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Humanization of Antibodies using a 
Statistical Inference Approach
Alejandro Clavero-Álvarez1, Tomas Di Mambro2, Sergio Perez-Gaviro3,4,1, Mauro Magnani2 & 
Pierpaolo Bruscolini4,1

Antibody humanization is a key step in the preclinical phase of the development of therapeutic 
antibodies, originally developed and tested in non-human models (most typically, in mouse). The 
standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework 
Regions of germline sequences has some important drawbacks, in that the resulting sequences 
often need further back-mutations to ensure functionality and/or stability. Here we propose a new 
method to characterize the statistical distribution of the sequences of the variable regions of human 
antibodies, that takes into account phenotypical correlations between pairs of residues, both within 
and between chains. We define a “humanness score” of a sequence, comparing its performance in 
distinguishing human from murine sequences, with that of some alternative scores in the literature. 
We also compare the score with the experimental immunogenicity of clinically used antibodies. Finally, 
we use the humanness score as an optimization function and perform a search in the sequence space, 
starting from different murine sequences and keeping the CDR regions unchanged. Our results show 
that our humanness score outperforms other methods in sequence classification, and the optimization 
protocol is able to generate humanized sequences that are recognized as human by standard homology 
modelling tools.

Antibody-based drugs have acquired an increasing importance in the last two decades, both for imaging and for 
therapeutic uses, especially to treat different types of cancer and autoimmune diseases. However, their develop-
ment is a long and difficult process, prone to fail at different stages. Antibody humanization is a key step in this 
process, unless the candidate is already obtained from a human library, and is essential in moving from the pre-
clinical to clinical stage. In fact, new antibodies are typically developed in animal models (most often, in mouse); 
however, the antibodies obtained by this way are usually not tolerated by humans, eliciting in vivo an immune 
response against the murine antibody. Thus, they need to be “humanized”, substituting part of their sequences 
by the human ones, while preserving their specificity, affinity and stability. Although computational methods are 
available, nowadays such humanization process is mostly a trial-and-error process, based on CDR-grafting and 
back mutations1. CDR-grafting implies selecting the Complementarity-Determining Regions (CDRs), respon-
sible for antigen recognition, from the given murine sequence and grafting them into the human Framework 
Region (FR); the latter is selected by looking, in the human genome, at the germlines that produce FRs most 
homologous to the murine ones: the hope is that the combination of such human frameworks with the original 
murine CDR will result in a molecule that still preserves its stability and activity, but is tolerated by the human 
immune system. However, most of the times this approach is not completely successful at either of its quests, and 
the researcher is left alone in trying further mutations, until an antibody with the selected properties is identified. 
This error-prone process is a true bottleneck in the development of new treatments, in a market of increasing 
global impact.

From an algorithmic point of view, CDR-grafting corresponds to a search, in the human germlines, for the 
sequence with minimal Hamming Distance (i.e highest similarity) to the original murine one. Thus, the similarity 
to the closest germline represents a “humanness score” to maximize, for this approach. More in general, any 
humanization protocol will rely on maximizing some “humanness score”, whose basic requirement is to be able to 
distinguish human from mouse sequences with as few errors as possible. Most humanness scores are based on 
pairwise sequence identity between the sample and a set of reference (most often, germline) human sequences: 
for instance, the score can correspond to the average similarity2, or the average among the top 20 sequences3, or 
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the highest similarity, over “windows“ of typically 9 residues4,5. Recently, a different approach as been proposed 
by Seeliger6, introducing a score function that accounts both for local preferences and for pair correlations 
between residues at different positions. Interestingly, such approach is reasonably capable to distinguish between 
human and mouse sequences, despite a relevant residual overlap between their distribution; also, the stochastic 
humanization process under such score function samples regions of low immunogenicity, even though the final 
basin of attraction of the trajectories presents an intermediate value of immunogenicity (as measured by the 
Epivax score)7. It is also worth mentioning that such approach breaks with the common logic of considering 
CDRs as the only antigen binding regions, by treating correlations between any positions (CDR or  
framework) on the same grounds, which can be a safer option due to the fact that there are relevant antigen  
binding residues also in framework regions8. However, Seeliger’s approach uses an ad hoc score function for the 
pairs of residues, p A A p A p Aln( ( , )/( ( ) ( ))ij i j i i j j

2 , that apparently is loosely related to mutual information 
= ∑MI p A A p A A p A p A( , ) ln( ( , )/( ( ) ( ))ij A A ij i j ij i j i i j j,i j

, and may suffer its same problems9, in distinguishing direct 
and indirect correlations. A more fundamental approach deals with the observed sequences as instances of a 
general probability distribution p(A) over the sequences = …A AA ( , , )L1 . By constraining the sequences 
according to the observed site fi(Ai) and pair fi,j(Ai, Aj) frequencies, and looking for the distribution maximizing 
the Shannon entropy, one finds = −p e ZA( ) /H A( ) , where: = −∑ − ∑< =H e A A h AA( ) ( , ) ( )i j ij i j i

L
i i1  and 

= ∑ −Z e H
A

A( ). This is appealing, since it paves the way for a connection to statistical physics: p(A) appears as a 
Boltzmann distribution, corresponding to the energy function H, made up of a one-body term hi(Ai), stating the 
preferences of each position for each amino acid type, plus an interaction term eij, coupling the position i and j. 
These effective interactions should be regarded as the expression of the different constraints that intervene in the 
accelerated sequence evolution that immunoglobulins undergo during maturation, as for instance, the optimiza-
tion of the interaction with the antigen, the need to preserve stability of the folded structure against unfolding or 
misfolding and aggregation, the requirement of low affinity for the T-cell receptors, to avoid an immunogenic 
response. The knowledge of the parameters eij(Ai, Aj), hi(Ai) above allows to calculate the probability of any 
sequence, opening the possibility to associate to each sequence a measure of its “humanness”. However, the infer-
ence of the parameters is a formidable task, that cannot be accomplished in an exact way. Techniques as Direct 
Coupling Analysis9 have been used to provide approximate estimates; here instead, we follow the approach by 
Baldassi and coworkers10 specifying a simple, quadratic form for the energy function H, that allows an analytic 
derivation of the parameters and of the posterior probability of any sequence. This approach has been recently 
used to predict antigen-antibody affinity11, with a different choice of the regularization, and using the quadratic 
form as a sequence score; here we elaborate on the original approach, and derive a score that is related directly to 
the posterior probability of a sequence, as explained below. We will still refer to this model as the “Multivariate 
Gaussian” Model (MG), even if the posterior probability score that we calculate and use is actually a multivariate 
Student distribution. We use this score to assess its efficiency in classifying murine and human sequences, com-
paring the method with simpler approaches just based on the Hamming Distance (i.e. sequence pairwise differ-
ence) between the input sequence and the human or mouse reference database. To obtain the latter, we curated 
human and murine learning and test database, of matching VH and VL chains, in order to assess the joint role of 
the light and heavy region in determining humanness.

Our goal is to understand the role of correlations between mutations at different positions, including across 
heavy and light chains, as accounted for by the statistical model, in determining the traits of humanness. Also, 
we want to understand whether the VH and VL chains behave and vary independently, as assumed implicitely 
by all humanization methods that deal separately with the two chains, or if correlations between the VH and VL 
chains play a relevant role, and cannot be neglected. Moreover we consider the relationship between our human-
ness score and the observed immunogenicity of a small set of antibodies for which the immunogenic reaction in 
patients has been reported in the literature. Finally, resorting to Steepest-Descent/Monte-Carlo simulations with 
the MG statistical score, we perform the humanization of a few murine sequences that have also been humanized 
experimentally, to see how our results compare with the experimental ones. We conclude by discussing the pos-
sible applications and future lines of research stemming from this approach. Before proceeding, let us mention 
that alternative strategies, to define a humanness score based on sequence distributions, could be attempted: for 
instance, one could resort to Hidden Markov Model (HMM) techniques to learn a probability profile from the 
alignment of the sequence database. However, such an approach does not appear to be very appealing, for our 
goals: indeed, Seeliger’s results6 suggest that correlations between pairs of residues are relevant. HMMs are effec-
tive in accounting local correlations between matching columns or neighboring sites (i.e. correlations that can be 
encompassed by the transition matrix from the state at position i to that at position i + 1 in the model graph), but 
are not suitable to describe generic long range correlations12, as those between VH and VL, whose relevance we 
want to assess. This does not rule out that alternative scores based on HMM could be effectively introduced, but 
we do not adopt this strategy here, and leave the subject to future investigations.

Results
Correlated and uncorrelated classification of test databases.  After creating human and murine, 
learning and test databases of matching VH, VL regions, and fixing the parameters of the statistical model as 
described in Methods, we compare the performance of the distance based approaches with the statistical distribu-
tion method (Fig. 1), in distinguishing human from non-human (in our case, murine) sequences in the test data-
base. Our goal is to assess if and to what extent the MG approach, accounting for two-sites correlation, improves 
the classification based on sequence-similarity criteria. We can see that the MG model efficiently distinguishes 
between murine and human sequences in the test database, scoring better than the distance-based approaches. 
Notice also that correlations do matter: as already pointed out by Asti and coworkers11 in a similar context, set-
ting to zero the non-local interactions, and keeping only a block-diagonal distribution for the correlations (see 
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Methods), results in a much worse performance. Interestingly, if we just eliminate correlations between the VH 
and VL regions, keeping those within the same chain, the performance is practically unaffected (data not shown): 
this supports the commonly used approach to deal with heavy and light chains separately.

Distance-based methods similar to the one proposed by Adler3, considering only the distance to the n clos-
est sequences to the query one in the learning database, provides a better classification than accounting for the 
distance from the whole set of human learning sequences2 (the “Tall” method). In fact, the ROC curves steadily 
improve as we move from Tall to T1, suggesting that the local structure of the sequence space may be more relevant 
than the global one, and that the heterogeneity in the human database can be misleading for a distance-based 
classification.

As it could be expected, upon removing the CDRs and keeping only the framework regions, the predictions 
by Tn improve (especially, for increasing n), supporting that the CDRs do not carry any relevant species-specific 
information. For the sake of completeness, it is also interesting to notice that using two different reference 
learning databases improves the classification performance of the MG model, but much more so that of the Tall 
approach: classifying a sequence according to whether its distance score to the human learning dataset is better 
than that from the murine learning dataset is very fast and efficient. However, this approach cannot be safely 
adopted for humanization, where the goal is to make a sequence “sufficiently human”, and not necessarily “as close 
to human and far from murine as possible”.

Classification based on just the VH or VL regions suggests that the VL region allows to better distin-
guish human from murine sequences: for the MG case, VL-based classification performs even better than the 
VHVL-based one, while VH based classification does not reach the same results. The same is true also for the 
Tn method. Thus, apparently the VL carries a greater amount of information on the human or murine nature of 
the sequence. Table S3 in Supplementary Information (SI) reports single-value indicators of the quality of the 
classification of the test databases with the different methods, complementing the information reported in Fig. 1.

Classification of test, murine, chimeric, humanized and fully human antibodies.  We classify the 
test database and the engineered antibodies according to the methods above, using the VHVL distribution, since 
this is the one that we will use later on for sequence design. We use the human learning distribution as the refer-
ence one for classification, and we fix the threshold score, separating human sequences from the rest, according to 
the value that maximizes the Youden’s index for the test database (see Methods; in general, the values maximizing 
the latter and Matthews Correlation Coefficient almost coincide, ensuring that the choice of a particular indicator 
is not crucial).

Figure 2 reports the distributions of the scores for the learning and test databases, as well as for the phar-
maceutic antibodies whose sequences are publicly available13–15 (see Methods and SI Table S1), labeled by the 
suffix of their International Nonproprietary Name (INN). Notice that the MG-scores of the human learning 
datasets are much higher than those of the human test dataset (and actually quite close to the maximum possible, 
MGmax = 13124.49). This is most likely a signal of overfitting of the learning dataset, which is inevitable due to 
the dimension of the matrix Σ and the number of aligned sequences. We expect that, as new researches allow to 
increase the size of the learning database, this issue would become less evident. Table 1 reports the fraction of 
correct predictions (for the therapeutic antibodies, we consider correct a prediction of -umabs and -zumabs as 
human, -omabs and -ximabs as murine).

It can be noticed that MG yields the best results, with the highest fraction of correct classifications for the 
human and murine test databases; the performance of all the method in classifying therapeutic antibodies is 

Figure 1.  ROC curves for the different models. ROC curves obtained upon classification of the test human 
and murine databases, using the human learning database to learn the MG distribution, and to calculate the 
average distance for the “Tall” and “Tn” methods. Panel (a): ROC curves obtained using the full VHVL chain 
for classification, with or without CDR regions. Panel (b): ROC curves obtained using the VH or VL chain 
separately for classification. “Corr. off ” indicates that correlations between residues have been removed in the 
MG model, “FR” refers to the curve obtained removing the CDRs and keeping just the framework regions, 
“h-m” indicates that classification is performed using both human and murine learning datasets as reference 
(see Methods).
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similar, and almost perfect, for all methods, even if in that case the number of sequences is too small to be statis-
tically relevant.

Correlation of the MG score with immunogenicity.  A good performance in classification tasks is the 
fundamental requirement for a humanness score, but it could be not enough if we want to use such score for 
antibody humanization. The reason is that sequences with better score might not be better sequences, since the 
MG score has been derived from sequence information only, and it does not explicitly account for e.g. protein 
stability, solubility, or immunogenicity. In particular, the latter is a crucial aspect for humanization, since it is 
highly desirable that a drug does not elicit an immune response. In the following we focus on the MG-score, as the 
best candidate to use in a humanization protocol. In order to estimate how good is the MG humanness score for 
humanization tasks, we compare it with the reported fraction of observed immunogenic response (as measured 

Figure 2.  Boxplot of three score distributions for the different datasets: Panel (a): MG score; Panel (b): Tall 
score; Panel (c): T20 score. Pharmaceutical antibodies are indicated according to the suffix in their International 
Nonproprietary Name: “umab” are fully human antibodies; “zumab” are humanized antibodies, usually 
containing murine CDRs grafted on top of human framework variable regions; “ximab” are chimeric antibodies, 
obtained by assembling the whole murine variable region on top of a human constant part; “omab” are murine 
antibodies. Since we deal with just the antibodies’ variable regions, “ximab” and “omab” are indistinguishable. 
The horizontal lines signal the threshold score above (for the MG case) or below (for the other cases) which the 
sequence is classified as human. The threshold values are =t 6383MG , =t 116Tall

, =t 76T20
.

Human Murine umab zumab ximab omab

MG 1289/1388 1324/1379 11/11 19/20 6/6 9/9

T1 1225/1388 1296/1379 11/11 19/20 6/6 9/9

T20 1195/1388 1274/1379 11/11 19/20 6/6 9/9

Tall 935/1388 1193/1379 11/11 19/20 5/6 8/9

Table 1.  Fraction of correct predictions. Fraction of correct predictions for the test and therapeutic databases, 
using the threshold obtained as specified in Methods, to distinguish between human and murine sequences.
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by the appearance of anti-drug antibodies) for several pharmaceutical sequences: Fig. 3 reports the correlations 
between the MG score and the experimental findings. Notably, clinical essays often report several values for the 
same drug, since immunogenicity appears to depend on the disease the drug is used for, as well as on the possible 
combination of the drug with other treatments. A little arbitrarily we have used the mean between minimal and 
maximal reported values as the average, and the semidifference between them as the error bar of each “measure” 
in the plot (when just one value is reported, an error of 1% is assumed). Then we have performed a linear fit of the 
experimental immunogenicity (with uniform weights), reported in the figure. As it can be seen, the experimental 
values are widely spread, especially at the murine end; this implies that immunogenicity is just loosely related to 
the degree of humanness of the variable regions. Hence, as expected, the fit y = 56.35 − 0.005806 x (with x the 
MG-score and y the experimental immunogenicity) is quite bad, with a low value of the “explained variance” 
R2 = 0.18, and a Pearson correlation coefficient of C = −0.43. However, the fit reveals a global trend of improve-
ment in immunogenicity as the humanness score increases from murine to fully human antibodies.

The limited number of sequences for which an experimental estimation of immunogenicity exists, made us 
look for an alternative, in-silico definition, that we could apply to any proposed sequence. To this end, we have 
built an immunogenic score resorting to the MHCII software16,17 as described in SI Methods, predicting T-cell 
receptor epitopes in any given sequence, as a proxy for its immunogenicity: our goal was to compare the MG 
humanness with the immunogenic score for a broader set of sequences, and to test for both scores during the 
humanization process. However, the results, reported in SI Figs S2 and S3 do not indicate that such immunogenic 
score is sufficiently reliable, since its correlation with experimental data is even worse than that of the MG-score. 
Thus, we did not proceed further on this line.

Statistical optimization of murine sequences.  Next, we choose in the literature seven pairs of 
murine-humanized sequences (SI Table S2) and perform Steepest Descent (SD) and Simulated Annealing Monte 
Carlo (SAMC) simulations starting from the murine sequences, to obtain the sequences with the best MG-score. 
In all cases, we keep the CDRs fixed, since thet are associated to the antigen-recognition function that we want to 
preserve. We use two different algorithms due to their different nature: in the SD protocol, at each step we make 
the point mutation that most improves the score. The output is the closest local optimum to the original murine 
sequence. On the other hand, the SAMC procedure allows a more extensive exploration of the sequence space, 
and is less prone to get trapped in local minima, while looking for the global optimum.

Figure 4 reports the MG score versus the Hamming distance to the original murine sequence, starting from 
each of the murine targets in SI Table S2, while a typical time-course for SD and SAMC simulations is reported 
in SI Fig. S4 for the first murine target. SI Fig. S4 shows that the MG score steadily increases with time in SD 
simulations, and the distance to the original murine sequence increases as well, which reinforces our previous 
findings that the MG score is a good measure of “humanness”. This correlation between time and HD from the 
original sequence results in monotonic curves for SD simulations in Fig. 4, from the original murine sequence on 
the left, to the final humanized one on the right. On the other hand, the distance to the experimentally human-
ized sequence in SI Fig. S4 does not present a monotonic decrease and does not reach zero, as expected: the 
experimentally humanized sequence need not be the only possible one, or even the “most humanlike” one at 
given CDRs. However, it is interesting to notice that, for all sequences, many of the proposed mutations coincide 
with those appearing in the experimentally humanized sequence (see column 7 in Table 2). In general, the SD 
final sequences contain more mutations than the experimental humanizations, suggesting that it is probably 
unnecessary to fully optimize the MG score, and that viable sequences can be found earlier in the optimization 
process, whose last steps involve usually smaller changes in the score. Notably, in all cases the MG-score of the 
experimentally humanized sequence is higher than the original murine one, again confirming the goodness of 
the MG-score as a humanness score; moreover, the score of the optimal SD sequence is higher than that of the 
experimental sequence. Another interesting comparison between SD predicted and experimental humanized 
sequences is shown in Table S4 in SI, where we report the result of a protein-BLAST search for the most similar 

Figure 3.  Scatter plot of the experimental immunogenicity and the MG score. The immunogenicity (% of 
patients that develop antibodies against the therapeutic antibody) is plotted versus the MG-score.
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sequence. Interestingly, the experimentally humanized sequence is not always recognized as human by BLAST, 
while for the SD sequence, always a human or humanized sequence appears as the most similar one, which again 
supports the goodness of the MG-score as a humanness score.

SAMC simulations start at high temperature (see Methods), which induces an immediate jump from the orig-
inal murine score, with HD equal to zero, to very low scores and high distances from the initial murine sequence 
(see SI Fig. S4): the system explores sequences with basically all the residues mutated with respect to the original 
murine (since we fix 111 CDR positions, the maximal possible HD is 187). The system accepts changes with 
probability around 0.9, suggesting that the initial temperature is high enough to cross the “energy barriers” and 
freely explore the sequence space. During the simulation, the temperature is slowly reduced, up to a point where 
there is a sudden transition from an entropy-dominated regime, where the system explores many sequences with 
low score (high energy) to an energy-dominated region, where the system get stuck in a high score (low energy) 

Figure 4.  Scatter MG score-Hamming distance plot for the Steepest Descent (Panel (a)) and the SAMC (Panel 
(b)) for all our targets. Here HD is the Hamming distance between our proposed sequence and the original 
murine one. The SAMC trajectories start at the murine sequences, on the left (HD = 0, MG-score around 4500), 
then jump immediately to the region at the bottom-right of high HD, low score (highly non-human sequences, 
but very different from the original murine). Notice that all trajectories roughly overlap in this region: there 
is no memory of their different, and fixed, CDR sequences, and we witness a basically free exploration of the 
sequence space. Then, when the temperature falls below a certain threshold, the trajectories move to the top-
left region, of highly human sequences with score and HD depending on the fixed CDR regions of the original 
sequence.

tgt MG (o) MG (h) MG (p) HD (p, o) HD (h, o) TP FP TN FN FPR TPR YJS

1 4963 7571 9000 49 37 31 18 246 3 0.07 0.84 0.78

2 4905 7184 9328 61 48 43 18 234 3 0.07 0.90 0.83

3 4976 6780 7817 48 37 24 24 241 9 0.10 0.65 0.57

4 4734 5689 9362 61 38 22 39 228 9 0.15 0.58 0.46

5 4978 7202 8131 53 39 37 16 243 2 0.06 0.95 0.89

6 4350 5193 8159 62 29 18 44 232 4 0.16 0.62 0.48

7 4481 5468 8379 63 35 24 39 229 6 0.15 0.69 0.56

Table 2.  Comparison between original, simulated and experimentally humanized sequences. Column 2, 3 and 
4 report the MG-score for the original murine sequence “o”, the experimentally humanized sequence “h”, and 
the one predicted by SD “p”, for each target (column 1). Column 5, 6 report the number of mutations between 
pairs of sequences (HD). We define as “positive” (P) the mutations of the predicted sequence with respect to the 
murine one: P = HD (p, o); “negative” (N) the number of corresponding identical residues in the predicted and 
murine sequence. Accordingly, True Positive (TP) will be the number of common mutations, with respect to 
“o”, shared by “p” and “h”; False Positive (FP) indicates that in the predicted sequence there is a mutation with 
respect to the murine, but such mutation is not the present in “h” (or it is not the same mutation); True Negative 
(TN) imply that neither the predicted nor the humanized sequence have mutations, while False Negative 
(FN) indicates that the humanized sequence present a mutation with respect to the murine, but the predicted 
sequence does not. Schematically, being A, B, C possible aminoacids for the triplet (murine, humanized, 
predicted), we have: (A, A, A) → TN; (A, A, B), (A, B, C) → FP; (A, B, A) → FN; (A, B, B) → TP; thus, HD (p, 
h) = FP + FN. The True and False Positive Rates are defined as TPR = TP/(TP + FN); FPR = FP/(TN + FP). The 
last column is the Youden’s index: see Methods.
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region of the sequence space, ideally where the optimal sequence is located. Correspondingly, the Hamming 
distances suffer a sudden change as well, and reduce their fluctuations to a small region around their final value.

In Fig. 4 the course of the SAMC simulation can be followed by observing that all targets’ trajectories share 
an initial jump from HD = 0 to a region of high distance, close to the maximum possible one, and low MG score, 
and then move towards the final values of high MG-score and intermediate HD. Notice that the trajectories 
finally explore highly-human regions of several hundreds of sequences; however, there is no sampling of the 
region between the original murine sequence and the final basin of high-scoring sequences. On the other hand, 
the SD trajectory explores precisely this region, providing humanized sequences of increasing dissimilarity from 
the original sequence. Notably, the maximal score sequence obtained by SAMC usually does not coincide with 
(and, obviously, is better than) the best SD sequence: the difference can be of a few residues, pointing at essen-
tially the same minimum in the sequence space, but also of more than 20 residues (such in the case of target 4), 
suggesting that in some case the SD evolution can become trapped in a local energy minimum, quite different 
from the global one. This could appear surprising, given that the energy function is a continuous function in N 
dimensions, with a unique global minimum; however, our dynamics is forced to be discrete, and we keep the CDR 
residues fixed: this could induce barriers in an otherwise funnel-like landscape, that can trap the SD trajectory, 
that is bound to find a local energy minimum, while the SAMC procedure has more chances to escape local traps 
and find the global optimum. On the other hand, the SD approach is convenient for our goals because it naturally 
provides, by construction, a trajectory of locally optimal solutions at any given distance from the original murine 
sequence, that is, the sequence of “best humanizing mutations” to perform, starting from the murine sequence; 
this is extremely useful within a conservative strategy to humanization, aiming at finding a functional humanized 
sequence rather than the best scoring one, while keeping the number of mutations as small as possible, in order to 
avoid affecting the stability or solubility of the original protein. The above results suggest that in a first approach, 
the SD trajectory could yield sufficient information to obtain reliable humanized sequences, at different similarity 
to the original murine one; SAMC could be unnecessary, unless the SD sequences prove to be unfit and there is a 
need to obtain an alternative list of several different high scoring sequences.

Discussion
In this article we have introduced a statistical score, built on the Multivariate Gaussian Modeling10, that is more 
reliable, as a measure of the “degree of humanness”, than the distance of the query sequence from the ensemble of 
human sequences, or to a subset of it (the Tn methods). Indeed, we have seen that its performance in distinguish-
ing human from murine sequences is higher than the methods relying on just the sequence similarity, due to the 
fact that the statistical model, on which the MG-score is based, accounts for pair-correlations between residues at 
different positions. Such correlations represent a key features for the performance of the model, that indeed drops 
dramatically if they are neglected. However, neglecting correlations between VH and VL regions does not affect 
the classification performance; since all our databases are restricted to VH-VL pairs that indeed are part of the 
same antibody, the irrelevance of correlations between VH and VL regions is not the artefact of a random juxta-
position of the two chains, but points to a very limited role of the interplay between the two regions, at least as far 
as classification is concerned. If translated to humanization tasks, this observation would support the common 
approach of humanizing the light and heavy chain independently.

The proposed humanness score shows a correlation with the experimental immunogenicity of therapeutic 
antibodies, even if such correlation is far from perfect. On the other hand, the comparison is made difficult by 
a series of factors affecting the experimental data: first, immunogenicity is studied in a clinical environment, 
measuring the frequency of anti-antibody reactions in sets of patients that necessarily represent inhomogeneous 
samples, due to their age, physical conditions etc.; on top of this, the same antibody, used for sets of patients 
affected by different diseases or in combination with other drugs, triggers different immunogenic responses. 
Also, even murine therapeutic antibodies, approved for long-duration treatment, are very likely to present little 
immunogenicity (imaging antibodies can have more, due to a more sporadic use), so that they are not expected 
to present the “typical immunogenicity” of a random murine antibody, and this surely introduces a bias in the 
data. Unfortunately, there is at present no alternative tool that can reliably predict the immunogenicity of a given 
antibody, so it was not possible to study the goodness of our humanness score as a immunogenicity predictor, for 
a sufficiently large dataset, free from the biases of therapeutic antibodies.

In any case, the analysis of murine-humanized antibody pairs reveals that, systematically, the MG-score 
increases upon humanization, thus indirectly confirming the value of the score for humanization tasks. Starting 
from the murine sequences, we have performed in-silico humanizations, that represents trajectories in the 
sequence space, leading to high-scoring sequences. The proposed SD/SAMC methods for optimizing the score 
produce a huge number of sequences beyond the threshold score, that could be considered as candidate human-
ized sequences. Most often, the SAMC procedure finds better solutions than the (much faster) SD, that might get 
trapped in suboptimal sequences. However, considering that in a humanization protocol it is more interesting to 
get good sequences with a minimal amount of mutations of the original sequence, rather than a global optimum, 
we have focused mainly in the SD trajectories originating at the different starting murine sequences. In all cases 
that we have analyzed, there are several common mutations between the last (and best) sequence in the SD pro-
cedure and the experimentally humanized sequence; the latter is not visited along the SD trajectory, even if this 
is not necessarily something to worry about, since there is no reason for the experimentally humanized sequence 
to be the only acceptable one. Interestingly, the optimal sequence that we find by SD is generally recognized by 
protein-BLAST as “more human” than the corresponding experimentally humanized one; this suggests that inter-
mediate sequences found in the SD trajectory, with lower humanness score, could represent suitable candidates 
as well, and their higher similarity to the original functional sequence should reduce the risk of loosing stability 
or solubility.
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So, within a humanization protocol, the advantage of our approach over CDR-grafting is that it proposes a 
precise set of candidate sequences, at increasing distance from the murine one and increasing humanness score, 
instead of requiring the introduction of arbitrary, manual back-mutations; such sequences can be shortlisted by 
further modelling of their structure and stability, while the final choice relies on the experimental result from 
the best hits. We stress that the method we propose represents an alternative approach to the usual grafting on 
germline sequences, since it deals with the statistical properties of the ensemble of mature sequences, and its 
performance can only improve as more sequences are collected, yielding better statistics. Indeed, the ensemble of 
rearranged human sequences that we use as learning set presents some of the desired properties for therapeutic 
antibodies, due to their nature (we expect that they share at least solubility and low immunogenicity); thus, as far 
as these properties can be recovered by a statistical model based on residue-residue interaction, we expect that 
an increase of the number of sequences in the database will yield high scoring sequences being indeed better 
humanized sequences.

Moreover, inferring a score from a database of experimentally verified sequences represents a flexible 
approach, that can be adapted to different learning databases. In perspective, this involves precision-medicine 
applications, resorting to individual antibody repertoires, that are becoming available through Rep-Seq tech-
niques. Also, it can be easily adapted to veterinary drugs development, by changing the human learning dataset to 
the appropriate animal one. With the growing wealth of sequence databases, statistical-inference methods could 
become an increasingly relevant tool, with a range of applications that is still to be explored.

Methods
We report here a general description of the methods: further details can be found in SI.

Database preparation.  Learning databases.  We download from the IMGT/LIGM-DB server two data-
bases with the whole set of human, rearranged, cDNA, VH sequences (11463 units) and VL sequences (5546 
units), respectively, in the IMGT format. We extract and annotate each sequence with a unique identification 
strings that combines several fields of the IMGT record. To align the sequences, we resort to the ANARCI tool18 
(version 1.1) with the AHo numbering scheme19, that is structurally motivated and basically free from insertions. 
We build a combined VH-VL database by matching VH and VL sequence according to their identification string, 
and joining them in a unique, aligned sequence of fixed length L = 298 (including gaps: the AHo scheme aligns 
both VH and VL in frameworks of 149 positions). All cases where the matching is not unique are removed. This 
yields a database of 1309 joint VH-VL sequences.

We perform the same steps on two databases with the whole set of mouse (“mus musculus”), rearranged, 
cDNA, VH (8389 units) and VL sequences (1514 units), both downloaded from the IMGT/LIGM-DB server, 
ending up with a combined database of 373 aligned sequences. Notice that we use the mouse learning database 
only for the classification with two reference distributions, while the rest of our results are based on just the 
human learning dataset.

Test databases.  We download from the DIGIT server20 the whole database of matching human VH-VL 
sequences (3322 sequences), aligned according to the Kabat scheme. We remove the alignment, split the 
sequences into separate VH and VL chains, and filter on their length as above. We perform the same steps for the 
database of murine VH-VL matching sequences (1933 units.) Then, we use ANARCI to align the human VH and 
VL files according to the AHo scheme, and eliminate repeated sequences both within the DIGIT VH or VL files, 
as well as between these and the corresponding murine DIGIT aligned files, and the aligned human and mouse 
learning databases. Finally, we combine the VH and VL sequences, obtaining a database of 1388 sequences. The 
same procedure is repeated for the murine VH and VL files, yielding a combined database of 1379 sequences.

Humanized and Therapeutic antibodies database.  We extract from DrugBank a list of therapeutic antibodies 
whose sequences are publicly available, reported in SI Table S1. For these sequences, we have also searched pub-
licly available information on immunogenicity (as measured as the frequency of appearance of antidrug anti-
bodies)21–23. The complete list of sequences, together with their reported immunogenicity, can be found in SI file 
“Therapeutic_Ab.txt”. Also, we compiled from literature24–30 a list of pairs of corresponding murine and experi-
mentally humanized sequences, reported in SI Table S2.

Definition of the CDRs.  We define the CDR regions according to the IMGT scheme: in the AHo layout, this 
imply the following definition: for the VH region (residues 1–149): 27–40 (CDR1), 58–68 (CDR2), 107–138 
(CDR3); for the VL region (residues 150–298): 176–189 (CDR1), 207–217 (CDR2), 257–287 (CDR3). These 
positions are calculated with the following protocol: rather than resorting to the correspondence table reported 
in www.bioc.uzh.ch/plueckthun/antibody/Numbering/NumFrame.html we align some input sequences in the 
AHo scheme, and then query the IMGT-VQUEST31 server, to identify the CDR regions, and find their position 
in the alignment.

Sequence Classifiers.  We compare two different approaches, one based on the identity between pairs 
of sequences, and the latter based on the inference of a statistical model describing each (human or murine) 
sequence distribution.

Classifiers based on sequence identity.  We define the distance between two sequences = = …A i LA { , 1, , }i
1 1 , 

= = …A i LA { , 1, , }i
2 2 , where L is the length of the alignment (including gaps) in the AHo numbering scheme, 

as: δ= ∑ −=d (1 )i
L

A AA A, 1 i i
1 2 1 2 , where Ai

m indicates the amino acid type at position i of sequence m and δX,Y is the 
Kronecker delta, equal to one or zero according to whether the residues X and Y are identical or not. From this, 

http://www.bioc.uzh.ch/plueckthun/antibody/Numbering/NumFrame.html
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several different proximity scores can be defined, of the kind: = ∑ ∈T dA A a( ) ( , )k k a A
1

( )k
h( )  where k

h( )  is the set of 
k sequences in the human learning dataset that are most similar to the query sequence A. Hence, T1(A) is the 
distance of A from the closest sequence in the human learning database, while we call Tall the average distance of 
A from the learning ensemble of human sequences: ≡ =T d TA A( ) ( )all

h
M

( )
h

, with Mh the number of sequences in 
the human learning database. Analogously, it is possible to define the equivalent quantities (e.g. d A( )m( ) ) referred 
to the the murine learning ensemble.

The classification with one reference distribution uses Tk(A) as the score of A. A threshold score separating the 
human from non-human (mouse) class is defined for each method, by optimizing its performance on the test data-
bases: each value of the threshold involves a different number of False Positives (FP) and True Positives (TP), which 
correspond to a point in the FPR-TPR plane, where the False Positive Rate (FPR) and True Positive Rate (TPR) are 
defined as: TPR = TP/P; FPR = FP/N, where P and N are, respectively, the number of human sequences (considered 
as Positive events), and of murine sequences (considered as Negatives) in the test databases. Varying the values of the 
threshold score, a curve (ROC curve) is drawn in the FPR-TPR plane, characterizing the goodness of the classifier: 
the bigger the area under the curve, the better is the classifier. The best threshold value can be determined as the one 
yielding the point on the curve that maximizes the Youden’s index (that in general, is also very close to the one max-
imizing the Matthews Correlation Coefficient): = + + + −Y TP TP FN TN TN FN/( ) /( ) 1 or the Matthews 
Correlation Coefficient = ⋅ − ⋅

+ + + +
M TP TN FP FN

TP FP TP FN TN FP TN FN
( )

( )( )( )( )
. Notice that the threshold score identified in this 

way is maintained when analyzing the therapeutic antibodies. The classification with two reference distributions 
does not need the definition of a threshold score: it is based on the difference: = −s d dA A A( ) ( ) ( )h m( ) ( ) , with pos-
itive values indicating that the sequence A is closer to the human ensemble (and therefore, human) while negative 
values correspond to murine sequences.

Classifiers based on inference of a probabilistic model.  We follow Baldassi et al.10 and infer a multivariate Gaussian 
distribution from each VH, VL and combined VHVL learning databases, using uninformative prior distributions. 
From this, we calculate the posterior predictive distribution, that results to be a multivariate Student distribution, 
and use it to score the sequences in the test datasets. We sketch below the main tenets of the approach; more 
details can be found in SI Methods.

We start by mapping the L-residues-long, aligned sequences of the database (made up by M sequences, and 
drawn from a Q = 20 letters alphabet) to a binary sequence of N = QL bits = = …x i N{ 0, 1, 1, , }i , that, in block 
of Q bits, represent all the amino acids. As in ref.10 we assume that each of the M sequences in the database is 
drawn from a normal distribution with parameters μ, Σ (thus promoting xi

m to be real numbers):

μ μ| Σ = Σp x( , ) ( , ) (1)m

and we assume a Normal Inverse Wishart prior distribution for the parameters μ, Σ: μ Σ =p ( , )pr  
N I W η κ Λ ν( , , , ) N I Wμ η= | Σ|Λ ν

κ
Σ( ), ( , ). Using Bayes theorem, the posterior distribution for μ, Σ, given the 

data X can be calculated, yielding again a NIW distribution with new parameters η′, κ′, Λ′, ν′:

μ μ μ ηΣ| ∝ | Σ Σ = ′ κ′ Λ′ ν′p X p X p( , ) ( , ) ( , ) ( , , , ) (2)post pr N I W

where the expression of η′ κ′ Λ′ ν′, , ,  can be found in Eq. (10) of ref.10 as a function of the empirical average x   
and empirical covariance Ci j,  of the data. In a Bayesian approach, we derive the posterior predictive  
distribution for each new sequence = = …y y i N{ , 1, , }i , by integrating on μ, Σ the joint probability: 

μ μ μΣ| = | Σ Σ|p y X p y p X( , , ) ( , ) ( , )post . Plugging Eqs (1) and (2) into the above equation, we get

N I Wμ ρ μ ηΣ| = Σ| ″ κ″ Λ″ ν″p y X y( , , ) ( ) ( , , , , ) (3)

where the expressions for η″ κ″ Λ″ ν″, , ,  and ρ are reported in SI Methods. Upon integrating the above equation 
on μ, Σ, we get the posterior predictive distribution of a new sequence y, given the database of sequences X, as the 
multivariate t-distribution probability density:

λ
μ

λ
| =




 −

+ 〈 〉


 +

− 

〈Σ〉




p y X t M

M
( )

1
2, , 1 1

(4)N post post

with: μ λη λ〈 〉 = + − x(1 )post , λ λ λ λ η η〈Σ〉 = + − + − − −U C x x(1 ) (1 ) ( ) ( )post
T. We choose η and U as 

those corresponding to the mean and covariance estimates of a uniformly distributed sample.
We use the logarithm of p(y|X) in Eq. (4) as a score of the humanness of any given sequence y, and call it the 

“MG score”. Notice that p(y|X) is a probability density, and not a probability: as such, it is not bound between 0 
and 1, and actually, due to its strong localization in the high dimensional sequence space, it will greatly exceed 1.

Finally, we have to choose a value for λ to be used in our inference, to set the best amount of regularization 
λU that should be added to the empirical covariance to optimize the statistical model. We do so by analyzing the 
different ROC curves, obtained at different values of λ in classifying the test databases (see the previous section 
for the definition of the ROC curve), and choosing the value of λ yielding the curve with the maximal area under 
it. Finally, for the classification with one reference distribution, we select, as the threshold score, the one corre-
sponding to the point, on the ROC curve for the test database, with the highest value of the Youden’s coefficient. 
Notice that the threshold score identified in this way is maintained when analyzing the therapeutic antibodies, 
and in the humanization protocol.
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When classifying with two distributions, we fix the λ for both the murine and human statistical models as 
explained above. Then, we simply score each query sequence in the test databases with both statistical models, 
classifying it as human or murine depending on the which of the two scores is higher.

Classification without correlations is performed by maintaining the same value of Ω and neglecting corre-
lations between blocks of binary variables representing residues at different positions along the sequence; this 
ensures that Σ−1 will be block-diagonal as well, with no interactions between residues. We optimize λ as before, 
obtaining λ = 0.027. Analogously, classification without correlations between VH and VL regions is performed 
by maintaining the same value of Ω and asking that Σij = 0 if k, l belong to the VH and VL region, respectively. 
Again, the resulting Σ−1 will be block-diagonal, with no interactions between residues belonging to different 
variable regions. In this case, λ = 0.067.

Humanization of murine sequences.  We use the negative MG score, = − |E p y Xlog( ( )), see Eq. 4, as the 
objective function (the “Energy”, in analogy with statistical physics), that thus has to be minimized. We start from 
a murine sequence and, keeping fixed the positions corresponding to the CDR regions of the antibody, to ensure 
that it will continue recognizing the antigen, we mutate the other residues to make the sequence more human like. 
To this end, we perform two different strategies: 1) A steepest descent approach (SD), consisting in choosing, at 
each step, the mutation, at any position, that causes the biggest decrease in E. The process stops when all possible 
mutations at all sites increase the “energy”; 2) A Simulated Annealing Monte Carlo approach (SAMC), where we 
propose a random mutation at a random position, and accept it according to the Metropolis scheme. The simu-
lated annealing starts at a high temperature, T = 25.1, and lowers the temperature in ΔT = 0.5, every . ⋅3 74 106 
MC steps, until reaching T = 0.1. Here the temperature is just a parameter that controls the ability of the system 
to jump away from local minima and freely move through the sequence space (at high T), or to get trapped and 
explore the basins surrounding a minima, at low T.

The first technique finds the closest local minimum of the objective function in the neighborhood of the start-
ing sequence, and the optimal path to reach it. Simulated Annealing, starting from high temperatures, explores 
wider regions of the sequence space, and in general finds the deepest minima, corresponding to higher human-
ness score.

We have tried both methods to humanize the 7 different murine sequences contained in the 
murine-humanized pairs dataset, SI Table S2. Since we know the corresponding experimentally humanized part-
ner for each one, we can even control to what extent our theoretical humanized sequence matches its experimen-
tal counterpart.

Data Availability
The learning and test datasets, that we have compiled from public sources and analysed during the current study, 
are available from the corresponding author on reasonable request.
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