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There have been few in vivo studies on the effect of aluminum hydroxide adjuvant and

its influence on the immune response to vaccination. In this study, lambs received a

parallel subcutaneous treatment with either commercial vaccines containing aluminum

hydroxide or an equivalent dose of this compound only with the aim of identifying

the activated molecular signature. Blood samples were taken from each animal at

the beginning and at the end of the experiment and PBMCs isolated. Total RNA and

miRNA libraries were prepared and sequenced. After alignment to the Oar3.1 reference

genome and differential expression with 3 programs, gene enrichment modeling was

performed. For miRNAs, miRBase and RNAcentral databases were used for detection

and characterization. Three expression comparisons were made: vaccinated animals at

the beginning and at the end of the treatment, adjuvanted animals at the same times,

and animals of both treatments at the end of the experiment. After exposure to both

treatments, a total of 2,473; 2,980 and 429 differentially expressed genes were identified

in vaccinated animals, adjuvanted animals and animals at the end of both treatments,

respectively. In both adjuvant and vaccine treated animals the NF-κB signaling pathway

was enriched. On the other hand, it can be observed a downregulation of cytokines and

cytokine receptors in the adjuvanted group compared to the vaccinated group at the

final time, suggesting a milder induction of the immune response when the adjuvant is

alone. As for the miRNA analysis, 95 miRNAs were detected: 64 previously annotated in

Ovis aries, 11 annotated in Bos taurus and 20 newly described. Interestingly, 6 miRNAs

were differentially expressed in adjuvant treated animals, and 3 and 1 in the other two

comparisons. Lastly, an integrated miRNA-mRNA expression profile was developed, in

which a miRNA-mediated regulation of genes related to DNA damage stimulus was

observed. In brief, it seems that aluminum-containing adjuvants are not simple delivery

vehicles for antigens, but also induce endogenous danger signals that can stimulate the

immune system. Whether this contributes to long-lasting immune activation or to the

overstimulation of the immune system remains to be elucidated.
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INTRODUCTION

Aluminum compounds have been used as adjuvants for nearly 90
years in veterinary and human vaccines. Aluminum hydroxide,
aluminum phosphate and aluminum sulfate constitute the main
forms of aluminum used as adjuvants. Despite its widespread
use, the mechanism of how aluminum-based adjuvants exert
their beneficial effects is still not fully understood. Moreover,
they occasionally can cause adverse reactions (1). Gherardi
et al. (2) described an inflammatory muscle disorder in
humans characterized by a distinctive pattern of intramuscular
inflammation that demonstrated the presence of aggregates
of aluminum-containing macrophages and was linked to
inoculation with aluminum-containing vaccines (3); today this
disease is known as macrophagic myofasciitis (MMF). Several
studies with animal models have also concluded that aluminum
hydroxide-containing vaccines can lead to local tissue damage
and neurobehavioral changes similar to MMF (4). In sheep, a
form of the autoimmune/autoinflammatory syndrome induced
by adjuvants (ASIA) (5) has been described as linked to repetitive
inoculation with aluminum-containing vaccines. This syndrome
was extensively observed after compulsory vaccination against
the bluetongue virus of ruminants in 2008 (6).

Until recently, DNA microarrays were the primary tools
used in molecular toxicology for the evaluation of drugs, but
recently microarrays have also been used to analyze vaccines (7).
The basis of this method lies in the quality, immunogenicity
and reactogenicity of vaccines in expression profiling data.
This method can be highly informative, fast and very sensitive.
Unlike methods based on the hybridization of microarrays,
RNA sequencing (RNA-seq) uses ultrasequencing technologies
to determine transcriptomic profiles, that is, to detect and
accurately quantify RNA molecules that originate in a genome
at a certain time point. The sequencing of the transcriptomes
using next-generation RNA-seq is an optimal tool for a precise
and holistic analysis of the loci expressed in cells and tissues.
Recent studies show that this technique is superior to other
methods of transcriptome analysis due to its large dynamic range
and its low technical variability (8). In addition, RNA-seq is not
restricted to the known annotation of the genome, but allows
the identification of functionally relevant unknown loci, which is
very useful in genomes with imperfect annotations, as is the case
for many species of domestic animals (9).

Few studies have used new RNA sequencing technologies
to monitor the immune response to vaccination. Yang et al.
(10) analyzed the liver transcriptome using RNA-seq to clarify
the mechanisms of the host regarding the protector effect of
a possible vaccine and its immunogenicity. Demasius et al.
(11) monitored the immune response to vaccination using an
inactivated vaccine for neonatal bovine pancytopenia. In both
cases, new genes or routes involved in the immune response to
vaccination were detected and demonstrated the importance of
understanding this response in the development of new vaccines
and their components.

miRNAs are increasingly being identified as key players in the
immune system, regulating processes, such as the development,
differentiation and function of immune cells. Several miRNAs

have been identified in the different immune cell types, regulating
a number of responses. An interesting pattern has also emerged
where a single miRNA, such as miR-155, may influence global
immune responses through its effect on macrophages, dendritic
cells, and B and T lymphocytes through the direct regulation of
distinct target genes (12).

Until now, there have been many in vitro but few in
vivo studies on the influence of aluminum hydroxide adjuvant
and its influence on the immune response to vaccination.
Understanding how cells interact with adjuvants in vivo is crucial
to characterize the mechanisms of action of this adjuvant and will
be critical in the rational design of effective diagnostic tools and
vaccines against many diseases (13).

Thus, the main objective of this study was to identify the
molecular signature activated by vaccines and adjuvants in the
form of aluminum hydroxide in sheep, providing insight into
the mechanisms underlying the immune response, by combining
the molecular information provided by RNA sequencing of both
mRNA and miRNA in an in vivo experiment.

MATERIALS AND METHODS

Animals
All experimental procedures were approved and licensed by the
Ethical Committee of the University of Zaragoza (ref: PI15/14).
Requirements of the Spanish Policy for Animal Protection
(RED53/2013) and the European Union Directive 2010/63 on
the protection of experimental animals were always fulfilled.
Rasa Aragonesa pure breed lambs were selected from a single
pedigree flock of certified good health at 3 months old and did
not undergo any vaccination before the experiment. The flock
analyzed in this study was established at the experimental farm of
the University of Zaragoza and was always maintained indoors,
with ideal controlled conditions of housing, management and
diet. The animals were kept 2 months to acclimatize to
the new environment so they were 5 months old when the
experiment started. For the purpose of the present work, they
were randomly distributed in different treatment groups, n =

7 each. Each group received a parallel subcutaneous treatment
with either commercial vaccines containing aluminumhydroxide
[Al (OH)3] as adjuvant (Group Vac) or aluminum hydroxide
only (Group Adj; Alhydrogel, CZ Veterinaria, Spain), always
inoculating with the equivalent dose of aluminum applied
in the vaccinated group. Nine different vaccines were used,
and a total of 19 inoculations were applied in each group
throughout 16 different inoculation dates, thus entailing a total
amount of 81.29mg of aluminum per animal. Intervals between
inoculations ranged from 17 to 100 days (mean = 31.3 ± 22.1
days). The complete study lasted 475 days, from February 2015 to
June 2016. Table S1 includes details of the commercial vaccines
used and the inoculation protocol that was applied.

For RNA-seq analysis, a total of 6 animals were included
(3 sheep inoculated with vaccines and 3 sheep inoculated with
aluminum) and for validation of the sequencing data, 8 animals
were included (4 sheep treated with vaccines and 4 sheep treated
with aluminum; Table 1).
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TABLE 1 | Samples used in RNA-seq and RT-qPCR study.

Treatment Animals (6) Time Samples

RNA-seq

Vaccine 121, 124, 125 T0 121-A, 124-A, 125-A

Tf 121-B, 124-B, 125-B, 125-B*

Aluminum 111, 114, 116 T0 111-A, 114-A, 116-A

Tf 111-B, 114-B, 116-B

Treatment Animals (8) Time Samples

RT-qPCR

Vaccine 122, 123, 126, 127 T0 122-A, 123-A, 126-A, 127-A

Tf 122-B, 123-B, 126-B, 127-B

Aluminum 112, 113, 115, 117 T0 112-A, 113-A, 115-A, 117-A

Tf 112-B, 113-B, 115-B, 117-B

*Same RNA sample obtained with a conventional trizol extraction method.

Blood Collection and RNA Extraction
For the isolation of ovine peripheral blood mononuclear cells
(PBMCs), blood was collected from the jugular vein of 14 Rasa
Aragonesa sheep. Blood samples were taken from each animal
at the beginning (day 0, T0), before any vaccination, and at
the end of the treatment (day 475, Tf), which was 5 days
after the last inoculation. Blood was collected into heparinized
Vacutainer tubes (Becton, Dickinson and Company, Sparks,
MD), transferred into 50-ml centrifuge tubes and diluted 1:2
in HBSS. Twenty-five milliliters of blood:HBSS were layered
over 10ml of Ficoll-Paque (1.084 g/cm3) (GE HealthCare Bio-
Sciences, Uppsala, Sweden) in 50-ml centrifuge tubes. The
cells were centrifuged at 900 × g for 30min to separate
erythrocytes and polymorphonuclear cells from PBMCs. PBMCs
were collected from the HBSS-Ficoll-Paque interface, washed
with HBSS by centrifugation at 400 × g for 10min, lysed in 1ml
of Trizol and stored at−80◦C until further use.

Total RNA was extracted from PBMCs using an RNA Clean
& ConcentratorTM-5 kit (Zymo Research, Irvine, CA, USA)
following manufacturer’s instructions and stored at −80◦C.
RNA quantity and purity were assessed with a NanoDrop 1000
Spectrophotometer (Thermo Scientific Inc., Bremen, Germany).
The RNA integrity and concentration were assessed with a 2100
Bioanalizer (Agilent Technologies, Santa Clara, CA, USA). Two
numeric parameters concerning RNA integrity were estimated,
the 28S/18S (ribosomal RNA) ratio and the RNA integrity
number (RIN value). The RNA samples with a RIN value >7.5
and a 260/280 ratio >1.8 were used.

RNA Sequencing
Total RNA-seq libraries were prepared according to the TruSeq
Stranded Total RNA kit with Ribo-Zero Globin (Illumina,
San Diego, CA, USA) to deplete the samples of cytoplasmic
and mitochondrial rRNA and globin mRNA. The miRNA-seq
libraries were prepared according to the TruSeq Small RNA
library prep kit (Illumina). Total RNA and miRNA libraries were
sequenced on a HiSeq2000 sequencer and HiSeq2500 sequencer,

respectively. RNA-seq was conducted for a total of 13 samples,
with a mean sequencing depth of 70 million 76 base pair
(bp) paired-end reads at CNAG (Centro Nacional de Análisis
Genómico, Barcelona, Spain). miRNA-seq included 12 samples,
with a mean sequencing depth of 17 million 50 bp single-
end reads at CRG (Centro de Regulación Genómica, Barcelona,
Spain).

Total RNA Expression Analysis
First, a quality check was performed on the raw data files with
FASTQC [v0.11.5] (14) to assess the most appropriate read
quality filtering and trimming. The following criteria were used
with Trimmomatic [v0.36] (15): (1) remove adaptor sequences
with the “palindrome” mode for paired-end data, allowing up to
two mismatches; (2) remove reads in which the average Phred
quality score within a sliding window of five nucleotides falls
below 20; and (3) remove reads with a length <36 nucleotides.
The data were checked again with FASTQC to ensure that the
filtering was adequate.

The STAR RNA-seq aligner [v2.5.2b] (16) was used to align
clean reads to the Ovis aries genome build Oar3.1 [version 89.31]
(17) using the 2-pass mode. For each library, the featureCounts
software from the SourceForge Subread package [v1.5.0-p1] (18)
was applied to assign uniquely aligned fragments to annotated
genes in a strand-specific manner. Once the expression levels
were obtained they were evaluated by a set of plots from the
NOISeq package [v2.20.0] (19) and by principal component
analysis (PCA) to detect potential biases and contamination.

Differential gene expression analysis was performed using
three different R packages within Bioconductor: edgeR [v3.18.1]
(20, 21), DESeq2 [v1.16.1] (22), and limma [v3.32.2] (23). The
DESeq2 package performs independent filtering, but for edgeR
and limma a cutoff for filtering lowly expressed genes was set at
2 CPM (counts per million). Prior to the differential expression,
a batch effect correction package, SVA [v3.24.0] (24), was applied
to remove unwanted variation, and the surrogate variables were
incorporated into the testing model.

RNA-seq counts were modeled by a generalized linear model,
keeping in mind that not all samples were collected from
independent subjects. From every subject, two blood samples
were collected: at the start of the experiment (T0) and at the
end of the experiment (Tf). The following variables were used
in the model: time (T0 or Tf), treatment (complete vaccine
[Vac] or adjuvant only [Adj]), sample (indicates the samples that
come from the same individual), and SVA covariates (surrogate
variables calculated by sva). The model included the treatment
factor, the batch variable and the interactions treatment× sample
(because there were different animals in each treatment), and
treatment × time (to account for the treatment-specific time
effects). Differential expression analyses were performed for the
time points, considering the treatment group (Vac Tf vs. Vac T0
and Adj Tf vs. Adj T0), and for the treatments at the end of the
experiment (Adj Tf vs. Vac Tf).

In DESeq2 and edgeR the read counts follow a negative
binomial distribution, with a gene-specific dispersion parameter.
In contrast, limma transforms the read-counts to log2(CPM)
values and models the mean-variance relationship with precision
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weights (the “voom” approach). The differentially expressed
genes (DEGs) were selected as those with an adjusted p-value
(using the Benjamini-Hochberg method) threshold of <0.05 and
a fold change value of>1.5 or<0.667. Only those genes that were
identified as DEGs by all of the three programs were selected for
further analysis.

To search for overrepresented gene functions in the lists of
DEGs, gene enrichment analyses were conducted using the Gene
Ontology (GO) database with PANTHER [v12.0] (25) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
with DAVID [v6.8] (26). Enriched terms were considered
statistically significant with an adjusted p-value threshold of
<0.05.

miRNA Expression Analysis
For small RNA sequencing reads, all adaptor sequences were
first removed, and then low-quality reads and reads shorter than
16 bp were filtered out. For the subsequent analyses, some of
the sRNAtoolbox (27) modules were applied. The sRNAbech
module was used to map the sequences to theOvis aries reference
genome Oar3.1, to profile the expression of small RNAs and to
predict novel miRNAs. The program uses bowtie (28) behind
the scenes to map all the sequences to the reference genome,
and it searches in the miRBase [v21] (29) database for known
miRNAs in sheep. Furthermore, Rfam data was used to identify
other small RNAs originating from rRNA, tRNA, snRNA, and
snoRNA and exclude them from the analysis. The remaining
sequences were searched against the mature miRNAs of human
and other species, including cow, goat and mouse, in miRBase to
identifymiRNAhomologs. For the discovery of newmiRNAs, the
remaining sequences were used to predict their folding secondary
structure and, if a hairpin structure was predicted, their free
energy of hybridization. Ultimately, the predicted new miRNAs
were searched in the RNACentral [v6] database with blastn to
ascertain if they have been previously identified.

The differential miRNA expression analysis was performed
using the edgeR package with the same model as for the total
RNA-seq. The SVA package was first applied to remove unwanted
variation. The differentially expressed miRNAs were selected
as those with an adjusted p-value (by the Benjamini-Hochberg
method) threshold of <0.05 and a fold change value of >1.5 or
<0.667.

The mRNAconsTarget module was used to identify potential
miRNA target genes with the miRanda (30) and PITA (31)
algorithms. At the same time, the target prediction algorithm
TargetScan (32) was applied independently, using a total of 3
distinct target prediction algorithms. To select trustworthy target
genes, the following cutoffs were selected: in miRanda, a pairing
score >150 and an energy score < −15; in PITA, an energy score
< −15; and in TargetScan, a contex++ score < −0.7. All of the
programs returned a vast list of targets. To reduce false positives
and select candidate targets, only those genes that were common
across the three programs were selected for further analysis.

Next, integrating the total RNA and miRNA analyses, only
those target genes that were negatively correlated with the specific
miRNA were selected. Correlations between miRNA and mRNA
expression values were determined using the R statistical software

[v3.4.1]. A test for association between paired samples using
the Spearman’s rank correlation coefficient was applied with the
R cor. test function. The obtained p-values were adjusted due
to multiple comparisons with the Benjamini-Hochberg method
using a threshold of <0.05 to indicate significant miRNA-mRNA
pairs.

Validation of Differential Total RNA and
miRNA Expression
To validate changes that were identified by the RNA-seq
experiments, the relative expression levels of 9 genes (CNTLN,
EGR2, GPRC5C, HGF, NRXN2, SAMD4B, SKAP2, TREM1,
WDR5B) and 3 miRNAs (oar-let-7b, oar-miR-19b, oar-miR-25)
that were selected based on significant changes seen in the
RNA-seq and miRNA-seq analyses were verified by qPCR. For
quantification of mRNA transcripts, primers were designed using
the PrimerQuest and OligoAnalyzer tools of Integrated DNA
Technologies (IDT). GAPDH, ATPase, ACTB and TFRC were
used as reference genes. For quantification of miRNAs, primers
were designed using the Qiagen platform. U6 snRNA, oar-miR-
30d, and oar-miR-191 were used as internal standards. These last
two miRNAs were selected for their expression stability in our
samples. Table S2 shows the list of the amplified ovine genes
and miRNAs and the corresponding primer sequences. The real-
time qPCR amplification of cDNA pools was accomplished using
PowerUpTM SYBRTM Green Master Mix (Applied Biosystems,
Foster City, CA, USA) in a 10 µl final volume reaction,
according to the manufacturer’s instructions. qPCR reactions
were conducted on a QuantStudio R© 3 detection system (Applied
Biosystems) under the following conditions: 1 cycle of 50◦C for
2min, 1 cycle of 95◦C for 2min, 40 cycles of denaturation at 95◦C
for 15 s, annealing at 60◦C for 60 s, and a dissociation curve to
measure the specificity of the amplification. Appropriate controls
(no template and no retrotranscription) were included. Primer
concentrations that did not produce nonspecific fragments or
primer dimers and generated the lowest Ct values were selected
for the final analysis.

The expression study was based on the analysis of mRNA
and miRNA expression with Fludigm’s BioMark HD Nanofluidic
qPCR system technology combined with GE 48.48 Dynamic
Arrays IFC. qPCR was performed on a BioMark HD system
using Master Mix SsoFastTM EvaGreen R© Supermix with Low
ROX (Bio-Rad Laboratories, Hercules, CA, USA). The expression
analysis using the Fluidigm Biomark HD Nanofluidic qPCR
system was performed at the Gene Expression Unit of the
Genomics Facility, in the General Research Services (SGIKER) of
the UPV/EHU. Ct value and real-time PCR analysis was carried
out with Fluidigm Real-Time PCR Analysis software [v3.1.3].
PCR efficiency calculation and correction, reference gene and
miRNA stability analysis and normalization were accomplished
with the GenEx software of MultiD [v5.4]. Most of the genes
and miRNAs showed high amplification efficiencies, with mean
values of 96 and 99%, respectively. The stability of candidate
reference genes and miRNAs was analyzed using both the
NormFinder (33) and GeNorm (34) algorithms integrated in
GenEx. The two most stable genes were ACTB and GAPDH, and
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normalization was performed using these two reference genes.
The two most stable miRNAs were oar-miR-30d and oar-miR-
191, and normalization was performed using these two miRNAs.

Changes in gene and miRNA expression (n-fold) or relative
quantification (RQ) were determined by the 1(1Ct) method.
Based on the sequencing results, three comparisons were made:
Vac Tf vs. Vac T0, Adj Tf vs. Adj T0, and Adj Tf vs. Vac Tf.
The results are expressed as relative quantifications and fold
changes, which was standardized by log2 transformation. Normal
distribution was checked using the Shapiro-Wilk test in the IBM
SPSS statistical package [v24]. Changes in expression between
different groups (Vac Tf vs. Vac T0, Adj Tf vs. Adj T0, and Adj Tf
vs. Vac Tf) were compared with the TukeyHSD orGames-Howell
post-hoc test (ANOVA) or with the nonparametric Kruskal-
Wallis test of the SPSS package. In all analyses, the differences
were considered significant when the p-value was <0.05.

RESULTS

Summary Statistics for RNA-seq Data
A total of 13 RNA-seq libraries were sequenced, giving a mean
value of 69.7 million raw paired-end reads per library. After
filtering for adaptor sequences and low-quality fragments, amean
of 68.5 million reads (98.33%) remained for subsequent analyses.
Alignment of the filtered reads to the Ovis aries reference
genome (Oar3.1) yielded a mean value of 52.7 million read pairs
(76.95%) mapping to unique loci per library, 11.4 million read
pairs (16.70%) mapping to multiple loci and 4.3 million read
pairs (6.35%) not mapping to any loci in the genome. Only
the uniquely mapped reads were used for subsequent analyses,
and a mean value of 36.1 million read pairs (68.42%) were
successfully assigned to annotated genes in a strand-specific
manner.

Analysis of Differential Gene Expression
From RNA-seq Data
Gene coverage analysis revealed that of the 27,054 annotated
Ovis aries genes in Ensembl (release 89), 21,274 (78.63%) were
expressed with at least one sequence read count in at least one
of the 13 RNA-seq libraries. Detected genes whose expression
was lower than 2 CPM reads and could be found in <6
individual libraries were treated as lowly expressed genes and
were filtered out from the differential expression analysis. These
cutoffs were selected after checking that lower values introduced
genes whose expression was minimal and were expressed in
only a few animals of each group. Such lowly expressed genes
do not provide enough statistical evidence in the differential
expression analysis for a reliable judgment to be made (35).
In total, 11,395 genes (42.12%) were used in the differential
expression analysis.

Prior to any other analysis, the selected genes were used to
generate a PCA to visualize the 13 samples and to check if
there was any type of bias in the data. To accurately measure
biological variability and to obtain the correct statistical inference
in the analysis, the svaseq function from the SVA package was
applied to account for batch variables and unknown factors while
preserving the variation of interest. A new PCA was obtained

with the corrected data (Figure S1A). In this PCA, the samples
were grouped according to the treatment condition.

After the batch effect correction, all 11,395 genes that passed
the filtering were used for differential expression analysis in three
different programs (edgeR, DESeq2, and limma), designating
the intersection between the results of the programs (with a
p-value <0.05 and a fold change >1.5 or <0.667) as true
DEGs. In the Vac Tf vs. Vac T0 comparison, 2,473 DEGs
(Figure S2A) were identified, of which 1,208 and 1,265 displayed
increased and decreased expression, respectively. Showing a
similar pattern, in the Adj Tf vs. Adj T0 comparison, 2,980
DEGs (Figure S2B) were identified, of which 1,474 and 1,506
were upregulated and downregulated, respectively. Furthermore,
in the Adj Tf vs. Vac Tf comparison, 429 DEGs (Figure S2C)
were identified, of which 132 were upregulated and 297 were
downregulated. A detailed list of the DEGs can be seen in
Table S3.

The top 10 most significant up- and downregulated genes of
each comparison are shown as a heat-map (Figure 1). Within
the most up- or downregulated genes are factors that are
clearly related to apoptosis (TP53BP2, CSRNP1, TEAD3, CDCA7,
PPP1R15A), immune response (OSM, AMPD3, BTLA, SKAP2,
IGSF6, LST1, FGR, MAPK13), regulation of inflammatory
response (CD40, S100A12, ADGRE3, TREM1, STEAP4, NR4A3),
DNA replication and repair (FEN1, HIST1H4L), cell growth
(ARID5A, VPS37B, HGF, CSF3R), cell adhesion and cell-
cell signaling (NRXN2, CLEC12A, AREG), nervous system
development (RAPGEF5, CASZ1, EGR2, L1CAM), and a
gene involved in the pathogenesis of Alzheimer’s disease
(APBB1).

To validate the RNA-seq data, 9 mRNAs (CNTLN, EGR2,
GPRC5C, HGF, NRXN2, SAMD4B, SKAP2, TREM1, WDR5B)
were verified using the Fluidigm Biomark HD Nanofluidic qPCR
system. Fold changes in gene expression between the different
groups calculated by RT-qPCR are shown in Table S4. Although
the fold change values for the expression of some genes measured
by RNA-seq or RT-qPCR were different, in terms of fold change
direction, the gene expression patterns of most genes (6 in Vac
Tf vs. Vac T0, 9 in Adj Tf vs. Adj T0, and 7 in Adj Tf vs. Vac Tf)
(81.5%) were reproducible by the RT-qPCR analysis.

Functional Annotation and Classification
for RNA-seq Data
Functional characterization of the DEGs was performed with
PANTHER to identify enriched GO terms in the three domains:
Cellular Component (CC), Molecular Function (MF), and
Biological Process (BP). In the Vac Tf vs. Vac T0 comparison, 46
significantly overrepresented GO terms (with an adjusted p-value
<0.05) were identified in total. Among the top ranked Biological
Processes were intracellular signal transduction (GO:0035556),
cellular response to lipopolysaccharide (GO:0071222), regulation
of cytokine production (GO:0001817), DNA repair (GO:0006281)
and regulation of defense response (GO:0031347) (Figure 2).
In addition, in the Adj Tf vs. Adj T0 comparison, there were
72 overrepresented GO terms, including positive regulation of
GTPase activity (GO:0043547), regulation of cellular response to
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FIGURE 1 | Heatmap with the log2(Fold change) of the top 10 significant up- and down-regulated genes in the Vac Tf vs. Vac T0, Adj Tf vs. Adj T0, and Adj Tf vs. Vac

Tf comparisons. The genes were selected from those found differentially expressed in 3 different programs: limma, edger, and DESeq2.

stress (GO:0080135), cellular response to DNA damage stimulus
(GO:0006974), positive regulation of proteolysis (GO:0045862),
regulation of apoptotic process (GO:0042981), cellular response
to chemical stimulus (GO:0070887), regulation of autophagy
(GO:0010506) and regulation of immune system process
(GO:0002682) (Figure 3). Finally, in the Adj Tf vs. Vac Tf
comparison, there were 23 overrepresented GO terms, including
positive regulation of cytokine production (GO:0001819), positive
regulation of immune system process (GO:0002684), inflammatory
response (GO:0006954), immune response (GO:0006955),
regulation of response to external stimulus (GO:0032101), cellular
response to cytokine stimulus (GO:0071345), and neutrophil
chemotaxis (GO:0030593) (Figure 4).

KEGG pathway analysis of the DEGs using DAVID tools
revealed an overrepresentation of genes with roles in the immune
system, inflammatory response and autoimmune diseases. In
both the adjuvant- and vaccine-treated animals, the NF-κB
signaling pathway was enriched. Other enriched pathways
exclusive to each treatment were: TNF signaling pathway,
Toll-like receptor signaling pathway, p53 signaling pathway,

DNA replication, purine metabolism and endocytosis in Vac
Tf vs. Vac T0 (Figure 5); T cell receptor signaling pathway
and B cell receptor signaling pathway in Adj Tf vs. Adj T0
(Figure 6); and cytokine-cytokine receptor interaction in Adj
Tf vs. Vac Tf (Figure 7). Notably, nearly all cytokines and
cytokine receptors in the KEGG pathway are downregulated
in the Adj Tf group compared to Vac Tf, except for
CCR6.

Next, to summarize which genes were overrepresented in
two of the most enriched pathways, NF-κB signaling pathway
in vaccine- and adjuvant-treated animals and cytokine-cytokine
receptor interaction in the Adj Tf vs. Vac Tf comparison, a
radar plot was produced (Figures 8A,B). Within the NF-κB
target genes are cytokines/chemokines (IL1B, IL1RN, IL8,
and TNF), immunoreceptors (CD80, CCR7, CD40, IL2RA,
NOD2, TLR2, TREM1), acute phase proteins (PTX3, PLAU),
stress response genes (PTGS2, SENP2, SOD2), regulators of
apoptosis (TRAF2, CASP4), growth factors (HGF, PIGF),
transcription factors (REL, HIF1A, NFKBIE, NFKB2, RELB,
STAT5A, TFEC), and enzymes (ABCB9, DPYD, DUSP1,
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FIGURE 2 | The most enriched GO terms in the Biological Process ontology in the Vac Tf vs. Vac T0 comparison in PANTHER with the Fisher’s exact test and

Benjamini-Hochberg False Discovery Rate correction. The blue bars depict the number of genes in the enriched terms, while the red line the adjusted-p-values.

NUAK2, SAT1, TGM1) (Figure 8A). Within the cytokine-
cytokine receptor interaction pathway there are chemokines
(CXCR4, CCR6, CCR7, CCR5, CCR1, IL8), haematopoietins
(IL6ST, CSF3R, IL4R, IL13RA1, IL12RB1, OSM) and genes
belonging to the PDGF family (CSF2RA, CSF2RB, IL2RA,
IL2RB, IL15RA, HGF), interferon family (IFNAR2, IFNGR1),
TNF family (TNFRSF21, TNFRSF1B, FAS, CD40, TNFRSF13C,
TNF, LTB, TNFSF9, TNFSF13B), TGFB family (ACVR1B,
BMPR2, TGFB1), and IL1 family (IL1R1, IL18RAP, IL1B)
(Figure 8B).

Vaccination induced a clear upregulation of IL1B, IL2RA,
and PTX3, consistent with the induction of an ongoing
immune response against the vaccine. In contrast, inoculation
with aluminum alone generally downregulated the mRNA
expression of several proinflammatory genes, including IL1B,
IL8, TLR2, NOD2, or IL2RA, suggesting a milder induction of
the immune response (Figure 8A). Cytokine receptor interaction
evidenced the induction of IL18RAP, involved in sensing

the proinflammatory IL18 cytokine, and CSF3R, which is the
receptor for granulocyte colony stimulation factor (G-CSF), a key
cytokine that controls myeloid cell function.

Summary Statistics for miRNA-seq Data
The 12 miRNA-seq libraries were sequenced, giving a mean value
of 17.2 million raw paired-end reads per library. After filtering
for adaptor sequences and low-quality fragments, a mean of
14.2 million reads (82.38%) remained for subsequent analyses.
Alignment of the filtered reads to theOvis aries reference genome
(Oar3.1), allowing a maximum of 20 multiple mappings per read,
yielded a mean value of 12.9 million read pairs (91.40% of the
filtered reads) mapping to different loci per library.

Analysis of Differential Gene Expression
From miRNA-seq Data
After alignment, all sequences were searched in miRBase to
identify annotated miRNAs and in Rfam to identify other small
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FIGURE 3 | The most enriched GO terms in the Biological Process ontology in the Adj Tf vs. Adj T0 comparison in PANTHER with the Fisher’s exact test and

Benjamini-Hochberg False Discovery Rate correction. The blue bars depict the number of genes in the enriched terms, while the red line the adjusted-p-values.

RNAs originating from rRNA, tRNA, snRNA and snoRNA for
the purpose of excluding them from the analysis. In total, 56
annotated Ovis aries miRNAs were expressed with at least one
sequence read count in at least one of the 12 sample RNA-
seq libraries. Furthermore, new miRNAs were predicted with
the unassigned reads, obtaining 39 new miRNAs (Table S5)
with at least one sequence read in a sample. Of these 39
new miRNAs, 11 were similar to other miRNAs from Bos
Taurus in miRBase. Moreover, the predicted new miRNAs were
searched in RNACentral database with blastn, and another 8
miRNAs were linked to Ovis aries miRNAs found in other
studies.

The length distribution of all miRNAs were checked,
and the majority of the reads were 21–24 nucleotides
in length, a range distribution common in mammalian
miRNAs (36). Detected miRNAs whose expression was
lower than 1 CPM and were found in <6 individual
libraries were treated as lowly expressed miRNAs and were
filtered out from the differential expression analysis. In
total, 64 miRNAs were used in the differential expression
analysis.

Prior to any other analysis, the selected miRNAs were used to
generate a PCA to visualize the 12 samples and to check if there
was any type of bias in the data. To account for batch variables
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FIGURE 4 | The most enriched GO terms in the Biological Process ontology in the Adj Tf vs. Vac Tf comparison in PANTHER with the Fisher’s exact test and

Benjamini-Hochberg False Discovery Rate correction. The blue bars depict the number of genes in the enriched terms, while the red line the adjusted-p-values.

and other unknown factors, similar to the total RNA-seq analysis,
some surrogate variables were calculated with SVA. A new PCA
was obtained with the corrected data (Figure S1B). In this PCA,
the samples were grouped according to treatment condition.

After the batch effect correction, all 64miRNAs that passed the
filtering were used for differential expression analysis with edgeR.
A total of 3 (oar-miR-125b, oar-miR-99a, and new-miR-2284ab-
5p), 6 (oar-miR-25, oar-miR-379-5p, oar-miR-411a-5p, oar-miR-
16b, oar-miR-19b, and oar-let-7b) and 1 (new-miR-2284ab-5p)
differentially expressed miRNAs (with a p-value <0.05 and a fold
change >1.5 or <0.667) were identified in the Vac Tf vs. Vac T0,
Adj Tf vs. Adj T0 and Adj Tf vs. Vac Tf comparisons, respectively
(Table 2).

To validate the miRNA-seq data, 3 miRNAs (oar-let-7b,
oar-miR-19b, oar-miR-25) were verified using the Fluidigm
Biomark HD Nanofluidic qPCR system. Fold changes in miRNA
expression as calculated by RT-qPCR are shown in Table S4.
Validation results confirmed the upregulated expression of 2

miRNAs (oar-let-7b and oar-miR-25) and the downregulated
expression of oar-miR-19b. The miRNA data from RNA-seq and
RT-qPCR showed a high degree of concordance.

miRNA Target Prediction and Integration of
miRNA and mRNA Expression Profiles
Target gene predictions were performed for the differentially
expressed miRNAs with three different programs (miRanda,
PITA and TargetScan), taking the intersection of their results
as potential targets. miRNAs usually act via translational
repression and/or mRNA cleavage, although there is evidence
of miRNAs upregulating translation by diverse mechanisms (37,
38). However, it must be determined whether the activation
of protein translation is a general phenomenon or is only
an exception in the mechanism of miRNA action. For that
reason, when examining the miRNAs and their targets, only
those miRNA-target pairs with negative correlation were selected
for further study. Therefore, the miRNA expression data were
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FIGURE 5 | Enriched KEGG pathways in the Vac Tf vs. Vac T0 comparison in DAVID with EASE Score (a modified Fisher’s exact test) and Benjamini-Hochberg False

Discovery Rate correction. Black boxes represent different pathways and the points the differentially expressed genes in each pathway, up-regulated ones in red and

down-regulated ones in blue.

integrated with the mRNA expression data to predict reliable
miRNA-mRNA interactions, obtaining a total of 70 significant
pairs with negative correlation (Figure 9). Among the miRNAs
with more predicted targets, oar-let-7b had 33 predicted targets,
followed by oar-miR-25 and oar-miR-125 with 13 and 11
predicted targets, respectively. The significant pairs (with a
corrected p-value <0.05) had a Spearman’s rank correlation
coefficient (rho) value between−0.853 and−0.657.

DISCUSSION

Aluminum-based adjuvants, especially those containing
aluminum hydroxide, are the most widely used adjuvants in
human and animal vaccines (39, 40). Despite aluminum mineral
salts being used as adjuvants for over 90 years, their mechanism
of action is not totally understood. In the present study, RNA and
miRNA sequencing were performed in PBMCs from lambs that
were inoculated with commercial vaccines or with an equivalent
quantity of aluminum hydroxide alone to study the molecular
mechanisms of aluminum-based adjuvants. This is the first
long-term in vivo study dealing with the molecular genetic basis
of the immune response in sheep after repetitive inoculation
with aluminum-containing vaccines or aluminum alone. Most
studies on the immune response induced by aluminum have
been done in vitro, analyzing the effects of adjuvants on immune
system cells. This can help to define features of adjuvants that are
essential for their function and to obtain a better understanding

of mechanisms involved (13). However, it is crucial to understand
the behavior of cells in vivo and the interactions they have with
their environment to fully elucidate the mechanisms of action
involved in aluminum adjuvant-induced responses. Aluminum
adjuvants have a low dissolution and low elimination rate,
especially the hydroxide-based adjuvant, and there have been
different reports of low doses of aluminum remaining in the
organism after long periods of time (41). Thus, there is a need
for further long-term studies, as every year farm animals are
inoculated with different aluminum-based vaccines, and it could
be interesting to address the long-term effect that they might
have (42).

This work presents some limitations inherent to the difficulties
in the design of this kind of experiments. The number of animals
analyzed by RNAseq is limited. In addition, animals that had been
under treatment were analyzed only, and a longitudinal study
was chosen in which the animals were analyzed at the beginning
and end of the treatment, so that the final result of the repetitive
experiment was appreciated with respect to the initial situation in
each animal.

Moreover, priority has been given to the homogeneity of the
individuals analyzed in the different groups, so young animals
have been used, but all from the same herd, and without
any vaccination before our experiment. Further, a period of
adaptation to the new experimental flock was taken into account
and they were in the best conditions of feeding and temperature,
all of them controlled. Finally, as it is a repetitive vaccination

Frontiers in Immunology | www.frontiersin.org 10 October 2018 | Volume 9 | Article 2406

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Varela-Martínez et al. Alhydrogel Effect in Ovine PBMCs

FIGURE 6 | Enriched KEGG pathways in the Adj Tf vs. Adj T0 comparison in DAVID with EASE Score (a modified Fisher’s exact test) and Benjamini-Hochberg False

Discovery Rate correction. Black boxes represent different pathways and the points the differentially expressed genes in each pathway, up-regulated ones in red and

down-regulated ones in blue.

experiment, it is very difficult to dissect the effect of each
vaccine separately. We expect to see the cumulative effect of
all the inoculations, without ruling out that the latter has a
greater effect on the response of the animals than the previous
ones.

The up- or downregulation of a number of genes that
were previously described in other studies related to gene

expression alteration in aluminum-induced response were also
detected in this study, namely: NLRP3, IL1B, IL8, TNF, NFKB2,
RELA, and RELB. NLRP3 is a member of NLR family and
is part of the molecular platform called inflammasome (43).
There is a controversy about the requirements of NLRP3
inflammasome in the aluminum-induced response (13, 44,
45). In vitro, aluminum-containing adjuvants stimulate the
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FIGURE 7 | Enriched KEGG pathways in the Adj Tf vs. Vac Tf comparison in DAVID with EASE Score (a modified Fisher’s exact test) and Benjamini-Hochberg False

Discovery Rate correction. Black boxes represent different pathways and the points the differentially expressed genes in each pathway, up-regulated ones in red and

down-regulated ones in blue.

FIGURE 8 | Radar plot with the log2(FoldChange) of overrepresented genes in (A) NF-κB signaling pathway and in (B) cytokine-cytokine receptor interaction pathway

in the Vac Tf vs. Vac T0 (blue), Adj Tf vs. Adj T0 (red), and Adj Tf vs. Vac Tf (green) comparisons.

production of IL1B, and its production is dependent on
the NLRP3 inflammasome (46, 47). Despite the agreement
on the involvement of NLRP3 activation in vitro, how this
translates to in vivo responses is controversial, and some
studies have found no involvement of NLRP3 in dendritic
cell and lymphocyte activation by aluminum adjuvants (44,
47, 48). There is conflicting data about the necessity of the
inflammasome to induce a humoral response (44, 46, 49), which
is supposed to be predominant in aluminum based vaccines
(50, 51). In our study, NLRP3 was significantly downregulated
in Adj-injected sheep. Thus, inflammasome does not seem to

be necessary to induce an immune response in this in vivo
experiment.

In addition, proinflammatory cytokines seem to have an
important role in aluminum-induced response, especially when
the antigen is present. Several reports have shown that secretion
of inflammatory cytokines is induced by aluminum (47, 52–
54). The consequent increase in inflammatory signals led to the
activation of the NF-κB signaling pathway. Interestingly, the
expression levels of some NF-κB family genes, such as NFKB2,
RELA and RELB, were significantly increased in both the Vac
Tf vs. Vac T0 and Adj Tf vs. Adj T0 comparisons. Lukiw et al.
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TABLE 2 | List of differentially expressed miRNAs detected by edgeR with a FDR-adjusted p-values of ≤0.05.

Vaccine Tf vs. Vaccine T0 Adjuvant Tf vs. Adjuvant T0 Adjuvant Tf vs. Vaccine Tf

miRNA logFC FDR miRNA logFC FDR miRNA logFC FDR

new-miR-2284ab-5p −8,613 1,063E-06 oar-miR-25 2,171 2,003E-03 new-miR-2284ab-5p 12,072 1,483E-03

oar-miR-125b 2,225 6,024E-04 oar-miR-379-5p −4,208 2,003E-03 – – –

oar-miR-99a 1,654 1,369E-02 oar-miR-411a-5p −6,556 6,028E-03 – – –

– – – oar-miR-16b 1,732 2,023E-02 – – –

– – – oar-miR-19b −1,799 2,635E-02 – – –

– – – oar-let-7b 1,576 3,259E-02 – – –

FIGURE 9 | Significant negative correlations (with an adjusted p-value < 0.05) between differentially expressed miRNA-target pairs. Red points represent

up-regulation and blue ones down-regulation of the miRNA or target gene. The greater the absolute value of the Spearman’s rank correlation coefficient (rho), the

broader and darker is the line joining the miRNA and predicted target.

(55) also observed the upregulation of NFKB2 in human neural
cells exposed to aluminum. After activation, NF-κB induces
the transcription of proinflammatory mediators of the innate
immune response, including the cytokines TNF, IL1B, and IL8.
Kooijman et al. (56) also showed upregulation of TNF in human
monocytes stimulated with aluminum hydroxide. Other studies
found increased levels of IL1B mRNA expression in bovine
PBMCs treated with aluminum (57). In our study, IL1B and
IL8 were significantly upregulated in Vac-injected sheep. Two
other proinflammatory cytokines (TNF and IL16) have been
found differentially upregulated in Adj-injected sheep, suggesting
a nonspecific induction of proinflammatory responses when
adjuvant alone is inoculated.

When we compared the most significant up- or
downregulated genes, we observed that most of the genes
related to apoptosis (TP53BP2, CSRNP1, TEAD, CDCA7,
PPP1R15A) were upregulated in Vac- or Adj-injected sheep. This
is in agreement with other studies, in which aluminum-induced
apoptosis in the human neuroblastoma cell line (58) and the
expression of pro-apoptotic genes in human brain cells (55)

were also found. In addition, some genes related to the immune
response (SKAP2, IGSF6, LST1, FGR, MAPK13), inflammatory
response (S100A12, ADGRE3, TREM1, STEAP4, NR4A3), cell
growth (HGF, CSF3R), and cell-cell signaling (AREG) were
upregulated in Vac-injected sheep but were downregulated
in Adj-injected animals. In contrast, some genes related to
DNA replication and repair (FEN1, HIST2H4A) and involved
in RNA binding, synthesis and metabolism (IGF2BP3) were
downregulated in Vac-injected sheep and upregulated in Adj-
injected sheep. In fact, aluminum stimulates the immune system
by inducing immunological endogenous danger signals. Uric
acid and host DNA have been shown to be released in vivo
after aluminum injection (49, 59). Uric acid is released from the
injured cells as a danger signal, which rapidly degrades RNA
and DNA (49). Furthermore, among the most significant up- or
downregulated genes, factors clearly related to nervous system
development (RAPGEF5, CASZ1, LICAM) were upregulated in
Adj-injected animals.

Interestingly, two autoimmune processes appeared in the
pathway analysis, but in different comparisons: rheumatoid
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arthritis in the vaccinated sheep and systemic lupus
erythematosus in the adjuvant-injected sheep and adjuvant
vs. vaccine comparison. Therefore, it is possible that a previously
described autoimmune syndrome in sheep (ASIA) (6) resembles
these human autoimmune diseases and that the autoimmune
effect of the adjuvant alone differs slightly from that obtained in
combination with the antigens in vaccines.

Among the differentially expressed miRNAs, there were some
previously described in other studies related to expression
changes induced by aluminum, namely: miR-19b and miR-125b.
miR-125b was upregulated after inoculation with commercial
vaccines. miR-125b is a reactive oxygen species (ROS) and also
a NF-κB upregulated miRNA highly sensitive to aluminum-
sulfate induction in stressed brain cells (60). Some of the
aluminum-induced genes and miRNAs in brain cells exhibit
expression patterns similar to those observed in Alzheimer’s
disease, with miR-125b being one of them (61, 62). In contrast,
miR-19b was downregulated after inoculation with the adjuvant
alone. Dysregulation of miR-19b is implicated in nervous system
diseases, including Parkinson’s disease (63, 64), and miR-19b
is notably downregulated in the PBMCs of patients with
Alzheimer’s disease (65). miRNA pattern analysis links central
nervous system damage pathways with the intensive vaccination
protocol employed in this study, providing new insights on
adverse effects after repetitive vaccination.

Within the negatively correlated targets of the differentially
expressed miRNAs there are factors that are clearly related
to the response to stimulus (NBEAL1, CHEK1, MKNK1,
ANTXR2, MAP3K2, HSPA14), RNA binding (WDR75, SART3,
LRPPRC, SYNE1, RDX, XRN1, ZC3H8, SUB1, MBNL3) and
cellular response to DNA damage (NFATC2, ZBTB4, STXBP4,
RNF169). In fact, aluminum-containing adjuvants induce
endogenous danger signals (66) that can modulate immunity
via cytotoxic effects (67). These endogenous danger signals,
otherwise known as damage-associated molecular patterns
(DAMPs), are released by necrotic cells and can subsequently
induce alarm and inflammation (68) through recognition by
pattern recognition receptors (PRRs). Aluminum produces
granulomatous inflammatory reactions and promotes local
necrosis in vaccinated muscle tissue (69) and in the peritoneum
of mice following injection (59). Furthermore, a role for
endogenous danger signals released during aluminum-induced
cell death in driving immune responses has been demonstrated.
In particular, host DNA has been shown to be released following
aluminum injection (49). Marichal et al. (59) report that, in
mice, aluminum causes cell death and the subsequent release of
host cell DNA, which acts as a DAMP that mediates aluminum
adjuvant activity.

In addition, some of the targets have been previously linked
to the immune system. One of them is the MAP3K2 (MEKK2)
kinase gene, which is one of the predicted targets of the
upregulated let-7bmiRNA in Adj Tf vs. Adj T0.MAP3K2 controls
a delay in activation of NF-κB in response to stimulation with
proinflammatory cytokines and the formation of the IκB-β:NF-
κB:IKK complex (70, 71). SNX27 is another predicted target,
in this case of the upregulated miR-125b in Vac Tf vs. Vac T0,
whose silencing in human Jurkat T cells results inNF-κB pathway

hyperactivation (72). In the Vac Tf vs. Vac T0 comparison,
SNX27 is downregulated, and some NF-κB-induced genes are
upregulated. CHEK1 is a predicted target of the upregulatedmiR-
16b in Adj Tf vs. Adj T0. This gene is involved in DNA damage
response. In accordance with our study, Farasani et al. (73) also
found reduced levels of CHEK1 in MCF10A-immortalized non-
transformed human breast epithelial cells exposed to aluminum
chloride or aluminum chlorohydrate, suggesting that aluminum
can not only damage DNA but also compromise DNA repair
systems.

In summary, this study demonstrated for the first time in
a sheep model that aluminum adjuvants significantly increased
the expression of inflammatory cytokines, NF-κB family genes
and apoptotic genes. The activation of the NF-κB pathway
might be regulated by miRNAs, such as miR-125b and let-7b.
In addition, aluminum adjuvants play an important role in
the cytokine-cytokine receptor interaction pathway. It was also
revealed that aluminum affects genes related to DNA repair and
cellular response to DNA damage stimulus. Due to the NLRP3
gene downregulation in the Adj Tf group with respect to the
Adj T0 group, inflammasome does not seem to be necessary
for aluminum vaccines to induce an immune response, whereas
DNA damage and uric acid are involved in the process.

Additionally, the overrepresentation of genes related to DNA
damage stimulus and DNA repair in both groups may be due
to miRNA-mediated regulation, as some of the predicted targets
of the differentially expressed miRNAs are related to cellular
response to DNA damage (e.g., miR-16b and its predicted target
CHEK1). Furthermore, miRNAs, such as miR-25, miR-16b, and
let-7b were associated with the aluminum adjuvant for the first
time.

Taken together, these experiments demonstrate that
aluminum containing adjuvants are not simply delivery
vehicles for antigens but can also induce endogenous danger
signals that can stimulate and modulate the immune system.
Understanding vaccine factors that influence immune response
has vast translational implications and may ultimately lead
to the directed and rational development of new and more
efficacious vaccine adjuvants with better immunogenicity and
safety profiles.
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