10] or section 2.3.2 of [17]).More specifically, if the
couplingmatrices M12 and M21 are the identitymatrix (or proportional to thismatrix), thus
= - +( )B M M11 22 , which is proportional to the loop-less aggregated network. Besides, note that a network of

layers in the two-layermultiplex is a simple line graphwith two nodes.

3.1. Spectral analysis as a function of p
So far, wemade as less constraints as possible. Nowwe restrict ourselves tomultiplex networks, i.e. diagonal
couplingmatrices, and, additionally, we assume a linear function of the parameter p>05, = pM D12 , where D
is a diagonal invertiblematrix (this constraint will be relaxed later). Then, we can describe each eigenvalue of

l( )Q by a scalar equation defined as the product of l( )Q , by its left and right eigenvectors. Formally given as

l l l= + + =( ) ( ) ( ) ( ) ( )y x a y x b y x c y xQ , , , 0, 12T T T T2

where = =( ) ( )a y x y x b y x y xA B, , ,T T T T and =( )c y x y xC,T T . The solution of this equation is given by

l =
-  D( )

( ) ( )
( )

( )x
b y x y x

a y x

, ,

2 ,
, 13

T T

T

5
Note that it is necessary to restrict our coupling parameter to p>0 since = -A M12

1 and the problemwould not bewell defined otherwise.
Negative coupling parameters would also be possible, but theymake less physical sense.
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whereD = -( ) ( ) ( ) ( )y x b y x a y x c y x, , 4 , ,T T T T2 . Note that for each pair of right and left eigenvectors we
have two possible solutions, but just one of them is an eigenvalue of l( )Q . Furthermore, differentiating
equation (12) by pwe obtain information on how the eigenvalues change as a function of p. Formally we have

l l
l l

¶
¶

=
¶
¶

+ + =
( ) ( ) ( ) ( ) ( )y x

p
y

p
x y

x

p

y

p
x

Q Q
Q Q

d

d

d

d
0, 14

T
T T

where

l
l

l l
l

¶
¶

= + +
¶
¶

+
¶
¶

( ) ( )
p p p p p

Q
A B

B C
2

d

d

d

d
. 15

Note that the eigenvalues and eigenvectors are also a function of p. For continuity, two different eigenvaluesmay

cross each other when varying p. Observe that for non-crossing points the relations l =( )
y

p
xQ

d

d
0

T

and

l =( )y
x

p
Q

d

d
0T holds, since the derivatives are bounded for non-crossing points. Note that on the eigenvalue

crossings we have two eigenvectors associated to the same eigenvalue. Thus, two solutions for the derivatives.
Next, isolating the derivative ofλwehave

l l

l
=

- -

+

¶
¶

¶
¶( )

( )
( )

p

y x

y xA B

d

d 2
. 16

T
p p

T

B C

In practical terms, this relation can be applied to drive a system through different structural or dynamical
regimes. For example, considering the adjacencymatrix, one can use this equation in order to chose an edge or
set of edges to be removed (orweighted) in order to optimally reduce or increase the leading eigenvalue. As a
consequence, the critical point of spreading processes, such as epidemic spreading, would also change.
Obviously thematrix under study depends on the process. Another application is to design a numericalmethod
to follow the correct eigenvalues as a function of p in a problem thatmight present eigenvalues crossings [7, 18].

3.2. Bounds
If x is an eigenvector (left or right), then l =( )x xQ 0T holds andwe can use it tofind bounds to equation (13).
Multiplying l( )Q by D, we get amonic polynomial, then if we bound ( )b x x,T andD( )x x,T , both solutions of
equation (13)will also be bounded. Thus, to bound those terms, we can use the numerical range of thematrices
towhich they are related. The numerical range is formally defined for anymatrix X as = Î( ) {F x x xX X :T

= }x xand 1T . Additionally, s Í( ) ( )FX X , where s ( )X is in the set of eigenvalues of X . Additionally, if X
is anHermitianmatrix x xXT is the Rayleigh quotient of X , which implies  l l( ) ( )x xX X XT

N1 . Finally,
to bound non-Hermitianmatrices we use the relation of the spectral norm and the numerical range, given
as  ∣∣∣ ∣∣∣ ( ) ∣∣∣ ∣∣∣rX X X1

2 2 2, where ( )r X is its numerical radius, defined as *= =
= 

( ) ∣ ∣r x xX Xmax
x 12

Î{∣ ∣ ( )}z z F Xmax : .
First, the term b(xT, x) is bounded by

 -∣∣∣ ∣∣∣ ( ) ∣∣∣ ∣∣∣ ( )b x xB B, , 17T
2 2

however, inmany cases, B is anHermitianmatrix, which allow us to improve the bound as

 l l( ) ( ) ( ) ( )b x xB B, 18T
min max

Interestingly, we remark that B is often related to the aggregated network, connecting both scales of the same
structure.

Next, we evaluateD = -( ) ( )x x x x x xB C, 4T T T2 . Firstly, we analyze the term ( )x xBT 2, by observing
that: (a)  m m{ } { }x xBmin maxi

T
i , (b)  m m{ } { }x xBmin maxi i

2 2 2 and (c)  m{∣ ∣} ( )x xBmin i
T2 2

m{∣ ∣}max i
2, since m m={ } {∣ ∣}min mini i

2 2, hence, from (b) and (c), bounding ( )x xBT 2 is equivalent to bound

x xB2 . Secondly, we can factorizeD = -( ) ( )x x x xB C, 4T T 2 and defining thematrixD = -B C42 , we can
focus on the problem Dx xT instead of the initial definition ofD( )x x,T , since both have the same bounds. In
addition, since frequently we are interested in undirected networks and consequently symmetricmatrices, we
can also constraint D( )x x, 0T since we already know that the spectra is real in this case. Therefore, we have

 D D( ) ∣∣∣ ∣∣∣ ( )x x0 , . 19T
2

Observe that those bounds can be further improvedwhen applied to the analysis of particularmatrices (supra-
adjacency, supra-Laplacian, and probability transition) since their particularities also impose constraints on the
solutions and could be explored to improve the bounds.
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3.3. Comments on symmetric problems:HQEP
As previouslymentioned, if A B, and C areHermitian, we have a special class of problems calledHQEP [16].
TheHQEPhas interesting properties, for instance, if x is a right eigenvector associatedwith the eigenvalueλ,
then it is also a left eigenvector of the same eigenvalue [16]. In order to take advantage of those properties one can
interpret the original problem as anHQEPplus asymmetric perturbation. Thus, thematrix polynomial defined
by thematrix coefficients in equation (9) is, in general, asymmetric. However, a class of problems that arise
naturally is defined by = pM I12 . In this case, thematrices A and B areHermitian. Observe that C still might be
asymmetric. Nonetheless, we can use the Toeplitz decomposition [19] in order to analyze a symmetric and
simplified problem. This decomposition states that any squarematrix can be uniquelywritten as the sumof an
Hermitian ( *=X X ) and a skewHermitianmatrix ( *= -X X ) as * *= + + -( ) ( )X X X X X1 2 1 2

1

2

1

2
. This

allows us to decompose = + + - +( ) ( )p pC M M M M M M M M I1

2 11 22 22 11
1

2 11 22 22 11
2 . In this way, we can re-

write our original QEP into two parts, aHQEP, composed only byHermitianmatrices and a skewHermitian
matrix, that can be interpreted as a perturbation. As a consequence from the perturbation theory, thematrix pC
of theHQEP is perturbed by -( )M M M M1

2 11 22 22 11 and suchmatrix norm goes to zero as the layers aremore

similar. From the Bauer and Fike theorem [19]we canwrite a quality function for the approximation of the
perturbedmatrix C as

l l k- -∣ ˆ ∣ ( ) ( ) ( )U M M M M
1

2
, 2011 22 22 11

where l̂ is the eigenvalue of = +C C CH S (Hermitian, CH, and skew-symmetric, CS), = L -C U UH
1 and k(·)

is the condition numberwith respect to thematrix norm ∣∣∣·∣∣∣. Considering the spectral norm ∣∣∣·∣∣∣2 we have
k = s

s
( ) ( )

( )
X X

X
max

min
. If k( )U is near 1, small perturbations imply small changes on the eigenvalues. Conversely,

large values of k( )U suggest a poor approximation.Note that, although this analysis concerns only thematrix C
and not thewholeQEP, it can be an estimate of the quality of the approximation.

In addition to theHQEPproperties, the perturbation analysis also emphasizes an importantmultiplex
property.Wemust note that themore similar the layers are, the closer to zero the norm

-( )M M M M1

2 11 22 22 11 is.Moreover, we also have another criteria which is based on the commutativity of

thematrices M11 and M22.Moreover, observe the role of correlations in this approximation. If both layers are
identical, they are obviously correlated and the problem is symmetric.

3.4. Singular = =D M M12 21 and the limits for sparse inter-layer coupling
So farwe have assumed a node-alignedmultiplex, i.e., amultiplex network inwhich each node has a counterpart
on every layer[2], fulfilling the invertibility of M12, which is a necessary condition to formally define the problem.
Nevertheless, we can use the limit of = D 0ii to obtain an approximation of the sparse coupling. Thus, note
that equation (5) can be analyzed in two different steps, firstly calculating the limit of decoupled edges and then
the rest of the system. Thefirst limit is analyzed as follows. From5 the absent edges are factorized as

 



l l- +

+ - =

- - - -

- -

˜ ( ) ( ˜ ( ) ˜ ( ) )
˜ ( ) ( )

p i p i i

p i p

D M D D M

M D M D 0, 21

1 1 2 1 1
11 22

1 1
11 22

where = -˜ ( )iD D 1.Multiplying equation (21) by p and using the following limit





=

Î


-
-⎧⎨⎩[ ] [ ] ( ) ( )O

D
D

lim
1 if ,

0 otherwise
22jj

jj

0

1
1

wehave

l l- + + =˜ ( ˜ ˜ ) ˜ ( )D M D DM M DM 0, 232
11 22 11 22

where the term of order p D vanishes in the limit of   0. Note that = =
-˜ [ ]D D Ilim 0

1 if both layers are
decoupled. Therefore, the factorization of the polynomial equation yields to l l- - =( )( )M I M I 011 22 , whose
solutions are the union of the solution of the standard eigenvalue problemof each layer. An important
consequence is that the number of eigenvalues that do not change as a function of p are twice the number of
nodes that do not have a counterpart on other layer.

Equation (23) give us the solutions for nodes without a counterpart on the other layer. To calculate the
remaining solutions we have to redefine the original problem in terms of theMoore–Penrose pseudoinverse,
which is denoted by †X , for a generalmatrix X. Thus, denoting by = -¯ †pD D1 , we have = - -¯ pD Djj jj

1 1 if ¹D 0jj

and =D̄ 0jj otherwise. Observe that the zeros of D̄jj are ones in D̃jj . For simplicity, in the rest of the paperwe
assume that M12 is invertible, however, the strategy above presented can be applied in case it is not. From the
computational viewpoint, the cost of calculating thewhole spectra for a closed range of pmight be reduced since
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we can separate it into two parts: (i) a constant subset and (ii) the remaining subset, which varies as a function
of p.

4. Applications

Wenext apply our proposed formalism to study the supra-Laplacian and the supra-adjacencymatrices. For the
sake of completeness, let us explicitly define the supra-adjacencymatrix in terms of its blockmatrices (adjacency
matrix of the individual layers). Formally, the supra-adjacencymatrix is defined as

=
⎡
⎣⎢

⎤
⎦⎥ ( )

p

p
A

A I

I A
, 24

a

b

whereweweight differently the intra and inter-layer edges. The definition of the supra-Laplacianmatrix is

= - =
+ -
- +

⎡
⎣⎢

⎤
⎦⎥ˆ ( )

p p

p p
L D A

I L I
I I L

, 25
a

b

where D̂ is a diagonalmatrix whose elements are = åD Aii ij and the Laplacianmatrices of the individual layers
are denoted as La and Lb.Many dynamical processes are described using thosematrices. For instance,
synchronization of coupled oscillators and also diffusion processes, while the supra-adjacencymatrix is
intimately related to epidemic and information spreading. It is also noteworthy thatmany structuralmetrics are
also directly extracted from the spectral properties of thosematrices. For instance, the communicability, which
can be easily written as amatrix function, ormore specifically, as the exponential of the adjacency or supra-
adjacencymatrix. Here we are going to focus on the spectral properties of thesematrices, and their behavior as a
function of the coupling parameter punder different conditions.

In addition to the supra-adjacency and supra-Laplacianmatrix, we also analyze the probability transition
matrices in section 4.3, which can be used to describe classical randomwalks on networks. The analysis of such a
matrix is left to the last section since it ismainly numerical. Note that the probability transitionmatrix has awell
bounded spectra where     l l l l= -1 ... 1N1 2 3 [20]. This characteristic imposes an extra challenge
on the derivation of the bounds. Althoughwe could not improve those bounds, we report an interesting spectral
behavior found numerically.

4.1. Supra-Laplacianmatrix
The simplest supra-Laplacianmatrix can be built considering a diagonal couplingmatrix = -M pI12 , where
each node has a counterpart on the other layer and the coupling is homogeneous. This implies that theQEP is
definedwith the following coefficientmatrices

= ( )A I, 26

= - + +( ) ( )pB L L I2 , 27a b

= + +( ) ( )pC L L L L . 28a b a b

It is noteworthy that the aggregated network, = ++L L La b, appears naturally under this formalism. This is
interesting since it is physically understandable. On the other hand, the term L La b, in the definition of C, is of
not so direct interpretation. This systempresents a structural transition, which can be directly derived fromour
formalism. This derivation is presented in section 4.1.1. Additionally, we can also obtain bounds for the spectra
using the ideas discussed in section 3.2. Those improved bounds are derived in section 4.1.2, wherewe use the
particular properties of a Laplacianmatrix to improve our previous results. In section 4.1.3, we evaluate the
spectra of the supra-Laplacianmatrix as a function of p and also compare our previous results with sparse and
heterogeneous couplings. Specifically, on the heterogeneous casewe consider a couplingmatrix = -M pD12 ,
where D is a diagonalmatrix. TheQEPof suchmatrix is defined by = = - + +- - -( )pA D B L D D L I, 2a b

1 1 1

and = + +- ( )pC L D L L La b a b
1 . The analysis of suchQEP is not trivial, since thematrices are asymmetric.

Instead, we can explore it numerically and compare with the homogeneous case, = -M pI12 .

4.1.1. Structural transitions
First of all, we discuss the structural transition on the Laplacianmatrix, initially presented in [21]. Herewe
calculate the exact transition points using theQEP formulation, which can be easily derived.We remark that
those transition points were also calculated in [18], however, using two differentmethods: (i) eigenvalue
sensitivity analysis and (ii) the Shurs complement approach. Both derivations presented in [18] are quite
complicated, unlike our approach, where the solutions are obtained using simple arguments. Note, instead, that
our approach presents a different expression if compared to the expression in [18]. Although their equivalence
was notmathematically proven, it was numerically verified.
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To beginwith, it is well known that l = p2 is an eigenvalue of the supra-Laplacian.Moreover, the crossing
points are a consequence of the crossing between this eigenvalue and the bounded part of the supra-Laplacian
spectra, yielding to the so-called structural transitions. Thus, fromour definedQEP,we have that

= + + -( ( )) ( ) ( ( ) ) ( )†p pQ L L L L L L Idet 2 det det , 29a b b a a b

which has two possible solutions: (i) + =( )L Ldet 0a b , which is always true, since the sumof the Laplacian
matrices of the layers is the Laplacian of the aggregated network, hence, it also has a null determinant and (ii) the
solution of + -( ( ) )† pL L L L Idet b a a b , which are the crossing points or eigenvalues ofmultiplicity larger than
one. Since this expression is also an eigenvalue problem, but in terms of p, we can express the crossing points as
* l= +( ( ) )†p L L L Li b a a b . Note that there areN possible values of p that solve equation (29), each one

representing one crossing. Thefirst solution is trivial, at p=0, the second is the so-called structural transition
[21].We also remark its relevance in some dynamical processes, as presented in [22]. As said before, this
expression is different from the previous one presented in the literature, however both give the same result.

4.1.2. Bounds
Here, exploiting the ideas presented in section 3.2, we improve the former bounds using specific Laplacian
properties, such as its semi-positiveness. Thus, theQEPof the supra-Laplacian can be bounded using the
individual bounds of B, which is a semi-positive definiteHermitianmatrix, leading to

  l- + +( ) ( ) ( )p b x x p L L2 , 2 . 30T
a bmax

Additionally, the discriminant function can also bounded by



- - + + D

D - +

{ (( ) ( ) ) } ( )
( ) { (( ) ) } ( )
x p p x x x

x x x p

L L L L I

L L I

min 2 4 ,

, max 4 , 31

T T

T

a b a b

a b

2 2

2 2

where theupperboundcanbedefinedas a functionof the spectral properties of -( )L La b
2.On theotherhand, the

lowerboundcanbe further improvedby realizing that thematrixD = - - + +( ) ( )p pL L L L I2 4a b a b
2 2 , defined

onsection3.2, is semi-positivedefinite forundirectednetworks, D 0. In thisway, - - + +( ) ( )pL L L L2a b a b
2

p I4 02 , hence - + +( ) ( )p pL L I L L4 2a b a b
2 2 , implying that l - +(( ) )pL L I4i a b

2 2

l +( ( ))p L L2i a b
6 .Fromtheseproperties,we can establish the lowerboundas 4p2. Formally,

  lD - +( ) (( ) ) ( )p x x pL L4 , 4 . 32T
a b

2
max

2 2

The previously obtained bounds imply that, in the asymptotic analysis, we haveD Î Q( ) ( )x x p,T 2 .Moreover,
note that lower and upper bounds converge to each other as the layers become similar. On the extreme case of
identical layers we haveD =( )x x p, 4T 2. Finally, combining the previously obtained boundswe have,

 l l +-( ) ( ) ( )x x L L0 ,
1

2
33T

a bmax

and





l

l l
+

+
+

- +

+( )

( ) (( ) )
( )

p x x

p
pL L L L

2 ,

2

4

2
. 34

T

a b a bmax max
2 2

Particularly, we can analyze these bounds in terms of their asymptotic behavior (approximation). Thus, for a
sufficiently large value of p they can be approximated to

 l
l +-( ) ( ) ( )x x

L L
0 ,

2
, 35T a bmax

 l
l

+
++( ) ( ) ( )p x x p

L L
2 , 2

2
. 36T a bmax

Therefore, from the asymptotic point of viewwe have l Î Q-( ) ( )x 1 and l Î Q+( ) ( )x p .
Figure 1 is an example of the eigenvalues as a function of the coupling parameter p for amultiplex network

composed by two Erdös–Renyi layers. On thefirst layer we have an average degree á ñ =k 12, while the second
has á ñ =k 16 and both layers have =n 103 nodes.

4.1.3. Spectral properties as a function of the coupling parameter p
In this section, we focus on the eigenvalues behavior as a function of the coupling parameter, l ( )pi . First of all,
we apply the concepts of section 3.1 regarding the derivative ofQ(λ). Consider the simplest case, where =D I.

6
In addition, lets recall that if -M M 01 2 , and M1 and M2 are semi-positivematrices, with M M1 2, then l l( ) ( )M Mi i1 2 , where the

eigenvalues are in descending order.
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In this case, we have amonic polynomialmatrix, where B depends on the aggregated network, which is semi-
positive definite.Moreover, C is amatrix that contains the product of the Laplacian of both layers, accounting
the similarities between them. In this way, equation (16) can be expressed as

l l

l
=

-

- -

( ˆ ( ))
( ( ) ˆ ( ))

( )
p

y x b y x

p y x b y x

d

d

2 ,

2 ,
, 37

T T

T T

where = +ˆ ( ) ( )b y x y xL L,T T
a b and q= ( )y x cosT is the cosine of the angle between left and right eigenvectors

of ourQEP.Observe that part of the spectra has
l


p

d

d
0, while the other part has

l


p

d

d
2 as p increases, which

can be proved as follows. First of all, let us suppose thatλ is a constant function of p, then
l


p

d

d
0 since the

denominator grows as a function of p and the numerator is bounded, by supposition. Second of all, let us

suppose thatλ growswith p r, where r<1. Thus,
l


p

d

d
0, using the same arguments, since the linear function

of the denominator dominates it. On the other hand, if r=1we have
l


p

d

d
2, since both, the numerator and

the denominator, grow linearly. Finally, with p r, where r>1, both the denominator and numerator are

dominated by p r, implying that, for large p, the derivative
l


p

d

d
1, which is also a contradiction, as it was

supposed to be a linear function of p. Thus, it implies that the derivatives ofλ, for large values of p, cannot grow
faster than linearly and their growthwill be one of two values, 0 or 2. Interestingly, note that these results are in
alignment with the previously obtained bounds. In addition, such behavior is exemplified infigure 1.

Although for the simplified casewe have two possible solutions at large p, observe that the above arguments
fail for the case of general couplingmatrix. From equation (16) and the definition of the LaplacianQEPwe
conclude that only the denominator of equation (16) changes for a different choice of D, since the terms that
have dependencies on D vanish in the partial derivatives of the numerator. The denominator follows the general
form l - - -- - -( )y p xD I L D D L2 2T

a b
1 1 1 . In this way, different couplingweights can change the behavior

of each eigenvalue differently for large p. For instance, if =D I the spectral distribution for large p is bimodal,

however, if = ¼
å( )( )p nD diag 1, 2, ,n

ii
n

7 , this behavior changes completely and the eigenvalues changewith

different rates, presenting a ‘continuous’ bulk. This argument is valid for infinity size networks, since forfinite
size networks for a large p gaps between eigenvaluesmay appear due to different rates of growth (as a function of
p). An example of this is shown infigure 2. Furthermore, we also found an empirical function that seems to
bound the spectra as a function of p in this experiment. The lower bound is trivial, since it is a semi-positive
definitematrix. The upper bound can be obtained correcting =˜ { ( )}p pDmax diag , hence

 l
l l

+
+ + - +

˜
( ) (( ) ) ˜

p
pL L L L

0
4

2
.

a b a bmax max
2 2

Fromfigure 2we observe that such bound is not as close to the largest eigenvalue as the homogeneous case.

Figure 1.The supra-Laplacian eigenvalues, l ( )L , varying the coupling parameter p for amultiplex network composed by two Erdös–
Renyi layers with n=103 nodes. The first layer has an average degree of á ñ =k 12 and the second of á ñ =k 16. The upper bounds and
lower bounds are dashed and continuous lines, respectively.

7 ( )Ddiag has identically spaced numbers and unitary average, due to the term
å

n

ii
n , allowing the comparisonwith any otherfigure on this

paper.
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In addition to a non-homogeneous couplingmatrix, the last case studied is the sparse coupling. The
analytical part of this studywas presented in section 3.4. As predicted, each uncoupled node implies a pair of
eigenvalues that does not vary as function of p. Due to the nature of the Laplacianmatrix, where just half of the
eigenvalues varywith p, while the other half remain bounded, the set of bounded eigenvalues increases by one.
For instance, if we have ñ uncoupled nodes, the bounded part have + ˜n n eigenvalues, while the ‘unbounded’
part have - ˜n n eigenvalues. Note that the upper bound for the bounded set of eigenvalues is not
l +( )L La b

1

2 max anymore. Nevertheless, the general upper bound for =D I seems to be also an upper bound

for the sparse problem, as numerically verified. Thefigures for these experiments were not shown as they are
visually similar tofigure 1.

4.2. Supra-adjacencymatrix
Similarly to the supra-Laplacian case, herewe also beginwith the simplest case, i.e., the diagonal homogeneous
coupling, and increase the level of complexity considering heterogeneous inter-layer weights and sparsity. Thus,
in the simplest case we have =M pI12 , therefore, theQEP, equation (5), is defined by the following coefficient
matrices

= ( )A I, 38

= - +( ) ( )B A A , 39a b

= - ( )pC A A I. 40a b
2

Note that, in away similar to the Laplacian, B is also defined in terms of the aggregated network. On the other
hand, the physical interpretation of C is still difficult due to the product A Aa b.

In section 4.2.1we improve the bounds proposed in section 3.2. Then, in section 4.2.2, we evaluate the
spectral properties of the supra-adjacencymatrix as a function of p in three different contexts: (i) diagonal
homogeneous coupling, (ii) diagonal heterogeneous coupling and (iii) sparse diagonal homogeneous coupling.
Note that, in order to analyze the heterogeneous couplingwemust consider the general QEPwith the following
coefficientmatrices = = - +- - -( )A D B A D D A, a b

1 1 1 and = -- pC A D A Da b
1 2 .

4.2.1. Bounds
Similarly to the analysis performed for the supra-Laplacian, herewe also extend the ideas presented in section 3.2
to the supra-adjacencymatrix. First of all, regarding the diagonal heterogeneous coupling case, =D I, we can
alsofind the spectral distribution of the adjacencymatrix. Beginningwithmatrix B, we can bound it using its
eigenvalues as

 l l+ - +( ) ( ) ( ) ( )b xA A A A . 41a b a bmin max

Interestingly, those are the eigenvalues of the aggregated network, which have a clear physicalmeaning.
Similarly, for the discriminant we have




l
l

- D
D -

(( ) ) ( )
( ) (( ) ) ( )

x x

x x

A A

A A

,

, . 42

T

T

a b

a b

min
2 2

max
2

Figure 2.The supra-Laplacian eigenvalues, l ( )L , varying the coupling parameter p, considering the couplingmatrix

= ¼
å

⎜ ⎟⎛
⎝

⎞
⎠( )p nD diag 1, 2, ,n

ii
n —heterogeneous coupling. The dashed line is the adapted upper bound. The network considered in this

figure has the same layers as used in figure 1.
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Finally, combining those boundswe can bound both solutions by





l l l

l l

+ - - +

+ - - +

-( ( ) (( ) ) )

( ( ) (( ) ) )
( )

p

p

A A A A

A A A A

1

2
4

1

2
4

43
a b a b

a b a b

min max
2 2

max max
2 2

and





l l l

l l

+ + - +

+ + - +

+( ( ) (( ) ) )

( ( ) (( ) ) ) ( )

p

p

A A A A

A A A A

1

2
4

1

2
4 , 44

a b a b

a b a b

min max
2 2

max max
2 2

which asymptotically converge (as an approximation) to

 l
l

l


+


+( ) ( ) ( ) ( )p x p
A A A A

2 2
. 45a b a bmin max

In otherwords, we have a bimodal spectral distribution for the adjacencymatrix, where half of the eigenvalues
grow linearly with p, while the other half decreasewith the same rate.

Figure 3 is an example of the eigenvalues of the supra-adjacencymatrix and the calculated bounds as a
function of the coupling parameter p for amultiplex network composed by two Erdös–Renyi layers. The
network used in this example is the same as that used in the supra-Laplacian case.

4.2.2. Spectral properties as a function of the coupling parameter p
In its general form, thefirst derivative is given as

l
l

=
+-( ( ))

( )
p

py x

y x b y x

D

D

d

d

2

2 ,
, 46

T

T T1

where x and yT are, respectively, the right and left eigenvectors associatedwith the eigenvalueλ. Firstly,
regarding =D I and using a similar approach as previously applied to the supra-Laplacian case. Thus, suppose

thatλ is a constant function of p or a function of p rwith r<1, however, it would give us
l

~
p

p
d

d
, yielding to a

contradiction. Then, suppose that it is a linear function of p, which implies
l

 
p

d

d
1, depending on the sign of

the linear coefficient. Finally, suppose that it is a function of p rwith r>1we obtain that
l


p

d

d
0, since the

denominator grows faster than the numerator, which again is a contradiction. In this way, based on such analysis

we conclude that the first derivative ofλ can assume only
l

 
p

d

d
1.

Secondly, for the general case observe that both, the numerator and thedenominator of equation (46) vary as a
functionof D. Additionally, D weights the product of the components of the eigenvectors,which allows the
derivatives to assumemore values, even a ‘continuous bulk’ instead of the bimodal distributionof the diagonal
homogeneous case, similarly to the case discussed for the supra-Laplacianmatrix.Herewe also use the coupling

matrix = ¼
å( )( )p nD diag 1, 2, ,n

ii
n .We show the spectral evolution as a functionofp for the non-homogeneous

Figure 3.The supra-adjacency eigenvalues, l ( )A , varying the coupling parameter p. The upper bounds and lower bounds are dashed
and continuous lines, respectively. The network considered is the same as infigure 1.
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case infigure 4. Similarly to the Laplacian case, there are evidences that the bounds canbe correctedusing
=˜ { ( )}p pDmax diag , hence

l l l+ - - +( ( ) (( ) ) ˜ ) ( )pA A A A
1

2
4 47a b a bmin max

2 2

l l l+ + - +( ( ) (( ) ) ˜ ) ( )pA A A A
1

2
4 . 48a b a bmax max

2 2

Herewe can also obtain a similar conclusion as for the supra-Laplacian case. From figure 4we observe that the
corrected bounds are not as close to the homogeneous case.

Finally, we study the sparse coupling case, whose analytical evaluationwas presented in section 3.4. As
predicted, each uncoupled node imply in a pair of eigenvalues that does not vary as a function of p. In this way,
for ñ uncoupled nodes we have ñ2 eigenvalues in the central part of the spectra that do not vary as a function of
p. Next, - ˜n n grows linearly with p, while the other - ˜n n eigenvalues with−p. This is shown infigure 5.Note
that in this figure the horizontal lines bounding the central part of the spectra are not calculated, but numerically
obtained and are only shown to serve as a reference.

4.3. Probability transitionmatrix
In this section, we evaluate the probability transitionmatrix,mainly focusing on its spectral properties as a
function of the coupling parameter p. Due to the probabilistic nature of thismatrix, wewere not able to improve
its bounds. Therefore, wemainly report numerical results.

Figure 4.The supra-adjacency eigenvalues, l ( )A , varying the coupling parameter p, considering the couplingmatrix

= ¼
å

⎜ ⎟⎛
⎝

⎞
⎠( )p nD diag 1, 2, ,n

ii
n

, which is an heterogeneous coupling. The dashed and continuous red lines are the adapted upper and

lower bounds, respectively. The network considered in this figure has the same layers as used infigure 1.

Figure 5.The supra-adjacency eigenvalues, l ( )A , varying the coupling parameter p, considering a sparse couplingmatrix. The dashed
and continuous red lines are the adapted upper and lower bounds, respectively. The dotted linewas obtained numerically considering
the largest value of p and are shown just as a reference. The network considered in this figure has the same layers as used infigure 1.
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Formally, the probability transitionmatrix is defined as

= =

=

-
-

-

- -

- -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ( ˜ )
( ˜ )

( ˜ ) ( ˜ )
( ˜ ) ( ˜ )

( )

p

p

p

p

P D A
D

D

A I

I A

D A D

D D A

0

0

, 49

A

B

A A

B B

a

b

a

b

1
1

1

1 1

1 1

where = +˜ k pDii
X

i
X , andX={A,B} represents the label of each layer. It is known that thismatrixmodels the

classical randomwalk, where thewalker chooses a neighbor based on theweights of its surrounding edges.
It is important tomention that in [23] the authors studied randomwalks on top ofmultiplex networks and

analyzed them in terms of the normalized supra-Laplacianmatrix. Thismatrix is defined as

= = - = -- -ˆ ˆ ( )L D L I D A I P, 50RW 1 1

where L is the supra-Laplacian and P is the probability transitionmatrix. Note that the normalized supra-
Laplacianmatrix is intimately related to the probability transitionmatrix. In fact, their spectra are trivially
related. Furthermore, we can also relate the spectra of the normalized Laplacian as follows

= = -- - - -ˆ ˆ ˆ ˆ ( )L D LD I D AD , 51Norm
1
2

1
2

1
2

1
2

where = - -ˆ ˆS D AD
1
2

1
2 has the same set of eigenvalues as P and if v is an eigenvector of S, then

-ˆ vD
1
is an

eigenvector of P associatedwith the same eigenvalue [20]. Note, however, that S is symmetric [20]. In the
context of randomwalks inmultiplex networks, in [13] the author used the normalized supra-Laplacianmatrix.
Here, in this section, wewill study P, defined in equation (49).

Next, following our formalism, from equation (49), we can define ourQEP in itsmonic form as

= ( )A I, 52

= - +- -(( ˜ ) ˜ ) ) ( )B D A A D , 53A B
a b

1 1

= -- - - -( ˜ ) ( ˜ ) ( ˜ ) ( ˜ ) ( )pC D A A D D D . 54A B A B
a b

1 1 1 1 2

Note that such quadratic polynomial present some similarities with the one for the supra-adjacencymatrix,
however the probability transitionmatrix is not symmetric and thematrices D̃X presents a dependency on p.
This fact, associatedwith the natural bound for stochasticmatrices,make the derivation of the spectral bounds
more complicated than the previous cases. Herewe focus on the spectral properties of the probability transition
matrix as a function of the coupling parameter p.

4.3.1. Spectral properties as a function of the coupling parameter p
For the sake of completeness, let us study the spectral properties of the transitionmatrix as a function of the
coupling strength p. This exercise ismuchmore of an example than a practical application sincewe already know
that the spectra are bounded on stochasticmatrices, which does not allowunbounded grow. In figure 6we
present the spectra as a function of the coupling parameter p. Thefirst observation is that, aside frombeing
bounded, the growth rate of the eigenvalues is quite different fromwhatwas observed for the Laplacian and
adjacency cases.

Firstly, lets proceedwith the analysis of equation (16) aiming for an approximation, which qualitatively
describes the l ( )p . First of all, the partial derivative of B can be expressed as

Figure 6.The probability transitionmatrix eigenvalues, l ( )P , varying the coupling parameter p. The network considered is the same
as that considered infigure 1.
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¶
¶

= -
¶
¶

-
¶
¶

- -( ˜ ) ( ˜ ) ( )
p p p

B
D A D A , 55A B

a b
1 1

where the term

¶
¶

= - +- -( ˜ ) ( ) ( )
p

k pD . 56X
i
X1 2

Next, expanding the partial derivative of C we have

¶
¶

= +
¶
¶

+
¶
¶

-
¶
¶

-

-
¶
¶

- -

- -

- -

- -

- -

( ˜ ) ( ˜ )

( ˜ ) ( ˜ )

( ˜ ) ( ˜ )

( ˜ ) ( ˜ )

( ˜ ) ( ˜ ) ( )

p p

p

p
p

p

p
p

C
D A A D

D A A D

D D

D D

D D

2

. 57

A B

A B

A B

A B

A B

a b

a b

1 1

1 1

1 2 1

1 1

1 2 1

All the expressions obtained so far are quite complicated to be analyzed in its exact form. Thus, wewill
proceedwith an asymptotic analysis, aiming for a hypothesis of a possible formula that qualitatively describes
the behavior of li as a function of p. In otherwords, we propose a formula that fits the expected asymptotic
behavior, butwe also expect it towork for smaller values of p.Wemust remark that this analysis is an
approximation and, in order to verify its validity we performnumericalfittings and evaluate the obtained errors.

Fromthepreviouslymentionedperspectives, the asymptotic behavior are Î Î¶
¶

- ¶
¶

-( ) ( )( ) ( )O p O p, ,
p ij p ij

C B1 2

Î -( ) ( )O pB ij
1 and, obviously, Î( ) ( )OA 1ij

8 . First of all, infigure 7wepresent some examples of functionswith
different asymptotic behaviors. In (a)wepresent a function inO(1), showing that it canbeboundedby a constant, in
(b)we show some functions inO(p−1), while in (c) two functions, one inO(p−2) and theother inO(p−3).Note that
we can approximate someof the terms in equations (55)–(57) to the functions infigure 7. Infigure 7,we also show
examples of our guessed asymptotic behavior for

~
+

Î

~
+

Î

¶
¶

~
+

Î

- -

- - -

- - -

( ˜ )
( )

( )

( ˜ ) ( ˜ )
( )

( )

( ˜ ) ( ˜ )
( )

( )

k p
O p

p
p

k p
O p

p
p

p

k p
O p

D

D D

D D

1

2

.

A

x

A B

x

A B

x

1 1

1 1
2

1

1 2 1
2

3
1

Figure 7.Example of functions with different asymptotic behaviors. Functions inO(1) in (a),O(p−1) in (b) and inO(p−2) andO(p−3)
in (c). In all plotswe consider ka=1 and kb=100. Note that the asymptotic class does not changewhenwemultiply the function by a
constant.

8
Observe that, formally, if f (x)=O(x r), then ∣ ( )∣f x Kxr , whereK is a constant and x�x0. Thus,multiplying f (x) by a constant does not

change its class. Besides, note that Î-( ) ( )( )O x O xr r1 .
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Next, infigure 7(c)we show examples for

¶
¶

~
+

Î

¶
¶

~
+

Î

- -

- - -

( ˜ )
( )

( )

( ˜ ) ( ˜ )
( )

( )

p k p
O p

p k p
O p

D

D A A D

1

1
.

X

x

A B

x
a b

1
2

2

1 1
3

3

Note that we considered a single value of kx, without considering products between different constants. Besides,
just one term is considered.We remark that themain goal of this exercise is to have insights on the qualitative
behavior ofmore complicated functions, such as equation (57). In other words, the performed approximations
are not expected to quantitatively predict those terms, but qualitative represent and ‘catch’ themain behavior of
those functions.

Firstly, recall that the spectra on stochasticmatrices is bounded, which consequently restricts its derivatives.
In otherwords,λiäO(1). However, for the sake of the argument, let us suppose that l = + -( )c p O pi

r r
1

1 ,

hence
l

= +- -( )( )
p

c rp O p
d

d
i r r

1
1 2 , where r is an integer. Thus, comparingwith equation (16), we have

l
= +

=
- + ´ +

+ +

- -

- - -

- -

( )

( ( )) ( ) ( )
( ) ( )

( )

( )
p

c rp O p

c p O p O p O p

c p O p O p

d

d

2
, 58

i r r

r r

r r

1
1 2

1
1 2 1

1
1 1

that can be rewritten as

+ + +
= - + ´ +

- - - -

- - -

( ( ))( ( ) ( ))
( ( )) ( ) ( ) ( )

( )c rp O p c p O p O p

c p O p O p O p , 59

r r r r

r r

1
1 2

1
1 1

1
1 2 1

which simplifies to

+ +
= + +

- - -

- - -

( ) ( )
( ) ( ) ( )

( )c rp O p O p

c p O p O p , 60

r r

r r
1
2 2 1 2 2 1

2
2 3 1

which implies that
l


p

d

d
0 and r�0 since on the left-hand sidewe have a function in - -( { })O rmax 2 1, 1 ,

while, on the right-hand sidewe have a function in - -( { })O rmax 2, 1 . This simple analysis suggests that
r 0, for consistency. Note that we are not inferring anything regarding its ‘velocity’ (how fast it goes to zero).

Such arguments reinforce thatλiäO(1), as previouslymentioned.However, there are a huge class of functions
that satisfies such restriction. In order to satisfy the so far established restrictions, let us suppose that

ål =
+

+
+

=
+

+
=

-
-ˆ

( )
˜

( ) ( )
( ) ( )k p

p c

c p

p c

k p

p c
O p , 61i

k

K
k

k

k
k

0
2

0
2

1

1
0

2

0
2

1

which is a function that satisfies our previous analysis. Thus, it also implies that
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i 2 . Next, from equation (16)we have
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Note that it allows a set of possible solutions and, among them, it allows our initial supposition, equation (61),

i.e., l l~ ˆ
i i . Note that l Îˆ ( )O 1i and

l
Î -

ˆ
( )

p
O p

d

d
i 2 , which is also inO(p−1), as expected from equation (64).

Besides, for the sake of visualization, infigure 7(a)we show two examples of the leading termof equation (61).
Next, we proceedwith a numerical experiment, extracting some eigenvalues presented in figure 6we

perform afitting aiming to obtain the same curve.We chose 5 eigenvalues: (i) the leading eigenvalue,λ1=1,
just as a reference and to emphasize that our proposed equation alsoworks for that case, (ii)λ3, the first
eigenvalue on the bulk (note that there can be a crossing betweenλ3 andλ2, whichwould change the index of the
eigenvalue—herewe are not going to enter into details of this possible crossing behavior and, in order to avoid
that, we chose to follow the third eigenvalue), (iii)λN, the smallest eigenvalue and (iv) the two intermediate
eigenvalues l -n 1 and l +n 1, wherewe just considered their values after the spectra divides into two parts. Note
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that the error of these two curves is expected to be larger than the previous cases. It is important to remark that,
as previouslymentioned, there can be a crossing betweenλ3 andλ2, but herewe are looking at themain global
behavior and such a changewould not be a big source of error. In this way, we are showing that there is a set of
parameters that approximates the spectra using the proposed equations. The proposedmentioned experiment
does not serve as a proof, but it does serve as an evidence of such, or a similar, behavior.

Following the proposed pipeline, firstly, in order to obtain thefittings, we used the nonlinear least squares
method, the Levenberg–Marquardt algorithm [24–26] and the least absolute residual robust regression.
Additionally, all the initial conditions were set to one. In figure 8we show the obtainedfittings and the
numerically obtained eigenvalues. Complementary, in table 1we present thefitted parameters. Interestingly, we
observe that the proposed approximation fits really well the observed curves, which can be objectivelymeasured
bymeans of the sumof squares due to error, whose values are also reported in table 1. Thus, the behavior ofλi
assumed in equation (61) seems to be a very good guess. Besides, we also observe that there seems to be a
symmetry on the obtained parameters forλ3 andλN, which are close. The only exception is k0, since both have
the samemodulus, butwith a different sign, as expected. The last important observation also regards the
parameter ∣ ∣k0 . Note that such a parameter is very close to one on all the fittings, suggesting some underlying
property of our formulation.

Finally, for the sake of completeness and for comparison reasons, we numerically evaluate the spectra of the
probability transitionmatrix for the sparse and heterogeneous coupling cases. Regarding the sparsity, infigure 9,
we present a similar experiment as done for the supra-Laplacian and supra-adjacency cases. Similarly to those
experiments, herewe also observe a group of eigenvalues that do not change as a function of p.Moreover, we also
verified that for =n̂ 100 decoupled nodes, we have =n̂2 200 eigenvalues that remain constant, validating the
insights we obtained in section 3.4. Although the behavior observed is similar to the previously studiedmatrices,
for the probability transitionmatrix we observe a slightly different behavior for intermediate values of p (here
1<p<10), where the intermediate eigenvalues change, forming the ‘central bulk’.

Furthermore, we remark that for the heterogeneous coupling ( = ¼
å( )( )p nD diag 1, 2, ,n

ii
n ), if compared

with the supra-Laplacian and supra-adjacency, a completely different behavior emerged. In the probability
transitionmatrix case, the spectra seem to be always bimodal. This effect is shown in figure 10, where, for a large

Figure 8.The probability transitionmatrix eigenvalues,λi(p), varying the coupling parameter p, for i=N and i=3 (or i = 2 after the
crossing, in order to have a continuous curve). The network considered is the same as that considered infigure 1. The dots are the
obtained eigenvalues from eigendecomposition of P, while the continuous blue lines are fitted curves from equation (61), where we
used just thefirst term on the summation, i.e.,K=1.

Table 1.Parameter values of the network reported infigure 8. The confidence intervals are given in parenthesis and the goodness offit is
measured by the sumof squares due to error (SSE).

Eigenvalue k0 c0 ck c̃k SSE

λ1=1 1 (1, 1) <10−5 <10−5 <10−5 <10−6

λ3 0.9999 (0.9999, 1) 5.514 (5.502, 5.526) 8.618 (8.579, 8.657) 4.732 (4.712, 4.753) < 10−4

λn−1 0.9985 (0.9975, 0.9996) 11.27 (11.18, 11.36) −2.141

(−2.629,−1.653)
−0.1541 (−0.1839,

−0.124 2)
< 10−2

λn+1 −0.9997 (−0.9999,

−0.9995)
0.1273 (0.1186,

0.1361)
20.73 (20.61, 20.85) 23.58 (23.53, 23.63) <10−4

λN −1 (−1,−1) 5.344 (5.334, 5.353) 8.444 (8.412, 8.477) −4.615 (−4.632,−4.598) < 10−4
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enough value of p, the eigenvalues tend to a constant. It is also noteworthy that the rate at which this
phenomenon takes place ismuch slower than the rate of the homogeneous case, shown in figure 6.

5.Discussion and conclusions

From the developed theory, we applied and analyzed three differentmatrices: (i) the supra-Laplacian, (ii) the
supra-adjacency and (iii) the probability transitionmatrix. In all these cases we have considered three different
coupling schemes: (a) diagonal homogeneous coupling, = pD I, (b) diagonal homogeneous sparse coupling

and (c)diagonal heterogeneous coupling, = ¼
å( )( )p nD diag 1, 2, ,n

ii
n . Regarding the supra-Laplacian and the

supra-adjacencymatrices, on the first scenario, (a), wewere able to extract some analytical results regarding the
derivatives of the eigenvalues, which suggested a different behavior for the other two cases, (b) and (c). On the
other hand, regarding the probability transitionmatrix, due to its stochastic nature, wewere not able to go
furtherwith the analytical analysis. However, we followed an asymptotic analysis, proposing a function that
describes the eigenvalues behavior. This functionwas validatedwith numerical fittings of the original spectra.
Although it is just an approximation, it also helps us understand the nature of the phenomena behind this
structure. Furthermore, we also reported the differences between the spectral distributions for large p, wherewe
can have bimodal,multi-modal or even a continuous bulk for the adjacency and Laplacian cases, just changing
the couplingmatrices. On the sparse case, this analysis was analytically supported, while the other cases were
explored numerically.

Our analysis pointed out some important features aboutmultiplex systems. As a general observation, as we
increase pwewillfind (roughly) three different structural phases, whichmight take place at different points for
each structure andmatrix. Thus, the structural phases of amultiplex network can be defined as: (i) decoupled

Figure 9.The probability transitionmatrix eigenvalues, l ( )P , varying the coupling parameter p. The couplingmatrix is sparse. The
network considered in thisfigure has the same layers as used infigure 1.

Figure 10.The probability transitionmatrix eigenvalues, l ( )P , varying the coupling parameter p, considering the couplingmatrix

= ¼
å

⎜ ⎟⎛
⎝

⎞
⎠( )p nD diag 1, 2, ,n

ii
n

, i.e. an heterogeneous coupling. The network considered in thisfigure has the same layers as used in

figure 1.
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phase, for small values of p, where the layers are virtually decoupled and act by themselves, with a neglectable
interaction, (ii)multiplex/multilayer phase, where the system is coupled and the intra-layer edges play an
important role and (iii) a network of layers phase, where the structure of the network of layers plays themajor
role. Note that, from the perturbation theory point of view, in the decoupled phase the eigenvalues are basically
the union of the eigenvalues of the individual layers plus some perturbations. On the other extreme, in the
network of layers phase, the intra-layer edgesmight be understood as the perturbation, since p? 1. In this case,
we can interpret the system as a set of n virtually disconnected small networks, whose structure is given by the
network of layers (considering amultiplex case, where each node has a counterpart on the other layers). Finally,
themost interesting scenario is themultiplex phase, where the inter and intra-layer topologies play a
fundamental role on the dynamics.

Throughout our analysis, wewere able to verify these regimes in the differentmatrices we evaluated.
Although all of them showed this behavior, the differences between thosematrices are also evident. Considering
the supra-Laplacian and supra-adjacencymatrices with diagonal homogeneous coupling, we observe that, for a
large enough p, the spectral distribution is bimodal, while for the sparse case we have three bulk’s, where the
central one results from the nodes that do not have an inter-layer edge. Finally, on the diagonal heterogeneous
coupling, we observe a completely different behavior, where the eigenvalues are distributed into a single bulk.
We remark that, althoughwewere not able to analytically quantify this last phenomenon, our analysis suggested
such a behavior.

Furthermore, comparing those results with the ones obtained using the probability transitionmatrix, we
observed a completely different behavior. On the diagonal, homogeneous or heterogeneous cases, the spectra
seem to be bimodal for a sufficiently large p. Note that for the homogeneous case this convergence to the bulks is
much faster than the heterogeneous case. This is an interesting phenomenon since it contrasts with the supra-
adjacency and supra-Laplacian cases, where the heterogeneous coupling implies a ‘continuous’ bulk. It is
noteworthy that our predictions for a central bulk for the uncoupled nodes are also fulfilled for the probability
transitionmatrix.

The analysis performed here emphasize the importance of a proper study of the structural phases in different
contexts. The sparse and heterogeneous casesmight change completely the spectra (depending on p). Obviously,
the analysis should also take into account the correctmatrix since the structural changes are different from case
to case. In other words, differentmatrices present their phases in different intervals (values of p). In this context,
dynamical insights can also be useful for a better understanding.

Since all the analyzedmatrices are also related to dynamical processes, the results reported herewill directly
impact on these processes too.Note that in [22] the authors analyzed diffusion processes inmultiplex networks
and found the so-called superdiffusion. This process is described by the supra-Laplacianmatrix and it is
intrinsically connected to the so-called structural transition of thismatrix as pointed in [22] and latter discussed
in [18], where the authors found the exact structural transition point. Furthermore, in [7], while studying
epidemic spreading inmultiplex networks, the authors verified this structural behavior in the analysis of the
supra-adjacencymatrix. Besides, it was also shown that it is intimately related to spreading processes and the
layer-localization phenomena [7]. Thus, in thementioned cases, the dynamical regimes can be understood as a
consequence of the structural changes.

In summary, we have proposed a newmathematical formalism for the analysis of spectral properties in
multiplex networks using the polynomial eigenvalue problem. This approach reduces the dimensionality of our
matrices (coefficientmatrices) at the cost of a higher order of the characteristic polynomial. This technique
might seem counterintuitive at afirst glance, but it reveals an underlying relationship between the eigenvalues of
thematrices associated tomultiplex structures. In contrast to single-layer networks,multiplex networks are
defined asmatrix functions sincewe are interested inweighting inter and intra-layer edges differently. Thus,
they depend on the coupling parameter, here denoted by p. Therefore, it is of utmost importance to derive
spectral bounds as a function of p and to obtain insights on their asymptotic behavior.

In addition to the so far discussed results, we alsomust comment the implications of our results to single-
layer networks and also in other contexts.We remark that, aside from themultiplex networks, we can also have
other types of regularities allowing the polynomial to be reduced and analytically evaluated. For instance,more
generalmultilayer networks or some specific community structured single-layer networks. In fact, any problem
where the structure can be divided into groups andwhose groups have some regularities allowing thematrices B
and C to be calculated. Note that onemight even argue that the groups do not need to be at the same size since
one can add phantomnodes in order tomathematically allow the groups to have the same size. Thus, from the
results of section 3.4, the analysis would follow naturally.We remark that in this scenario the analysis should be
carried outwith an extra care on the physicalmeaning of the newly added eigenvalues due to the phantomnodes.
Furthermore, in the community structured single-layer networks case note that some of our results are
conditioned to the scenario where intra and inter community edges areweighted differently, playing the role of
our coupling parameter p.Wemight also suppose that our formalism can be applied in dynamical contexts
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whenwe have two different dynamical sets of nodes. For instance, the chimera states in arrays of identical
oscillators, wherewe have two groups of nodes: coherent and incoherent [27]. Finally, the numerically obtained
resultsmight also be of interest, giving insights inmany different fields ranging from the structural analysis of
single-layered community structured networks, to the study of dynamical processes.

We hope this workmotivates the community to study in further details the structural behavior ofmultiplex
andmultilayer systems and their dynamical consequences. Besides, othermatrices and processesmight also be
studied and evaluated. In this case, we believe that our formalismmight also be helpful. Finally, we also hope to
motivate studies on the analysis of eigenvectors, which is still lacking in the literature and are of great importance
as theywere shown to play amajor role in dynamical processes [7, 8].
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Appendix. Jordan triple

The definitions presented in this section are not studied in details here since our goal is focused on applications,
however, we refer the reader to [14, 15] formore information on this class of problems.Herewe reproduce some
important definitions thatmightme useful for some readers, allowing them to extend the results presented in
this work to other contexts.

DefinitionA.1. Jordan triple [15]: Denoting by J the Jordanmatrix, ( )X J Y, , is the Jordan triple of l( )Q , where
X and Y are the right and left eigenvectors.We also have that * * *( )Y J X, , is the Jordan triple of *l( )Q . Note
that the Jordanmatrix, J, the diagonal blocks are the Jordan blocks. Besides, if all the eigenvalues are simple, J is
a diagonalmatrix, where l=Jii i. Additionally, observe that Î ´X n nl, where = [ ]x xX , ..., nl1 is composed by
the right eigenvectors, while Î ´Y nl n, where = [ ]y yY , ..., nl

T
1 is composed by its left eigenvectors.

Finally, Î ´J nl nl.

DefinitionA.2.The left set of eigenvectors Y [15]: The left eigenvectors can be defined in terms of the right
eigenvectors and thematrix J as

=

-

-




⎡

⎣
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1

DefinitionA.3.Useful relations for the order two polynomial eigenvalue problem:

= ( )XY 0, A2

= ( )XJY I, A3

+ + = ( )XJ BXJ CX 0, A42

+ + = ( )J Y JYB YC 0. A52
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