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We analyze the properties of strongly coupled excitons and photons in systems made of semiconducting
two-dimensional transition-metal dichalcogenides embedded in optical cavities. Through a detailed
microscopic analysis of the coupling, we unveil novel, highly tunable features of the spectrum that
result in polariton splitting and a breaking of light-matter selection rules. The dynamics of the composite
polaritons is influenced by the Berry phase arising both from their constituents and from the confinement-
enhanced coupling. We find that light-matter coupling emerges as a mechanism that enhances the Berry
phase of polaritons well beyond that of its elementary constituents, paving the way to achieve a polariton
anomalous Hall effect.
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Introduction.—The motion of composite excitations of
quantum systems requires the introduction of gauge poten-
tials related to their internal structure [1], encoded in the
Berry curvature (BC) [2] in momentum space. A generali-
zation to periodic systems has led to a deep understanding of
quantized topological properties and edge modes [3,4].
Nontrivial Berry phases have been extensively discussed
for electrons, photons [5], and excitons [6], among others
[7,8], and the concept of Hall effect has been extended to
both photons [9,10] and excitons [11,12]. Additionally,
systems with strong light-matter interactions are being
intensively studied, as their properties can be tuned through
coupling to light [13]. Two-dimensional materials, such
as transition-metal dichalcogenides (TMDs) [14,15]
embedded in optical cavities, stand out as an excellent
platform where strong light-matter interactions can be
studied [16–18].Moreover, their band structures bring about
nontrivial topological features. Those of excitons coupled to
photons in quasi-two-dimensional geometries have been
first pointed out in Refs. [19–21], where a winding phase in
the coupling was recognized as the main ingredient to
construct topological polaritonic crystals. Reference [22]
is also remarkable in this respect, carrying out a thorough
analysis in terms of the geometric tensor.
In this work, we study strongly coupled excitons and

photons in a monolayer of MoS2 embedded in a cavity. We
focus on the role of the composite Berry curvature, arising
from both the bare constituents and their coupling, on the
motion of the composite excitations, and the possibility
to induce a polariton anomalous Hall effect. Through a

detailed microscopic analysis, we show that the cavity
breaks the polarization-valley locking [23,24], which man-
ifests in a cross-coupling between right (left) circularly
polarized photons and valley K (K0) excitons, characterized
by a winding phase. This gives rise to a fine splitting of the
upper and lower polaritons. We then analyze the impact of
the winding coupling in the BC of the composite polaritons
and show that it yields values for the hybrid modes far
greater than those of the exciton and photon taken separately,
showing that light-matter interaction dominates the BC in
the strong-coupling regime. By carrying out a semiclassical
analysis of polaritonic wave packets, we estimate measur-
able topological Hall drifts, which may shed light on recent
experiments and pave the way to achieve a polariton
anomalous Hall effect in TMDs.
The model.—We consider excitons in a MoS2 monolayer

embedded in a planar optical cavity (see the inset in Fig. 1).
Themaximum (minimum) of the valence (conduction) bands
of a MoS2 monolayer lies at the two nonequivalent corners
of the hexagonal Brillouin zone,K andK0. The valence band
shows a significant spin-orbit splitting, ΔSO ∼ 100 meV,
resulting in a spin-valley locking. Excitons in opposite
valleys, related by time-reversal symmetry, have opposite
spin. In the absence of a magnetic field, they are degenerate.
Photons in perfect conducting cavities are also doubly
degenerate (except for electric fields perpendicular to the
monolayer, not coupled to excitons). This motivates a
simplified model which includes two excitons and the two
photons closest in energy to the excitons. We assume perfect
translational symmetry, so excitons and photons have a
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well-defined parallel momentum q. Remarkably, the valley-
polarization selection rule [23,24] holds only at q ¼ 0.

We describe excitons with momentum q in valley τ
through a variational Wannier wave function [25]

jψτ
exðqÞi ¼

Z
d2q0ϕðq0Þ½cτq0þðq=2Þ�†vτq0−ðq=2Þj0i: ð1Þ

Here, cτq (vτq) destroys a conduction (valence) electron in
valley τ with wave vector q ¼ ðqx; qyÞ, j0i denotes the

filled Fermi sea, and ϕðqÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffið2=πÞp
aex½1þ ðkaexÞ2�−3=2

is the s-wave exciton wave function describing the relative
motion of the bound electron and hole. The variational
parameter aex is the average radius of the exciton, which
can be approximated by the typical value of 1 nm for MoS2
[26,27]. Our model therefore deals with Wannier excitons
of small radii. This point is relevant when studying 2D
materials like MoS2, where dielectric screening changes
significantly with respect to the 3D case. For an in-depth
analysis of the excitonic excited states, see Refs. [28,29].
We omit these in our work due to a parity mismatch that
prevents their coupling with single photons.
In the continuum limit and defining jψτ

exðqÞi ¼ ½bτq�†j0i,
the bare excitonic Hamiltonian reads

Hex ¼
X
τ

Z
d2q

�
ℏ2q2

2Mex
þ 2Δþ Eb

�
½bτq�†bτq; ð2Þ

with an exciton mass Mex ¼ me þmh ≃ 0.74m0 (me and
mh being the masses of the bound electron and hole,
respectively, and m0 the electron rest mass), half gap
Δ ≃ 1.5 eV, and binding energy Eb ≃ −1.1 eV [30,31].
Confined electromagnetic modes in a cavity with per-

fectly conducting mirrors and height Lz have a momentum
k ¼ ðq; kzÞ, with q ¼ ðqx; qyÞ and kz ¼ πm=Lz, with m an
integer. We neglect the effect of fields associated to surface
plasmons at the metallic boundaries of the cavity, as
Lz ≃ λ=2, and also disregard modes with electric fields
parallel to ez, as they do not couple to excitons in the MoS2
layer. In the basis of circularly polarized light, for which we
define the bosonic operators aνq;kz with polarizations ν ¼ �,
the photonic Hamiltonian reads [32]

Hph ¼
X
ν;kz>0

Z
d2qℏωq;kz ½aνq;kz �†aνq;kz ; ð3Þ

where ωq;kz denotes the photon frequency. As mentioned
earlier, we focus on cavity sizes such that only the photon
with kz ¼ π=Lz interacts strongly with the exciton, neglect-
ing all the rest. For simplicity, we use aνq henceforth.
Considering in detail the microscopic coupling between

excitons and photons [32], the polaritonic Hamiltonian in
the basis of circularly polarized photons fb−q ; aþq ; bþq ; a−qg
takes the form

H ¼

2
66664

Eex iγ 0 iΓe2iφ

−iγ Eph iΓe2iφ 0

0 −iΓe−2iφ Eex −iγ
−iΓe−2iφ 0 iγ Eph

3
77775; ð4Þ

where Eex and Eph are the bare exciton and photon energies,
respectively, and the couplings read

γ ¼ γ0cos2ðθ=2Þ; ð5aÞ

Γ ¼ Γex þ γ0 sin2ðθ=2Þ: ð5bÞ

Here, cos θ ¼ kz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ q2

p
encodes the cavity size, and

γ0 ¼
eκΔffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πℏωkϵ0Lz

p
�
F0ðκÞ þ F1ðκÞ

ℏ2q2

ðΔ=vFÞ2
�
; ð6Þ

Γex ¼
eκΔffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πℏωkϵ0Lz

p F2ðκÞ
ℏ2q2

ðΔ=vFÞ2
ð7Þ

to the order of O½ðℏvFq=ΔÞ2�. Moreover, e is the electron
charge, ϵ0 is the vacuum permittivity, and κ ¼ aexΔ=ðℏvFÞ.
The real functions F0ðκÞ, F1ðκÞ, and F2ðκÞ are given in
Supplemental Material [32]. The Hamiltonian Eq. (4)
contains the leading interactions in the system, although
it neglects direct exciton coupling [42,43] and the dielectric
character of the cavity, which would yield a TE-TM
splitting [44]. Our approach is complementary to that of
Ref. [22], where the winding phase enters in a direct
photon-photon coupling as a TE-TM splitting and is,
therefore, proper of the cavity itself. We acknowledge
the existence of more sources leading to this effect, e.g., a
longitudinal-transverse splitting of the excitons [45].
However, such a detailed analysis—cf. Refs. [46,47]—is
out of the scope of this work.
The results in Eqs. (5) show that the strength of the

couplings γ and Γ is tunable with the cavity width. Whereas
γ is a mere renormalization of γ0, Γ contains two different
contributions: The first, Γex, stems from the internal
structure of excitons, particularly from the fact that they
have a finite in-plane momentum; the second contains a
term purely induced by the finite width of the cavity. At this
stage, a qualitative yet illustrative characterization of the
system is at reach in terms of the parameters γ and Γ. The
coupling γ strongly hybridizes τ ¼ þð−Þ excitons and
ν ¼ −ðþÞ photons to yield four polariton bands, which
are degenerate in pairs. A nonzero Γ lifts the degeneracy
between both lower polariton (LP) and upper polariton
(UP) at q ≠ 0, and it breaks the valley-polarization selec-
tion rule. Notice that the winding phases e�i2φ provide the
required lz ¼ 2 angular momentum that allows the cou-
pling of a photon and an exciton with τ ¼ ν.

It is convenient to compare the Hamiltonian Eq. (4) and
the model in Ref. [19]. In both models, the exciton-photon
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couplings show a winding phase and have the same asymp-
totic limits for both small and large q values. The calculation
of the photon-exciton coupling, in our case, also takes into
account the internal structure of the exciton. Furthermore,
in Ref. [19], the use of a nonunitary transformation leads
to a direct-photon coupling and an underestimation of the
exciton-photon interaction in the strong-coupling regime
(q ∼ kz) [32].
In Fig. 1, we plot the dispersion relation for realistic

values of the parameters of MoS2 excitons and photons
in a microcavity of dimension Lz ¼ 0.35 μm. In the
strong-coupling regime, one finds that γ ∼ 10−2 eV and
Γex=γ0 ∼ 10−8. For these parameters, Γex can be neglected.
However, it might be significantly enhanced in systemswith
a higher ℏvFq=Δ ratio, or greater exciton radii, such as
moiré patterns of graphene on top of an hBN substrate,
where the gap ranges from 0 to 10 meV [48]. On the other
hand, we find that, within the strong-coupling regime,
kz=q ∼ 1. Thus, according to Eq. (5), the finite size of
the cavity results in a sizable Γ and, therefore, plays a
significant role in our system, as it is the principal source of
selection-rule breaking. The fine splitting of the polariton
bands is ∼5 meV at strong coupling (see Fig. 1) and is
probably too small to bemeasured at room temperature [18].
Yet, recent experiments on single-layerMoSe2 embedded in
an optical cavity reported polariton Rabi splittings
∼20 meV, characterized by a 5 meV linewidth at 4.2 K,
dominated mainly by photon losses [17]. The predicted
splitting might therefore be observable at low temperatures
in systems with greater Γ values and by employing cavities
realized with dielectric Bragg mirrors [49].
Berry curvature.—In order to analyze the dynamics of

the polariton, we need to include also the intrinsic Berry
phases of the constituents, the exciton and the photon. The
nth eigenstate of a generic single-excitation Hamiltonian
such as Eq. (4) takes the form jψni ¼ P

jψ
n
j ½ϕ̂j�†j0i, with

Hψn ¼ Enψn, ϕ̂
j second quantized operators describing

the constituents and j0i the vacuum. When the state of the

quasiparticle is not degenerate, we can study separately the
Berry connection of each state jψni, An ¼ ihψnj∇qjψni.
We define the Berry connection of the bare constituents as
Aij

0 ¼ ih0jϕ̂i∇q½ϕ̂j�†j0i. These definitions lead to

An ¼ i½ψn�†∇qψ
n þ ½ψn�†A0ψ

n: ð8Þ

The BC can then be obtained as Ωn ¼ ∇q ×An. The form
of Eq. (8) is independent of the choice of the basis states
defined by ϕ̂j. This analysis agrees with the results of
Ref. [6], where the BC of excitons, regarded as composite
particles, is shown to be composed by an intrinsic term due
to the BC of conduction and valence band electrons, arising
from the second term in Eq. (8), and an extrinsic one due to
their coupling, coming from the first.
We first consider the intrinsic Berry curvature (IBC) of

the exciton and the photon. We neglect the dependence of
ϕðqÞ on the center-of-mass momentum and assume equal-
mass conduction- and valence-band carriers. Then, the
exciton BC is [6]

Ωτ
exðqÞ ¼

1

4

X
q0

jϕðq0Þj2
X
β¼�1

Ωτ
cðq0 þ βq=2Þ; ð9Þ

where Ωτ
c is the BC of the bare conduction electrons [32].

The Berry connection for circularly polarized photons reads
Aν

phðkÞ ¼ νðcos θ − 1Þeϕ, and the resulting BC acquires
the simple form Ων

phðkÞ ¼ νkz=k3. As for the physical
meaning of this BC, it is not essentially different from that
of other particles. As a matter of fact, Hall drifts have been
predicted and observed at an interface between two
materials; see Refs. [9,10,50].
In the limit Γ ¼ 0, the two polaritonic branches are

doubly degenerate, and we can label them with the
valley index τ. The UP and LP eigenstates are jψτ

UPi¼
ðuqa†−τ;qþiτvqb

†
τ;qÞj0i and jψτ

LPi¼ðiτvqa†−τ;qþuqb
†
τ;qÞj0i,

respectively, with uq and vq real normalized amplitudes.
Remarkably, polaritons show a finite BC that is due to the
intrinsic contributions of the constituents, being propor-
tional to the probabilities u2q and v2q. For UPs, we have

Ωτ
UP ¼ u2qΩ−τ

ph þ v2qΩτ
ex þ ðA−τ

ph −Aτ
exÞ · ẑ × ∇qu2q; ð10Þ

and analogously for LPs with uq and vq interchanged.
Clearly, the BC of the composite system is significantly
enhanced by the coupling, as the extrinsic term containing
∇qu2q peaks in the strong-coupling regime [51].
For Γ ≠ 0, the polariton branches split. The new eigen-

functions hybridize excitons from the two valleys and
photons with opposite polarizations with equal amplitude,
and the Berry curvature of each quasiparticle vanishes. For
the extrinsic Berry curvature (EBC), an explicit calculation
shows that it also vanishes for all q ≠ 0. However, the UPs
and LPs are degenerate at q ¼ 0, giving rise to a δð2ÞðqÞ

FIG. 1. Dispersion relation of a bare exciton and a photon in a
cavity and the two resulting polaritonic branches in the strong-
coupling regime.
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structure of the BC. A nonzero Berry curvature arises if
time-reversal symmetry is broken, and a magnetic field
induces a Zeeman coupling [19,27]. Alternatively, a polar-
iton Hall current will exist when the initial state is given by
a finite population of chiral excitations, which can be
created using circularly polarized light.
In the presence of a Zeeman coupling Vz, the BC is

smeared around small momenta. A simple effective
Hamiltonian for either the UP (s ¼ 1) or the LP (s ¼ −1)
branches can be obtained by treating γ and Γ as perturbative
parameters and considering Vz ≪ jEph − Eexj. At small
momenta,

Hs
eff ¼ fsðqÞ þ

�
ΔsðqÞ αq2e2iϕ

α�q2e−2iϕ −ΔsðqÞ

�
; ð11Þ

with α¼−4γΓ̃=ðEex−EphÞ, Γ̃ ¼ Γ=q2, and fs and Δs ∝ Vz
given in Supplemental Material [32]. The correspondence
between the polaritonic branches and gapped (gapless for
Vz ¼ 0) bilayer graphene [52] becomes manifest here,
providing us with a qualitative understanding of the EBC.
The BC then reads

Ωs;λ
polðqÞ ¼

2λΔs

α

q2

½q2 þ ðΔs=αÞ2�3=2
: ð12Þ

The BC for a generic parameter regime and Vz ¼ γ=5 is
shown in Fig. 2 for one UP and one LP branch, the BC in the
two other bands having the opposite sign. A breakdown of
the different terms in Eq. (8) is presented therein. We can
distinguish two different regions within the strong-coupling
regimewhere either the intrinsic or the extrinsic contributions
toΩ dominate. Forq → 0, the EBCgoes to zero, whereas the
IBC remains finite (see the inset in Fig. 2). In that range of
momenta, the polariton behaves as merely inheriting the BC
of its constituents.
Remarkably, it turns out that the BC of excitons is 6

orders of magnitude smaller than that of photons and,
therefore, can be neglected. This fact allows the interpre-
tation of the dotted curves in Fig. 2 in simple terms: A
greater photonic component in the polaritonic eigenstate
yields a higher value of the IBC. This behavior combines
with the decay ofΩph with q to make the IBC peak at q ¼ 0
for LPs and at q > 0 for UPs.

As for the dominance of the EBC, it happens near the
crossing between the bare exciton and the photon bands. It
becomes an order of magnitude greater than its counterpart
for UPs and around twice as much as the IBC for the LPs.
There is a significant difference in the BC between the UP
and LP branches: The former reaches higher absolute
values and peaks at larger momenta. Once more, these
features can be understood in terms of the competition
between two factors. First, the proximity in energy between
a pair of either UP or LP branches is expected to increase
the value of the EBC. Notice that UP dispersion relations
come closer to each other with q, whereas the opposite

happens with LPs’ see Fig. 2(b). Second, the EBC is
expected to peak at momenta where the coupling is the
greatest. As a result of this balance, the location of the EBC
peaks in Fig. 2, which shift away from qsc, can be explained.
We emphasized that photons are the only significant source
of BC for polaritons either via the IBC or by means of the
strong coupling with matter.
Polariton anomalous Hall effect.—The BC manifests in

a Hall current perpendicular to an applied in-plane force.
On a general basis, assuming a polaritonic wave packet in
the s branch and the λ split band, centered at rc ¼ ðxc; ycÞ
and qc ¼ ðqc;x; qc;yÞ and with energy Es;λ

polðrc;qcÞ, we can
describe the evolution of its coordinates by semiclassical
equations of motion that include the BC through an
anomalous velocity [53,54]:

_rc ¼
∂Es;λ

pol

∂qc
− _qc ×Ωs;λ

polðqcÞ; _qc ¼ −
∂Es;λ

pol

∂rc : ð13Þ
Because of the anomalous term, a polariton anomalous Hall
effect naturally arises when hybrid modes are accelerated.
An anomalous exciton current was observed in Ref. [12],
where the nonzero _qc was provided by a thermal gradient
applied to the sample. The same scheme can be applied to
polaritons in the strong-coupling regime. Further alterna-
tives to achieve wave packet accelerations, like a gradient in
the cavity thickness [55], can be also borne in mind
regarding experimental realizations.

(b)

(c)

(a)

FIG. 2. (a) Schematics of the Hall drift experienced by LP and
UP upon application of a thermal gradient. (b) Zeeman split
polariton spectrum. (c) Extrinsic (dashed line), intrinsic (dotted
line), and total (solid line) BC for the UP of highest (red) and the
LP of lowest (blue) energy. Dashed black lines are a guide to the
eye, with qsc such that EexðqscÞ ¼ EphðqscÞ. The lower inset
enlarges the region of small momenta that appears squared in
green. The model of Eq. (4) and the Berry connection given by
Eq. (8) were used in this section.
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We now consider a polaritonic wave packet initially
centered at rc ¼ qc ¼ 0 under the influence of an effective
force in the x̂ direction; Eqs. (13) predict for the Hall drift

yc ¼
Z

qc

0

dq0cΩ
s;λ
polðq0cÞ; ð14Þ

where the angular symmetry of Es;λ
polðrc;qcÞ has been taken

into account. Remarkably, the result applies also in the case
of relativistic corrections that arise due to the coupling with
photons. Assuming the domain of integration to exceed the
strong-coupling regime, we extend the integration to
infinity, so that the area under the curves in Fig. 2 gives
a good approximation of the polariton drift. For realistic
values of the parameters, we obtain yc ≃ 0.2 μm for UPs
and yc ≃ 0.03 μm for LPs. Note that the IBC drives a drift
that amounts only to ∼10−2 μm.
Regarding a possible realization of our predictions, we

emphasize that the generation and observation of polari-
tonic wave packets are already at experimental reach.
Techniques like optical injection with laser beams [56]
and polarized short pulses [57], direction-controlled bal-
listic ejection from condensates [58], or out-of-resonance
pumping in TMDs [59] provide very localized wave
packets, to the extent of approaching the Heisenberg limit
[60], micron-scale propagation lengths, and trajectories that
can be tracked in real time [57,61,62].
Conclusion.—We have presented a microscopic treat-

ment of the exciton-photon coupling in a cavity-embedded
MoS2 monolayer, focusing on the spectrum and Berry
curvature. Remarkably, we find that the cavity size promotes
a selection-rule breaking by a valley-polarization cross-
coupling, characterized by a winding phase. The coupling
results in a splitting of the polaritonic branches and a strong
enhancement of the polariton BC, much beyond their
constituent contributions. The polariton BC peaks in the
strong-coupling regime and gives rise to a polariton anoma-
lousHall effect, thus promoting 2Dmaterials as a platform to
study the topology of hybrid light-matter states.
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