000075847 001__ 75847
000075847 005__ 20191212102140.0
000075847 0247_ $$2doi$$a10.3390/membranes8030075
000075847 0248_ $$2sideral$$a108481
000075847 037__ $$aART-2018-108481
000075847 041__ $$aeng
000075847 100__ $$aKallem, P.
000075847 245__ $$aExploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing
000075847 260__ $$c2018
000075847 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075847 5203_ $$aThis experimental study explores the potential of supported ionic liquid membranes (SILMs) based on protic imidazolium ionic liquids (ILs) and randomly nanoporous polybenzimidazole (PBI) supports for CH4/N-2 separation. In particular, three classes of SILMs have been prepared by the infiltration of porous PBI membranes with different protic moieties: 1-H-3-methylimidazolium bis (trifluoromethane sulfonyl)imide; 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide followed by in situ ultraviolet (UV) polymerization to poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide. The polymerization process has been monitored by Fourier transform infrared (FTIR) spectroscopy and the concentration of the protic entities in the SILMs has been evaluated by thermogravimetric analysis (TGA). Single gas permeability values of N-2 and CH4 at 313 K, 333 K and 363 K were obtained from a series of experiments conducted in a batch gas permeance system. The results obtained were assessed in terms of the preferential cavity formation and favorable solvation of methane in the apolar domains of the protic ionic network. The most attractive behavior exhibited poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide polymeric ionic liquid (PIL) cross-linked with 1% divinylbenzene supported membranes, showing stable performance when increasing the upstream pressure. The CH4/N-2 permselectivity value of 2.1 with CH4 permeability of 156 Barrer at 363 K suggests that the transport mechanism of the as-prepared SILMs is solubility-dominated.
000075847 536__ $$9info:eu-repo/grantAgreement/ES/DGA/EU-EACEA/FPA2011-0014$$9info:eu-repo/grantAgreement/ES/DGA/EU-EACEA/SGA2012-1719
000075847 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075847 592__ $$a0.615$$b2018
000075847 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ2
000075847 593__ $$aProcess Chemistry and Technology$$c2018$$dQ2
000075847 593__ $$aFiltration and Separation$$c2018$$dQ2
000075847 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075847 700__ $$aCharmette, C.
000075847 700__ $$aDrobek, M.
000075847 700__ $$aJulbe, A.
000075847 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000075847 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000075847 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000075847 773__ $$g8, 3 (2018), 75 [17 pp]$$pMembranes$$tMembranes$$x2077-0375
000075847 8564_ $$s851482$$uhttps://zaguan.unizar.es/record/75847/files/texto_completo.pdf$$yVersión publicada
000075847 8564_ $$s102291$$uhttps://zaguan.unizar.es/record/75847/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075847 909CO $$ooai:zaguan.unizar.es:75847$$particulos$$pdriver
000075847 951__ $$a2019-12-12-10:11:58
000075847 980__ $$aARTICLE